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Dipartimento di Fisica, Università di Torino, Via Pietro Giuria 1, 1-10125 Torino, Italy
and INFN—Sezione Torino, Via Pietro Giuria 1, 1-10125 Torino, Italy

(Received 23 June 2022; accepted 29 September 2022; published 28 October 2022)

A new formalism for the factorization of the cross section for single-hadron production in eþe−

annihilations, differential in zh, PT , and thrust, is applied to the phenomenological analysis of data recently
measured by the BELLE Collaboration. Within this scheme the eþe− → hX cross section can be recast in
the convolution of a perturbatively calculable coefficient and a universal transverse-momentum-dependent
fragmentation function. While performing a next-to-leading-order calculation of the perturbative part of the
process to next-to-leading logarithmic accuracy, we examine and thoroughly discuss the suitability of a
number of possible Ansätze to model the nonperturbative part of this universal transverse-momentum-
dependent fragmentation function, showing the extent to which present experimental data can actually
constrain its shape and functional form in terms of zh, PT , and thrust.
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I. INTRODUCTION

Transverse-momentum-dependent (TMD) parton distri-
butions (PDFs) and fragmentation functions (FFs) are
fundamental ingredients for the study of the inner structure
of matter, as they encode how fundamental constituents
bind into hadrons and shed light on the hadronization
mechanism that, thanks to the confinement properties
of QCD, leads to the formation of hadronic states. Their
pivotal role in the investigation of the 3D structure of
nucleons has motivated a huge effort in terms of exper-
imental facilities as well as theoretical and phenomeno-
logical studies.
Unpolarized TMD PDFs are relatively well-known

objects, as their extraction can rely on combined analysis
of different processes, like semi-inclusive deeply inelastic
scattering (SIDIS) and Drell-Yan scattering [1–5], for
which dedicated TMD factorization theorems have been
devised [6–9]. On the contrary, TMD FFs, their final-state
counterparts, are rather less known. In fact, the study of
unpolarized TMD FFs is currently based on the phenom-
enological analysis of the sole SIDIS, as data for eþe−
annihilations into two hadrons, the ideal framework for

their determination, are not yet available. To be precise,
data on eþe− → h1h2X processes are only available for
polarized TMD FFs, like the pion and kaon Collins
function, or for the λ polarizing fragmentation function,
for which several phenomenological studies have been
performed; for example, some recent analyses can be found
in Refs. [1,10–12]. Moreover, extractions relying on SIDIS
cross sections are inevitably affected by the strong corre-
lation between the TMD PDF and the TMD FF, which
appear convoluted in the measured cross section. This issue
could be circumvented by exploiting processes which
involve only one TMD FF. In these regards, the thrust
distribution of eþe− → hX, sensitive to the transverse
momentum of the detected hadron with respect to the
thrust axis, as recently measured by the BELLE
Collaboration [13], is a very promising candidate, as it
represents a process in which the TMD effects are traced
back to one single hadron, observed in the final state. The
thrust axis is the direction n⃗ that maximizes the thrust T,
defined as

T ¼
P

ijP⃗ðc:m:Þ;i · n̂jP
ijP⃗ðc:m:Þ;ij

; ð1Þ

where the sum runs over all the detected particles in the
c.m. frame. The variable T describes the topology of the
final state, and it ranges from 0.5 to 1, where the lower limit
corresponds to a spherical distribution of final-state par-
ticles, while the upper limit realizes a pencil-like event. In
the following, the thrust axis will be identified with the axis
of the jet to which the hadron h belongs, coinciding with
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the direction of the fragmenting parton, eventually tilted by
soft radiation recoil.
We note that some phenomenological analyses have

been performed on eþe− → hX data [14–16], where
some subsets of TASSO [17], PLUTO [18], MARKII [19],
AMY [20], and CELLO [21] data, and the more recent
BELLE [13] measurements have been considered. These
studies ignored or only partially addressed issues related
to universality and factorization properties of eþe− anni-
hilations in a single hadron. From a theory perspective,
in fact, the study of the eþe− → hX process has been
very challenging, as standard TMD factorization tech-
niques [6,7,22,23] do not apply.
As discussed in Refs. [24,25], the two-jet final-state

topology of the above process can occur in three different
kinematic configurations or “regions,” denoted Regions 1,
2, and 3 in Refs. [24,25], each corresponding to a different
factorization theorem. These kinematic regions can be
defined in terms of the size of the transverse momentum
PT of the hadron observed inside the jet cone. If the hadron
is detected very close to the thrust axis, the structure of
the resulting factorization theorem is very similar to the
standard TMD factorization, as in this case the soft
radiation significantly affects the transverse momentum
of the detected hadron. This configuration corresponds to
Region 1, and it has recently been investigated for pion [26]
and Λ [12,27] production, neglecting the thrust depend-
ence, which is integrated out. On the other hand, if the
hadron is detected very close to the jet boundary, its
transverse momentum is large enough to affect directly
the measured value of thrust. This configuration corre-
sponds to Region 3. The associated factorization theorem
involves a generalized fragmenting jet function (gFJF)
rather than a TMD FF, and its treatment goes beyond
the realm of TMD physics.
While Regions 1 and 3 are rather extreme configurations

