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We perform hybrid Monte-Carlo simulation of lattice QCD with Nf ¼ 2þ 1þ 1 domain-wall quarks at
the physical point, on the 643 × ð64; 20; 16; 12; 10; 8; 6Þ lattices, each with three lattice spacings. The
lattice spacings and the bare quark masses are determined on the 644 lattices. The resulting gauge
ensembles provide a basis for studying finite temperature QCD with Nf ¼ 2þ 1þ 1 domain-wall quarks
at the physical point. In this paper, we determine the topological susceptibility of the QCD vacuum for
T > Tc ∼ 150 MeV. The topological charge of each gauge configuration is measured by the clover charge
in the Wilson flow at the same flow time in physical units, and the topological susceptibility χtða; TÞ is
determined for each ensemble with lattice spacing a and temperature T. Using the topological susceptibility
χtða; TÞ of 15 gauge ensembles with three lattice spacings and different temperatures in the range
T ∼ 155–516 MeV, we extract the topological susceptibility χtðTÞ in the continuum limit. To compare our
results with others, we survey the continuum extrapolated χtðTÞ in lattice QCD with Nf ¼ 2þ 1ðþ1Þ
dynamical quarks at/near the physical point and discuss their discrepancies. Moreover, a detailed
discussion on the reweighting method for the domain-wall fermion is presented.

DOI: 10.1103/PhysRevD.106.074501

I. INTRODUCTION

The topological susceptibility χt is the most crucial
quantity to measure the quantum fluctuations of the
QCD vacuum, and it is defined as

χt ¼ lim
V→∞

hQ2
t i

V
; ð1Þ

where Qt is the integer-valued topological charge of the
gauge field in the four-dimensional volume V,

Qt ¼
g2ϵμνλσ
32π2

Z
d4x tr½FμνðxÞFλσðxÞ�; ð2Þ

and Fμν ¼ TaFa
μν is the matrix-valued field tensor, with the

normalization trðTaTbÞ ¼ δab=2.
At low temperature T < Tc ≃ 150 MeV, χt is related to

the chiral condensate Σ,

Σ ¼ − lim
mq→0

lim
V→∞

1

Ω

Z
d4x hq̄ðxÞqðxÞi; ð3Þ

the order parameter of the spontaneously chiral symmetry
breaking, and its nonzero value gives the majority of visible
(nondark) mass in the present Universe.
For QCD with u and d light quarks, the chiral perturba-

tion theory (ChPT) at the tree level gives the relation [1]

χt ¼ Σ
�

1

mu
þ 1

md

�
−1
; ð4Þ

which shows that χt is proportional to Σ. This implies that
the nontrivial topological quantum fluctuations is the origin
of the spontaneously chiral symmetry breaking. In other
words, if χt is zero, then Σ is also zero, and the chiral
symmetry is unbroken, and the mass of neutron/proton
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could be as light as ∼10 MeV rather than ∼940 MeV.
Moreover, χt breaks the UAð1Þ symmetry and resolves the
longstanding problem of why the flavor-singlet η0 is much
heavier than other nonsinglet (approximate) Goldstone
bosons [2–4].
At finite temperature T < Tc, for small quark masses,

the ChPT asserts that χtðTÞ is proportional to ΣðTÞ and
provides a prediction of χtðTÞ with the input χtð0Þ at zero
temperature [5–8].
At temperature T > Tc, the chiral symmetry is restored,

and ΣðTÞ ¼ 0. However, it is unclear whetherUð1ÞA is also
restored at T1 ∼ Tc. Remarkably, if Uð1ÞA is broken up to
some T1 > Tc and restored for T > T1, then there exists an
interval ðTc; T1Þ in which the nontrivial quantum fluctua-
tions of the QCD vacuum can only make χtðTÞ nonzero but
not ΣðTÞ. It is interesting to understand the physics
underlying this mechanism.
Moreover, another interesting aspect of χtðTÞ is that it

could play an important role in generating the majority of
mass in the Universe, as a crucial input to the axion mass
and energy density, a promising candidate for the dark
matter in the Universe. The axion [9–11] is a pseudo-
Nambu-Goldstone boson arising from the breaking of a
hypothetical global chiral Uð1Þ extension of the Standard
Model at an energy scale fA much higher than the
electroweak scale, the Pecci-Quinn mechanism. This not
only solves the strong CP problem but also provides an
explanation for the dark matter in the Universe. The axion
mass at temperature T is proportional to

ffiffiffiffiffiffiffiffiffiffiffi
χtðTÞ

p
,

mAðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
χtðTÞ

p
fA

; ð5Þ

which is one of the key inputs to the equation of motion for
the axion field evolving from the early Universe to the
present one, with solutions predicting the relic axion energy
density, through the misalignment mechanism [12–14].
In general, the determination of χtðTÞ requires non-

perturbative approaches from the first principles of QCD.
To this end, lattice QCD provides a viable nonperturbative
determination of χtðTÞ. Nevertheless, it becomes more and
more challenging as the temperature gets higher and higher,
since in principle the nontrivial configurations are more
suppressed at higher temperatures, which in turn must
require a much higher statistics in order to give a reliable
determination. So far, direct simulations have only mea-
sured χtðTÞ up to T ∼ 550 MeV. Nevertheless, for T ≫ Tc,
the temperature dependence of χtðTÞ can be obtained with
the dilute instanton gas approximation (DIGA), which
gives χtðTÞ ∼ T−7−Nf=3 for Nf flavors of quarks [15].
Recent lattice studies of χtðTÞ aiming at the axion

cosmology include various simulations with Nf ¼ 0,
2þ 1, and 2þ 1þ 1, where the lattice fermions in
the unquenched simulations include the staggered fermion,
the Wilson fermion, and the Wilson twisted-mass fermion

[16–22]. For recent reviews, see, e.g., Refs. [23,24] and
references therein.
In this study, we perform the hybrid Monte Carlo (HMC)

simulation of lattice QCD with Nf ¼ 2þ 1þ 1 optimal
domain-wall quarks at the physical point, on the 643 ×
ð64; 20; 16; 12; 10; 8; 6Þ lattices, each with three lattice
spacings a ∼ ð0.064; 0.068; 0.075Þ fm. The bare quark
masses and lattice spacings are determined on the 644

lattices. The topological susceptibility of each gauge
ensemble is measured by the Wilson flow at the flow time
t ¼ 0.8192 fm2, with the clover definition for the topo-
logical charge Qt. Using the topological susceptibility
χtða; TÞ of 15 gauge ensembles with three different lattice
spacings and different temperatures in the range
T ∼ 155–516 MeV, we extract the topological susceptibil-
ity χtðTÞ in the continuum limit. Our preliminary results of
χtðTÞ have been presented in lattice 2021 [25].
The outline of this paper is as follows. In Sec. II, we give

a description of our HMC simulation with Nf ¼ 2þ 1þ 1
domain-wall quarks at the physical point, including the
actions, the algorithms, the gauge ensembles, the quark
propagators, and the residual masses. In Sec. III, we
describe our measurements of the topological susceptibility
for our gauge ensembles, and the extrapolation to the
continuum limit. In Sec. IV, we investigate the volume
dependence of the topological susceptibility, by comparing
the results between two spatial volumes ∼ð4 fmÞ3 and
∼ð2 fmÞ3, for T ∼ 190–510 MeV. In Sec. V, we compare
the topological charge/susceptibility of two different def-
initions: the index of the overlap Dirac operator versus the
clover charge in the Wilson flow. In Sec. VI, we give a
detailed discussion on the reweighting method for domain-
wall fermion. In Sec. VII, we survey the continuum
extrapolated topological susceptibility in recent lattice
studies with Nf ¼ 2þ 1ðþ1Þ dynamical fermions at/near
the physical point and discuss their discrepancies. In
Sec. VIII, we conclude with some remarks. In
Appendix A, we present our results of renormalized chiral
condensate for T ≃ 131–516 MeV.

II. SIMULATION OF Nf = 2 + 1 + 1 LATTICE QCD
WITH DOMAIN-WALL QUARKS

The first HMC simulation of Nf ¼ 2þ 1þ 1 QCD with
domain-wall quarks was performed on the 323 × 64 lattice
with physical ms and mc, but unphysical mu=d with M�

π ∼
280 MeV [26]. Later, the simulation was extended to
physical mu=d, ms, and mc on the 644 lattice, with
a ≃ 0.064 fm, L > 4 fm, and MπL > 3 [27,28]. Our
present simulations with physical ðu=d; s; cÞ on the 643 ×
ð64; 20; 16; 12; 10; 8; 6Þ≡ ðN3

x; NtÞ lattices are extensions
of our previous ones, using the same actions and algorithms
and the same simulation code with tunings for the computa-
tional platform Nvidia DGX-V100. Most of our production
runs were performed on 10–20 units of Nvidia DGX-V100
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at two institutions in Taiwan, namely, Academia Sinica
Grid Computing and National Center for High Performance
Computing, from 2019 to 2021. Besides Nvidia
DGX-V100, we also used other Nvidia GPU cards (e.g.,
RTX-2080Ti, GTX-1080Ti, GTX-TITAN-X, and GTX-
1080) for HMC simulations on the 643 × ð12; 8; 6Þ lattices,
which only require 8–22 GB device memory. In the
following, we outline our HMC simulations of lattice
QCD with Nf ¼ 2þ 1þ 1 optimal domain-wall quarks
at the physical point.

A. Lattice actions

For the gluon action, we use the Wilson plaquette
action [29]

SgðUÞ ¼ β
X
plaq:

�
1 −

1

3
ReTrðUpÞ

�
; ð6Þ

where β ¼ 6=g20, and the boundary conditions of the link
variables are periodic in all directions of the four-
dimensional lattice. Then, setting β to three different values
β ¼ f6.15; 6.18; 6.20g gives three different lattice spacings
a ≃ ð0.075; 0.068; 0.064Þ fm, respectively. For each lattice
spacing, the bare masses of ðmu=d; ms;mcÞ are tuned such
that the lowest-lying masses of the meson operators
fūγ5d; s̄γis; c̄γicg are in good agreement with the physical
masses of fπ�ð140Þ;ϕð1020Þ; J=ψð3097Þg, respectively.
For the quark action, we use optimal domain-wall

fermion (DWF) with the five-dimensional lattice fermion
operator [30],

½DðmqÞ�xx0;ss0 ðmqÞ¼ðωsDwþ1Þxx0δss0 þðωsDw−1Þxx0Lss0 ;

ð7Þ

where fωs; s ¼ 1;…; Nsg are given by the exact solution
such that the effective four-dimensional lattice Dirac
operator possesses optimal chiral symmetry for any finite
Ns; i.e., the sign function SNs

ðHwÞ [see Eq. (13)] is exactly
equal to the Zolotarev optimal rational approximation of
Hw=

ffiffiffiffiffiffiffi
H2

w

p
. The indices x and x0 denote the lattice sites on

the four-dimensional lattice, s and s0 denote the indices in
the fifth dimension, and the Dirac and color indices have
been suppressed. Here, Dw is the standard Wilson Dirac
operator plus a negative parameter −m0, which is fixed to
−1.3 in our simulations,

ðDwÞxx0 ¼ ð4 −m0Þ −
1

2

X4
μ̂¼1

½ð1 − γμÞUμðxÞδxþμ̂;x0

þ ð1þ γμÞU†
μðx0Þδx−μ̂;x0 �; ð8Þ

where UμðxÞ denotes the link variable pointing from
x to xþ μ̂. The boundary conditions of Dw on the

four-dimensional lattice are periodic in space and antiperi-
odic in time. The operator L is independent of the gauge
field, and it can be written as

L ¼ PþLþ þ P−L−; P� ¼ ð1� γ5Þ=2; ð9Þ

and

ðLþÞss0 ¼ ðL−Þs0s¼
�−ðmq=mPVÞδNs;s0 ; s¼ 1;

