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We perform a theoretical study of the Dþ
s → πþπþπ−η decay. We look first at the basic Dþ

s decay at the
quark level from external and internal emission. Then we hadronize a pair or two pairs of qq̄ states to have
mesons at the end. Posteriorly the pairs of mesons are allowed to undergo final state interaction, by means
of which the a0ð980Þ, f0ð980Þ, a1ð1260Þ, and b1ð1235Þ resonances are dynamically generated. The G
parity is used as a filter of the possible channels, and from those with negative G parity only the ones that
can lead to πþπþπ−η at the final state are kept. Using transition amplitudes from the chiral unitary approach
that generates these resonances and a few free parameters, we obtain a fair reproduction of the six mass
distributions reported in the BESIII experiment.

DOI: 10.1103/PhysRevD.106.074027

I. INTRODUCTION

D meson decays into three mesons have long being
considered of good source of information to study the
interaction of mesons [1–14] (see the review in [15]). The
scattering mechanisms of final meson pairs are usually
investigated in these works trying to obtain information on
this interaction and resonances formed in the process. The
D decay into four mesons introduces a challenging task due
to the additional meson pairs that require a consideration. In
this paper we wish to do such a theoretical work on the
Dþ

s → πþπþπ−η reaction measured for the first time in [16]
by the BESIII Collaboration. One intriguing aspect of the
analysis of [16] is the claim that the Dþ

s → aþ0 ð980Þρ0
decay mode proceeds via weak annihilation, with a rate
about 1 order of magnitude bigger than ordinary weak-
annihilation processes. In the order of the relevance
of different weak decay mechanisms, weak annihilation
goes below external emission, internal emission, and W
exchange [17,18]. Hence, observing a reaction which
proceeds via this mode with exceptionally large strength
is certainly a relevant finding. Yet, there might be some
ways to produce this mode indirectly, producing other

intermediate states that lead to the desired final state
through strong interaction transitions in the final states.
This is one of the issues that we investigate here.
It is not the first time that such a thing happens, since in

the study ofDþ
s → πþπ0η decay [19], the πþa0ð980Þ decay

mode was also branded as an example of weak annihilation
with an abnormally large strength. Yet, in Ref. [10] it was
found that the process could be explained through a
mechanism of internal emission, through the production
of KK̄ and the subsequent KK̄ → πη transition, dominated
by the a0ð980Þ resonance. An alternative explanation was
provided in [11] through a triangle mechanism where one
has Ds → ρþη, which proceeds via external emission,
followed by ρ → ππ and a fusion of πη to give the
a0ð980Þ resonance. The same argumentation was followed
in [20], where the work of [19] was discussed and other
possible mechanisms were considered. What is clear is that
with either of the mechanisms of [10,11,20] one does not
need weak annihilation for the Ds → πa0ð980Þ production,
and the strong interaction of the resulting mesons can
lead to the desired final state. We will find a similar
situation in the present reaction, where considering mech-
anisms of external and internal emission of different
intermediate particles and allowing them to make transi-
tions through final state interaction, we can obtain the
desired final state.
So far there is only one theoretical work which pays

attention to this reaction [21]. The work looks only to two
particular decay channels, Ds → ρ0aþ0 ð980Þ → ρπη and
Ds → ρþa00ð980Þ → ρþKþK−, using a triangle diagram
like Ds → πη (virtual π → πρ), and a fusion of πη to give
the a0ð980Þ resonance. A similar mechanism with KþK̄0
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intermediate states in the loop instead of two pions is also
considered. In both cases the primary products of the decay
have a much smaller mass than the final ones, forcing them
to be highly off shell. The work of [21] finds reasonable
results for the cases of Ds → ρ0aþ → ρπη decay compared
with the analysis of [16], but with a rate for Ds → ρþa00
(a0 → KþK−) 1 order of magnitude smaller. They hint at a
possible misinterpretation of the data of [16] due to a
possible contribution of Ds → f0ð980Þρþ.
Our aim in the present work is more ambitious, since we

want to reproduce the six invariant mass distributions that
have been reported in [16], Mπþπþ , Mπþπ− , Mπþη, Mπ−η,
Mπþπþπ− , and Mπþπ−η. The methodology is also different,
we look at the reaction from the perspective that the
different resonances that are observed in the analysis of
the reaction, f0ð500Þ, f0ð980Þ, a0ð980Þ, and a1ð1260Þ, are
obtained within the chiral unitary approach from the
interaction of different mesons. In this sense, the scalar
resonances f0ð500Þ, f0ð980Þ, and a0ð980Þ are obtained
from the interaction of pairs of pseudoscalar mesons in
coupled channels [22–25], while the a1ð1260Þ and other
axial vector mesons are obtained from the interaction of the
pairs of a pseudoscalar and a vector meson [26–29]. Then
our procedure is as follows: we consider all possible decay
mechanisms at the quark level and then proceed to create
vectors and a pseudoscalar recurring to the hadronization of
qq̄ pairs into a pair of mesons, pseudoscalar-pseudoscalar
(PP), or vector-pseudoscalar (VP). After this, we allow the
different PP or VP pairs to interact, leading to the
πþπþπ−η configuration finally. In the process of interac-
tion, different resonances are produced which are clearly
visible in the different mass distributions. Our approach
contains a few free parameters related to the strength of the
different primary production processes, for which the order
of magnitude is known, and a good reproduction of the six
invariant mass distributions is obtained with considerably
less freedom than in the partial wave analysis done in the
experiment [16]. The relevant role played by the different
resonances is then exposed.

II. FORMALISM

A. G parity of the process

The first realization in the Dþ
s → πþπþπ−η reaction is

that the G parity of the final state is negative. Hence, after
the weak interaction and prior to any final state interaction,
we must select only states where G parity is negative.
Pseudoscalar mesons and vector mesons without strange-
ness have given G parity, η, ρ positive, π, ω, ϕ negative. K
or K� have no G parity but pairs of them can have it. The G
parity is defined as

G ¼ Ce−iπI2 ; e−iπI2 jI; I3i ¼ ð−1ÞI−I3 jI;−I3i: ð1Þ

With our isospin doublet convention ðKþ; K0Þ, ðK̄0;−K−Þ
and CKþ ¼ K−, CK0 ¼ K̄0, ðK�þ; K�0Þ, ðK̄�0;−K�−Þ and
CK�þ ¼ −K�−, CK�0 ¼ −K̄�0, we have theG parity acting
over the K, K� states as shown in Table I.

B. External emission with one hadronization

We show in Fig. 1 the Cabibbo favored process of
external emission at the quark level. Since we need four
particles in the final states we need to produce a vector
meson, which will decay to two pseudoscalars, and a pair of
pseudoscalars. We have several options:
(1) Hadronize d̄u with PP and ss̄ giving a vector;
(2) Produce a vector from d̄u and hadronize ss̄ to two

pseudoscalars;
(3) Hadronize d̄u with VP or PV and ss̄ to two

pseudoscalars;
(4) Hadronize s̄s to VP or PV and d̄u a pseudoscalar.
Let us see the consequences. For this we would need the

representation of qq̄ in terms of mesons, which is given by

TABLE I. G parity acting on K and K� states.