of the eþe− → hX phase space, the “bulk” of events will
belong to Region 2, associated with the detection of
hadrons with intermediate values of transverse momenta,
neither extremely close to the thrust axis, nor too close to
the jet external boundaries. Differently from the two above
kinematic configurations, the proper theoretical treatment
of Region 2 is still somehow controversial, as the two main
available approaches on this subject, Refs. [24] and [25], do
not find total agreement on the final form of the corre-
sponding factorization theorem.

II. THEORETICAL FRAMEWORK

In this paper, we will follow the factorization scheme
devised in Refs. [25,28,29], which offers some clear
advantages for the practical implementation of a phenom-
enological analysis, leaving aside any discussion on the
discrepancies between the two formalisms. These have
been addressed in Sec. 5 of Ref. [25] and will be widely
discussed in a forthcoming paper [30].

In Region 2, soft radiation does not contribute actively
to the generation of TMD effects. This is what makes the
standard TMD factorization crucially different from the
factorization mechanism of Region 2, which shows features
of both collinear and TMD factorization. The correspond-
ing cross section can indeed be written as a convolution of a
TMD FF with a “partonic cross section,” encoding the
details of thrust dependence. There are, however, two
relevant issues that must be carefully taken into account.
First of all, the TMD FF appearing in the eþe− → hX
factorized cross section of Region 2 does not coincide with
the usual TMD FF appearing in SIDIS cross sections.
However, as we will discuss in more details below,
differences between these two TMD definitions are well
under control and their universality properties are not
undermined [28]. Hence, a phenomenological analysis of
the thrust distribution of eþe− → hX would allow us to
access the genuinely nonperturbative behavior of a TMD
FF, free from any soft radiation effects.
The second issue arises from the proper treatment of the

rapidity divergences. Due to the very peculiar interplay
between soft and collinear contributions, in Region 2 some
of the rapidity divergences are naturally regulated by the
thrust, T, but those associated with terms which are strictly
TMD parts of the cross section need an extra artificial
regulator, which is a rapidity cutoff in the Collins factori-
zation formalism [6]. This induces a redundancy, which
generates an additional relation between the regulator, the
transverse momentum, and thrust. Such a relation inevitably
spoils the picture in which the cross section factorizes into
the convolution of a partonic cross section (encoding the
whole T dependence) with a TMD FF (which encapsulates
the whole PT dependence), as both of these quantities turn
out to depend on the rapidity cutoff. Hence, while the first
becomes sensitive to the transverse momentum of the
detected hadron, PT , the other acquires a dependence on
thrust, T. Moreover, the thrust resummation is intertwined
with the transverse momentum dependence, making the
treatment of the large-T behavior highly nontrivial.
A proper phenomenological analysis of Region 2 must

rely on a factorized cross section where the regularization
of rapidity divergences is properly taken into account. As
usual, all the difficulties encountered in the theoretical
treatment get magnified in the phenomenological applica-
tions. In this paper, we will adopt some approximations in
order to simplify the structure of the factorization theorem
without altering its main architecture. In particular, for
single-pion production from eþe− annihilation, we refer to
the cross section presented in Ref. [29]:

dσ

dzhdTd2P⃗T

¼ −σBNC
αS
4π

CF
3þ 8 log τ

τ
e−

αS
4π3CFlog2τ

×
X
f

e2fD1;π�=fðzh; PT=zh;Q; τQ2Þ; ð2Þ
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where zh is the fractional energy of the detected pion, τ ¼ 1 − T, and σB ¼ 4πα2=3Q2 is the Born cross section. The
unpolarized TMD FF, D1;π�=f, is defined in the impact parameter space, in terms of the transverse distance b⃗T Fourier

conjugate of q⃗T ≡ P⃗T=zh. At next-to-leading logarithmic (NLL) accuracy, and at the scales μ ¼ Q and ζ ¼ τQ2 as in
Eq. (2), it reads [25]

D̃1;h=fðzh; bT;Q; τQ2Þ

¼ 1

z2h

�
dh=fðzh; μb� Þ þ

αSðμb� Þ
4π

Z
1

zh

dz
z
½dh=fðzh=z; μb� Þz2C½1�q=qðz; b�; μb� ; μ2b� Þ þ dh=gðzh=z; μb�Þz2C½1�g=qðz; b�; μb� ; μ2b� Þ�

�

× exp

�
log

Q
μb�

g1ðλÞ þ g2ðλÞ þ
1

4
log τ

�
gK2 ðλÞ þ

1

log Q
μb�

gK3 ðλÞ
��

MDðzh; bTÞ exp
�
−
1

4
gKðbTÞ log

�
Q2

M2
H
τ

��
; ð3Þ

where the transition from small to large bT has been treated
through the b� prescription by defining

b�ðbTÞ ¼
bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðbT=bmaxÞ2
p ; μb� ¼

2e−γE

b�
; ð4Þ

as is usual in the Collins-Soper-Sterman formalism (CSS)
[6,31,32].
Moreover, in order to ensure that integrating the above

TMD FF renders the usual collinear FFs [indicated by
lowercase d in Eq. (3)], we introduce in the b� prescription
a minimum value of bT, bmin, as in Ref. [6], and replace
Eq. (4) with b�ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2T þ ðbminÞ2

p
Þ. The first line of Eq. (3)

embeds the unpolarized TMD FF at short distances
and fixed scales μ ¼ μb� ≡ 2e−γE=b� and ζ ¼ μ2b� . It is a
standard result to express this contribution as an operator
product expansion where the operator bases are the
collinear FFs and the Wilson coefficients are fully predicted
by perturbative QCD. The detailed expressions of the one-
loop Wilson coefficients are given in the Appendix.
The second line of Eq. (3) describes the perturbative part

of the evolution from μ ¼ μb� to μ ¼ Q and from ζ ¼ μ2b� to
ζ ¼ τQ2. The functions gi, i ¼ 1, 2 and gKj , j ¼ 2, 3 are
required to reach the NLL accuracy. They depend on the
variable λ ¼ 2β0aSðQÞ log Q

μb�
. For convenience, they are

reported in the Appendix.
Finally, the last line of Eq. (3) embeds the nonperturba-

tive content of the unpolarized TMD FF, which is encoded
in two nonperturbative functions that must be extracted
from experimental data. The first is the model functionMD,
which is the fingerprint of D1;π�=f as it embeds the genuine
large-distance behavior of the TMD. The second is the
function gK, describing the long-distance behavior of the
Collins-Soper (CS) kernel, accounting for soft recoiling
effects. Notice that a factor zh is usually included [6] in the
logarithm of gK, which is not present in Eq. (3). This simply
corresponds to a different choice for the reference scale of
evolution. We choose not to include it in order to have

a gK factor completely unrelated to the zh dependence
in bT space. With respect to the usual definition of
TMDs [6,7], or the “square root definition” as labeled in
Ref. [28], these two nonperturbative functions are related
by the following equations:

Msqrt
D ðzh; bTÞ ¼ MDðzh; bTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSðbTÞ

p
; ð5aÞ

gsqrtK ðbTÞ ¼
1

2
gKðbTÞ; ð5bÞ

where MS is the soft model introduced in Ref. [28],
describing the nonperturbative content of the soft factor
appearing in standard TMD factorization theorems. Notice
that while MD is different in the two definitions, gK is
basically the same, apart from a constant factor. Hence, for
the extraction of gK from Region 2 of eþe− → hX, we can
test the parametrization already used in past phenomeno-
logical extractions, based on standard TMD factorization.
On the side of the TMDmodel, the comparison between the
novel MD extracted from Region 2 of eþe− → hX with its
“square root” counterpart will shed light on the soft model
MSðbTÞ, the remaining unknown required to perform
global phenomenological analyses.
The cross section in Eq. (2) can be obtained in two

different ways. In Ref. [29], it is achieved by adopting a
topology cutoff λ that forces the cross section to describe a
two-jet final state in the limit λ → 0. This introduces an
additional artificial constraint which simplifies the compu-
tation of the transverse-momentum-dependent contribu-
tions by limiting the values of the transverse momentum
to be smaller than the topology cutoff. Moreover, it allows
us to set an explicit relation linking the thrust, T, to the
rapidity cutoff ζ, namely ζ ¼ τQ2. Finally, an approxi-
mated resummation of λ produces the exponential sup-
pressing factor of Eq. (2), which replaces the effect of a
proper thrust resummation [29]. Alternatively, Eq. (2) can
be obtained from the correct factorization theorem of
Region 2 devised in Ref. [25] by making two rather strong
approximations. First, the whole transverse momentum
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dependence encoded outside the TMD FF is integrated out
up to the typical thrust-collinear scale ∼

ffiffiffi
τ

p
Q. This allows us

to recover the naive picture of a partonic cross section
convoluted with a TMD FF. Then, the TMD is equipped
with a rapidity cutoff, set to the minimal allowed rapidity for
particles belonging to the same jet of the detected hadron,
corresponding to ζ ¼ τQ2. In this way, the underlying
correlation between thrust and transverse momentum (due
to the peculiar role of the rapidity regulator in Region 2) is
strongly simplified. Nevertheless, Eq. (2) embodies the
essence of Region 2, as the definition of the TMD FF is
not affected by nonperturbative soft effects. Moreover, it
represents the first attempt to account for the interplay
between thrust and the rapidity regulator. In this paper,
we present the first extraction of this universal TMD FF from
eþe− → hX data by the BELLE Collaboration [13], belong-
ing to Region 2, within the specific framework of
Refs. [25,29].