δs−1;s0 ; 1<s≤Ns
;

ð10Þ
where mq is the bare quark mass and mPV ¼ 2m0 is the
Pauli-Villars mass of optimal DWF. Note that the matrices
L� satisfy LT

� ¼ L∓, and R5L�R5 ¼ L∓, where R5 is the
reflection operator in the fifth dimension, with elements
ðR5Þss0 ¼ δs0;Nsþ1−s. Thus, R5L� is real and symmetric.
Note that the Pauli-Villars mass mPV is the upper cutoff

for the quark mass mq, since in the limit mq ¼ mPV the
theory is reduced to the quenched approximation. Thus,
any quark mass mq is required to satisfy mq ≪ mPV.
Otherwise, the systematic error due to the mass cutoff is
out of control. In general, the value of mPV is
2m0ð1 − dm0Þ, where d is a parameter depending on the
variant of DWF, e.g., d ¼ 0 and mPV ¼ 2m0 < 4 for
optimal DWF and d ¼ 1=2 and mPV ¼ m0ð2 −m0Þ < 1
for the Shamir/Möbius DWF. Thus optimal DWF has the
maximum value of mPV ¼ 2m0, and it is theoretically the
best choice for the simulation of lattice QCD with heavy c
and b quarks; see Ref. [31] for further discussions.
The pseudofermion action for optimal DWF can be

written as

S ¼ ϕ† DðmPVÞ
DðmqÞ

ϕ; mPV ¼ 2m0; ð11Þ

where ϕ and ϕ† are complex scalar fields carrying the same
quantum numbers (color and spin) of the fermion fields.
Integrating the pseudofermion fields in the fermionic
partition function gives the fermion determinant of
the effective four-dimensional lattice Dirac operator
DNs

ðmqÞ, i.e.,
Z

½dϕ†�½dϕ� exp
�
−ϕ†DðmPVÞ

DðmqÞ
ϕ

�
¼ det

DðmqÞ
DðmPVÞ

¼ detDNs
ðmqÞ; ð12Þ

where

DNs
ðmqÞ¼mqþ

1

2
ðmPV−mqÞ½1þγ5SNs

ðHwÞ�; Hw¼γ5Dw

SNs
ðHwÞ¼

1−
QNs

s¼1Ts

1þQNs
s¼1Ts

; Ts¼
1−ωsHw

1þωsHw
: ð13Þ
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Note that the counterpart of Eq. (13) for Shamir/
Möbius DWF can be obtained by replacing Hw with
H ¼ γ5Dwð2þDwÞ−1, mPV ¼ m0ð2 −m0Þ, and setting
fωs ¼ 1; s ¼ 1;…; Nsg.
In the limit Ns → ∞, SNs

ðHwÞ → Hw=
ffiffiffiffiffiffiffi
H2

w

p
, and

DNs
ðmqÞ goes to

DovðmqÞ ¼ mq þ
1

2
ðmPV −mqÞ½1þ γ5SðHwÞ�;

SðHwÞ≡ Hwffiffiffiffiffiffiffi
H2

w

p : ð14Þ

In the massless limit mq ¼ 0, Dovð0Þ is equal to the
overlap-Dirac operator [32], and it satisfies the
Ginsparg-Wilson relation [33]

Dovð0Þγ5 þ γ5Dovð0Þ ¼
2

mPV
Dovð0Þγ5Dovð0Þ

⇔ D−1
ov γ5 þ γ5D−1

ov ¼ 2

mPV
γ51; ð15Þ

where the chiral symmetry is broken by a contact term, i.e.,
the exact chiral symmetry at finite lattice spacing.
For finite Ns, the exact chiral symmetry is broken, but

optimal chiral symmetry can be attained if SNs
ðHwÞ is equal

to the Zolotarev approximation of the sign function
Hw=

ffiffiffiffiffiffiffi
H2

w

p
, which can be achieved by fixing fωsg accord-

ing to the exact solution [30],

ωs ¼
1

λmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ02sn2ðvs; κ0Þ

q
; s ¼ 1;…; Ns; ð16Þ

where snðvs; κ0Þ is the Jacobian elliptic function with
argument vs and modulus κ0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ2min=λ
2
max

p
. Then,

SNs
ðHwÞ is exactly equal to the Zolotarev optimal rational

approximation of Hw=
ffiffiffiffiffiffiffi
H2

w

p
, i.e., the approximate sign

function SNs
ðHwÞ satisfying the bound j1 − SNs

ðλÞj ≤ dZ
for λ2 ∈ ½λ2min; λ

2
max�, where dZ is the maximum deviation

j1 − ffiffiffi
x

p
RZðxÞjmax of the Zolotarev optimal rational poly-

nomial RZðxÞ of 1=
ffiffiffi
x

p
for x ∈ ½1; λ2max=λ2min�, with degree

ðn − 1; nÞ for Ns ¼ 2n. The optimal weights (16) are used
in our two-flavor simulation, with Ns ¼ 2n ¼ 16,
λmin ¼ 0.05, and λmax ¼ 6.2, which gives the maximum
deviation dZ ≃ 1.1944 × 10−5.
For the simulation of one flavor, we used the exact one-

flavor pseudofermion action for domain-wall fermion [34],
which requires the weights fωsg satisfying the R5 sym-
metry (ωs ¼ ωNs−sþ1). However, Eq. (16) does not satisfy
the R5 symmetry. The optimal fωsg satisfying R5 sym-
metry are obtained in Ref. [35]. For Ns ¼ 2n, it reads

ωs ¼ ωNsþ1−s ¼
1

λmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ02sn2

�ð2s − 1ÞK0

Ns
; κ0

�s
;

s ¼ 1;…; Ns=2; ð17Þ

where snðu; κ0Þ is the Jacobian elliptic function with
modulus κ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2min=λ

2
max

p
and K0 is the complete

elliptic function of the first kind with modulus κ0. Then,
the approximate sign function SNs

ðHwÞ satisfies the bound
0 ≤ 1 − SNs

ðλÞ ≤ 2dZ for λ2 ∈ ½λ2min; λ
2
max�, where dZ is

defined above. Note that in this case δðλÞ ¼ 1 − SðλÞ does
not satisfy the criterion that the maxima and minima of δðλÞ
all have the same magnitude but with the opposite sign
(δmin ¼ −δmax). However, the most salient features of
optimal rational approximation of degree ðm; nÞ are pre-
served; namely, the number of alternate maxima and
minima is ðmþ nþ 2Þ, with (nþ 1) maxima and
(mþ 1) minima, and all maxima are equal to 2dZ, while
all minima are equal to zero. This can be regarded as the
generalized optimal rational approximation (with a con-
stant shift). For our one-flavor simulation, setting
Ns ¼ 2n ¼ 16, λmin ¼ 0.05, and λmax ¼ 6.2 gives the
maximum deviation 2dZ ≃ 2.3889 × 10−5.
For domain-wall fermions, simulating Nf ¼ 2þ 1þ 1

amounts to simulating Nf ¼ 2þ 2þ 1 since

�
detDðmu=dÞ
detDðmPVÞ

�
2 detDðmsÞ
detDðmPVÞ

detDðmcÞ
detDðmPVÞ

¼
�
detDðmu=dÞ
detDðmPVÞ

�
2
�

detDðmcÞ
detDðmPVÞ

�
2 detDðmsÞ
detDðmcÞ

: ð18Þ

Obviously, the simulation of two flavors with
ðdetDðmcÞ= detDðmPVÞÞ2 on the rhs of (18) is more
efficient than its counterpart of one flavor with
detDðmcÞ= detDðmPVÞ on the lhs. Moreover, the one-
flavor simulation with detDðmsÞ= detDðmcÞ on the rhs is
more efficient than the one with detDðmsÞ= detDðmPVÞ on
the lhs. Thus, we perform the HMC simulation with the
expression on the rhs of Eq. (18).
For the two-flavor parts, ðdetDðmu=dÞ= detDðmPVÞÞ2

and ðdetDðmcÞ= detDðmPVÞÞ2, we have implemented two
options [36,37] for the Nf ¼ 2 pseudofermion action in our
code, and we have used the old action [36] in our present
simulations. Note that both actions give consistent results in
the HMC simulations. However, if λmin ≤ 0.01, the new
action [37] is more efficient than the old one. For the old
Nf ¼ 2 pseudofermion action, it can be written as

Sðmq;mPVÞ ¼ ϕ†C†ðmPVÞfCðmqÞC†ðmqÞg−1CðmPVÞϕ;
mPV ¼ 2m0; ð19Þ

where
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CðmqÞ ¼ 1 −M5ðmqÞDOE
w M5ðmqÞDEO

w ;

M5ðmqÞ ¼ f4 −m0 þ ω−1=2½1 − LðmqÞ�
× ½ð1þ LðmqÞ�−1ω−1=2g−1;

and LðmqÞ is defined in (9) and (10). Here, ω≡
diagfω1;ω2;…;ωNs

g is a diagonal matrix in the fifth

dimension, and DEO=OE
w denotes the part of Dw with gauge

links pointing from even/odd sites to odd/even sites after
even-odd preconditioning on the four-dimensional lattice.
For the u=d quarks, mass preconditioning [38] is intro-
duced with two levels of heavy masses: mH1

∼ 10mu=d and
mH2

∼ 100mu=d. Then, the Nf ¼ 2 pseudofermion action
Sðmu=d; mPVÞ for u and d quarks is replaced with

Sðmu=d; mH1
Þ þ SðmH1

; mH2
Þ þ SðmH2

; mPVÞ
¼ ϕ†C†ðmH1

ÞfCðmu=dÞC†ðmu=dÞg−1CðmH1
Þϕþ ϕ†

1C
†ðmH2

ÞfCðmH1
ÞC†ðmH1

Þg−1CðmH2
Þϕ1

þ ϕ†
2C

†ðmPVÞfCðmH2
ÞC†ðmH2

Þg−1CðmPVÞϕ2;

which gives the partition function (fermion determinant) exactly the same as that of Sðmu=d; mPVÞ.
For the one-flavor part, detDðmsÞ= detDðmcÞ, we use the exact one-flavor pseudofermion action for domain-wall

fermion [34]. For optimal DWF, it can be written as (m1 < m2)

detDðm1Þ
detDðm2Þ

¼
Z

dϕ†
�dϕ� exp ð−ϕ†

þGþðm1; m2Þϕþ − ϕ†
−G−ðm1; m2Þϕ−Þ; ð20Þ

where ϕ� and ϕ†
� are pseudofermion fields (each with two spinor components) on the four-dimensional lattice. Here,

G−ðm1; m2Þ ¼ P−

�
I −

�
m2 −m1

m2 þm1

�
ω−1=2vT−½HTðm1Þ�−1v−ω−1=2

�
P−;

Gþðm1; m2Þ ¼ Pþ

�
I þ

�
m2 −m1

m2 þm1

�
ω−1=2vTþ½HTðm2Þ − Δþðm1; m2ÞPþ�−1vþω−1=2

�
Pþ;

HTðmiÞ ¼ R5γ5½Dw þMðmiÞ�; i ¼ 1; 2

MðmiÞ ¼ ω−1=2½1 − LðmiÞ�½1þ LðmiÞ�−1ω−1=2;

Δ�ðm1; m2Þ ¼
�
m2 −m1

m2 þm1

�
ω−1=2v�vT�ω

−1=2;

vTþ ¼ ð−1; 1;…; ð−1ÞNsÞ;
v− ¼ −vþ:

B. Gauge ensembles

In the molecular dynamics, we use the Omelyan inte-
grator [39] and the multiple-time scale method [40]. Setting
the length of the HMC trajectory equal to 1, four different
timescales are used for momentum updates, with the gauge
force at level 0 and the fermion forces at levels 1=2=3,
where the ratio of forces at levels 0=1=2=3 is
∼1∶0.1∶0.01∶0.001. The step sizes for levels 0=1=2=3
are 1=ðk0k1k2k3Þ, 1=ðk1k2k3Þ, 1=ðk2k3Þ, and 1=k3, where
ðk0; k1; k2; k3Þ ¼ ð10; 2; 2; 12Þ is the most common setting
in our simulations. The momentum updates with the two-
flavor fermion forces corresponding to Sðmu=d; mH1

Þ,
SðmH1

; mH2
Þ, SðmH2

; mPVÞ, and Sðmc;mPVÞ are set to
level 3, level 2, level 1, and level 1, respectively. The

momentum updates with the one-flavor fermion forces
corresponding to ϕþGþϕþ and ϕ−G−ϕ− are set to level 2
and level 3, respectively. With the smallest time interval
1=ðk0k1k2k3Þ, the numbers of momentum updates for
levels 0=1=2=3 are f16k0k1k2k3 þ 1; 8k1k2k3 þ 1; 4k2k3þ
1; 2k3 þ 1g, respectively, according to the Omelyan inte-
grator. Our HMC code (DWFQCD) implements the entire
HMC trajectory on GPUs, in which the most time-con-
suming parts of computing fermion forces and actions are
obtained by solving very large and sparse linear systems via
a conjugate gradient with mixed precision.
The initial thermalization of each ensemble was per-

formed in one node with one to eight GPUs interconnected
by the NVLink and/or PCIe bus. After thermalization, a set
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of gauge configurations is sampled and distributed to 8–16
simulation units, and each unit performs an independent
stream of HMC simulation. Here, one simulation unit
consists of one to eight GPUs in one node, depending
on the size of the device memory and the computational
efficiency. Then, we sample one configuration every five
trajectories in each stream and obtain a total number of
configurations for each ensemble. The statistics of the 15
gauge ensembles with T > Tc ∼ 150 MeV are listed in
Table I, where T ¼ 1=ðNtaÞ. For the gauge ensembles with
T < Tc, some of them have not reached our desired
statistics; thus, they will be presented in the future. For
the ensemble of 644 at β ¼ 6.20, preliminary results of
topological susceptibility and the mass spectra of the low-
lying mesons and baryons are presented in Ref. [28].
The lattice spacings and the bare quark masses at the

physical point are determined on the 644 lattice, with
f105; 110; 537g configurations for β ¼ f6.15; 6.18; 6.20g,
respectively. For the determination of the lattice spacing,
we use the Wilson flow [41,42] with the condition

ft2hEðtÞigjt¼t0 ¼ 0.3;

to obtain
ffiffiffiffi
t0

p
=a, then use the input

ffiffiffiffi
t0

p ¼ 0.1416ð8Þ fm
[43] to obtain the lattice spacing a. The lattice spacings for
β ¼ f6.15; 6.18; 6.20g are listed in Table II. In all cases, the
spatial volume satisfies L3 > ð4 fmÞ3 and MπL≳ 3.
For each lattice spacing, the bare quark masses of

u=d, s, and c are tuned such that the lowest-lying
masses of the meson operators fūγ5d; s̄γis; c̄γicg
are in good agreement with the physical masses of
fπ�ð140Þ;ϕð1020Þ; J=ψð3097Þg. The bare quark masses
of u=d, s, and c of each lattice spacing are listed in Table II.

C. Quark propagator

The valence quark propagator of the four-dimensional
effective Dirac operator can be written as

ðDc þmqÞ−1 ¼
�
1 −

mq

2m0

�
−1
�
D−1

Ns
ðmqÞ −

1

2m0

�
;

where DNs
ðmqÞ is given in (13), and the mass and other

parameters are exactly the same as those of the sea quark.
The boundary conditions of the valence quark propagator
are periodic in space and antiperiodic in time. To compute
the valence quark propagator, we first solve the linear
system with mixed-precision conjugate gradient algorithm,
for the even-odd preconditioned D [44],

DðmqÞjYi ¼ Dð2m0ÞB−1jsource vectori; ð21Þ

where B−1
x;s;x0;s0 ¼ δx;x0 ðP−δs;s0 þ Pþδsþ1;s0 Þ with periodic

boundary conditions in the fifth dimension. Then, the
solution of (21) gives the valence quark propagator

ðDc þmqÞ−1x;x0 ¼ ð2m0 −mqÞ−1½ðBYÞx;1;x0;1 − δx;x0 �: ð22Þ

TABLE I. The lattice parameters and statistics of the 15 gauge ensembles with T > Tc. The last three columns are the residual masses
of u=d, s, and c quarks.

β a (fm) Nx Nt T (MeV) Nconfs ðmu=daÞres ðmsaÞres ðmcaÞres
6.20 0.0636 64 20 155 581 2.39ð56Þ × 10−5 1.92ð53Þ × 10−5 7.59ð38Þ × 10−6

6.18 0.0685 64 16 180 650 3.36ð32Þ × 10−5 1.88ð25Þ × 10−5 5.23ð37Þ × 10−6

6.20 0.0636 64 16 193 1577 1.41ð15Þ × 10−5 1.14ð12Þ × 10−5 2.13ð28Þ × 10−6

6.15 0.0748 64 12 219 566 3.16ð84Þ × 10−5 2.70ð85Þ × 10−5 1.24ð31Þ × 10−5

6.18 0.0685 64 12 240 500 2.36ð42Þ × 10−5 1.72ð24Þ × 10−5 3.28ð57Þ × 10−6

6.20 0.0636 64 12 258 1373 2.33ð29Þ × 10−5 2.09ð27Þ × 10−5 6.16ð28Þ × 10−6

6.15 0.0748 64 10 263 690 2.38ð36Þ × 10−5 1.98ð29Þ × 10−5 7.51ð26Þ × 10−6

6.18 0.0685 64 10 288 665 2.42ð80Þ × 10−5 2.20ð73Þ × 10−5 9.74ð39Þ × 10−6

6.20 0.0636 64 10 310 2547 9.61ð97Þ × 10−6 8.86ð96Þ × 10−6 2.92ð45Þ × 10−6

6.15 0.0748 64 8 329 1581 3.24ð67Þ × 10−5 3.03ð62Þ × 10−5 1.39ð77Þ × 10−5

6.18 0.0685 64 8 360 1822 2.43ð95Þ × 10−5 2.24ð85Þ × 10−5 7.02ð25Þ × 10−6

6.20 0.0636 64 8 387 2665 2.09ð86Þ × 10−5 1.79ð71Þ × 10−5 5.72ð17Þ × 10−6

6.15 0.0748 64 6 438 1714 1.61ð57Þ × 10−5 1.48ð50Þ × 10−5 8.44ð26Þ × 10−6

6.18 0.0685 64 6 479 1983 8.34ð46Þ × 10−6 8.26ð46Þ × 10−6 8.16ð49Þ × 10−6

6.20 0.0636 64 6 516 3038 4.03ð82Þ × 10−6 3.96ð79Þ × 10−6 3.06ð60Þ × 10−6

TABLE II. The lattice spacing and the quark masses of the
Nf ¼ 2þ 1þ 1 lattice QCD with optimal domain-wall quarks at
the physical point.

β a (fm) mu=da msa mca

6.15 0.0748(1) 0.00200 0.064 0.705
6.18 0.0685(1) 0.00180 0.058 0.626
6.20 0.0636(1) 0.00125 0.040 0.550
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D. Residual mass

To measure the chiral symmetry breaking due to finite
Ns in DWF, we compute the residual mass according to the
formula [45],

ðmqÞres¼
hTrðDcþmqÞ−1i

hTr½γ5ðDcþmqÞ−1γ5ðDcþmqÞ−1�i
−mq; ð23Þ

where Tr denotes the trace running over the site, color, and
Dirac indices and the brackets h� � �i denote the averaging
over the configurations of the gauge ensemble. In the limit
Ns → ∞, Dc is exactly chiral symmetric, and the first term
on the rhs of (23) is exactly equal to mq; thus, the residual
mass ðmqÞres is exactly zero, and the quark mass mq is well
defined for all gauge configurations. However, in practice,
Ns is finite; thus, the residual mass is nonzero. To compute
the numerator and the denominator of (23), we use 24–240
Z2 noise vectors for each configuration to evaluate the all-
to-all quark propagators. Alternatively, the numerator and
the denominator of (23) can also be estimated with the
quark propagator from one site (22), without summing over
all sites. It turns out that both methods give consistent
results; thus, we use their difference for the estimate of the
systematic uncertainty of the residual mass. The residual
masses of u=d, s, and c quarks for the 15 gauge ensembles
with T > Tc are listed in the last three columns of Table I,
where the error bar combines both statistical and systematic
uncertainties. The residual masses of u=d, s, and c quarks
are less than 1.86%, 0.05%, and 0.002% of their bare
masses, respectively. In units of MeV=c2, the residual
masses of u=d, s, and c quarks are less than 0.09, 0.08, and
0.04, respectively. This asserts that the chiral symmetry is
well preserved such that the deviation of the bare quark
mass mq is sufficiently small in the effective four-
dimensional Dirac operator DNs

ðmqÞ of optimal DWF,
for both light and heavy quarks. In other words, the chiral
symmetry in our simulations should be sufficiently precise
to guarantee that the hadronic observables can be deter-
mined with a good precision, with the associated uncer-
tainty much less than those due to statistics and other
systematic ones.

III. TOPOLOGICAL CHARGE AND
TOPOLOGICAL SUSCEPTIBILITY

On the lattice, the topological charge Qt (2) is ill defined
since we do not have Fμν but only link variables. To extract
Fμν from the link variables is rather problematic, due to the
strong short-distance fluctuation. The way to circumvent
this problem is to smooth the link variables with smearing
algorithms or the Wilson flow; then, it is possible to extract
FμνðxÞ robustly from the smoothed gauge configuration.
The resulting Qt rounded to the nearest integer serves as a
definition of the topological charge of this gauge

configuration, and the topological susceptibility of a gauge
ensemble can be measured.
For lattice QCDwith exact chiral symmetry, the massless

overlap Dirac operator in a nontrivial gauge background
possesses exact zero modes with definite chirality, and
its index satisfies the Atiyah-Singer index theorem
Qt ¼ nþ − n−, where n� denotes the number of zero
modes of � chirality. Thus, one can project the zero modes
of the overlap Dirac operator to obtain the index and also
the topological charge, without smoothing the gauge
configuration at all. Nevertheless, it is prohibitively
expensive to project the zero modes of the overlap Dirac
operator for our gauge ensembles with lattice sizes
643 × ð64; 20; 16; 12; 10; 8; 6Þ. Thus, we use the Wilson
flow to measure the topological susceptibility of each
ensemble. Theoretically, the χtða; TÞ by the Wilson flow
is not necessarily equal to that using the index of overlap-
Dirac operator. Nevertheless, both methods should give the
same χðTÞ in the continuum limit.
In this study, the topological charge Qt of each con-

figuration is measured by the Wilson flow, using the clover
definition. The Wilson flow equation is integrated from the
flow time t=a2 ¼ 0 to 256 with the step size 0.01. In Fig. 1,
the fourth root of the topological susceptibility aχ1=4t ða; TÞ
versus the flow time t=a2 is plotted from t=a2 ¼ 0 to 256,

FIG. 1. The fourth root of the topological susceptibility
aχ1=4t ðTÞ vs the flow time t=a2, for T ∼ 155 MeV in the upper
panel and T ∼ 516 MeV in the lower panel. In each case, the
plateau value of aχ1=4t is plotted as the horizontal line with the
enveloping lines as the error bar.