Kþ K0 K̄0 K− K�þ K�0 K̄�0 K�−

GðKiÞ K̄0 −K− −Kþ K0 −K̄�0 K�− K�þ −K�0

(a) (b) (c)

FIG. 1. External emission mechanism for the Dþ
s decay at the quark level. (a) Basic mechanism, (b) hadronization of the ud̄

component, (c) hadronization of the ss̄ component.
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P ¼

0
BBB@

π0ffiffi
2

p þ ηffiffi
3

p þ η0ffiffi
6

p πþ Kþ

π− −π0ffiffi
2

p þ ηffiffi
3

p þ η0ffiffi
6

p K0

K− K̄0 − ηffiffi
3

p þ 2η0ffiffi
3

p

1
CCCA; ð2Þ

V ¼

0
BBB@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ K�þ

ρ− −ρ0ffiffi
2

p þ ωffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCA; ð3Þ

where we have taken the ordinary η − η0 mixing
of Ref. [30].
Let us see what one obtains with the four options above.

(We neglect η0 which plays no role in these processes.)
(1)

ud̄ →
X
i

uq̄iqid̄ ¼
X
i

P1iPi2 ¼ ðP2Þ12

¼
�
π0ffiffiffi
2

p þ ηffiffiffi
3

p
�
πþ þ πþ

�
−π0ffiffiffi
2

p þ ηffiffiffi
3

p
�
þ KþK̄0: ð4Þ

On the other hand, the vector for ss̄ is ϕ which decays to
KK̄ but not to πþπ− (different G parity). Hence, this
process cannot lead to our final state of πþπþπ−η.
(2)

ss̄ →
X
i

sq̄iqis̄ ¼
X
i

P3iPi3 ¼ ðP2Þ33

¼ K−Kþ þ K̄0K0 þ ηη

3
ð5Þ

and d̄u as a vector is ρþ. The vector ρþ can give πþπ0 but ss̄
has I ¼ 0 and hadronization does not change the isospin,
which means that the combination of Eq. (5) cannot give
π0η. Once again, this mechanism cannot produce our
final state.
(3a) We hadronize ud̄ with VP and have

ud̄ →
X
i

uq̄iqid̄ ¼
X
i

V1iPi2 ¼ ðVPÞ12

¼
�
ρ0ffiffiffi
2

p þ ωffiffiffi
2

p
�
πþ þ ρþ

�
−π0ffiffiffi
2

p þ ηffiffiffi
3

p
�
þ K�þK̄0 ð6Þ

and ss̄will give rise to the η. According to the η − η0 mixing
of Ref. [30] one has

ss̄ ¼ −
1ffiffiffi
3

p ηþ
ffiffiffi
2

3

r
η0: ð7Þ

Wecan see that there are already candidates, sinceρ0 → πþπ−
and we can have πþπþπ−η.

(3b) We hadronize ud̄ with PV and have

ud̄ →
X
i

uq̄iqid̄ ¼
X
i

P1iVi2 ¼ ðPVÞ12

¼
�
π0ffiffiffi
2

p þ ηffiffiffi
3

p
�
ρþ þ πþ

�
−ρ0ffiffiffi
2

p þ ωffiffiffi
2

p
�
þ KþK̄�0 ð8Þ

and once again with ρ0 → πþπ−, the extra πþ, and η from
ss̄, the combination can give the desired final state.
Now, an inspection of Eqs. (6) and (8) shows immedi-

ately that these states mix the G parity, which is not
surprising since they come from a weak process that does
not conserve isospin. However, we can make goodG-parity
states by means of the linear combinations ðVP� PVÞ.
Indeed,

ðVPÞ12− ðPVÞ12 ¼
ffiffiffi
2

p
ρ0πþ−

ffiffiffi
2

p
ρþπ0þK�þK̄0−KþK̄�0

ð9Þ

ðVPÞ12þðPVÞ12 ¼
ffiffiffi
2

p
ωπþ þ 2ffiffiffi

3
p ρþηþK�þK̄0þKþK̄�0:

ð10Þ

If we look at Table I we can see that ðVPÞ12 − ðPVÞ12 has
negative G parity, while VPþ PV has positive G parity.
Hence, it is the ðVP − PVÞ12 combination of Eq. (9), the
one we shall take to produce the final state πþπþπ−η. Thus,
we consider the state

jHE30i ¼ ðVP−PVÞ12
¼ −

1ffiffiffi
3

p ηð
ffiffiffi
2

p
ρ0πþ −

ffiffiffi
2

p
ρþπ0 þK�þK̄0 −KþK̄�0Þ

ð11Þ

but the ρþπ0η combination going to πþπ0π0η will not
contribute. We can therefore take

jHE3i ¼ −
ffiffiffi
2

3

r
ηρ0πþ −

1ffiffiffi
3

p ηðK�þK̄0 − KþK̄�0Þ ð12Þ

(4a)

ss̄ →
X
i

sq̄iqis̄ ¼
X
i

V3iPi3 ¼ ðVPÞ33

¼ K�−Kþ þ K̄�0K0 − ϕ
ηffiffiffi
3

p ð13Þ

and d̄u will be a πþ. By looking again to Table I we can see
that the former combination together with πþ has not a
well-defined G parity.
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(4b)

ss̄ →
X
i

sq̄iqis̄ ¼
X
i

P3iVi3 ¼ ðPVÞ33

¼ K−K�þ þ K̄0K�0 − ϕ
ηffiffiffi
3

p ð14Þ

which, again, has no defined G parity.
We construct the VP� PV combinations and find

ðVPÞ33 − ðPVÞ33 ¼ K�−Kþ − K−K�þ þ K̄�0K0 − K̄0K�0

ð15Þ

ðVPÞ33 þ ðPVÞ33 ¼ K�−Kþ þ K−K�þ þ K̄�0K0

þ K̄0K�0 −
2ffiffiffi
3

p ϕη ð16Þ

Once again we see that the VP − PV combination together
with πþ has G parity negative, while VPþ PV and πþ has
G parity positive. We can think of making the transition of
ðVP − PVÞ33 to ρ0η to complete ρ0ηπþ → πþπ−ηπþ.
However, this is not possible since the combination
VP − PV, coming from ss̄, has I ¼ 0 and hence cannot
go to ρη. Indeed, the IG ¼ 0þ resonance coming from
VP − PV combinations is the f1ð1285Þ (see Table II),
which only couples to K�K̄, K̄�K channels [27,29]. Thus,
from all possible states coming from hadronization with
external emission, only one, jHE3i of Eq. (12), can lead to
our desired final state.

C. Internal emission with one hadronization

We look now at the process of Fig. 2 for the Dþ
s decay,

We follow now the same strategy as before:
(1) Hadronize sd̄ with PP and us̄ is a vector;
(2) Hadronize us̄ to PP and sd̄ is a vector;

(3) Hadronize sd̄ to VP, PV and us̄ is a pseudoscalar;
(4) Hadronize us̄ to VP, PV and sd̄ is a pseudoscalar.
Let us see these possibilities in detail.
(1)

sd̄ →
X
i

sq̄iqid̄ ¼
X
i

P3iPi2 ¼ ðP2Þ32

¼ K−πþ þ
�
−

π0ffiffiffi
2

p þ ηffiffiffi
3

p
�
K̄0 −

ηffiffiffi
3

p K̄0

¼ K−πþ −
π0ffiffiffi
2

p K̄0 ð17Þ

and the us̄ component gives K�þ.
(2)

us̄ →
X
i

uq̄iqis̄ ¼
X
i

P1iPi3 ¼ ðP2Þ13

¼
�
π0ffiffiffi
2

p þ ηffiffiffi
3

p
�
Kþ þ πþK0 −

ηffiffiffi
3

p Kþ

¼ π0ffiffiffi
2

p Kþ þ πþK0 ð18Þ

and the sd̄ component gives K̄�0. Neither ðP2Þ32K�þ nor
ðP2Þ13K̄�0 have good G parity, but we make again the
combinations