III. PHENOMENOLOGY

In order to use Eq. (2), complemented by the definition
of unpolarized TMD FF in Eq. (3), one must choose
parametric forms for MD and gK, which describe the
nonperturbative behavior of the TMD. Such choices are
generally affected by the kinematical region of the data
under consideration. This poses a big challenge, since the
error estimation of factorization theorems in QCD does not
allow for sharp boundaries to be drawn. For instance, the
small-qT cross section in Eq. (2) and its associated error of
Oðq2T=Q2Þ do not imply that the formalism should describe
the data up to qT ∼Q, but rather that in this region issues
describing the data are to be expected. With no further
indication of how far one can extend the description into the
larger-qT region, one is left with model-dependent phe-
nomenological results as the only indication of the validity
of the formalism. An algorithm to delineate the contours of
eþe− → hX kinematic regions where specific factorization
regimes can be applied was developed in Ref. [25], which
we will refer to in our analysis. Another delicate point is
the choice of collinear fragmentation functions. While one
expects part of the z dependence of theory lines to come
from the behavior of the collinear FFs, there is no
restriction regarding a possible z dependence in the
functionMD. Again, how appropriate a given set is depends
on the parametric form of the model. In the following
sections, we systematically explain our choices.
For our study, we will use a simple minimization

procedure of the χ2 given by

χ2 ¼
Xn
j¼1

ðTjðfpgÞ − EjÞ2
σ2j

; ð6Þ

with fEjg being the set of the n data points under
consideration, and where the corresponding theory

computations fTjg depend on a set fpg of m parameters.
The uncertainties σj are treated as independent uncorrelated
errors—i.e., different sources of errors provided by the
BELLE dataset are added in quadrature. Future refinements
of our work can be achieved by modifying the definition
in Eq. (6) in order to account for the correlations in the
systematic uncertainties. This, however, requires more
detailed information about the different sources of such
types of errors, which is not available. For now, we
proceed by minimizing Eq. (6) as done in previous related
analyses [15,26,27,33,34].
In order to test goodness of fit, we use the χ2 per degree

of freedom, given by χ2d:o:f: ¼ χ2=ðn −mÞ, which should be
close to unity for a model to be considered appropriate.
We will estimate the statistical errors of our analysis by
determining 2σ confidence regions based on a straightfor-
ward application of the Neyman-Pearson lemma and
Wilks’s theorem. Concretely, provided a minimal set of
parameters fp0g with χ20, we consider parameter configu-
rations fpig, with χ2i given by

χ2i < χ20 þ Δχ2; ð7Þ

where Δχ2 is not an arbitrary tolerance but rather depends
on the confidence level and the number of parameters
varied. For the c σ confidence level, one has

erf

�
cffiffiffi
2

p
�

¼
Z

Δχ2

0

dxX2
DðxÞ; ð8Þ

with X2ðDÞ being a chi-squared distribution withD degrees
of freedom equal to the number of parameters varied.1

A. TMD FF z dependence and choice of collinear FFs

Similarly to the usual CSS formalism for two-hadron
production, the impact parameter space in Eq. (3) is
constrained at small bT by a small-distance OPE, hence
the appearance of the convolution of collinear FFs with
matching coefficients C, which we denote by d ⊗ C. This
factor provides an important constraint of the zh depend-
ence for the TMDs. As discussed before, the transition from
short to large distance of the TMD is regulated by the b�
prescription, for which a maximum value or “freezing
point” must be set, below which one expects perturbation
theory to apply. Such a maximum distance, bmax in Eq. (4),
corresponds to a minimum perturbative scale of μmin ¼
2e−γE=bmax. For our studies, we choose bmax ¼ 1.0 GeV−1,
which ensures that perturbative quantities are never evalu-
ated below a scale of 1.12 GeV. This seems like a sensible