TOPOLOGICAL SUSCEPTIBILITY IN FINITE TEMPERATURE … PHYS. REV. D 106, 074501 (2022)

074501-7



for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover�. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X
n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)
6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
6.20 0.0636 64 6 516 3038 0.202(7)
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advantage of having an analytic formula like (26). There
are many possible variations of (26), e.g., replacing
(c0 þ c1a2) with (c0 þ c1a2 þ c2a4), adding the a2 term
to the exponent p and/or the coefficients b1 and b2, etc. For
our 15 data points, all variations give consistent results of
χtðTÞ in the continuum limit.

IV. VOLUME DEPENDENCE OF THE
TOPOLOGICAL SUSCEPTIBILITY

In this section, we investigate how χt changes with
respect to the spatial volume. To this end, we performed
HMC simulations of Nf ¼ 2þ 1þ 1 lattice QCD
on the 323 × ð64; 16; 12; 10; 8; 6Þ lattices at β ¼ 6.20
with parameters and ðu=d; s; cÞ quark masses exactly the
same as those in the HMC simulations on the 643 ×
ð64; 20; 16; 12; 10; 8; 6Þ lattices. For each HMC stream
after thermalization, we sample one configuration every
five trajectories and obtain the total number of configura-
tions of each ensemble. The number of configurations of
each ensemble with T > Tc is given in the column with
header Nconfs in Table IV.
For the ensemble of lattice size 323 × 64 at β ¼ 6.20, the

total number of configurations is 187. Using the Wilson
flow and the condition ft2hEðtÞigjt¼t0 ¼ 0.3 with the inputffiffiffiffi
t0

p ¼ 0.1416ð8Þ fm [43], we obtain the lattice spacing
a ¼ 0.0641ð1Þ fm. We also compute the quark propagators
for u=d, s, and c quarks, and the time-correlation functions
of the meson operators fūγ5d; s̄γis; c̄γicg, and to extract the
lowest-lying masses from the time-correlation functions.
The resulting meson masses are in good agreement with the
physical masses of π�ð140Þ, ϕð1020Þ, and J=ψð3097Þ.
Similar to the L=a ¼ 64 ensembles, the topological

chargeQt of each configuration in the L=a ¼ 32 ensembles
is measured by the clover definition in the Wilson flow. The
Wilson flow equation is integrated from the flow time
t=a2 ¼ 0 to 256 with the step size 0.01. The topological
chargeQt of each configuration is measured at the physical
flow time 0.8192 fm2, the same as that of any configuration
in the L=a ¼ 64 ensembles. The results of the fourth root of
the topological susceptibility χ1=4t ða; TÞ (in units of fm−1)
of these five gauge ensembles are listed in the last column
of Table IV, where the error combines the statistical and the

systematic ones. Here, the systematic error is estimated
from the difference of χ1=4t ða; TÞ using two definitions Qt,
i.e., Qclover and its nearest integer round½Qclover�. The
statistical error is estimated using the jackknife method
with the bin size of which the statistical error saturates.
Note that due to the lattice spacing a ¼ 0.0641ð1Þ fm of
the L=a ¼ 32 ensembles being larger than a ¼
0.0636ð1Þ fm of the L=a ¼ 64 ensembles, the temperature
T ¼ 1=ðNtaÞ of the L=a ¼ 32 ensemble in Table IV is
slightly lower than that of the L=a ¼ 64 ensemble with the
sameNt (see Table III). Comparing the results of χ1=4t ða; TÞ
in Table IV with the corresponding ones on the 643 ×
ð16; 12; 10; 8; 6Þ lattices in Table III, we see that those on
the 323 × ð16; 12; 10; 8; 6Þ lattices are all slightly larger
than the corresponding ones on the 643 × ð16; 12; 10; 8; 6Þ
lattices, due to two different volumes as well as two slightly
different temperatures. In Fig. 3, the results of χ1=4t ða; TÞ of
the L=a ¼ 32 ensembles are plotted as red triangles, while
those of the L=a ¼ 64 ensembles are plotted as black
squares. Evidently, the volume dependence of χ1=4t ða; TÞ
for two spatial volumes ð4.074 fmÞ3 and ð2.053 fmÞ3 is
smaller than the uncertainty of χ1=4t ða; TÞ of the larger
volume, for all ensembles with T > 190 MeV. Thus, it is
expected that the infinite volume limit (L=a → ∞) of
χ1=4t ða; TÞ would not be significantly different from its
counterpart on the L=a ¼ 64 lattice.
In general, the spatial volume dependence of χt (at fixed

a and T) can be written as

χtðLÞ ¼ χtð∞Þ
�
1þ

X∞
n¼1

cnL−n
�
:

TABLE IV. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of five gauge ensembles with spatial
size 323, as a function of the temperature T ¼ 1=ðNtaÞ.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t ðfm−1Þ
6.20 0.0641 32 16 192 1400 0.421(12)
6.20 0.0641 32 12 256 755 0.398(14)
6.20 0.0641 32 10 307 903 0.365(15)
6.20 0.0641 32 8 384 1208 0.296(13)
6.20 0.0641 32 6 512 1093 0.207(14)

FIG. 3. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T for L=a ¼ 32 and L=a ¼ 64 ensembles at
β ¼ 6.20. The five data points of the L=a ¼ 32 ensembles are
denoted by red triangles, while those of the L=a ¼ 64 ensembles
are denoted by black squares. The infinite volume limit resulting
from fitting the ten data points to (27) is denoted by the blue line,
with the error as the enveloping gray lines.
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In practice, it is reasonable to replace the above expression
with

χtðLÞ ¼ c0 expðc1=LÞ; c0 ≡ χtð∞Þ;

and to determine c0 and c1 from the data of χtðLÞ with
different volumes. Now, with two sets of χ1=4t ða; TÞ on two
spatial volumes ð4.074 fmÞ3 and ð2.053 fmÞ3, we can
extrapolate χ1=4t ða; TÞ to the infinite volume limit. Since
each set of five data points of χ1=4t of L=a ¼ 32 and L=a ¼
64 ensembles is well fitted by Eq. (25), it is natural to
consider the ansatz

χ1=4t ðT; LÞ ¼ c0 expðc1=LÞ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð27Þ

where c0, c1, p, b, and c are parameters and the dependence
on the lattice spacing has been suppressed. In general, the
dependence on the lattice spacing can be incorporated into
(27), e.g., replacing c0 with (d0 þ d1a2). The infinite
volume limit resulting from fitting the ten data points to
(27) is plotted as the blue line, with the error bar as the
enveloping gray lines. Obviously, the χtða; TÞ in the infinite
volume limit is in good agreement with its counterparts of
the L=a ¼ 64 ensembles and the L=a ¼ 32 ensembles.
For another two sets of L=a ¼ 64 ensembles at β ¼ 6.18

and β ¼ 6.15, they have volumes ð4.384 fmÞ3 and
ð4.787 fmÞ3, which are larger than the volume
ð4.074 fmÞ3 of the L=a ¼ 64 ensemble at β ¼ 6.20; thus,
it is expected that their finite-volume systematics are
smaller than that of the L=a ¼ 64 ensemble at β ¼ 6.20.
In other words, for all L=a ¼ 64 ensembles in this study,
the values of topological susceptibility do not suffer from
significant finite-volume systematics.

V. COMPARISON WITH THE TOPOLOGICAL
SUSCEPTIBILITY BY THE INDEX OF OVERLAP

OPERATOR

In spite of the fact that our computer resources cannot
afford to project the zero modes of the overlap operator for
any one of the 15 gauge ensembles in this study, we can
perform the overlap projections for a subset of an ensemble.
Then, we can study to what extent the index (nþ − n−) of
the overlap operator agrees with Qclover in the Wilson flow
and also compare the χtða; TÞ by the overlap index with
that by the clover charge in the Wilson flow. To this end, we
pick the ensemble of 643 × 6 lattice at β ¼ 6.20, with a ∼
0.0636 fm and T ∼ 516 MeV. From 1870 thermalized
trajectories generated by the HMC simulation on one
unit of Nvidia DGX-V100, we sample one configuration
every five trajectories and obtain 374 configurations for
the projection of the low modes of the overlap Dirac

operator [46]. For these 374 configurations, the statistics of
the overlap index (nþ − n−) at t ¼ 0 are given in the second
column of Table V, together with those of round½Qclover� at
t=a2 ¼ 25 (third column) and t=a2 ¼ 256 (fourth column)
respectively.
Using the overlap index, the topological susceptibility of

these 374 configurations gives

aχ1=4t ða; TÞoverlap ¼ 0.0195ð8Þ; ð28Þ

as shown by the horizontal red lines in Fig. 4. On the other
hand, using round½Qclover� in the Wilson flow, the topo-
logical susceptibility attains the plateau for t=a2 ≳ 180, and
the plateau value gives

TABLE V. The statistics of topological charge of 374 configu-
rations on the 643 × 6 lattice at T ∼ 516 MeV. The second
column is the statistics of the overlap index (nþ − n−) at
t ¼ 0. The third and the fourth columns are the statistics of
the nearest integer of clover charge round½Qclover� at t=a2 ¼ 25
and 256, respectively.

Qt nþ − n−

round½Qclover�
t=a2 ¼ 25 256

−2 3 0 0
−1 48 40 7
0 296 295 356
1 27 37 11
2 0 2 0

FIG. 4. The fourth root of the topological susceptibility
aχ1=4t ða; TÞ of 374 configurations on the 643 × 6 lattice at
β ¼ 6.20, with a ∼ 0.0636 fm and T ∼ 516 MeV. The result
of aχ1=4t by the overlap index for the 374 configurations at t=a2 ¼
0 is denoted by the horizontal red lines, where the center line is
the mean value and the upper and lower lines denote the statistical
error which is estimated by the jackknife method with the bin size
at which the statistical error saturates. The aχ1=4t by round½Qclover�
in the Wilson flow is denoted by circles, and the plateau of aχ1=4t
is denoted by the horizontal blue lines.
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aχ1=4t ða; TÞclover ¼ 0.0143ð8Þ; ð29Þ

as shown by the horizontal blue lines in Fig. 4.
Theoretically, one does not expect that (28) could be in
good agreement with (29), since at high temperature such
as T ∼ 516 MeV the nontrivial topological fluctuations are
highly suppressed; thus, it needs many more than 374
configurations in order to obtain reliable statistics for each
topological sector. Here, we recall that in our previous
study of Nf ¼ 2 lattice QCD at zero temperature, for an
ensemble of 535 configurations on the 243 × 48 lattice with
a ∼ 0.06 fm, we find that a4χtðoverlapÞ at t ¼ 0 is in good
agreement with the plateau of a4χtðcloverÞ in the Wilson
flow [47]. Thus, we expect that if we could afford to
compute the overlap index for the entire ensemble of
∼3000 configurations on the 643 × 6 lattice at β ¼ 6.20,
then we may find that a4χtðoverlapÞ at t ¼ 0 could be in
good agreement with the plateau of a4χtðcloverÞ in the
Wilson flow. Most importantly, the values in (28) and (29)
are of the same order of magnitude. This seems to justify
the plateau value of χtðcloverÞ in theWilson flow, as well as
the results of χ1=4t in Table III.
Note that at t=a2 ¼ 25 the topological susceptibility by

round½Qclover� is

aχ1=4t ða; TÞcloverjt=a2¼25 ¼ 0.0195ð5Þ; ð30Þ

which is equal to the aχ1=4t in (28) by the overlap index at
t ¼ 0. However, most of the nontrivial configurations
according to round½Qclover� ≠ 0 do not coincide with those
according to the overlap index with ðnþ − n−Þ ≠ 0 at t ¼ 0,
as shown by the vertical bar plot in Fig. 5. Among the 79
nontrivial configurations with round½Qclover� ≠ 0, there are
only 11 configurations with round½Qclover� equal to the
overlap index ðnþ − n−Þ at t ¼ 0, 19 configurations sat-
isfying jround½Qclover�j ¼ jnþ − n−j, and 22 configurations
satisfying both round½Qclover� ≠ 0 and ðnþ − n−Þ ≠ 0. In
other words, there are 57 nontrivial configurations accord-
ing to round½Qclover� ≠ 0, but they are actually trivial
configurations according to the overlap index at t ¼ 0.
Thus, for these 374 gauge configurations, even when χt
measured byQclover at t=a2 ¼ 25 in the Wilson flow agrees
with that by the overlap index at t ¼ 0, there are ∼72% (57
out of 79) of the nontrivial configurations with
round½Qclover� ≠ 0 do not coincide with those with overlap
index ðnþ − n−Þ ≠ 0. Obviously, such a discrepancy
becomes larger at other Wilson flow time, where
χtðcloverÞ is not equal to χtðoverlapÞ at t ¼ 0.
Moreover, we observe that such a discrepancy commonly
exists in any gauge ensemble at zero/nonzero temperature.
For completeness, we also project 40 low modes of the

overlap Dirac operator Dovð0Þ with the Wilson-flowed
gauge configuration at t=a2 ¼ 25. We find that the overlap
index is exactly equal to round½Qclover�. Then, with the

same Wilson-flowed gauge configuration at t=a2 ¼ 25, we
repeat the projection for 40 low modes of the effective four-
dimensional Dirac operator DNs

