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Quantum computers offer the possibility to implement lattice gauge theory in Minkowski rather than
Euclidean spacetime, thus allowing calculations of processes that evolve in real time. In this work,
calculations within SU(2) pure gauge theory are able to show the motion of an excitation traveling across a
spatial lattice in real time. This is accomplished by using a simple yet powerful method for error mitigation,
where the original circuit is used both forward and backward in time. For a two-plaquette lattice,
meaningful results are obtained from a circuit containing hundreds of CNOT gates. The same method is
used for a five-plaquette lattice, where calculations show that residual systematic effects can be reduced
through follow-up mitigation.
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I. INTRODUCTION

Lattice gauge theory is a computational framework for
obtaining rigorous results from quantum field theories
without any recourse to perturbation theory. A famous
example is quantum chromodynamics (QCD), where lattice
computations are continuing to reveal novel properties of
known hadrons [1], to quantify the prospects for unknown
hadrons [2], and to provide precision input to the search for
physics beyond the standard model [3].
Lattice studies are routinely performed in Euclidean

spacetime, meaning that time is imaginary rather than real.
The Euclidean formulation is ideal for a wide range of
observables, but a study of dynamics as a function of real
time is unfortunately out of scope for this approach. On the
other hand, real-time evolution could be studied quite
readily in a Hamiltonian formulation if sufficient comput-
ing resources were available, and this is where future
quantum computers are of interest [4]. They have the
possibility to store and evolve quantum states that are much
larger than any classical computer could ever attain. In the
present work, we use an IBM quantum computer [5] to
calculate the motion of an excitation moving across a lattice
in real time.
Today’s quantum computers have a limited number of

qubits, so our study uses a minimal non-Abelian lattice
gauge theory. Specifically, we use an SU(2) gauge group
rather than the SU(3) of QCD, and we omit the quarks; thus,

the physical particles in the theory are not hadrons but
glueballs. Time is a continuous parameter in the
Hamiltonian formulation; however, space is discretized onto
a lattice, and the two lattices employed in this work are
shown in Figs. 1 and 2. In general, each gauge link can be in
any superposition of the infinite tower of SU(2) irreps j ¼
0; 1

2
; 1; 3

2
;… but, as in other recent quantum computations

[6,7], the present study truncates to just two basis states:
j ¼ 0 and j ¼ 1

2
. A range of qubit-based approaches to non-

Abelian gauge theories can be found in Refs. [8–41].
Notice that we are not using periodic boundary con-

ditions. Periodicity would include “round-the-world” exci-
tations among the list of eigenstates but, at strong coupling
where the gauge truncation is most appropriate, those
round-the-world excitations become increasingly negli-
gible as more plaquettes are added to the lattice. Also,
our calculations are performed on ibm_lagos, which is
one of the IBM Quantum Falcon processors [5], and its
qubit layout is best suited to nonperiodic boundaries.
The Hamiltonian for a one-dimensional row of pla-

quettes is, in the notation of Ref. [7],

Ĥ ¼ g2

2

� X
i¼links

Ê2
i − 2x

X
i¼plaquettes

□̂i

�
; ð1Þ

where the only parameter is the gauge coupling g, and for
convenience we use the notation x≡ 2=g4. The overall
factor of g2=2 can be absorbed into our choice of units for
energy. The first term in Ĥ represents the energy stored in
the chromoelectric field, and the squared field Ê2

i contains
an implicit sum over the three components of the SU(2) Lie
algebra. The second term in Ĥ provides the energy stored in
the chromomagnetic field (plus a convenient constant) and
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contains the plaquette operator □̂i which is the trace of the
product of gauge links around the ith plaquette.
The initial states chosen for this work are shown in