1This equation gives Δχ2 ¼ 1 for 1σ C.L. when varying only
one parameter. We consider 2σ and mostly vary all parameters at
once, so Δχ2 values will be larger than unity.
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choice, since perturbation theory is known to work well in
collinear observables down to a scale of around 1.0 GeV.
With this choice, we turn to the question of choosing a

set of collinear FFs. We will compare the NNFF [33] and
the JAM20 [35] next-to-leading-order (NLO) sets.2 These
are modern analyses that represent the state of the art in
collinear FF extractions and are readily available through
LHAPDF [36]. As it can be seen in Fig. 1, the computation
of d ⊗ C may render significantly different results for each
collinear FF set. One may suspect that the extraction of the
TMD is sensitive to the choice of collinear functions. It is,
however, not obvious that either of the collinear sets is to be
preferred over the other. It is entirely possible that by
adjusting values of the model parameters for say, MD, a
similar description of the data could be achieved with the
two collinear FF sets. By any consideration, the question of
which set is more appropriate depends on the choices of
the model.
In order to choose a set, we perform preliminary fits at

fixed values of T ¼ 0.875 and look for the one that better
describes the data, in terms of the minimal χ2d:o:f:. We
consider for now only the kinematical ranges 0.375 < zh <
0.725 and qT=Q < 0.20. This includes enough data points
to constrain the tests. At this stage, we only attempt to
parametrize MD and set the exponential factor containing
gK, in the last line of Eq. (3), equal to unity.
Notice that according to Ref. [25], data corresponding to

zh bins with zh ≤ 0.375 would be dominated by Region 1,
which requires a different factorization theorem. For this
reason, we do not consider them here.
In a first attempt to test the collinear functions, one may

consider models forMD with no explicit zh dependence and
perform fits for fixed values of zh. The choice of models is

summarized in the top two entries of Table I: model 1 is
inspired by a Gaussian-like bT behavior; while model 2,
proportional to a modified Bessel function of the second
kind, corresponds to a power law in momentum space and
is the same functional form considered forMD in Ref. [29].
As can be seen in Fig. 2, these models result in rather high
values of χ2d:o:f:, giving a bad description of the data.
Nonetheless, it is noteworthy that the χ2d:o:f: tends to be
larger for the JAM20 set. Both models seem to work at
qT=Q < 0.1 but deteriorate fast for 0.1 < qT=Q < 0.2. In
the following subsections, we will set our final qT cut to the
intermediate value qT=Q < 0.15. For now, we will leave
this aside and continue to address the zh dependence.
Recall that so far, we have performed only independent fits

FIG. 1. Convolution of the collinear fragmentation function and
matching coefficients, d ⊗ C, for the NNFF [33] and JAM20 [35]
sets. Here zh is fixed at zh ¼ 0.425, but significant differences can
also be observed at other values of zh.

FIG. 2. Minimal χ2d:o:f: for fits at fixed T ¼ 0.875 and individual
zh bins in the range 0.375 < zh < 0.725, for MD models with no
zh dependence. Here, qT=Q < 0.20. Dashed and solid lines
correspond to the first and second entries in Table I, respectively.
For each model, we have two parameters and a total of nine
individual fits, one per zh bin. Note that even with such large
values of χ2d:o:f:, the mild relative differences between using
JAM20 and NNFF suggest that either set could describe the data
to the same quality.

TABLE I. Models in impact parameter space used for prelimi-
nary tests in this section. The first two entries correspond to
zh-independent models for MD. Models labeled as “BK” are
proportional to a modified Bessel function of the second kind and
correspond to a power law in momentum space. Entries three and
four are zh-dependent models forMD, obtained by modifying the
mass parameter of the BK model, as indicated. The last entry
introduces zh dependence to the BK model by a multiplicative
factor with Gaussian behavior in bT.

ID MD model Parameters

zh-independent models
1) Exp-p e−ðM0bTÞp M0, p
2) BK 22−pðbTM0Þp−1

Γðp−1Þ Kp−1ðbTM0Þ M0, p

zh-dependent models
3) BK-1 M0 → M1ð1 − η1 logðzhÞÞ M1, η1, p
4) BK-2 M0 → M2ð1þ η2

z2h
Þ M2, η2, p

5) BK-g eðMgbTÞ2 logðzhÞ × BK Mg, M0, p

2Note that we use a recent update of the JAM20 pion FFs,
obtained from https://github.com/QCDHUB/JAM20SIDIS.

TRANSVERSE MOMENTUM DEPENDENT FRAGMENTATION … PHYS. REV. D 106, 074024 (2022)

074024-5

https://github.com/QCDHUB/JAM20SIDIS
https://github.com/QCDHUB/JAM20SIDIS


at fixed T ¼ 0.875, and separately for each bin inside the
range 0.375 < zh < 0.725. A useful exercise is to plot the
values of the resulting minimal parameters in terms of zh, as
is done in Fig. 3, for the BK model. There, it is clear that if
one expects to fit all bins in zh simultaneously (still at fixed
T ¼ 0.875), some zh dependence shall be needed in the
parametric form forMD. We remark that an important result
of the factorization scheme is that gK must be independent
of zh. Another interesting aspect of Fig. 3 is that a stronger
zh dependence is observed for the mass parameter M0 than
for the dimensionless parameter p. We find that improving
the trend of theory lines in the variable zh is more readily
done by introducing a zh dependence in dimensionful
parameters. We have observed this for several cases we
tested, although here we only show a few of them. More
generally, one could expect strong correlation between all
parameters in MDðbTÞ. For instance, a closer inspection of
the example in Fig. 3 shows that the two parameters
shaping the bT profile of MD, M0 and p, display a similar
trend as a function of zh. We will come back to this later on
in the next sections.
We attempt three different zh-dependent models for MD,