ð0Þ of optimal DWF and
find that the eigenvalues of its 40 low modes are almost
exactly the same as those of the overlap operator Dovð0Þ.
Thus, its index is exactly equal to the overlap index
and round½Qclover�. Then, we repeat the same low-mode
projections for several Wilson-flowed configurations at
t=a2 > 25 and find that for any one of these configurations
the eigenvalues of 40 low modes of Dovð0Þ and DNs

ð0Þ
are almost exactly the same, and index½Dovð0Þ� ¼
index½DNs

ð0Þ� ¼ round½Qclover�. Thus, we conclude that
the above equalities must hold for any Wilson-flowed
configuration at t=a2 ≥ 25.
Note that the chiral symmetry in our simulation is not

exact, with Ns ¼ 16 and the optimal weights fωsg fixed by
λmin ¼ 0.05 and λmax ¼ 6.2. Thus, the topological suscep-
tibility in (28) is obtained by a mixed action withDov in the
valence and DNs

in the sea. The most concrete approach to
resolve this issue is to perform HMC simulation in the exact
chiral symmetry limit. For optimal DWF, the exact chiral
symmetry limit is Ns → ∞ and λmin → 0. This can be
attained by increasing Ns and decreasing λmin such that the
systematic error due to the chiral symmetry breaking at
finite lattice spacing becomes negligible in any physical

FIG. 5. The vertical bar plot of the overlap index (in the upper
panel) and the round½Qclover� at t=a2 ¼ 25 in the Wilson flow (in
the lower panel) for the 374 configurations (one configuration
every five trajectories) on the 643 × 6 lattice at T ∼ 516 MeV.
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observables. For example, if taking Ns ¼ 32, λmin ¼ 10−4,
and λmax ¼ 6.2, then the error of the sign function of Hw is
less than 1.2 × 10−5 for eigenvalues of Hw satisfying
10−4 ≤ jλðHwÞj ≤ 6.2. Nevertheless, this set of simulations
is estimated to be ∼100 times more expensive than the
present one, beyond the limit of our resources. In the next
section, we examine the feasibility of using the reweighting
method to correct this systematic error, without new
simulations.

VI. REWEIGHTING METHOD

In this section, we discuss the reweighting method to
correct the systematic error due to the DWF action in the
HMC simulation not exactly chiral symmetric, without
performing new simulations at all. Since the reweighting
method deforms the path integral nonlocally, in principle, it
is not guaranteed to give the correct result. Moreover, the
reweighting method becomes inefficient if the weights have
large fluctuations. In the following, we discuss the
reweighting method for optimal DWF, which can be easily
generalized to any DWF. At the end of this section, we also
discuss the issue of using the clover charge in the Wilson
flow to identify the nontrivial configurations in the
reweighting method for nonchiral lattice Dirac operators
(e.g., Wilson Dirac operator, staggered Dirac opera-
tor, etc.).
Consider a set of gauge configurations fUi; i ¼

1;…; Ng obtained by HMC simulation of lattice QCD
with Nf domain-wall quarks, of which the effective four-
dimensional Dirac operator isDNs

ðmqÞ in (13). In the exact
chiral symmetry limit, DNs

ðmqÞ becomes DovðmqÞ. The
reweighting method to obtain χt in the exact chiral
symmetry limit amounts to computing

χovt ¼ 1

V

P
N
i¼1WiQ2

iP
N
i¼1Wi

¼ 1

V

P
Qi≠0WiQ2

iP
N
i¼1 Wi

; ð31Þ

where Qi ¼ indexfDNs
ð0Þ½Ui�g, and

Wi ¼
YNf

j¼1

detDovðmjÞ½Ui�
detDNs

ðmjÞ½Ui�
: ð32Þ

In general, for any observable O measured with fUig from
DWF simulation, its value in the exact chiral symmetry
limit by the reweighting method is

hOiov ¼
P

N
i¼1WiOiP
N
i¼1Wi

: ð33Þ

Note that in (31)–(33) fUig are the gauge configurations
without any smoothings, i.e., at the Wilson flow time t ¼ 0.
Otherwise, the results in (31)–(33) are not well defined,
since they depend on how smooth the gauge configurations

are. For example, consider the ensemble of 374 configu-
rations on the 643 × 6 lattice as described in Sec. V. If one
uses the Wilson-flowed gauge ensemble at any t=a2 ≥ 25
for the reweighting in (31)–(33), then index½DNs

ð0Þ� ¼
index½Dovð0Þ� ¼ round½Qclover�, and the weight factor
Wi ¼ 1 for all configurations in the ensemble.
Consequently, the reweighted χovt (31) in the exact chiral
symmetry limit is the same as that measured by the index
of DNs

ð0Þ, or round½Qclover�, i.e., χovt ¼ χDWF
t ¼ χclovert , an

incorrect result.
Since detD is equal to the product of all eigenvalues of

D, detDovðmjÞ can be obtained for any mj if all eigen-

values of Vov ≡ γ5Hw=
ffiffiffiffiffiffiffi
H2

w

p
are known, i.e., from (14),

λ½DovðmjÞ� ¼ mj þ
1

2
ðmPV −mjÞ½1þ λðVovÞ�;

Vov ≡ γ5Hw=
ffiffiffiffiffiffiffi
H2

w

q
: ð34Þ

Similarly, detDNs
ðmjÞ can be obtained for any mj if all

eigenvalues of VNs
≡ γ5SNs

ðHwÞ are known,

λ½DNs
ðmjÞ� ¼ mj þ

1

2
ðmPV −mjÞ½1þ λðVNs

Þ�;
VNs

≡ γ5SNs
ðHwÞ; ð35Þ

where SNs
ðHwÞ for optimal DWF is defined in (13).

Note that the counterparts of (34)–(35) for Shamir/
Möbius DWF can be obtained by replacing Hw with
H ¼ γ5Dwð2þDwÞ−1, mPV ¼ m0ð2 −m0Þ and setting
fωs ¼ 1; s ¼ 1;…; Nsg in SNs

ðHÞ. Since Vov is unitary,
its complex eigenvalues must come in conjugate pairs
feiθ; e−iθg, with chirality ϕ†γ5ϕ ¼ 0, where ϕ is the
eigenvector. Its eigenmodes with real eigenvalues �1
must have chirality þ1 or −1 and satisfy the chirality
sum rule [48]

nþ − n− þ Nþ − N− ¼ 0; ð36Þ

where n� denotes the number of eigenmodes with eigen-
value −1 and chirality �1 and N� denotes the number
of eigenmodes with eigenvalue þ1 and chirality �1.
Empirically, the real eigenmodes always satisfy either
(nþ ¼ N− and n− ¼ Nþ ¼ 0) or (n− ¼ Nþ and
nþ ¼ N− ¼ 0). According to (34), the −1 eigenmodes
of Vov correspond to the zero mode of Dovð0Þ, and the þ1
eigenmodes of Vov correspond to the nonzero real eigenm-
odes ofDovð0Þwith eigenvaluemPV , wheremPV ¼ 2m0 for
optimal DWF. Thus, each zero mode of Dovð0Þ with
definite chirality �1 must be accompanied with a nonzero
real eigenmode at 2m0 with opposite chirality∓ 1. For VNs

in optimal DWF, it is not exactly unitary, but it is
sufficiently close to unitary such that its eigenvalues are
almost the same as those of Vov except the real eigenmodes
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at �1. In other words, the major difference between the
eigenvalues of Dovð0Þ and DNs

ð0Þ are the number of zero
modes and the nonzero real eigenmodes at 2m0. In the
following, we consider all possibilities for the zero modes
of Dovð0Þ and DNs

ð0Þ:
(1) Both Dovð0Þ and DNs

ð0Þ do not have any zero
modes. In this case, both Vov and VNs

do not have
�1 real eigenmodes but only have complex con-
jugate pairs which are almost identical for both
operators. Thus, according to (34) and (35), the
weight factor (32) is

Wð1Þ ≃ 1: ð37Þ

(2) Both Dovð0Þ and DNs
ð0Þ have n ¼ nþ þ n− zero

modes (n ≥ 1). In this case, both Vov and VNs
have n

pairs of real eigenvalues at þ1 and −1. But the −1
eigenvalues of VNs

could have small deviations, say,
−1þ ϵk; k ¼ 1;…; n, where the size of ϵk depends
on how good SNs

ðHwÞ can approximate the sign

function Hw=
ffiffiffiffiffiffiffi
H2

w

p
, especially in the low-lying

spectrum of jHwj, i.e., how small the λmin for
computing the weights fωsg in optimal DWF is.
The complex conjugate pairs are almost identical for
both Vov and VNs

. Then, according to (34) and (35),
the weight factor (32) for Nf ¼ 2þ 1þ 1 QCD is

Wð2Þ ¼
Yn
k¼1

�
mu=d

mu=d þ ϵkðm0 −mu=d=2Þ
�
2
�

ms

ms þ ϵkðm0 −ms=2Þ
��

mc

mc þ ϵkðm0 −mc=2Þ
�
: ð38Þ

Now, consider the ensembles at β ¼ 6.20, withmu=d ¼ 0.00125,ms ¼ 0.04,mc ¼ 0.55 (seeTable II), andm0 ¼ 1.3. If
a relatively large λmin has been used in computing the optimalweights fωsg forVNs

such that ϵk ¼ 0.05, then (38) gives

Wð2Þ ∼ fð1.888 × 10−2Þ2 × 0.3846 × 0.9148gn ∼ ð1.254 × 10−4Þn ≪ 1; ð39Þ

where u=d quarks at the physical point plays the dominant role inmakingWð2Þ ≪ 1. On the other hand, if a sufficiently
small λmin has been used in computing the optimal weights fωsg for VNs

such that ϵk ≲ 10−5, Eq. (38) gives

Wð2Þ ≳ fð0.98971Þ2 × 0.99968 × 0.99998gn ∼ ð0.9792Þn: ð40Þ

Thus, to make the reweighting method work effi-
ciently, λmin is required to be sufficiently small such
that Wð2Þ ∼ 1.