Figs. 1 and 2. The closed loop with j ¼ 1
2
is a gauge-

invariant excitation that plays the role of an approximate
glueball on these tiny lattices. For x ¼ 0, the chromomag-
netic term disappears from the Hamiltonian, and our initial
states are eigenstates of the chromoelectric term; thus, the
initial states will remain constant in time. For a small but
nonzero value of x, the initial excitation will evolve through
time to include contributions from other chromoelectric
eigenstates and, because the low-energy eigenstates will
dominate, the excitation will travel (with a significant
probability) to the next plaquette and so on, across the
lattice. For x≳ 1, the chromomagnetic term rivals the
chromoelectric term, meaning the notion of weakly coupled
chromoelectric eigenstates is no longer useful language for
time evolution. For a discussion of similar propagation
within an Abelian theory, see Ref. [42]. In the present work,
we want to observe the non-Abelian phenomena directly
through quantum computer calculations for both x < 1
and x > 1.
Today’s quantum computers are noisy, so significant

error rates must be handled. A modest number of qubits
means that full-fledged error correction is not possible, but
various options for mitigating errors have been explored by
many authors in several contexts, as reviewed in Ref. [43].
One approach is to use a separate circuit to estimate the
errors expected to arise in the actual circuit of interest [44–
50]. As described below, the present project follows this
approach and is inspired, in particular, by Ref. [48]. Our
variation on this theme is to use the same circuit both
forward and backward in time rather than introducing a
separate circuit for error mitigation.

As is well known, a Trotter formula [51] divides the total
time t into small intervals dt and expresses the time
evolution operator e−iHt as an operator product that
approximates the evolution with one dt step after another.
Various Trotter formulas can be defined, and for each of
them, the approximation becomes exact as dt → 0. Higher-
order Trotter formulas [52] will approach the true result
with a higher power of dt, but the number of gates they
require can be prohibitively large.
Figure 3 provides a sequence of calculations performed

on an IBM quantum computer. From left to right in this
figure, each data point adds two Trotter steps to the total
circuit. Whereas the pioneering calculation for SU(2) in
Ref. [6] was limited to one or two Trotter steps in total for a
circuit having six CNOT gates, Fig. 3 demonstrates dozens
of Trotter steps totaling a few hundred CNOT gates. To
accomplish this, our computations use a method we call
self-mitigation. Agreement with the exact curves is good
but not perfect and, as will be mentioned in the following
sections, follow-up mitigation methods can improve these
results further. Nevertheless, self-mitigation by itself has
dramatic benefits and is a central component for the
present work.
To implement self-mitigation, the desired physics circuit

is run twice. The “physics run” applies allN Trotter steps in
the forward time direction to arrive at the intended final
time where the qubits are measured. The “mitigation run”
applies the first N=2 Trotter steps forward in time and the
remaining N=2 steps backward in time (dt → −dt) which
would return to the initial state on error-free hardware.
Measuring the qubits at the end of the mitigation run
provides a determination of the errors. That knowledge can
then be used to infer how noise is affecting the physics run,
thus allowing the underlying true physics to be extracted
with improved accuracy.
In essence, self-mitigation can be viewed as a particular

case of the method proposed in Ref. [48]. Those authors
demonstrated the value of running two circuits: the desired
physics circuit and a partner circuit for noise estimation.
Our choice is to use the same circuit in both runs, with
opposite signs for dt in the second half. This means our
mitigation computations use the exact same gates in the
exact same order as our physics computations; the only
distinction is dt → −dt in half of the circuit.
Because of the sign change for dt in the second half of

the mitigation run, quantum gates receive different input
states than in the physics run. To account for the depend-
ence of CNOT gates on their input states, randomized
compiling is used [53]. This means a randomly selected
Pauli or identity gate is applied to each input qubit for the
CNOT gate, which is then followed by the particular Pauli/
identity pair that causes the circuit’s overall result to be
unchanged. Figure 3 was obtained from 148 physics runs
and 148 mitigation runs, each with a different set of CNOT
randomizations.

FIG. 1. In our study, a lattice with 7 gauge links and 2
plaquettes begins at time t ¼ 0 in the state shown here. Each
solid line denotes a gauge link with SU(2) irrep j ¼ 1

2
. Each

dashed line denotes a gauge link with SU(2) irrep j ¼ 0.

FIG. 2. In our study, a lattice with 16 gauge links and 5
plaquettes begins at time t ¼ 0 in the state shown here. Each solid
line denotes a gauge link with SU(2) irrep j ¼ 1

2
. Each dashed line

denotes a gauge link with SU(2) irrep j ¼ 0.
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Details of our study can be found in Sec. II for both the
two-plaquette and five-plaquette lattices, and additional
information is contained in the appendices. Brief discus-
sions and an outlook are provided in Sec. III.