as indicated in the last three entries of Table I. The first two
are modifications of the BK model, where we modify the
mass parameter as M0 → MðzÞ, adding in each case one
more parameter to introduce, respectively, a logarithmic
and a power term in zh. The last one is the BK model

multiplied by z
ðMgbTÞ2
h , so that the zh dependence is

controlled by this additional multiplicative function and
determined by the mass parameter Mg.
Results for these three models can be seen in the left

panel of Fig. 4. Despite the large values of χ2d:o:f: for the first

two models, we find a considerable improvement with
respect to the zh-independent BK model. The third model
works indeed much better, which is due partly to its zh
dependence but also to the Gaussian behavior introduced

by the factor z
ðMgbTÞ2
h . The Gaussian behavior of this model

improves the description at the large end of the selected
range of qT, giving much lower values of χ2d:o:f:. For this
last model, the last entry in Table I, we perform two more
fixed-T fits for T ¼ 0.750 and T ¼ 0.825, resulting in χ2’s
roughly 3 times smaller than those corresponding to models
BK1 and BK2. Results are shown in the right panel
of Fig. 4.
One should be careful to interpret these results. First,

while it may seem that the last model should be the obvious
choice to extract the unpolarized TMD FF, the other two
zh-dependent models we have considered here are able to
describe the data well up to qT=Q < 0.1, as we will show in
the following subsections. This is a delicate point, since one
does not know a priori for which maximum value of qT=Q
one can still trust that the errors OððqT=QÞ2Þ of Eq. (3) are
small enough so that the formalism is still valid. For
instance, if the cut on qT=Q was made more restrictive,
say qT=Q < 0.1, the clear advantage of the Gaussian
zh-dependent model, describing the data in the region
0.1 < qT=Q < 0.2, would become less significant.
We close our preliminary discussion of the zh depend-

ence by stating the main conclusions of this subsection.
First, a stronger zh dependence is observed in mass
parameters than in dimensionless parameters. This is an
observation that applies to several models we tested, of
which we provide one concrete example in Fig. 3. In the
specific case of Fig. 3, we also find that zh may strongly
correlate the model parametersM0 and p. Second, in all the

FIG. 4. Minimal χ2d:o:f: for fits in the kinematic range 0.375 <
zh < 0.725 (zh bins are fitted simultaneously), for the zh-
dependent models for MD in the last three entries of Table I.
Here, qT=Q≤0.20. Left panel: comparison of the results obtained
with NNFF [33] and JAM20 [35] for fixed T¼0.875. Right
panel: fixed-T fits for T ¼ f0.750; 0.825; 0.875g, using the BK
model with a Gaussian zh-dependent term (last entry in Table I).
Similarly to the results presented in Fig. 2, the NNFF set
consistently produces smaller values of χ2d:o:f:.

FIG. 3. Minimal parameter values for fits at fixed T ¼ 0.875
and individual zh bins in the range 0.375 < zh < 0.725, for the
MD model in the second entry of Table I (zh-independent BK
model). Here, qT=Q ≤ 0.20. Results correspond to the solid lines
in Fig. 2. In this case, where we fit zh bins separately, the
incompatibility of M0 and p for different zh’s suggests that a zh
dependence is needed if the model is to describe the data on a
simultaneous fit of the 0.375 < zh < 0.725 range. It is interesting
to note that the dimensionful parameter M exhibits a stronger
correlation to zh.
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preceding discussions, and despite inadequacies in some of
the models considered, χ2d:o:f: values tend to be smaller with
NNFF, so this will be our choice for our main analysis, but
we will not yet be set on a specific model forMD. Based on
our preliminary studies of this section, we expect that using
JAM20 would give larger values of χ2d:o:f:, although not
by much.

B. Behavior of the unpolarized TMD FF
in the large-bT limit

In this subsection, we will address the behavior of
the unpolarized TMD FF in impact parameter space.
Specifically, we look at possible parametric forms for
MD in Eq. (3), paying special attention to the large-bT
limit. For the purposes of our discussion, we identify two
different possible meanings for “large-bT” behavior:
(1) Asymptotically large bT.
(2) The maximum bT accessible through data.