(3) Dovð0Þ has nþ k zero modes (n ≥ 0, k ≥ 1), but
DNs

ð0Þ only has n zero modes. First, consider the
case k ¼ 1. Then, Dovð0Þ has one extra zero mode
plus its accompanying nonzero real eigenmode at
2m0, in comparison with the real eigenvalues of
DNs

ð0Þ. Since the total number of eigenvalues must
be the same for bothDovð0Þ andDNs

ð0Þ, this implies
that DNs

ð0Þ has one extra complex conjugate pair
very close to 2m0, in comparison with the complex
conjugate pairs of Dovð0Þ. This can be visualized as
follows. Imagine DNs

ð0Þ approaching Dovð0Þ by
gradually increasing Ns and decreasing λmin; then, at
some point, one of its complex conjugate pairs very
close to 2m0 transforms into two real eigenmodes,
one at zero and the other at 2m0. The rest of the
complex conjugate pairs remain almost identical for
both Dovð0Þ and DNs

ð0Þ. Thus, the weight factor
(32) for Nf ¼ 2þ 1þ 1 QCD is

�
mu=d

2m0

�
2
�
ms

2m0

��
mc

2m0

�
Wð2Þ;

which immediately generalizes to k ≥ 1,

Wð3Þ ¼
�
mu=d

2m0

�
2k
�
ms

2m0

�
k
�
mc

2m0

�
k
Wð2Þ; ð41Þ

where Wð2Þ is given in (38). For the ensembles at
β ¼ 6.20, with quark masses in Table II and
m0 ¼ 1.3, Eq. (41) gives

Wð3Þ ≃
�
0.00125
2.6

�
2k
�
0.04
2.6

�
k
�
0.55
2.6

�
k

Wð2Þ ≃ ð7.522 × 10−10ÞkWð2Þ ≪ 1:

If a significant fraction of the nontrivial configura-
tions in the ensemble have Wð3Þ ≪ 1, then the
reweighting method cannot work efficiently, and
the reweighted χt (31) is unreliable.

(4) DNs
ð0Þ has nþ k zero modes (n ≥ 0, k ≥ 1), but

Dovð0Þ only has n zero modes. In principle, this
scenario cannot happen since SNs

ðHwÞ is only an

approximation of Hw=
ffiffiffiffiffiffiffi
H2

w

p
, especially for the low-

lying eigenvalues 0 < jλðHwÞj < λmin. Thus,DNs
ð0Þ

cannot have more zero modes than Dovð0Þ.
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Note that it is rather challenging to compute the weight
factor (32) numerically, since it needs to project the low-
lying eigenmodes of both Vov and VNs

. For Vov, the
projection can be sped up significantly by low-mode
preconditioning with a few hundred of low modes of Hw
with eigenvalues in the range 0 < jλðHwÞj ≤ λu, where λu
depends on the gauge configuration and the number of low
modes. Then, the sign functionHw=

ffiffiffiffiffiffiffi
H2

w

p
with eigenvalues

of jHwj in the range ½λu; 6.2� is approximated by the
Zolotarev optimal rational polynomial with 64 poles and
λmin=λmax ¼ λu=6.2. On the other hand, for the projection
of low modes of VNs

, one is not allowed to use the low
modes of Hw for preconditioning. Otherwise, the corre-
sponding DNs

ðmqÞ is not equal to the effective four-
dimensional Dirac operator of the optimal DWF action
in the HMC simulation. It turns out that the projection of
low modes of VNs

is about five to ten times more expensive
than that of Vov.
Testing with the ensemble of 374 configurations on the

643 × 6 lattice at β ¼ 6.20 as described in Sec. V, we
project 40 low modes of VNs

for the 78 nontrivial
configurations with nonzero overlap index in Table V
and find that VNs

does not have any �1 real eigenmodes
for all of them. Thus, Qi ¼ indexfDNs

ð0Þg ¼ 0, the
reweighted χt (31) is exactly zero, and the reweighting
method fails completely in this case. Next, we change λmin
from 0.05 to 0.001 and recompute the optimal weights
fωsg for SNs

ðHwÞ [see Eq. (13)] and repeat the low-mode
projections. Then, we find that indexfDNs

ð0Þg ¼
indexfDovð0Þg ¼ nþ − n− for all 78 nontrivial configura-
tions, but there are ∼20% configurations with weight factor
W < 0.1. After increasing Ns from 16 to 32 and decreasing
λmin from 0.001 to 0.00001, then indexfDNs

ð0Þg ¼
indexfDovð0Þg ¼ nþ − n−, and all weight factors are larger
than 0.8. This numerical experiment suggests a viable way
to perform the optimal DWF simulation such that the
resulting gauge configurations are eligible for reweighting
to the exact chiral symmetry limit, that is, to use the optimal
weights fωsg with a sufficiently small λmin and a suffi-
ciently large Ns such that VNs

has exactly the same number
of �1 real eigenmodes as those of Vov, and all −1 real
eigenvalues have very small deviations with ϵk < 10−5.
Then, index½DNs

ð0Þ� ¼ index½Dovð0Þ� and the weight fac-
tor W ∼ 1 for all configurations, and the reweighting
method works efficiently.
For completeness, we also project the low modes of

VNs
¼ γ5SNs

ðHwÞ with SNs
ðHwÞ in polar approximation,

which is equivalent to setting ωs ¼ 1 in the optimal DWF.
We find that the index of DNs

ð0Þ with polar approximation
is zero for all 78 nontrivial configurations with
nonzero overlap index in Table V, for Ns ≤ 128. This
implies that the reweighting method also fails for other
variants (e.g., Shamir/Möbius) of DWF with Ns ≤ 128.
Note that for Shamir/Möbius DWF the approximate sign

function is SNs
ðHÞ with polar approximation, where

H ¼ γ5Dwð2þDwÞ−1. For any gauge configuration, the
low-lying eigenvalues of H should be close to those of
Hw=2. Thus, we expect that the DNs

ð0Þ of Shamir/Möbius
DWF with Ns ≤ 128 also has zero index for all 78
nontrivial configurations with nonzero overlap index in
Table V, even though we have not performed the numerical
test. This suggests that the viable way to perform Shamir/
Möbius DWF simulation such that the resulting gauge
configurations are eligible for reweighting to the exact
chiral symmetry limit is to use a sufficiently large Ns which
is much larger than that of optimal DWF, since it does not
have any parameter like λmin to enhance the chiral sym-
metry for the low-lying eigenvalues of jHj.
In the following, we discuss the issue of using the clover

charge in the Wilson flow to identify the nontrivial
configurations in the reweighting method (31). For non-
chiral lattice Dirac operators (e.g, the Wilson Dirac
operator, the staggered Dirac operator, etc.), they do not
have exact zero modes at finite lattice spacing. Thus, it is
impossible to use the eigenvalues of any nonchiral lattice
Dirac operator to identify the topologically nontrivial
configurations in (31). If the clover charge in the Wilson
flow is used to identify the nontrivial configurations, it
could be different from the index of the nonchiral lattice
Dirac operator in the continuum limit. As demonstrated in
Sec. V, for an ensemble of 374 gauge configurations at
T ∼ 516 MeV, even at the Wilson flow time t=a2 ¼ 25
where χt measured by round½Qclover� is almost equal to that
by the overlap index at t ¼ 0, there are more than 72% (57
out of 79) of the configurations with round½Qclover� ≠ 0 but
with the overlap index ðnþ − n−Þ ¼ 0 at t ¼ 0. For a cross-
check, one can use the index of overlap operator to identify
the nontrivial configurations for reweighting, to check
whether the reweighted χt in the continuum limit is
consistent with that obtained by using the clover charge
in the Wilson flow to identify the nontrivial configurations.

VII. COMPARISON WITH OTHER LATTICE
STUDIES

In the following, we survey the continuum extrapolated
χtðTÞ in recent lattice studies with Nf ¼ 2þ 1ðþ1Þ
dynamical fermions at/near the physical point and discuss
their discrepancies. In Fig. 6, results of four lattice studies
are plotted, while other results not shown are either not in
the continuum limit or only a single data point at one
temperature, and they will be included in the following
discussions. Note that the data points of Bonati et al. [19]
and Petreczky et al. [20] are read off from the figures in the
original publications; thus, they may have large uncertain-
ties due to the limited resolution of human eyes.
The results of Bonati et al. [19] were obtained from direct

simulations ofNf ¼ 2þ 1 lattice QCD at the physical point
(with mπ ¼ 135 MeV, and ms=mud ¼ 28.15), using the
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tree-level improved Symanzik gauge action and the stout
improved staggered fermion action. The continuum limit of
χ1=4was obtained by extrapolationwith three lattice spacings
a ¼ ð0.0572; 0.0707; 0.0824Þ fm.The topological charge of
each configuration was measured by the clover charge after
cooling.
The results of Petreczky et al. [20] were obtained from

simulations of Nf ¼ 2þ 1 lattice QCD with mπ ¼
160 MeV and ms=mud ¼ 20 (physical ms), using the
tree-level improved gauge action and the highly improved
staggered quark action (HISQ). The continuum limit of χ1=4t
is obtained by extrapolation with three lattice spacings with
Nt ¼ ð8; 10; 12Þ. They used two methods to measure the
topological susceptibility: 1) the clover charge in the
Symanzik flow and 2) the chiral susceptibilities χπ and
χδ and the relation χt ¼ m2

udχdisc for T > Tc. Both methods
gave compatible results. In Fig. 6, only the data points
obtained with the clover charge are plotted.
The topological susceptibility of Borsanyi et al. [21] was

measured by the clover charge in the Wilson flow, and the
data points in Fig. 6 are based on the numerical results in
Table S9 of the Supplementary Information of Ref. [21],
which are supposed to be the continuum extrapolated
topological susceptibility of Nf ¼ 2þ 1þ 1 QCD at the
physical point, plus the theoretically estimated contribution
of the b quark and the correction for the mass difference
between u and d quarks. However, only seven data points in
the range of T ¼ 130–300 MeV were based on direct
simulations of Nf ¼ 2þ 1þ 1 lattice QCD at the physical
point, using the tree-level Symanzik gauge action and the
staggered quark action with four levels of stout smearing.
For other data points, they were obtained by the fixed sector
integral and the eigenvalue reweighting techniques from
three sets of unphysical simulations:
(a) Nf ¼ 3þ 1 (three flavors of physical ms and one

flavor of physical mc) for T ¼ 150–500 MeV;
(b) same as (a) but at fixed topology for T ¼

300–3000 MeV;

(c) Nf ¼ 2þ 1 overlap fermions at fixed topology for
three temperatures, T ¼ ð300; 450; 650Þ MeV, and
each for six mud quark masses between physical ms

and physical mphys
ud .

Thus, for comparison with other lattice results, we focus on
their data points in the range of T ¼ 150–300 MeV, which
were obtained by direct simulations at the physical point,
corrected by the eigenvalue reweighting, and extrapolated
to the continuum limit.
First, we compare the results of Bonati et al. [19],

Petreczky et al. [20], and Borsanyi et al. [21]. Evidently,
the discrepancies between Petreczky et al. and Borsanyi
et al. are much smaller than those between Bonati et al. and
Borsanyi et al. Moreover, after the results of Petreczky
et al. [20] are transformed from mπ ¼ 160 MeV to the
physical point by the relation χ1=4t ∝ mπ , they seem to be in
good agreement with the results of Borsanyi et al. [21].
In a more recent study by Bonati et al. [49] in Nf ¼

2þ 1 lattice QCD at the physical point with tree-level
improved Symanzik gauge action and the stout improved
staggered fermion action, using the multicanonical algo-
rithm (to enhance the topological fluctuations), they

obtained the continuum extrapolated χ1=4t ¼ ð3� 3�
2Þ MeV at T ≃ 430 MeV, which is ∼9σ different from
their previous result ∼38ð2Þ MeV in Ref. [19]. The
topological charge of each configuration is measured by
the clover charge after cooling. Then, in the most recent
study of the same group [50], using the same set of
ensembles at T ≃ 430 MeV [49], they obtained the con-

tinuum extrapolated χ1=4t ∼ 20ð3Þ MeV (read off from
Fig. 2 of Ref. [50]), which is ∼5σ different from their
2018 result [49] and ∼3σ different from 9(1) MeV of
Borsanyi et al. [21]. Note that in Ref. [50] two methods had
been used to measure the χt: 1) the index of the staggered
spectral projector and 2) the clover charge after cooling.
Both methods gave compatible results.
In Table VI, we compile all results of continuum

extrapolated χ1=4t at T ≃ 430 MeV, together with their
lattice actions, simulation methods and techniques, and
methods (gluonic and fermionic ones) for χt measurement.
We note that there are ongoing studies of χtðTÞ in Nf ¼

2þ 1þ 1 lattice QCD with Wilson twisted mass fermions
[22,51]. Using the relation χt ¼ m2

udχdisc to measure χt via
the noise estimation of the disconnected chiral susceptibil-
ity of u=d quarks, they obtained χ1=4t ∼ 10ð2Þ MeV at
T ≃ 430 MeV, with mπ ¼ 210 MeV and a ∼ 0.065 fm
[22]. Their recent results at the physical point with mπ ¼
139ð1Þ MeV and a ∼ 0.080 fm were presented in Ref. [51]
and at T ≃ 430 MeV, χ1=4t ∼ 4ð1Þ MeV (read off from
Fig. 2 of Ref. [51]). This implies that the continuum
extrapolated χ1=4 at T ≃ 430 MeV would be less than
4(1) MeV. This is added to Table VI for comparison with
other continuum extrapolated χ1=4t at the same temperature.