II. RESULTS

A. Time evolution on a two-plaquette lattice

One way to obtain the chromoelectric eigenstates for a
row of N plaquettes is to start with j ¼ 0 at each gauge link
and then apply various sequences of plaquette operators.
Retaining only j ¼ 0 and j ¼ 1

2
gives 2N basis states in

total, and they can be coded into a qubit register by
assigning one qubit to each plaquette. The top and bottom
links of the nth plaquette are always equal to each other,
either both j ¼ 0 or both j ¼ 1

2
. The qubit encodes that pair

of options. Each vertical link in the lattice is completely
specified by its neighboring plaquette values, being j ¼ 0 if
the neighboring plaquettes are equal to each other and j ¼ 1

2

otherwise. The two-qubit expression for a two-plaquette
lattice that emerges from Eq. (1) is

2

g2
H ¼ 3

8
ð7 − 3Z0 − Z0Z1 − 3Z1Þ

−
x
2
ð3þ Z1ÞX0 −

x
2
ð3þ Z0ÞX1; ð2Þ

where Xn and Zn denote Pauli gates acting on the nth qubit.
The time evolution operator is obtained from exponen-

tiation of the Hamiltonian, and any term involving two
plaquettes will require entangling gates. For IBM hardware,
the native entangling gate is the CNOT gate which is a
controlled Pauli X gate, and because of this we prefer to
first express the Hamiltonian in terms of Y and Z gates by
applying a

ffiffiffiffi
Z

p
rotation to each qubit in the register. The

result is

2

g2
H ¼ 3

8
ð7 − 3Z0 − Z0Z1 − 3Z1Þ

−
x
2
ð3þ Z1ÞY0 −

x
2
ð3þ Z0ÞY1: ð3Þ

For this form of the Hamiltonian, just a few basic identities,
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FIG. 3. Time evolution by self-mitigation on a two-plaquette lattice from the initial state of Fig. 1 with gauge coupling x ¼ 2.0 and
time step dt ¼ 0.08. In both panels, the red solid (blue dashed) curve is the exact probability of the left (right) plaquette being measured
to have j ¼ 1

2
. Upper panel: The red left-pointing (blue right-pointing) triangles are the physics data computed from the ibm_lagos

quantum processor. The red (blue) error bars without symbols are the mitigation data computed on ibm_lagos from the same circuit
but with half the steps forward in time and then half backward in time. Lower panel: The triangles are the physics results obtained by
applying Eq. (8) to the data from the upper panel.
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e−iθZj ¼ RZjð2θÞ; ð4Þ

e−iθYj ¼ RYjð2θÞ; ð5Þ

e−iθZjZk ¼ CXjkRZkð2θÞCXjk; ð6Þ

e−iθZjYk ¼ CXjkRYkð2θÞCXjk; ð7Þ

are sufficient to arrive at the time evolution operator in
terms of single-qubit rotations and CNOT gates (here called
CXjk for control qubit j and target qubit k). According to
Eq. (3), a first-order Suzuki-Trotter step needs six CNOT
gates in general, but this can be reduced to four by ordering
the Hamiltonian terms appropriately. A second-order
Suzuki-Trotter expression can also be constructed with
six CNOT gates, and a careful ordering shrinks that number
due to cancellations between neighboring Trotter steps. See
Appendix A for details.
We use the second-order Trotter step displayed in Fig. 4.

Notice that the CNOT gates at each edge will cancel those
from neighboring Trotter steps and are thus not included in
our code, except at the very beginning and very end of the
circuit. After the CNOT pairs cancel, the adjacent
RYð− 1

2
xtÞ gates can be combined into a single RYð−xtÞ.