The first one corresponds to the formal limit bT → ∞, in
which one may write asymptotic expansions for a known
parametric form. For instance, the BK model discussed in
the previous subsection has an asymptotic limit

22−pðbTM0Þp−1
Γðp − 1Þ Kp−1ðbTM0Þ →

ffiffiffi
π

p 2
3
2
−pðbTMÞp−3

2

Γðp − 1Þ e−bTM0

ð9Þ

characterized by an exponentially decaying behavior as
bT → ∞. The second one, instead, refers to the largest
region in bT that is accessible phenomenologically—i.e.,
the largest distances at which the data can constrain the
model, which can be better determined after carrying out a
data analysis. The largest bT accessible phenomenologi-
cally corresponds to the case of measurements at values
of Q small enough that nonperturbative effects are maxi-
mized, but large enough that TMD factorization still holds.
Even at scales of, say, Q ¼ 2 GeV, it is possible that the
asymptotic behavior of the TMDs cannot be resolved
completely. At BELLE kinematics, where Q ≈ 10 GeV,
it is unlikely that one can find strong constraints for the
asymptotic behavior of TMDs.
This would mean that fitting BELLE data may be

possible with parametric forms of distinct asymptotic
behavior. However, when considering data at smaller
energy scales, for which the maximum bT accessible is
likely larger than that at BELLE energies, one may find
inconsistencies in a global fit if the asymptotic behavior of
bT is not chosen appropriately. Theoretical constraints are
important in light of all these issues encountered at lower-
energy phenomenology—see, for example, Refs. [37–43].
To do so, we follow some of the considerations made in
Ref. [44]. Thus, for this work we will look for a parametric
MD that in bT space decays exponentially, but that is able to
describe BELLE data at least as well as model 5 in Table I,

which in the preliminary cases considered so far, seems
to be suitable. A possible candidate is shown in Table II,
where for convenience we have explicitly rewritten model 5
of Table I. Both models in Table II correspond to a
powerlike behavior in momentum space, characterized in
bT space by the modified Bessel function of the second
kind, times an extra factor which we denote as F. To make
the comparison between exponential and Gaussian asymp-
totic behavior more transparent, in this preliminary study
we consider only the models in Table II. Note that even in
the case F ¼ 1, one may recover an exponentially decaying
behavior asymptotically, from the Bessel function alone,
as seen in Eq. (9). We will consider this case later, as it
requires a detailed explanation of possible final parametric
forms, which account for the strong correlations of param-
eters in MD related to the zh dependence, as noted in the
previous subsection.
For now, we will compare how well the models in

Table II may describe the data. Our aim is to provide a
practical example where two models that describe the
data reasonably well are not necessarily constrained in
the asymptotically large-bT limit. Decoupling the question
of what is an appropriate parametric form for the PT
behavior of MD is not independent of the choices to model
its zh dependence. Thus, we proceed as follows. First, we
perform three fits at fixed values of T ¼ f0.750; 0.825;
0.875g, where in each case, we include BELLE data in
the region qT=Q < 0.20 and 0.375 < zh < 0.725. To

TABLE III. Minimal χ2d:o:f: resulting from fitting the two
parametric forms for MD in Table II. In each case, we perform
three independent fits, one for each value T ¼ f0.750; 0.825;
0.875g, in the ranges qT=Q < 0.2 and 0.375 < zh < 0.725. As
far as the description of the data is concerned, all three cases seem
to be acceptable; see explanation in the text.

χ2d:o:f: (fixed-T fits)

MD model T ¼ 0.750 0.825 0.875

I 1.20 0.38 1.02
IG 1.46 0.47 1.51

TABLE II. Models for MD in impact parameter space. Both
cases shown are obtained by multiplying the model BK of Table I,
which corresponds to a power law in momentum space, by an
additional function of bT and zh.

MD ¼ 22−pðbTM0Þp−1
Γðp−1Þ Kp−1ðbTM0Þ × FðbT; zhÞ

Mz ¼ −M1 logðzhÞ
ID F model Parameters

I
F ¼

�
1þ log ð1þ ðbTMzÞ2Þ

1þ ðbTMzÞ2
�

q M0;M1; p; q ¼ 8

IG F ¼ exp ððMgbTÞ2 logðzhÞÞ M0;Mg; p
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accommodate the zh dependence, we choose a logarithmic
behavior in the function F as shown in Table II. Since we
are not fitting the three T bins simultaneously, we will not
be able to also fit gK, which correlates to thrust, so for now
we set gK ¼ 0. Then, we will look at a single case—one
value of T and zh—where the PT dependence is described
well by both models, and look at the results in PT and
bT space.
The results of the fixed-T fits are shown in Table III. The

smaller values of χ2d:o:f: obtained with model I are related to
the choice q ¼ 8, which allows for a good description of
the zh bins considered. Note that modifying the zh behavior
in model IG could improve its best fit χ2d:o:f: as well. At this
stage, we consider both models as candidates to para-
metrize MD, since our main interest is to discuss the PT
dependence.
Now we look at the case zh ¼ 0.525 and T ¼ 0.825, for