FIG. 6. Comparison of the continuum extrapolated fourth-root
topological susceptibility χ1=4t ðTÞ for four lattice studies.

TOPOLOGICAL SUSCEPTIBILITY IN FINITE TEMPERATURE … PHYS. REV. D 106, 074501 (2022)

074501-15



The discrepancies of the continuum extrapolated χ1=4t
shown in Fig. 6 and in the last column of Table VI suggest
that the systematic errors in all/most lattice studies have not
been under control. Note that, except for the work of
Borsanyi et al. [21], no lattice results have been corrected
for the cutoff effects due to the lattice Dirac operator in a
nontrivial gauge background not possessing (or not having
the complete set of) exact zero modes. That is, such cutoff
effects of the lattice Dirac operator were corrected at finite
lattice spacing before extrapolating χtða; TÞ to the con-
tinuum limit. Otherwise, the results of χtðTÞ in the
continuum will be suffered from large cutoff effects.
Now, the question is what would be the scenario if all
lattice results were corrected for these cutoff effects. Since
there were four studies using the stout-improved staggered
fermions and one of them has already performed the
reweighting [21], we can use the effective reweighting
factors obtained in Ref. [21] to get a rough estimate of the
reweighted χ1=4t in the other three studies [19,49,50].
According to the data in Table S8 and Fig. 25 of the

Supplementary Information and the Extended Data Fig. 4
in Ref. [21], the reweighting at T ¼ 300 MeV effectively
imposes a factor ∼0.38 to the continuum extrapolated χ1=4t .
Note that the reweighting factor for lattice QCD with Nf ¼
2þ 1þ 1 staggered fermions is almost the same as that for
lattice QCD with Nf ¼ 2þ 1 staggered fermions, since the
mass of the charm quark is much larger than the eigenvalue
of the would-be zero mode of the massless staggered
fermion operator. That is, the reweighting factor of the
staggered charm quark is

Y2jQtj

i¼1

�
m2

c

m2
c þ jλij2

�
1=4

≃ 1; mc ≫ jλij:

Thus, the same effective reweighting factor ∼0.38 can be
used for a rough estimate of the reweighted χ1=4t at T ¼
300 MeV in another Nf ¼ 2þ 1 lattice QCD study with

stout-improved staggered fermions. In the case of Ref. [19],
it changes the value of χ1=4t from ∼50ð2Þ MeV to
∼19ð2Þ MeV, bringing it into good agreement with the
value 17(1) MeV of Borsanyi et al. [21].
Next, we turn to the results of χ1=4t in Table VI. However,

for T ¼ 430 MeV, the effective reweighting factor for
Nf ¼ 2þ 1þ 1 stout-improved staggered fermions is
not available in Ref. [21], since the simulation at T ¼
430 MeV was only performed for unphysical Nf ¼ 3þ 1

lattice QCD. Nevertheless, it must be smaller than the value
0.38 at T ¼ 300 MeV, since the eigenvalue of the would-
be zero mode becomes larger at higher T. For a very rough
estimate, we take it to be 0.35 at T ¼ 430 MeV and apply
it to the entries of Refs. [19,49,50] in the last column
of Table VI. This gives the “reweighted” χ1=4t : 13(1) MeV
for Ref. [19], 2(2)(1) MeV for Ref. [49], and
f6ð2Þ; 7ð2Þg MeV for [50]. Thus, after such a reweighting
at T ≃ 430 MeV, Bonati et al. [19] and Athenodorou et al.
[50] come in closer agreement with Borsanyi et al. [21],
while Bonati et al. [49] are in greater disagreement with
Borsanyi et al. [21].
For a lattice fermion operator different from the stout-

improved staggered fermion operator, the effective
reweighting factor obtained in Ref. [21] cannot be used
for a rough estimate of the reweighted χ1=4t , since their
cutoff effects could be very different. In general, for any
lattice Dirac operator (except the overlap operator), the
reweighted χtðTÞ would be smaller than that without
reweighting, and the reduction becomes larger at higher
T. This suggests that the continuum extrapolated χtðTÞ of
all lattice studies could be brought into agreement if the
cutoff effects of the lattice Dirac operators would be
corrected.
Recall that the reweighting method deforms the

path integral nonlocally; in principle, it is not guaranteed
to give the correct result. Moreover, the reweighting
method becomes inefficient if the weights have large
fluctuations. Thus, it is necessary to cross-check the results

TABLE VI. The continuum extrapolated fourth root of the topological susceptibility χ1=4t ½MeV� at T ≃ 430 MeV. The abbreviations
are DWF, HISQ, SISF (stout-improved staggered fermion), WTMF (Wilson twisted mass fermion); Wilson (Wilson plaquette action),
Symanzik (tree-level improved Symanzik gauge action), Iwasaki (Iwasaki gauge action with c0 ¼ 3.648 and c1 ¼ −0.331); REW
(eigenvalue reweighting technique), FSI (fixed sector integral technique), MCA (multicanonical algorithm); CCC (clover charge after
cooling), CSF (clover charge in the Symanzik flow), CWF (clover charge in the Wilson flow), DIS (use χt ¼ m2

udχdisc), SSP (staggered
spectral projectors).

Reference Quark Gluon Nf mπ [MeV] Simulation Measurement χ1=4t (MeV)

Bonati et al. [19] SISF Symanzik 2þ 1 135 Direct CCC 38(2)
Petreczky et al. [20] HISQ Symanzik 2þ 1 160 Direct CSF, DIS 15(2), 10(3)
Borsanyi et al. [21] SISF Symanzik 2þ 1þ 1 140 REW, FSI CWF 9(1)
Bonati et al. [49] SISF Symanzik 2þ 1 140 DirectþMCA CCC 3(3)(2)
Athenodorou et al. [50] SISF Symanzik 2þ 1 140 DirectþMCA CCC, SSP 18(3), 20(3)
Kotov et al. [51] WTMF Iwasaki 2þ 1þ 1 140 Direct DIS < 4ð1Þ
This work DWF Wilson 2þ 1þ 1 140 Direct CWF 48(1)
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of Borsanyi et al. [21] by direct simulations with overlap
fermions.
For DWFs, the viable way to reduce the cutoff effects is

to perform simulations with more and more precise chiral
symmetry successively. On the other hand, if one resorts to
reweighting, the prerequisite for a reliable reweighting is
that the chiral symmetry of the DWF should be sufficiently
precise such that for any nontrivial gauge background its
effective four-dimensional Dirac operator possesses the
same number of exact zero modes as the overlap operator,
as discussed in Sec. VI.
About the results of continuum extrapolated χ1=4t ðTÞ in

this work, they are the largest among all lattice results at
the same temperature. Theoretically, they would become
smaller in the exact chiral symmetry limit (with Ns → ∞
and λmin → 0). At this moment, we do not know to what
extent the decrease would be and whether they would
agree with the results of Borsanyi et al. [21]. Note that we
have used the Wilson plaquette action and the optimal
DWF operator with thin links, unlike other lattice studies
using improved gauge actions and the stout-improved
lattice Dirac operator. Thus, the topological fluctuations
(and the susceptibility) in our case are expected to be
larger than those using other actions at the same temper-
ature and lattice spacing. It is unclear to what extent the
cutoff effects due to the gauge action and the link variables
entering the lattice Dirac operator could affect the con-
tinuum extrapolated χtðTÞ, even though in principle all
cutoff effects are supposed to vanish in the continuum
limit. On the other hand, it is also unclear whether using
improved gauge actions and improved lattice Dirac
operators with fat links would suppress the topological
fluctuations too much such that the continuum extrapo-
lation would be distorted. Further studies are required to
answer these questions.
Other systematics in Ref. [21] are the fixed-sector

integral method (in T) together with the reweighting
method to extend the unphysical Nf ¼ 3þ 1 simulations
from 500 to 3000 MeV and also the integral method (in
mud) to bring the unphysical Nf ¼ 3þ 1 results from

mud ¼ mphys
s to physical mphys

ud . These systematics can be
cross-checked by direct simulations with Nf ¼ 2þ 1þ 1

overlap fermions at the physical point and without fixing
topology. Since direct simulations of overlap fermions at
the physical point is prohibitively expensive; a viable
alternative is to use the optimal DWF with sufficiently
small λmin and sufficiently large Ns, which may be feasible
with the exaflop machines.
To conclude this section, we reiterate that the system-

atic errors of all/most lattice results of χtðTÞ have not been
under control, leading to the discrepancies as shown in
Fig. 6 and in Table VI. Moreover, any convergence of
several lattice results at some temperature does not
necessarily imply that it would be the correct physical/
theoretical value, which can be established only after the

systematic errors of all these lattice results have been
corrected.

VIII. CONCLUDING REMARKS

To determine the topological susceptibility of finite
temperature QCD is a very challenging task. So far, all
lattice studies have not obtained satisfactory results with all
systematic errors under control, at the physical point as well
as in the continuum limit, for T > Tc.
The present study is the first attempt to simulate finite

temperature lattice QCD with Nf ¼ 2þ 1þ 1 domain-
wall quarks at the physical point. We perform the HMC
simulation of lattice QCD with Nf ¼ 2þ 1þ 1 optimal
domain-wall quarks at the physical point, on the
643 × ð64; 20; 16; 12; 10; 8; 6Þ lattices, each with three
lattice spacings a ∼ ð0.064; 0.068; 0.075Þ fm. The chiral
symmetry in the HMC simulation is preserved with
Ns ¼ 16 in the fifth dimension, and the optimal weights
fωs; s ¼ 1;…; 16g are computed with λmin ¼ 0.05 and
λmax ¼ 6.2, with the error of the sign function of Hw less
than 1.2 × 10−5, for eigenvalues of Hw satisfying
λmin ≤ jλðHwÞj ≤ λmax. The residual masses of ðu=d; s; cÞ
quarks are less than ð0.09; 0.08; 0.04Þ MeV=c2, respec-
tively (see Table I). The bare quark masses and lattice
spacings are determined on the 644 lattices (see Table II).
For each lattice spacing, the bare quark masses of u=d, s,
and c are tuned such that the lowest-lying masses of the
meson operators fūγ5d; s̄γis; c̄γicg are in good agreement
with the physical masses of fπ�ð140Þ;ϕð1020Þ;
J=ψð3097Þg, respectively.
In this paper, we determine the topological susceptibility

for T > Tc. The topological charge of each gauge con-
figuration is measured by the clover charge in Wilson flow
at the flow time t ¼ 0.8192 fm2, where the topological
susceptibility of any gauge ensemble attains its plateau.
Using the topological susceptibility χtða; TÞ of 15 gauge
ensembles with three different lattice spacings and different
temperatures in the range T ∼ 155–516 MeV (see
Table III), we fit the data points to the ansatz (26) and
obtain the fitted parameters and χtðTÞ in the continuum
limit (see Fig. 2). In the limit T ≫ Tc, it gives χtðTÞ ¼
12.8ð1ÞðTc=TÞ8.1ð2Þ (in units of fm−4), which agrees with
the temperature dependence of χtðTÞ in the DIGA [15],
χtðTÞ ∼ T−8.3 for Nf ¼ 4. This implies that our data points
of χtða; TÞ for T > 350 MeV are valid, up to an overall
constant factor.
To investigate the volume dependence of topological

susceptibility, we generate another set of ensembles of
lattice sizes 323 × ð16; 12; 10; 8; 6Þ, with lattice spacing
a ∼ 0.0641 fm and volume ∼ð2.053 fmÞ3, and obtain the
χtða; TÞ for T ∼ 192–512 MeV (see Table IV). Comparing
the topological susceptibilities of this relatively smaller
volume with their counterparts of a larger volume
∼ð4.074 fmÞ3 on the 643 × ð16; 12; 10; 8; 6Þ lattices with
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lattice spacing a ∼ 0.0636 fm in Table III and also with
those in the infinite volume limit by extrapolation (see
Fig. 3), we conclude that the values of χ1=4t in Table III do
not suffer from significant finite-volume systematics.
Since our present simulation is not at the exact chiral

symmetry limit, we investigate the feasibility of using the
reweighting method to obtain χt in the exact chiral
symmetry limit. In Sec. VI, we give a detailed discussion
of the reweighting method for DWF. We find that the
prerequisite for the reweighting method to work efficiently
for DWF is that the index of the effective four-dimensional
Dirac operatorDNs