Due to randomized compiling, each CNOT gate in Fig. 4
should be replaced with one of the 16 randomized versions
listed in Appendix B. The extra Pauli gates introduced by
this process can be combined with those from neighboring
CNOT gates, and with the rotation gates in between them,
to keep the circuit depth from growing too much.
Appendix C provides the explicit relations that we have
implemented. Notice that all of the randomized Pauli gates
get absorbed into rotation gates except a few remaining
Pauli X gates. We chose X as the Pauli gate to retain
because it is a native gate on IBM hardware.
Our code submitted 300 runs to the quantum hardware

within each job, with 104 hits per run, by sending the 300
circuits to the quantum hardware as a single python list.
This ensures that the mitigation circuits run back to back
with the physics circuits, thus experiencing essentially the

same hardware conditions. Four of the runs were for
mitigation of measurement errors, 148 were for self-
mitigation, and 148 were for the physics calculation.
Measurement mitigation [54] accounts for errors made

during the measurement step at the end of a circuit and is
done in a straightforward manner: Prepare each of the four
basis states of the computational basis as a separate circuit,
measure each qubit, construct the 4 × 4 calibration matrix,
and apply that matrix to all 296 runs of the physics circuit
via sequential least squares programming. IBM’s qiskit
software contains a package to handle measurement error
mitigation [55], but we chose to write our own equivalent
implementation.
The upper panel of Fig. 3 displays the averaged results

from the mitigation run and the averaged results from the
physics run with gauge coupling x ¼ 2.0 for the two-
plaquette lattice. The time interval used for each Trotter
step is 0.08 in units of 2=g2, and symbols on the graph show
even numbers of time steps. For each data point, a statistical
error bar for 148 runs is obtained from 1480 bootstrap
samples and then combined in quadrature with the
statistical error from 104 hits per run. On perfect hardware,
the mitigation results would have probability ¼ 1 for the
left plaquette and 0 for the right plaquette at all times.
Instead, they smoothly approach the pure noise value,
probability ¼ 1

2
, as time increases. The raw physics calcu-

lations are always bounded by the mitigation results as
expected, since the true physics probabilities are neces-
sarily between 1 and 0.
If the combined effects of self-mitigation and randomi-

zation lead to incoherent noise that is independent of the
dt → −dt sign flip, then we can obtain the true physics
result by equating ratios:

Ptrue − 1
2

Pcomputed − 1
2

����
physics run

¼ Ptrue − 1
2

Pcomputed − 1
2

����
mitigation run

: ð8Þ

For related discussions of depolarizing noise see, for
example, Refs. [47,48]. The application of our ratio to
the data plotted in the upper panel of Fig. 3 produces the
results displayed in the lower panel. Comparison of these
two plots provides an eye-catching example for the use-
fulness of self-mitigation.

B. An excitation traveling across a lattice

Having demonstrated the success of self-mitigation, we
now apply it to the physics goal of seeing a traveling
excitation. This is in contrast to Fig. 3 where the large
gauge coupling means all eigenvalues made significant
contributions and all frequencies were competing in the
resulting graph. To see a traveling excitation, we must use
x≲ 1where the lowest eigenvalues will dominate, meaning
that single-plaquette states are of particular importance. In
this case an initial single-plaquette state will move along a

FIG. 4. Single second-order Suzuki-Trotter step for the two-
plaquette lattice. The first and last CNOT gates cancel with
neighboring Trotter steps, leaving four CNOT gates per Trotter
step. A forward step has t ¼ dt, and a backward step has t ¼ −dt.
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row of plaquettes and then reflect from the end of the lattice
and propagate back. The propagation time will be larger for
smaller x, becoming infinite (so the excitation never moves)
at x ¼ 0. For an overview of this type of propagation within
an Abelian theory, see Ref. [42].
Here we choose x ¼ 0.8 which is small enough to make

the excitation’s movement visible and yet large enough to
see the movement within a modest time window. Results
are presented in Fig. 5 for a time step of dt ¼ 0.12. Higher
frequencies are clearly visible as oscillations superimposed
on the slow transition of large probability from the left
plaquette to the right plaquette.
As in Fig. 3, each data point in Fig. 5 uses two additional

second-order Trotter steps relative to the previous time step.
As the number of CNOT gates approaches 300, the data
begin to deviate from the exact curves, but the physics
conclusion is clear. The probability of observing an
excitation (i.e. j ¼ 1

2
) at the left plaquette has dropped

from 100% at time t ¼ 0 to something below 50%, while
the probability for an excited right plaquette has increased
from 0 at time t ¼ 0 to something above 50%.