ðP2Þ32K�þ − ðP2Þ13K̄�0

¼
�
K−πþ − K̄0

π0ffiffiffi
2

p
�
K�þ −

�
π0ffiffiffi
2

p Kþ þ πþK0

�
K̄�0

¼ πþðK�þK− − K̄�0K0Þ − π0ffiffiffi
2

p ðK�þK̄0 þ K̄�0KþÞ ð19Þ

ðP2Þ32K�þ þ ðP2Þ13K̄�0

¼
�
K−πþ − K̄0

π0ffiffiffi
2

p
�
K�þ þ

�
π0ffiffiffi
2

p Kþ þ πþK0

�
K̄�0

¼ πþðK�þK− þ K̄�0K0Þ þ π0ffiffiffi
2

p ðK̄�0Kþ − K�þK̄0Þ: ð20Þ

TABLE II. Nonstrange axial vector resonances generated by
the VP, PV interaction [26,27].

h1ð1173Þ h1ð1380Þ b1ð1235Þ a1ð1260Þ f1ð1285Þ
IG 0− 0− 1þ 1− 0þ

(a) (b) (c)

FIG. 2. Internal emission mechanism for Dþ
s decay at the quark level. (a) Basic mechanism, (b) hadronization of the sd̄ component,

(c) hadronization of the us̄ component.
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By looking at Table I, we see that the (−) combination
has G parity negative, while the (þ) combination has G
parity positive. Note also that since we have produced the
quarks ss̄ d̄ u in Fig. 2, this has jI; I3i ¼ j1; 1i for all the
combinations. In Eq. (19) which has G parity negative,
K�þK− − K̄�0K0 has G parity positive. On the other hand,
this combination has I ¼ 1; I3 ¼ 0; hence, according to
Table II, this combination is the one that creates the
b1ð1235Þ, and thus Eq. (19) gives us a good combination.
Since we do not want a π0, at the end we choose the πþ

(K�þK− − K̄�0K0) combination, corresponding to πþb01,
then the b01 decays to ρ0η (see Table VII of Ref. [27]),
ρ0 → πþπ− and we have the desired final state.
We then select the hadronic component

jHI12i ¼ πþðK�þK− − K̄�0K0Þ: ð21Þ

(3a) VP:

sd̄ →
X
i

sq̄iqid̄ ¼
X
i

V3iPi2 ¼ ðVPÞ32

¼ K�−πþ þ
�
−

π0ffiffiffi
2

p þ ηffiffiffi
3

p
�
K̄�0 þ ϕK̄0 ð22Þ

together with Kþ.
(3b) PV:

sd̄ →
X
i

sq̄iqid̄ ¼
X
i

P3iVi2 ¼ ðPVÞ32

¼ K−ρþ þ
�
−

ρ0ffiffiffi
2

p þ ωffiffiffi
2

p
�
K̄0 − K̄�0 ηffiffiffi

3
p ð23Þ

together with Kþ.
Unlike we had before, we do not make good combina-

tions now for G parity, positive or negative. This is done
when we consider the (4a) and (4b) combinations below.
(4a) VP:

us̄ →
X
i

uq̄iqis̄ ¼
X
i

V1iPi3 ¼ ðVPÞ13

¼
�
ρ0ffiffiffi
2

p þ wffiffiffi
2

p
�
Kþ þ ρþK0 − K�þ ηffiffiffi

3
p ð24Þ

together with K̄0.
(4b) PV:

us̄ →
X
i

uq̄iqis̄ ¼
X
i

P1iVi3 ¼ ðPVÞ13

¼
�
π0ffiffiffi
2

p þ ηffiffiffi
3

p
�
K�þ þ πþK�0 þ Kþϕ ð25Þ

together with K̄0.

We find now four combinations from (3a), (3b) and (4a)
(4b), two with positive G parity and two with negative G
parity. Those of negative G parity are

KþðVPÞ32 − K̄0ðPVÞ13
¼ πþðK�−Kþ − K�0K̄0Þ − π0ffiffiffi

2
p ðK̄�0Kþ þ K�þK̄0Þ

þ ηffiffiffi
3

p ðK̄�0Kþ − K�þK̄0Þ ð26Þ

K̄0ðVPÞ13 − KþðPVÞ32 ¼ ρþðK0K̄0 − KþK−Þ
þ

ffiffiffi
2

p
ρ0ðKþK̄0Þ

−
ηffiffiffi
3

p ðK̄0K�þ − K̄�0KþÞ ð27Þ

and in Eq. (26) the π0 term will not contribute. Similarly,
theK0K̄0 − KþK− in Eq. (27) has I ¼ 1 and corresponds to
the a0 with zero charge that decays to π0η. Together with
ρþ, we would have πþπ0π0η which is not the desired final
state. Hence we have two good combinations.

jHI3213i¼πþðK�−Kþ−K�0K̄0Þþ ηffiffiffi
3

p ðK̄�0Kþ−K�þK̄0Þ

ð28Þ

jHI1332i ¼
ffiffiffi
2

p
ρ0KþK̄0 −

ηffiffiffi
3

p ðK̄0K�þ − K̄�0KþÞ: ð29Þ

Let us inspect these terms. The combination K�−Kþ −
K�0K̄0 accompanying πþ in Eq. (26) has G parity positive
and is a mixture of I ¼ 0, 1. According to Table II it could
contribute to produce the b1ð1235Þ or the f1ð1285Þ, but
only the b1 decays to ρη; hence, we must project that state
over the b1. On the other hand, the combination K̄�0Kþ −
K�þK̄0 has I ¼ 1, I3 ¼ 1, and with negative G parity it
corresponds to the a1ð1260Þ. Finally, the KþK̄0 accom-
panying ρ0 in Eq. (29) has I ¼ 1, I3 ¼ 1 and negative G
parity and corresponds to the a0ð980Þ resonance. As we can
see, we have obtained terms that lead us to the πþπþπ−η
final state through the excitation of the b1ð1235Þ, a1ð1260Þ,
and a0ð980Þ resonances, which are well seen in the mass
spectra of the experiment [16].
We have obtained four suitable states, jHE3i, jHI12i,

jHI3213i, and jHI1332i. We shall give weights 1 to
jHE3i, α to jHI3213i, β to jHI1332i, and γ to jHI12i,
up to a global normalization factor C, and we get the
contribution from one hadronization:
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jH1i≡ C

�
−

ffiffiffi
2

3

r
ηρ0πþ þ ηffiffiffi

3
p ð1þ αþ βÞðK̄�0Kþ − K�þK̄0Þ

þ
ffiffiffi
2

p
βρ0KþK̄0 þ απþðK�−Kþ − K�0K̄0Þ − γπþðK̄�0K0 − K�þK−Þ

�
: ð30Þ

The first term in the former equation is a tree level
contribution, then ρ0 → πþπ− and we shall have
πþπþπ−η, the desired final state. The combinations with
K, K� will make transitions to other states to complete the
πþπþπ−η final state and we assume these transitions to be
dominated by the corresponding resonances that they form
within the chiral unitary approach.
In Refs. [22,27] the couplings of the resonances to the

different components are given for the normalized states in
the isospin basis. We must obtain the projection of the
states obtained here on the isospin states of [22,27], which
we do below.
(a) K̄�0Kþ − K�þK̄0 has negative G parity and I ¼ 1. It

corresponds to the a1ð1260Þwith I3 ¼ 1. Concretely, using
the convention of Ref. [27], we have

ja1; I3 ¼ 1i ¼ 1ffiffiffi
2

p ðK̄�0Kþ − K�þK̄0Þ:

Hence,

ha1; I3 ¼ 1jK̄�0Kþ − K�þK̄0i ¼
ffiffiffi
2

p
:

(b) K�−Kþ − K�0K̄0 and K̄�0K0 − K�þK− have both G
parity positive and belong to the b1 resonance. Once again,
with the convention of Ref. [27] we have

jb1; I3 ¼ 0i ¼ 1ffiffiffi
2

p jK̄�KðI ¼ 1Þ þ K�K̄ðI ¼ 1Þi

¼ 1

2
jK̄�0K0 − K�−Kþ − K̄�þK− þ K�0K̄0i:

Hence,

hb1; I3 ¼ 0jK�−Kþ − K�0K̄0i ¼ −1;

hb1; I3 ¼ 0jK̄�0K0 − K�þK−i ¼ 1:

(c) KþK̄0 is the I3 ¼ 1 component of KK̄ that couples to
a0ð980Þ. Hence

ha0ð980Þ; I3 ¼ 1jKþK̄0i ¼ 1:

The resonances formed will decay to different channels, a1
to ρ0πþ, b1 to ρ0η and a0 to πþη and we have the picture
depicted in Fig. 3.

FIG. 3. Diagrams stemming from the hadronization of one qq̄ pair.

JING SONG, A. FEIJOO, and E. OSET PHYS. REV. D 106, 074027 (2022)

074027-6



We have established before the coupling of theK�K̄, KK̄
channels to the a1, b1, and a0 resonances. Now we must
deal with their decays to ρπ, ρη, and πη. We follow again
Refs. [22,27].
(d) The ρπ component for the I3 ¼ 1 state of the

a1ð1260Þ resonance is given considering the π, ρ isospin
multiples (−πþ, π0, π−), (−ρþ, ρ0, ρ−) by

ja1; I3 ¼ 1i ¼
���� − 1ffiffiffi

2
p ρþπ0 þ 1ffiffiffi

2
p ρ0πþ

�

and we are interested only in the second component; hence,
we have an overlap factor of 1ffiffi

2
p .

(e) The I3 ¼ 0 ρη component of the b1 is

jb1; I3 ¼ 0i ¼ jρ0ηi;

the overlap factor is 1.
(f) The I3 ¼ 0, I3 ¼ 1 components of the a0ð980Þ are

ja0; I3 ¼ 0i ¼ jπ0ηi; ja0; I3 ¼ 1i ¼ −jπþηi:

With all these weights calculated we obtain the following
amplitude:

tH1ðπþρ0ηÞ ¼C

�
−

ffiffiffi
2

3

r
þ ηffiffiffi

3
p ð1þαþ βÞGK�K̄ðMinvðρ0πþÞÞ

ga1;K�K̄ga1;ρπ
M2

invðρ0πþÞ−M2
a1 þ iMa1Γa1

−
ffiffiffi
2

p
βGKK̄ðMinvðπþηÞÞ

ga0;KK̄ga0;πη
M2

invðπþηÞ−M2
a0 þ iMa0Γa0

− ðαþ γÞGK�K̄ðMinvðρ0ηÞÞ
gb1;K�K̄gb1;ρη

M2
invðρ0ηÞ−M2

b1
þ iMb1Γb1

�

ð31Þ

where GK�K̄ , GKK̄ are the loop functions of two mesons
which are regularized as in [27] for GK�K̄ and with a cutoff
method forKK̄ as done in [4,31] with a cutoff off 600 MeV.
The couplings of the a1, b1 resonances are taken from [27]
and are shown in Table III, and the masses and widths are
from the Particle Data Group (PDG) [32]. The f0ð980Þ has
a width of 10–100 MeV in the PDG and we take 70 MeV.
One note is, however, mandatory here. The a0ð980Þ usually
is considered as a normal resonance. Yet, the high precision
experiments where the a0ð980Þ is seen lately [33,34] show
a shape of the a0 as a strong sharp peak in the π0η mass
distribution, typical of a cusp, corresponding to a barely
failed state, or virtual state. This is also the case in a large
number of theoretical works [4,35–38]. In this case the
couplings are not well defined. In fact, the couplings go to
zero when one approaches a threshold as a consequence of
the Weinberg compositeness condition [39–45]. This is so
for one channel, but it also holds for all couplings when
using coupled channels when one approaches one threshold
[46,47]. Because of this we replace in Eq. (31).

ga0;KK̄ga0;πη
M2

invðπþηÞ −M2
a0 þ iMa0Γa0

→ tI¼1
KK̄;πη ð32Þ

where tI¼1
KK̄;πη is taken from the model of Ref. [4] using the

chiral unitary approach with the πη and KK̄ channels.

D. Rescattering from the tree level ηρ0π + component

In Eq. (31) we have the tree level ηρ0πþ term, and all the
others come from one transition from the primary meson
states generated in the weak process and one hadronization.
In line with this extra final state interaction of the K�K̄, KK̄
components, we address here the mechanisms of rescatter-
ing of the pairs of mesons in the tree level amplitude going
to the same states. This leads to the diagrams shown
in Fig. 4.
With the ingredients before it is easy to write this

amplitude as

tRESðρ0πþηÞ

¼−C
ffiffiffi
2

3

r
GρπðMinvðρ0πþÞÞ

1ffiffi
2

p ga1;ρπ
1ffiffi
2

p ga1;ρπ

M2
invðρ0πþÞ−M2

a1þiMa1Γa1

−C

ffiffiffi
2

3

r
GρηðMinvðρ0ηÞÞ

gb1;ρηgb1;ρη
M2

invðρ0ηÞ−M2
b1
þiMb1Γb1

−C

ffiffiffi
2

3

r
GπþηðMinvðπþηÞÞ

ga0;πηga0;πη
M2

invðπηÞ−M2
a0þiMa0Γa0

ð33Þ

where, once again, in the last term we shall make the
replacement of Eq. (32).
There is still a bit extra work having to do with the ρ

production and its decay to πþπ−. First we must contract

TABLE III. The couplings of the a1 and b1 states in the unit of
MeV [27].

a1 b1

gK̄�K gρπ gK�K̄ gρη
1872 − i1486 −3.795þ i2330 −3041þ i498 6172 − i75
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the ρ0 polarization vector with some momentum, since the
Ds, η, π have no spin. Given that π and η are produced on
the same footing, we could have ϵμðpπ þ pηÞμ, or ϵμPμ

DS
,

but since pD ¼ pπ þ pη þ pρ and ϵμP
μ
DS

¼ 0, these terms
are equivalent and we take ϵμP

μ
DS
.

Next, when the ρ0 decays to πþπ− there are two πþ at the
end, and one must symmetrize the amplitude. We shall have
two diagrams, as depicted in Fig. 5.
Then, taking for instance the diagram of Fig. 5(a), we

would have for the ρ propagator the sum over the ρ
polarization.