ð0Þ [see Eq. (13)] of the DWF is equal to
the index of the overlap Dirac operator Dovð0Þ for each
configuration in the ensemble. Moreover, the approximate
sign function SNs

ðHÞ is required to be sufficiently precise,
especially for the low-lying eigenvalues of jHj (whereH ¼
Hw ¼ γ5Dw for optimal DWF and H ¼ γ5Dwð2þDwÞ−1
for Shamir/Möbius DWF). Then, the weight factor (32) of
each configuration is of the order 1, i.e., Wi ∼ 1. To fulfill
above requirements, for optimal DWF simulation, it has to
use a sufficiently small λmin and also a sufficiently large Ns,
while for the Shamir/Möbius DWF simulation, it needs to
use some Ns much larger than that of optimal DWF, since it
does not have any parameter like λmin to enhance the chiral
symmetry for the low-lying eigenvalues of jHj.
The above approach of obtaining χtðTÞ in the exact chiral

symmetry limit is to reweight χtða; TÞ to χtovða; TÞ at finite
lattice spacing a and temperature T, then use a set of data
points of χtovða; TÞ at many different a and T to extract
χt

ovðTÞ in the continuum limit for any T. Nevertheless, this
rigorous approach seems to be prohibitively expensive.
Besides the very expensive DWF simulation with λmin ≲
0.00001 and Ns ≳ 32, there are even more costly projec-
tions of low modes of VNs

and Vov for computing the
weight factor of each configuration in the ensembles.
Pursuing this approach is out of the question unless the
exaflop computers are available. Nevertheless, from the
viewpoint of universality, even χt

DWFða; TÞ [measured by
the index of DNs

ð0Þ] at finite lattice spacing is different
from χt

ovða; TÞ; theoretically, in the continuum limit, both
χt

DWFðTÞ and χt
ovðTÞ should go to the same universal

value, since both DNs
ð0Þ and Dovð0Þ go to the massless

Dirac operator in the continuum limit, provided that the
chiral symmetry of DWF is sufficiently precise such that
indexfDNs

ð0Þg ¼ indexfDovð0Þg. Then, the reweighting
at finite lattice spacing seems to be unnecessary. Moreover,
for an ensemble generated by DWF simulation with
effective four-dimensional Dirac operator DNs

ð0Þ suffi-
ciently close to Dovð0Þ, the topological charge of each
configuration can be measured by Qclover in the Wilson
flow, since it is expected that χtðcloverÞ ¼ χtðoverlapÞ in
the continuum limit and in the infinite volume limit. Further
studies are required to examine whether any of the above
scenarios could be realized in practice.
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APPENDIX: RENORMALIZED CHIRAL
CONDENSATE

As discussed in Sec. I, the chiral condensate Σ is the
order parameter of spontaneously chiral symmetry break-
ing in QCD. At low temperatures (T < Tc), the chiral
symmetry of QCD is spontaneously broken, and the ChPT
gives the relation between the chiral condensate and the
topological susceptibility. However, at high temperatures
(T > Tc), the chiral symmetry of u and d quarks is
effectively restored, and the chiral condensate vanishes.
Thus, the ChPT becomes inapplicable for T > Tc, and it
cannot give an expression of χtðTÞ. Theoretically, the
topological susceptibility can be nonzero for T > Tc due
to the quantum fluctuations of the physical ðu; d; s; c; bÞ
quarks with nonzero masses. Even though the chiral
condensate ΣðTÞ seems to be irrelevant to χtðTÞ for
T > Tc, it is important to find out how the chiral
condensate ΣðTÞ changes with respect to T, and from
which to determine the pseudocritical temperature Tc, and
to understand the nature of the chiral symmetry restoration.
To this end, lattice QCD provides a viable framework
for nonperturbative determination of ΣðTÞ from the first
principles.
In lattice QCD, the quark condensate Σðmq; TÞ suffers

from the quadratic divergences in the continuum limit.
To remove the quadratic divergences of the u=d
quark condensate, one considers the subtracted quark
condensate

ΔusðTÞ ¼ Σðmu; TÞ −
mu

ms
Σðms; TÞ; ðA1Þ

where mu and ms are the bare masses of the u and s
quarks. Moreover, the multiplicative renormalization fac-
tor in (A1) can be eliminated by normalization with its
corresponding value at T ¼ 0, i.e.,

ΔR
usðTÞ ¼

Σðmu; TÞ − mu
ms
Σðms; TÞ

Σðmu; 0Þ − mu
ms
Σðms; 0Þ

; ðA2Þ

which is called the renormalized chiral condensate [52].
In the following, we present our first results of

ΔR
usðTÞ for T ≃ 131–516 MeV, in lattice QCD with Nf ¼

2þ 1þ 1 domain-wall quarks at the physical point, for the
14 ensembles listed in Table VII. There are 12 ensembles
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with T > 150 MeV (a subset of the ensembles in Table III)
and two ensembles with T < 150 MeV. The quark con-
densate Σðmq; TÞ ¼ TrðDc þmqÞ−1=V is estimated by the
noise method, using 24–240 Z2 noise vectors to evaluate
the all-to-all quark propagators for each configuration. The
number of configurations of each ensemble for the evalu-
ation of ΔR

usðTÞ is given in the column Nconfs. The data of
ΔR

usðTÞ in the last column are plotted versus T in Fig. 7.
Here, the normalization factors [i.e., the denominator in
(A2)] for three different lattice spacings are evaluated on
the 644 lattices with (100, 67, 84) configurations for
β ¼ ð6.20; 6.18; 6.15Þ, respectively.
Comparing the data of ΔR

us in Fig. 7 with its counterpart
in Nf ¼ 2þ 1þ 1 QCD with maximally twisted mass
Wilson fermions at mπ ¼ 210 MeV (see Fig. 3 in
Ref. [22]), we find that the trends of the falling of
ΔR

usðTÞ (as T is increased from low to high temperatures)
are consistent with each other. However, the fastest falling
of ΔR

usðTÞ in Fig. 7 is in the range of T ∼ 145–150 MeV,
while it is ∼161–165 MeV in Ref. [22]. Moreover, ΔR

usðTÞ
in Fig. 7 falls more steeply than its counterpart in Ref. [22].
The discrepancies can be attributed to the different para-
meters in these two studies, namely, the unphysical mπ ¼
210 MeV and a smaller volume ∼ð3.1 fmÞ3 in Ref. [22],
versus the physical mπ ¼ 140 MeV and a larger volume
∼ð4.1 fmÞ3 in this study. In general, as mπ gets smaller, the
pseudocritical temperature Tc becomes lower, the range of
T for the fastest falling of ΔR

usðTÞ becomes narrower, and
the falling becomes steeper. Furthermore, these effects are
enhanced as the volume gets larger.
Comparing the data of ΔR

us in Fig. 7 with its counterpart
in Nf ¼ 2þ 1 QCD with staggered fermions at the

physical point and in the continuum limit [53,54], we find
that the fastest falling of ΔR

usðTÞ in Nf ¼ 2þ 1 QCD is
in the range of T ∼ 155–165 MeV, while it is ∼
145–150 MeV in this study. This seems to suggest that
the pseudocritical temperature in Nf ¼ 2þ 1 QCD is Tc∼
155–160 MeV, higher than that (Tc ∼ 145–150 MeV)
in Nf ¼ 2þ 1þ 1 QCD. Note that the ratio
ðmud=msÞphys (the physical point) was set to ∼0.0355 in
Ref. [53] and was extrapolated to 0.037 in Ref. [54], which
are larger than the ðmud=msÞphys values ∼0.0310–0.03125
(see Table II) in this study. The difference of the ratios of
ðmud=msÞphys between the Nf ¼ 2þ 1 QCD in
Refs. [53,54] and the Nf ¼ 2þ 1þ 1 QCD in this study
may shed light on the question as to why Tc in Nf ¼
2þ 1þ 1 QCD is lower than that in Nf ¼ 2þ 1 QCD. We
will return to this question after more data points around Tc
become available and a more precise determination of Tc
becomes feasible.
To determine the pseudocritical temperature Tc requires

many data points of ΔR
usðTÞ in the vicinity of Tc, which is

very challenging and beyond the scope of this paper. Note
that the HMC simulations of the ensembles at T <
150 MeV for Nf ¼ 2þ 1þ 1 lattice QCD with domain-
wall quarks at the physical point are almost prohibitively
expensive for us. Moreover, to get a good estimate of the
all-to-all quark propagators by the noise method, it is
necessary to use a sufficiently large number of noise
vectors, which turns out to be very computationally
intensive and requires a large amount of disk space.
Here, we only measure the renormalized chiral condensate
of 14 ensembles for T ∼ 130–516 MeV and see how it
decreases to zero as T is increased. One thing for sure is that
all data points of χ1=4t ða; TÞ in Table III are in the chirally
symmetric phase.

FIG. 7. The renormalized chiral condensate ΔR
us vs the temper-

ature T.

TABLE VII. The renormalized chiral condensate ΔR
usðTÞ of 14

gauge ensembles.

β a (fm) Nx Nt T (MeV) Nconfs ΔR
usðTÞ

6.15 0.0748 64 20 131 152 0.594(63)
6.18 0.0685 64 20 144 182 0.299(34)
6.20 0.0636 64 20 155 218 0.133(16)
6.20 0.0636 64 16 193 395 0.040(8)
6.18 0.0685 64 12 240 194 0.015(1)
6.15 0.0748 64 10 263 274 0.010(1)
6.18 0.0685 64 10 288 263 6.58ð33Þ × 10−3

6.20 0.0636 64 10 310 243 2.29ð62Þ × 10−3

6.15 0.0748 64 8 329 323 4.43ð16Þ × 10−3

6.18 0.0685 64 8 360 365 3.39ð14Þ × 10−3

6.20 0.0636 64 8 387 317 2.24ð72Þ × 10−3

6.15 0.0748 64 6 438 303 2.43ð1.26Þ × 10−3

6.18 0.0685 64 6 479 382 0.76ð2.42Þ × 10−3

6.20 0.0636 64 6 516 732 8.27ð56Þ × 10−4
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