C. Time evolution on a five-plaquette lattice

The ibm_lagos processor has 7 qubits, but the longest
string of nearest-neighbor couplings joins only 5 qubits,
suggesting that we attempt the challenge of a five-plaquette
lattice. Generalizing Eq. (2) to N plaquettes gives

H ¼ g2

2
ðhE þ hBÞ; ð9Þ

hE ¼ 3

8
ð3N þ 1Þ − 9

8
ðZ0 þ ZN−1Þ −

3

4

XN−2

n¼1

Zn

−
3

8

XN−2

n¼0

ZnZnþ1; ð10Þ

hB ¼ −
x
2
ð3þ Z1ÞX0 −

x
2
ð3þ ZN−2ÞXN−1

−
x
8

XN−2

n¼1

ð9þ 3Zn−1 þ 3Znþ1 þ Zn−1Znþ1ÞXn; ð11Þ

and here we choose N ¼ 5. As described for the two-
plaquette case, we will transform the X gates into Y gates
for the practical convenience of expressing H with non-X
Pauli gates because the controlled X gate is the native
controlled gate for ibm_lagos.
Notice that Eq. (11) contains terms that involve three

different qubits, arising because application of a plaquette
operator requires input from both of the neighboring
plaquettes. This is a new feature for a lattice having more
than two plaquettes and is handled with an identity
involving four CNOT gates:

e−iθZjYkZl ¼ CXlkCXjkRYkð2θÞCXjkCXlk: ð12Þ

A random ordering of the Hamiltonian terms can lead to
many CNOT gates within a single Trotter step, but a
particular ordering can reduce the count to 16 CNOT gates
in a first-order Trotter step or 22 CNOT gates in a second-
order Trotter step. We choose the second-order option, and
our Trotter step is displayed in Fig. 6. Although 28 CNOT
gates are shown, only 22 are needed because the three on
each end will cancel with those in the neighboring Trotter
steps except, of course, at the very beginning and end of the
complete circuit. After canceling the neighboring CNOT
gates, three pairs of RY gates beside them are merged into
three single RY gates.
The CNOT gates in Fig. 6 are placeholders for any

randomly chosen options from Appendix B. The extra Pauli
gates arising from the randomization are absorbed into
rotation gates through the expressions in Appendix C.
Randomized compiling should lead to predominantly
incoherent noise, thus allowing the use of self-mitigation.
Four Trotter steps forward in time will produce the physics
result. Two Trotter steps forward followed by two back-
ward will return to the initial state. The noise is mitigated
by putting those two cases into Eq. (8).
Our initial state, as shown in Fig. 2, is symmetric under

an end-to-end reflection of the lattice. However, our form of
the Trotter step does not appear symmetric under that
reflection, which corresponds to flipping Fig. 6 from top to
bottom. This is a consequence of our particular choices for
representing and ordering the individual Hamiltonian
terms. The symmetry is maintained up to standard
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FIG. 5. Excitation moving from one plaquette to another in real
time. The initial state of the two-plaquette lattice is Fig. 1, gauge
coupling is x ¼ 0.8 and time step is dt ¼ 0.12. The red solid
(blue dashed) curve is the exact probability of the left (right)
plaquette being measured to have j ¼ 1

2
. The red left-pointing

(blue right-pointing) triangles are the corresponding calculations
on the ibm_lagos quantum processor after self-mitigation.
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Trotter errors that vanish as dt approaches zero. The fact
that our Trotter step does not comprise a simple repetitive
pattern of gates is nice to see because we want to avoid a
simplistic special case. The goal here is to push self-
mitigation to its limits on the available quantum hardware.
For the two-plaquette lattice, we used a constant time step

jdtj while changing the number of Trotter steps, but for the
five-plaquette lattice, we do the opposite. Figure 7 shows
calculations for various time step sizes, all computed with
four of the Trotter steps from Fig. 6. Therefore, the total
circuit contains 94 randomized CNOT gates. Each job
contains 300 runs (each with 104 hits), where 25 ¼ 32 runs
are used for measurement-error mitigation, 134 runs for the
physics calculation, and 134 runs for self-mitigation. Is this
number of runs sufficient? To address that, four separate jobs
were used per data point and analyzed separately. Because
the variations among themwere comparable to the statistical
error bars, the four results were averaged to produce Fig. 7.
Most of the solid symbols in Fig. 7 are consistent with

the true curves, but some systematic deviations are appar-
ent, particularly for the center plaquette at times between
0.5 and 0.8 and the outer plaquette at times between 0.1 and
0.3. These residual effects can be handled by using addi-
tional error mitigation beyond self-mitigation, specifically
zero-noise extrapolation [56], as shown by the open
symbols in Fig. 7. To obtain the open symbols, each