X
pol

Pμ
Dϵμϵνðp4 − p2Þν ¼ Pμ

D

�
−gμν þ

qμqν
mρ2

�
ðp4 − p2Þν

with q ¼ p2 þ p4. Since qðp2 − p4Þ ¼ m2
π −m2

π ¼ 0 we
have then −pμ

Dðp4 − p2Þμ and the amplitudes become

tρ ¼ −C
�
PDs

· ðp4 −p2Þ
1

M2
invðρ; aÞ−M2

ρ þ iMρΓρ
tðaÞ

þPDs
· ðp4 −p3Þ

1

M2
invðρ; bÞ−M2

ρ þ iMρΓρ
tðbÞ

�
ð34Þ

where tðaÞ and tðbÞ are the amplitudes evaluated before with
the momenta configuration of the diagrams of Figs. 5(a)
and 5(b). M2

invðρ; aÞ and M2
invðρ; bÞ are p2

ρ for the configu-
rations of Figs. 5(a) and 5(b), respectively. We have omitted
the ρππ coupling which is incorporated in the C global
coefficient.

FIG. 4. Diagrams from the rescattering of pairs of mesons ρ0πþη production.

(a) (b)

FIG. 5. Symmetrized amplitude with ρ decaying to two pions. (a) With the ρ0 coming from pions (2) and (4); (b) with the ρ0 coming
from pions (3) and (4).
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E. Two hadronizations with external emission:
f 0ð980Þ contribution

In the πþπ− mass distribution of Ref. [16] one observes
two structures, one for the ρ0 and another one for the
f0ð980Þ. So far neither the f0ð980Þ nor the a0ð980Þ, with
I3 ¼ −1 (π−η), have appeared in our scheme. The reason
lies in the fact that, up to now, we have only considered the
mechanism with one hadronization providing VPP. Now
we consider two hadronizations leading to four pseudo-
scalars PPPP. The corresponding external emission
mechanism proceeds through the diagram given in
Fig. 6 Since η ¼ 1ffiffi

3
p ðuūþ dd̄Þ − 1ffiffi

3
p ss̄ with the mixing

of [30], the hadronization of the d̄u component can lead to
πþη while the hadronization of ss̄ can lead to KK̄. We thus
obtain πþηKK̄ which is not the desired final state.
However, we can have the KK̄ → πþπ− transition and
then we get the πþπþπ−η final state. In terms of resonances,
KK̄ coming from the I ¼ 0 ss̄ pairs can only give rise to the
f0ð980Þ, the coupling to the f0ð500Þ being very small.
Hence, we find a mechanism for the production of this
resonance, and we have two new diagrams, which are
depicted in Fig. 7.
A caveat must be recalled at this point, since as discussed

in [48], the coupling of Wþ to two pseudoscalars goes as
the difference of energies of the two pseudoscalars which

will vanish in the Wþ rest frame for two particles with the
same mass. However, η and π have very different masses
and the term survives.
After generating the two new mechanisms of Fig. 7, we

can proceed further and take into account the final state
interaction of the different components. This is depicted in
Fig. 8. We should note that all the couplings here are of an
S-wave nature, unlike the former diagrams that all con-
tained a ρ0 decaying to πþπ− in the P wave. A similar
diagram to Fig. 8(b) could be done replacing the f0ð980Þ
by the ρmeson, but the extra loop with respect to the former
diagrams, together with the factor ðp4 − p2Þ0 from
Eq. (34), does not make it competitive in comparison with
the mechanisms of Fig. 8 and we do not consider it here.
In the evaluation of the diagrams in Fig. 8 where the

f0ð980Þ is in the loop, we make some approximation to
evaluate it. What makes the approximation good is the
realization that the f0ð980Þ in the loop is very far off shell.
One interesting way to see it is to test how far one is from
having a triangle singularity [49] which would place the πη
and f0ð980Þ simultaneously on mass shell. For this we
apply Eq. (18) of Ref. [50] and see that one is far from
satisfying that condition, and since the πη can be obviously
on shell, from where the loop gets its maximum contribu-
tion, the f0ð980Þ will be off shell. This allows us to
factorize the f0ð980Þ propagator in the loop. Taking as an
example the loop in Fig. 8(f) we would have

Df0 ¼
1

M2
invðπ−intπþð2ÞÞ −M2

f0
þ iMf0Γf0

ð35Þ

with π−int, the π− inside the loop, where

M2
invðπ−intπþð2ÞÞ ¼ ðwπþð2Þ þ wπ−int

Þ2 − ðpπþð2Þ þ pπ−int
Þ2

¼ 2m2
πþ þ 2wπþð2Þwπ−int

− 2pπþð2Þpπ−int

≈ 2m2
π þ 2wπþð2Þwπ−int

ð36Þ

where in the last equation we have removed the pπþð2Þpπ−int
term, a sensible approximation if we evaluate Eq. (36) in
the π−η rest frame when performing the pπ−int

integration in
FIG. 6. Mechanism with two hadronizations producing four
pseudoscalars.

FIG. 7. Diagrams stemming from two hadronizations producing the f0ð980Þ resonance.
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the loop. Recalling that we get most of the contribution to
the loop when π−intη are on shell we get

wπ−int
¼ M2

invðπ−ηÞ þm2
π− −m2

η

2Minvðπ−ηÞ
;

wπþð2Þ ¼
pπþð2Þ · ðpπ− þ pηÞ

Minvðπ−ηÞ
: ð37Þ

We multiply Df0 by a factor Mf0Γf0 to have a dimension-
less magnitude

D̃f0 ¼ Mf0Γf0Df0

and then we get for the diagrams of Figs. 7 and 8, t1ðf0Þ
and t2ðf0Þ given by

t1ðf0Þ ¼ Cμ½D̃f0ðMinvðπþð3Þπ−ÞÞ þ D̃f0ðMinvðπþð2Þπ−ÞÞ�
ð38Þ

t2ðf0Þ ¼ t2aðf0Þ þ t2bðf0Þ þ t2cðf0Þ þ t2dðf0Þ
þ t2eðf0Þ þ t2fðf0Þ ð39Þ

with

(a) (d)

(b) (e)

(c) (f)

FIG. 8. Diagrams stemming from those of Fig. 7 after rescattering of two pseudoscalars. Diagrams (a) to (f) indicating different
topologies of the interaction of mesons, see text.
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t2aðf0Þ ¼ CμD̃f0ðMinvðπþð2Þπ−ÞÞGπηðMinvðπþð3ÞηÞÞtπþη;πþηðMinvðπþð3ÞηÞÞ
t2dðf0Þ ¼ CμD̃f0ðMinvðπþð3Þπ−ÞÞGπηðMinvðπþð2ÞηÞÞtπþη;πþηðMinvðπþð2ÞηÞÞ
t2bðf0Þ ¼ CμD̃f0ðMinvðπ−πþintÞÞGπηðMinvðπþð3ÞηÞÞtπþη;πþηðMinvðπþð3ÞηÞÞ
t2cðf0Þ ¼ CμD̃f0ðMinvðπþð3Þπ−intÞÞGπηðMinvðπ−ηÞÞtπ−η;π−ηðMinvðπ−ηÞÞ
t2eðf0Þ ¼ CμD̃f0ðMinvðπ−πþintÞÞGπηðMinvðπþð2ÞηÞÞtπþη;πþηðMinvðπþð2ÞηÞÞ
t2fðf0Þ ¼ CμD̃f0ðMinvðπþð2Þπ−intÞÞGπηðMinvðπ−ηÞÞtπ−η;π−ηðMinvðπ−ηÞÞ ð40Þ