FIG. 6. Single second-order Suzuki-Trotter step for the five-plaquette lattice. The five horizontal lines are the five qubits that represent
the five plaquettes in order across the lattice. A forward step has t ¼ dt, and a backward step has t ¼ −dt.
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FIG. 7. Time evolution on a five-plaquette lattice from the
initial state of Fig. 2 with gauge coupling x ¼ 2.0. The black
solid, red dotted, and blue dashed curves are, respectively, the
exact probability of measuring j ¼ 1

2
for the center plaquette, its

neighbor, and the outer plaquette. The black circles, red squares,
and blue triangles are the corresponding calculations on the
ibm_lagos quantum processor after self-mitigation. Each
filled data point uses four second-order Trotter steps and thus
94 CNOT gates. Open data points are augmented by zero-noise
extrapolation.
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CNOT gate was replaced by a triplet of identical CNOT
gates, and that circuit was studied with self-mitigation and
measurement error mitigation in our standard fashion. A
linear extrapolation of those results (triplet CNOT noise)
and the solid symbols (singlet CNOT noise) to the target
point of zero CNOT noise produced the open symbols. It is
encouraging to see that they lie closer to the true curves. A
higher-order extrapolation would allow for a more detailed
study of these residual effects, but this is beyond the aims of
the current project. Notice that the triplet-CNOT circuit
already contains 282 CNOT gates and therefore represents
another success for self-mitigation.
Because this calculation uses a gauge coupling x ¼ 2.0,

the results are not interpreted as a traveling excitation.
Indeed, the three peaks in Fig. 7 are not ordered from the
starting location (i.e. the center of the five-plaquette lattice
as shown in Fig. 2) out to the ends of the lattice. Instead,
x ¼ 2.0 means chromoelectric and chromomagnetic con-
tributions are both important, and all frequencies play a
role. Self-mitigation has provided a useful reflection of the
true physics, while the remaining systematic errors can be
managed through zero-noise extrapolation.
In principle, we could now select x < 1 and look for a

traveling excitation on the five-plaquette lattice. However,
this would require significantly more Trotter steps than
were used in Fig. 7, and we expect it to be beyond the reach
of present computing hardware even with self-mitigation
and zero-noise extrapolation. Rapid hardware progress will
undoubtedly continue, underscoring the importance of
having mitigation methods tested and ready.

III. DISCUSSION

This work has used a quantum computer to study time
evolution in a non-Abelian lattice gauge theory and presents
the first observation of a local excitation moving across a
spatial lattice. It also shows time evolution further from the
strong coupling regime where a larger number of eigenval-
ues can play a significant role. The results span amuch larger
time range than has been attained from previous qubit
calculations in non-Abelian gauge theories [6,7,32,40].
The improvement was made possible by a recent major

advance in the mitigation of gate errors, particularly the idea
of defining a noise-mitigation circuit that resembles the
target circuit of physical interest [48]. Our approach,
referred to as self-mitigation, uses the physics circuit as
its own noise-mitigation circuit. This means our mitigation
circuit is as close to the desired physics circuit as possible
because all gates are retained and kept in exactly the same
locationswithin each run of the circuit. In a “physics run,” all
Trotter steps evolve forward in time, and measurements are
made at the desired final time. In a “mitigation run,” half of
the Trotter steps evolve forward in time, and half evolve
backward; thus, measurements are made after returning to
the initial time. Because the initial conditions are known, the
mitigation run determines the effects of noise. That noise is

used to mitigate the physics run, thus revealing the physics
signal. For additional information, see Appendix A.
A well-known alternative, called zero-noise extrapola-

tion [56], purposely introduces various amounts of addi-
tional noise into the circuit and then extrapolates to the
zero-noise limit. This additional noise typically reduces the
number of Trotter steps that can be handled. In contrast,
self-mitigation has the notable advantage of not introducing
any additional noise. Still, if extra mitigation is desired,
then zero-noise extrapolation can be applied after self-
mitigation, as demonstrated by Fig. 7.
Randomized compiling is an integral part of self-miti-

gation, so gate errors can be converted into incoherent
errors instead of retaining systematic dependences on the
qubit states being input to each CNOT gate. The randomi-
zation is done through Pauli gates, and the conversion to
incoherent errors is not exact but is nevertheless of great
practical value.
Some variations in the implementation of self-mitigation

can be considered. For example, imagine choosing miti-
gation runs that have one step forward in time followed by
one step backward in time, alternating forward and back-
ward steps until the end of the circuit. This means the qubit
register will never stray far from its initial state, but it
quickly deviates from the physics run. Since our goal is to
keep the mitigation runs as similar as possible to the
physics runs, this is not a helpful scenario.
Another possible variation is to use mitigation runs that

have twice as many Trotter steps as the physics runs. For a
physics circuit having N Trotter steps, imagine a mitigation
circuit comprising N Trotter steps forward in time followed
by N steps backward. This has the advantage that the first
half of the mitigation circuit is identical to the entire
physics circuit. In a sense, the second half is identical to
the conjugate of the physics circuit, but each CNOT gate
has a different input state when moving toward the initial
state rather than away from it, leaving no clear advantage
over the implementation used in our study. Moreover, the
mitigation circuit now contains more gates which will
reduce the number of Trotter steps that can be attained.
Equation (8) could be modified to handle the longer
mitigation circuit, for example, by taking the square root
of the right-hand side to reflect a standard assumption about
the scaling of errors. No such assumption is required for the
self-mitigation that has been implemented in our work.
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APPENDIX A: METHODS

This section provides extra details about building the
circuit, writing the code, running the code, interpreting the
results, and assessing the impact of gauge truncation. For
this discussion, the two-plaquette lattice is used as the
explicit example.
Building the circuit: There are three terms in Eq. (3) that

involve two qubits. When computing time evolution, those
terms require CNOT gates. In our codes, we put those terms
side by side at the ends of the list so neighboring CNOT
gates can cancel with each other and with neighboring
Trotter steps. This leads to

2

g2
H ¼ −

x
2
Z1Y0 −

3

8
Z0Z1 −

3

2
xY0 −

9

8
Z1

−
9

8
Z0 −

3

2
xY1 −

x
2
Z0Y1: ðA1Þ

In a second-order Trotter step, the exponentials of these
terms appear twice (each instance with half of the coef-
ficient), resulting in

e−iHt ¼ eiðxt=4ÞZ1Y0eið3t=16ÞZ0Z1eið3xt=4ÞY0eið9t=16ÞZ1

eið9t=16ÞZ0eið3xt=4ÞY1eiðxt=4ÞZ0Y1eiðxt=4ÞZ0Y1

eið3xt=4ÞY1eið9t=16ÞZ0eið9t=16ÞZ1eið3xt=4ÞY0

eið3t=16ÞZ0Z1eiðxt=4ÞZ1Y0 ; ðA2Þ

where time t is in units of 2=g2. This result corresponds to
the circuit displayed in Fig. 4. Some gates at the center of
the product commute with each other, so those have been
rearranged and combined in the figure.
Writing the code: A code for self-mitigation can be

written with standard qiskit commands. A sample code for
calculating self-mitigated time evolution on a two-plaquette
lattice is provided in Ref. [57].
Running the code: The amount of time needed for

computations on the qubit register depends on the number
of circuits, the number of shots per circuit, and the number
of Trotter steps in each circuit. Each time value in Fig. 3
comes from one job having 300 circuits with 104 shots per
circuit. For two examples, we note that the job with 4
Trotter steps used 13.7 minutes on the qubit register, and
the job with 40 Trotter steps used 17.0 minutes. For
comparison, a job with four Trotter steps of our five-
plaquette computation (again with 300 circuits and 104

shots per circuit) used 14.5 minutes.
Interpreting the results: A quick glance at the lower

panel of Fig. 3 might give the impression that self-
mitigation is doing less well for probabilities near 1