and summing all them we have

tf0 ¼ t1ðf0Þ þ t2ðf0Þ: ð41Þ

We should note that through the mechanism of Figs. 8(c)
and 8(f) we obtain for the first time a signal for the
a−0 → π−η, which is also clearly visible in the π−η invariant
mass of Ref. [16].
In Eqs. (38), (39),and (40) we used a Breit-Wigner

distribution for the f0ð980Þ. By doing this we divert from
generating it through the chiral unitary approach as we have
done with the other resonances. There are technical reasons
for it. The rescattering in the mechanisms of Fig. 8 are
considerably more involved if one uses the chiral ampli-
tudes. We justified before that the approximation done is
fair for the rescattering mechanisms. Yet, we are using it
also in Eq. (38) for the diagrams of Fig. 7 where the
f0ð980Þ is not in a loop. While using the chiral amplitude
there is easy, the fact remains that the f0ð980Þ comes with a
small width when the ηη channels are explicitly considered
and a cutoff of 600 MeV is used to get the appropriate mass
[31]. A better reproduction is done using a more elaborate
model, using the N

D method with dispersion relations
including a small genuine component [13,51]. Instead of
using this elaborate formalism, and given the small con-
tribution that we find (also in the experiment), we take the
approximation of Eq. (35) with Γ ≈ 70 MeV, within the
10–100 MeV range given by the PDG [32].

F. Two hadronizatons with internal emission

Now we produce directly four pseudoscalars through the
mechanism of Fig. 9 The hadronization produces now

sd̄ → ðP2Þ32 ¼ K−πþ − K̄0
π0ffiffiffi
2

p

us̄ → ðP2Þ13 ¼
π0ffiffiffi
2

p Kþ þ πþK0 ð42Þ

and thus, we have together

K−Kþπþ
π0ffiffiffi
2

p þK−πþπþK0− K̄0
π0ffiffiffi
2

p π0ffiffiffi
2

p Kþ−K̄0
π0ffiffiffi
2

p πþK0

which indicates that only the second term can contribute to
our process through K−K0 → a−0 → π−η via the loop
shown in Fig. 10. The amplitude for this process will be
written as

tDIE ¼ CνGKK̄ðMinvðπ−ηÞÞtπ−η;K0K− ð43Þ

where tπ−η;K0K− ≡ tI¼1
πη;πη.

Coming from a double hadronization and internal
emission, the term should be smaller than former ones
and we refrain from studying further interactions. We

FIG. 9. Diagram for internal emission with two hadronizations.

FIG. 10. Mechanism contributing to the πþπþπ−η production
stemming from the diagram of Fig. 9.
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collect all the amplitudes from tH1, tRES, properly sym-
metrized and accounting for ρ decay as shown in Eq. (34)
plus tf0 and tDIE to construct the full amplitude, t. We have
five parameters in addition to the global normalization
constant C, which will be fitted to the data. In the following
section we show how to evaluate the different cross
sections.
All the final state interaction is done by allowing pairs of

particles to interact, which is the most common approach
taken in the literature. Yet, one could also have interactions
of trios and four-body. We are assuming them to be small
compared to the two body interactions that generate
resonances. While one cannot rule out some contributions
that could change the distributions a bit, we can argue that
their contribution should be small. Indeed, as a general rule
any extra hadron interaction weakens the contribution of a
mechanism, unless the interaction is strong enough to
produce a resonance. We can thus look at possible three-
body resonances in the range covered by the Dþ decay. In
the review paper [52] a complication of three-meson
resonance states has been reported (see Table I of [52])
and the only one that could play a role here as the πð1300Þ
state which is obtained in [53] from the ππη and πKK̄
coupled channels. Yet, if one observes the πþπ−π−η mass
distribution in the experiment [16] there is no visible trace
of this resonance, up to one deviation point, which is
compatible with a statistical fluctuation.

III. EVALUATION OF THE DIFFERENTIAL
CROSS SECTION

The width for the Ds decay into πþπþπ−η is given by

Γ¼ 1

2MDs

1

2

Z
d3pη

ð2πÞ3
1

2Eη

Z
d3pπþ

ð2πÞ3
1

2Eπþ

Z
d3p0

πþ

ð2πÞ3
1

2E0
πþ

×
Z

d3pπ−

ð2πÞ3
1

2Eπ−
ð2πÞ4δð4ÞðP−pη−pπþ −p0

πþ −pπ−Þjtj2;

ð44Þ

with the factor 1=2 since we have a symmetrized amplitude
with respect to the two πþ. We kill the pπ− integration with
the δ3ðÞ function, which gives us

pπ− ¼ −ðpη þ pπþ þ p0
πþÞ:

We introduce the variable

Pπ ¼ pπþ þ p0
πþ ;

qπ ¼ pπþ − p0
πþ ;

which gives us

Γ¼ 1

2MDs

1

2

1

2

Z
d3pη

ð2πÞ3
1

2Eη

Z
d3Pπ

ð2πÞ3

×
Z

d3q
ð2πÞ3

1

2Eπþ

1

2E0
πþ

1

2Eπ−
ð2πÞδðMDs

−Eη−Eπþ −E0
πþ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π− þðPπþpηÞ2
q

Þjtj2: ð45Þ

The δðÞ condition allows us to obtain cos θ between Pπ

and pη as a function of the other variables and we choose η
in the z direction. We find

cos θ≡ A ¼ 1

2Pπpη
½ðMDs

− Eη − Eπþ − E0
πþÞ2

−m2
π− − P2

π − p2
η�

but we must demand that j cos θj ≤ 1 and we implement the
factor in the integrand

θð1 − A2ÞθðMDs
− Eη − Eπþ − E0

πþÞ:

Then the width is finally written as

Γ ¼ 1

8MDs

1

π

Z
p2
ηdpη

1

2Eη

Z
P2
πdPπdϕ
ð2πÞ3

×
Z

d3q
ð2πÞ3

1

2Eπþ

1

2E0
πþ

1

2Pπpη
jtj2θð1 − A2Þ

× θðMDs
− Eη − Eπþ − E0

πþÞ; ð46Þ

and we take

pη ¼ pη

0
B@

0

0

1

1
CA; Pπ ¼ Pπ

0
B@

sin θ cosϕ

sin θ sinϕ

cos θ

1
CA;

ðcos θ ¼ A; sin θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

p
Þ: ð47Þ

However, it is convenient to define q with respect to Pπ for
integration purposes since it allows A≡ cos θ to be
expressed in terms of the integration variables, as
pπþ ¼ 1

2
ðPπ þ qÞ, p0

πþ ¼ 1
2
ðPπ − qÞ. Hence we define q̃

related to Pπ as the z axis as

q̃ ¼ q

0
B@

sin θ̃q cos ϕ̃q

sin θ̃q sin ϕ̃q

cos θ̃q

1
CA;

and to write it in theDs rest frame with pη in the z direction,
we make two rotations and find q ¼ Rq̃ with
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R¼ RϕRθ ¼

0
B@

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

1
CA
0
B@

cosθ 0 sinθ

0 1 0

− sinθ 0 cosθ

1
CA

¼

0
B@

cosϕ cosθ − sinϕ cosϕ sinθ

sinϕcosθ cosϕ sinϕ sinθ

− sinθ 0 cosθ

1
CA:

With this choice: Eπþ þ E0
πþ entering the definition of A≡

cos θ is given by

Eπþ þ E0
πþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ
1

4
ðPπ þ qÞ2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ
1

4
ðPπ − qÞ2

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ
1

4
P2
π þ

1

4
q2 þ 1

2
Pπq cos θ̃q

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ
1

4
P2
π þ

1

4
q2 −

1

2
Pπq cos θ̃q

r
:

With these new variables and using pηdpη ¼ EηdEη we can
write the width as

Γ ¼ 1

8MDs

1

4π

Z
dEη

Z
PπdPπdϕ
ð2πÞ3

Z
q2dqd cos θ̃qdϕ̃q

ð2πÞ3

×
1

2Eπþ

1

2E0
πþ

jtj2θð1 − A2ÞθðMDs
− Eη − Eπþ − E0

πþÞ:

ð48Þ

The choice of variable was done such that we can evaluate
the integral and mass distributions using Monte Carlo
integration. We have six integration variables. Random
values within limits are chosen for all of them and the
events are weighed by the integrand, and the θðÞ functions
in Eq. (48) determine the phase space. With these variables,
we construct all the momenta of the four final particles,
which allows us to calculate the six invariant mass
distributions. We accumulate the weighed events in boxes
of mass distributions of 25 MeV, like in the experiment, and
with ∼107 generated events we get very accurate numerical
mass distributions.

IV. RESULTS

First we go to Eq. (48) and substitute t ¼ 1 in order to
obtain the mass distributions with pure phase space. The
results are shown, with the mass distributions, normalized
to the data, in Fig. 11. In the same figure we also show the
results obtained at the tree level of tH1, with the πþρη

amplitude of Eq. (31) keeping only the term
ffiffi
2
3

q
, consid-

ering the ρ decay as shown in Eq. (34).
What we see in the figure is that in the case of phase

space, one is obviously missing all the different structures
which are visible in the experimental data: the ρ0 peak in

the Mðπþπ−Þ distribution, the aþ0 ð980Þ in the MðπþηÞ
distribution, and the f0ð980Þ in the Mðπþπ−Þ distribution.
The effect of the a1ð1260Þ (very wide) and of the b1 are not
so clear. Yet, the phase space alone fairly reproduces the
gross features of the mass distribution, except for the case
of the Mðπþπ−Þ, where the prominent peak of the ρ is
obviously absent.
In the same figure we have the contribution of the πþρ0η

term alone at the tree level. We can now see that the
Mðπþπ−Þ distribution is fairly well reproduced with its
prominent ρ peak. It is very interesting to note that this term
alone also creates a broad bump in Mðπþπ−Þ at low
energies around 0.5 GeV. This is particularly relevant since
one could intuitively think that this bump comes from the
production of the f0ð500Þ, as is seen in many other
experiments. But we saw that in our exhaustive list of
mechanisms of the reaction the f0ð500Þ was never pro-
duced. We obtained the f0ð980Þ via the KK̄ coupling, but
the f0ð500Þ is well known to couple extremely weakly to
this component [22–25]. Instead, we see that without
producing this resonance, the ρ term gives rise to this
wide bump. This is a consequence of the fact that we have
two πþ and if one πþπ− pair creates the ρ0, the other πþπ−
pair creates a different structure, which in this case is a
Mðπþπ−Þ distribution mimicking the f0ð500Þ distribution.
The other interesting thing is that now this term has widely
distorted the other mass distributions, creating peaks or
bumps that are in sheer contradiction with the experiment.
These extra peaks are also well known in mass distributions
when one has many particles in the final state, and are
called replicas or reflections in other channels of genuine
resonances of one channel. The fact that we also have two
πþ certainly has something to say. What is clear after we
introduce the important ρ0πþη term of tree level, is that we
need other contributions to describe the experimental data.
Our formalism comes from the systematic consideration

of all possible mechanisms and we saw that they indeed
produced the aþ0 , a

−
0 , a

þ
1 , b

þ
1 , f0ð980Þ resonances through

rescattering of meson-meson components that were pro-
duced in a first step of the weak reaction upon the
hadronization of one or two pairs of qq̄. These transitions
had no freedom since for them we took the amplitudes
generated by the chiral unitary approach. At the end of the
large amount of terms collected we had, up to a global
normalization constant, five free parameters, We should
emphasize that the filter of G-parity negative eliminated
terms, and it was linear contributions of states produced in
different mechanisms that at the end gave us the desired
πþπþπ−η in the final state. Also, some terms of G-parity
negative were shown not to lead to the desired final state
and were eliminated. At the end, it is not easy to trace back
the relative size of these parameters which have been
assumed to be real as it would be the case in a quark model
evaluation of the weak process plus the subsequent hadro-
nization. Note, however, that the G functions and ti
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FIG. 11. Phase space and the tree level of ρ.
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matrices are complex; therefore, our final amplitudes are
complex and there are inevitably large interferences.
We, thus, conduct a best fit to all the six mass

distributions and obtain the results that we show in
Fig. 12. The improvement over the mass distributions of
the tree level ρ0πþη term is remarkable. The χ2d:o:f: is 1.77,
which can be considered acceptable. The p value of the
global fit is p ≈ 0.11 indicating that the fit is significant.
The values obtained for the parameters are shown below

α ¼ 4.2; β ¼ 2.9; γ ¼ −3.9;

μ ¼ −31.2; ν ¼ 39.1: ð49Þ

Inspection of the figures shows rather featurelessMðπþπþÞ
distributions as also seen in the experiment. The Mðπþπ−Þ
distribution shows clearly the ρ0 and the f0ð980Þ peaks.
Also, the low energy bump of the mass distribution is well
reproduced which, as we discussed above, should not be
associated to f0ð500Þ excitation. In the same Mðπþπ−Þ
distribution we also see now a peak for the f0ð980Þ. The
MðπþηÞ distribution comes out fairly well and a peak is
seen corresponding to the aþ0 ð980Þ resonance. The result-
ing Mðπþπþπ−Þ and Mðπþπ−ηÞ distributions are also in
good agreement with the corresponding experimental ones.
The Mðπ−ηÞ distribution shows a clear peak for the
a−0 ð980Þ, as in the experiment, and the low and high
energy parts of the spectrum are also well reproduced.
There is a discrepancy with the data in a peak around
0.85 GeV that we cannot reproduce and do not know its
dynamical origin.
Next, apart from the ρ already addressed, we would like

to discuss the contribution of the different resonances to the
six invariant mass distributions in Fig. 13. One must look at
this information with care because there are interferences
among the different amplitudes, but it gives an idea on how
they appear in the process. For this we take the fitted
amplitude and isolate the different terms of this amplitude
where each resonance appears, and with only these terms
we see the individual contributions to the mass distribu-
tions. As can be immediately appreciated, the dominant
contribution comes from aþ0 . However, one should note
that, as seen in Eq. (31) where the aþ0 appears, it goes
together with the ρ0. Then it is not surprising to see a
structure in Mðπþπ−Þ and Mðπ−ηÞ similar to the one
produced by the ρ term alone shown in Fig. 11. In our
formalism we cannot disentangle that structure. The a−0
excitation has also a relatively large strength. The aþ1 shows
a clear peak around 1260 MeV, in the πþπþπ−, as it
should be. Curiously, our mechanisms allow the excitation
of the bþ1 , but the strength obtained is practically negligible.
One should note that in the experimental analysis
that the b1π mode was also not reported. Finally, we also
show the contribution of the case where we set
α ¼ β ¼ γ ¼ μ ¼ ν ¼ 0. The remaining amplitude still

contains the tree level πþρ0η of Eq. (31) plus the term
ηffiffi
3

p GK�K̄
ga1 ;K�K̄ga1 ;ρπ

M2
invðρ0πþÞ−m2

a1
þima1

Γa1
with ρ0πþη in the final state.