2
, but

this is not the case. For added clarity, we can replot the data
from the left half of that lower panel using different axes.
Figure 8 shows the discrepancy between the computed data
points and the exact curve as a function of the exact curve’s

value. The graph confirms that self-mitigation is equiv-
alently successful across the full range of probability
values. The same conclusion is true at larger times (not
shown in Fig. 8) even though self-mitigating computations
at all probabilities begin to deviate further from the exact
probability.
Impact of gauge truncation: The methods described

above allow the observation of an excitation moving across
the lattice, as shown for gauge coupling x ¼ 0.8 in Fig. 5.
These results were obtained by truncating the Hilbert space
such that each gauge link has only two basis states: j ¼ 0

and j ¼ 1
2
. To assess the impact of this truncation, Fig. 9
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FIG. 8. All data for t ≤ 4 from the lower panel of Fig. 3
displayed as the difference between the self-mitigated computa-
tion and the exact probability. All data points lie within a
horizontal band on the graph, without any conspicuous depend-
ence on Pexact, suggesting that self-mitigation is performing
equally well for all values of the exact probability.
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FIG. 9. The four lowest eigenvalues of the Hamiltonian
matrix for a two-plaquette lattice are calculated with various
choices for the gauge truncation. Rapid convergence is observed
for these x values. This graph was obtained from a purely
classical computation.
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shows the lowest energy eigenvalues as the maximum j is
increased. Convergence is rapid at x ¼ 0.8, with precise
results appearing already by j ¼ 2. How would the trav-
eling excitation of Fig. 5 be changed if these extra j options
had been retained? As shown in Fig. 10, the physics
phenomenon is still observed, but the transition from left
excitation to right excitation occurs at a different numerical
value of the time.

APPENDIX B: RANDOMIZED CNOT GATES

Randomized compiling means that each CNOT gate
shown in Fig. 4 gets replaced by one of the following 16
options, chosen randomly:

CXjk; ðB1Þ

XkCXjkXk; ðB2Þ

YkCXjkZjYk; ðB3Þ

ZkCXjkZjZk; ðB4Þ

XjCXjkXjXk; ðB5Þ

XjXkCXjkXj; ðB6Þ

XjYkCXjkYjZk; ðB7Þ

XjZkCXjkYjYk; ðB8Þ

YjCXjkYjXk; ðB9Þ

YjXkCXjkYj; ðB10Þ

YjYkCXjkXjZk; ðB11Þ

YjZkCXjkXjYk; ðB12Þ

ZjCXjkZj; ðB13Þ

ZjXkCXjkZjXk; ðB14Þ

ZjYkCXjkYk; ðB15Þ

ZjZkCXjkZk; ðB16Þ

where j is the control qubit and k is the target qubit.

APPENDIX C: ABSORBING PAULI GATES
INTO ROTATIONS

To absorb neighboring Pauli gates into a rotation around
the y axis, retaining the IBM native gate X where required,
we make the replacement

P1RYðαÞP2 → RYðθÞP3; ðC1Þ

where the Pj and θ are given in Table I. Each of these
replacements is an equality up to an unphysical overall
phase. The corresponding expression for rotation around
the z axis is
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FIG. 10. An excitation moving from one plaquette to another in
real time on a two-plaquette lattice, retaining all states having
j ≤ 2. The gauge coupling is x ¼ 0.8. The red solid (blue dashed)
curve is the probability of the leftmost (rightmost) gauge link
being measured to have j > 0. This graph was obtained from a
purely classical computation.

TABLE I. The complete set of options used in Eq. (C1).

P1 P2 θ P3

1 1 α 1
1 X α X
1 Y π þ α 1
1 Z π þ α X
X 1 −α X
X X −α 1
X Y π − α X
X Z π − α 1
Y 1 π þ α 1
Y X π þ α X
Y Y α 1
Y Z α X
Z 1 π − α X
Z X π − α 1
Z Y −α X
Z Z −α 1
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P1RZðαÞP2 → RZðθÞP3; ðC2Þ

where the Pj and θ are given in Table II. The expressions
for rotation around both y and z are

P1RYðαÞRZðβÞP2 → RYðθ1ÞRZðθ2Þ; ðC3Þ

P2RZðβÞRYðαÞP1 → RZðθ2ÞRYðθ1Þ; ðC4Þ

where the Pj and θj are given in Table III. The expressions
for rotation around z then y then z are

P1RZðαÞRYðβÞRZðαÞP2 → RZðθ1ÞRYðθ2ÞRZðθ3Þ; ðC5Þ

where the Pj and θj are given in Table IV.
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