Hence, we see the ρ peak again in the Mðπþπ−Þ distribu-
tion. Not surprisingly, the a1 term contribution, which
contains this term in the way we calculate, still shows a
peak for the ρ. The other thing that we observe is that the
interferences are important in order to give the final
structures.
The exercise done here shows the complexity of the

current problem, and why a standard fit summing Breit-
Wigner structures for resonant excitation, as it is usually
done in experimental analysis, must be taken with care.
While we get the different important modes reported in
[16], the a1 signal, which is the dominant one in [16], is
relevant in our study but not dominant, and the fit fraction
of 12.7% reported in [16] for the f0ð500Þπþ mode is absent
in our study. However, we could find the origin of the
seeming f0ð500Þ peak in Mðπþπ−Þ, because one has two
πþπ− at the end: one πþπ− pair producing the ρ and the
other giving rise to this bump.
We would like to add to this discussion the comment that

in the experimental analysis of this reaction, 10 fit fractions
and nine phases where considered as free parameters. We
only have five parameters and a global normalization. The
fact that the resonances studied were all dynamically
generated, except for the ρ, from pseudoscalar-pseudosca-
lar or pseudoscalar-vector interactions, and that we could
relate to the different weak decay modes the production of
these meson-meson components, established constraints on
the relative production of these resonances. In addition, we
also benefitted from having couplings of resonances to the
different meson channels, provided by the chiral unitary
approach, such that, at the end, we had a significantly
smaller freedom to fit the data, in spite of which we could
get a fair reproduction of them.
To finalize this section we address here the issue of the

errors in the parameters and uncertainties in our fit. In
the Minuit fits that we perform we obtain the value of the
parameters of the best fit and their errors. The errors for the
parameters obtained from this source are large, at the order
of the value of the parameters themselves. This might
indicate that we have large uncertainties in our fit, but, as
normally happens when one has a relative number of
parameters, this could be an indication that there are
correlations between the parameters, and a large change
in one of them can be compensated by changes in the other
parameters. This is, indeed, the case here as we show with
the following exercise. One way which is practical to show
these correlations and establish the uncertainties in the fit is
the following [54–60]: we generate random numbers for
each data point within the error band of the point, and with
these new data points and the same errors we conduct a fit.
We repeat the procedure generating a new set of random
points and performing a new fit. This is done a relatively
large number of times and for each of them we plot the
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FIG. 12. The experimental data are from BESIII [16]. The red lines show the different mass distributions of πþπþ, πþπ−, πþη, π−η,
πþπþπ−, and πþπ−η, individually.
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results for each distribution. At the end of the procedure we
have a band of values from where one can conclude
the goodness of the fit. For practical reasons we repeat
the procedure 20 times, which we find sufficient to show

the uncertainties of our fit. This method, known in statistics
as the resampling-bootstrap method, produces correctly the
covariance matrix and, although computing is costly since
it involves many fits, is becoming increasingly more used,

FIG. 13. The contributions of a1, a
þ
0 , a

−
0 , b1, f0, and external emission, respectively.
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FIG. 14. Theoretical error bands. The blue area corresponds to the error band related to the different mass distributions, namely, πþπþ,
πþπ−, πþη, π−η, πþπþπ−. The experimental data are from BESIII [16].
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with increased computing capacities, given its technical
simplicity.
The bands obtained are shown in Fig. 14.1 It is surprising

to see that the bands are so narrow, indicating small
uncertainties in the fit results. And we, indeed, see
that the parameters are different for each fit, indicating
the strong correlations that one has. This also tell us that the
value of the parameters obtained have to be taken with
care. The fit to the data does not allow one to determine
them individually with great precision, but the combination
of terms can lead to a precise fit to the data. Another
reading of these results is that, given the small dispersion
of the mass distributions from all the random fits, any
persistent discrepancy with the data has to find an explan-
ation beyond the theoretical framework that we have
performed.

V. CONCLUSIONS

We have made a theoretical study of theDþ
s → πþπþπ−η

reaction taking into account the final state interaction of
pairs of mesons. The pairs are not necessarily those of the
final state, because we consider coupled channels, and it is
possible to produce some mesons in a first step which lead
to the final πþπþπ−η state making transitions with the
strong interaction. The problem is complicated because of
the many possible intermediate states but we followed a
systematic study in which we looked at the weak decay
processes, Cabibbo favored, that stemmed from Ds →
quarks with external and internal emission. Then we
allowed for one or two hadronizations of qq̄ pairs to obtain
mesons. Even then, there were many possible channels, but
the filter of G parity of these states reduced considerably
the number of possible combinations. Also, some of these
were shown to be unable to produce the πþπþπ−η final
state after rescattering. This allowed us to have a manage-
able amount of terms at the end, with only a few parameters
correlating them. The transition t matrices needed to go
from these selected channels to the final state are all taken
from the chiral unitary approach. At the end we have some
amplitudes which interfere among them, from where we
can get the six mass distributions and compare them with
the experiment. The amplitudes that we obtain through
final state interaction generate scalar and axial vector
resonances, a0ð980Þ, f0ð980Þ, a1ð1260Þ, and b1ð1235Þ,
which are visible in the experimental mass distributions,
except for the b1ð1235Þ which also comes with negligible
strength in our study.
We obtain an acceptable fit to the six mass distributions

with considerably less freedom in the parameter space than
in the experimental analysis, which should be considered as
a support for the amplitudes that we obtain using the chiral

unitary approach, where the low lying scalar mesons are
generated from the pseudoscalar-pseudoscalar interaction
and the axial vector resonances from the pseudoscalar-
vector interaction. The relevant modes obtained from a fit
to the data with a sum of Breit-Wigner structures in the
experimental analysis were also found in our study, but we
had less strength for the dominant a1ð1260Þ mode,
although we noted that there are large interferences of
the amplitudes and one must look with caution at the
meaning of a fit fraction. An interesting feature is that the
f0ð500Þ was not produced in our approach, but the broad
bump seen in the Mðπþπ−Þ mass distribution around
500 MeV came as a consequence of having two πþ in
the final state, from the “wrong” πþπ− pair when the
“good” πþπ− pair produced the ρ0.
In these mass distributions we could clearly see peaks for

the ρ0, aþ0 , a−0 , f0ð980Þ and aþ1 ð1260Þ in reasonable
agreement with experiment. But once again we caution
about determining fit fractions of these resonances given
the large interferences found.
The other finding of our study is that thanks to the

explicit consideration of resonances as coming from
meson-meson scattering in coupled channels, we could
reproduce the data starting with mechanisms of external
and internal emission and do not need to invoke a weak
annihilation mechanism. This is because even if some
resonances are not produced in a first step through external
or internal emission, some of the coupled channels, differ-
ent to the state observed at the end, can be produced. The
rescattering produces the desired final state, while at the
same time generates some resonances.
We also perform a study of the uncertainties of our fit

concluding that the fit parameters have large uncertainties
but there are strong correlations between them such that the
uncertainties in the fit are small. This also indicates that the
small discrepancies found with the data should find an
explanation beyond the theoretical framework that we
have done.
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