which both models describe the data reasonably well. In

fact, as seen in Fig. 5, the models of Table II have the same
profile and almost lie on top of each other. Corresponding
lines in bT space are shown in Fig. 6, where it can be seen
that for values bT > 4 GeV−1, the cross sections calculated
using models I and IG deviate. This is, of course, due to the
differences in the asymptotic behavior of the models. This
example simply illustrates that the asymptotic behavior of
the TMD FF is not necessarily constrained by BELLE
data after some large value of bT. However, the reason to
prefer an asymptotic behavior like that of model I comes
from the necessity to fit data at lower energies in the
future, for which the large-bT Gaussian falloff may not be
appropriate.
From here on out, we will focus on models for MD that

decay exponentially in the asymptotically large-bT limit.
More precisely,

logðMDÞ ∼
bT→∞

− CbT þ oðbTÞ; ð10Þ

with C being a positive mass parameter, and where we have
used the lowercase o symbol to indicate sublinear terms in
bT. Furthermore, we will explore two different approaches,
leading to two classes of models. The first one is model I in
Table II, which corresponds to the function of Eq. (9) times
the zh-dependent function F. The second one is similar to
model I but sets F ¼ 1 and models the zh dependence
through both the mass parameterM0 and the power p of the
Bessel function of Eq. (9).
Before performing our extraction, however, we need to

set a parametric form for gK.

C. Behavior of gK in the large-bT limit

The usual definition of the TMD FF in the CSS
formalism differs from that introduced in Ref. [28] by a
nonperturbative function MSðbTÞ, as explained in Sec. II
and given in Eq. (5a).MSðbTÞ is associated with soft gluon
effects and originates from the fact that in the latter
definition the TMDs are purely collinear objects, while
in the CSS definition soft radiation contributions are
included in the TMD definition itself. This means that
the nonperturvative function MDðbTÞ introduced in Eq. (2)
and discussed in Sec. II cannot be used directly in eþe−
two-hadron production or SIDIS processes; see Eq. (5a).
Note, however, that the nonperturbative function gK has
been defined to be the same as in the usual CSS formalism,
up to a trivial factor of 2; see Eq. (5b). Thus, it characterizes
the large-distance behavior of the Collins-Soper kernel as
defined in Ref. [6]. This is perhaps one of the most useful
aspects of the formalism in Refs. [25,28,29,45] in the
context of global fits, since it allows for comparisons of
the extracted gK with other recent work (see, for
example, Refs. [3,4,46,47]). In order to choose a suitable
parametrization for gK, we use the following observation as
a guiding principle:

FIG. 5. Best-fit lines for both models in Table II, obtained by
fitting BELLE data for the kinematics T ¼ 0.825, 0.375 < zh <
0.725, and PT=zhQ < 0.2. Note that both lines follow essentially
the same profile in the region of the data shown.

FIG. 6. Best-fit lines for both models in Table II in bT space,
obtained by fitting BELLE data for the kinematics T ¼ 0.825,
0.375 < zh < 0.725, and PT=zhQ < 0.2. Lines correspond to
those in Fig. 5. The deviation of the two theory lines after
bT > 4 GeV−1 indicates the lack of sensitivity to the asymptotic
behavior of the models in this particular example.
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In general, one may write the TMD FF in bT space as

D̃ðbT; ζÞ ¼ D̃ðbT; ζ0Þ exp
�
−
gK
4
log

�
ζ

ζ0

��
ð� � �Þ; ð11Þ

where only the dependence on bT and ζ has been written
explicitly, and the ellipsis indicates other terms containing
perturbatively calculable quantities. Using the hypothesis
in Eq. (10), one has that in the large-bT limit,

log ðD̃ðbT; ζÞÞ ¼bT→∞ − CbT −
glarge bTK

4
log

�
ζ

ζ0

�
þ oðbTÞ:

ð12Þ

We then note that

gK ¼bT→∞
oðbTÞ ⇒ logðD̃ðbT; ζÞÞ ¼ OðbTÞ; ð13Þ

independently of ζ and ζ0. This seems like a reasonable
condition, since ζ0 is a somewhat arbitrary reference scale:
for instance, it could be chosen depending on the kinemat-
ics of a particular phenomenological analysis. We will
consider in this analysis only the hypothesis that asymp-
totically gK ¼ oðbTÞ. As a counterexample, with the same
ansatz for the asymptotic behavior of D̃ðbT; ζÞ, Eq. (10),
choosing the large-bT behavior of gK to be quadratic would
implicitly assign a special role to the reference scale ζ0, in
the sense that in this case for ζ ¼ ζ0, logðD̃ðbT; ζÞÞ ¼
OðbTÞ, while for ζ ≠ ζ0, logðD̃ðbT; ζÞÞ ¼ Oðb2TÞ. Note that
one could set gK to beOðbTÞ instead of oðbTÞ and still have
Eq. (13) be valid. However, this allows for D̃ðbT; ζÞ to be
divergent in the limit bT → ∞, for sufficiently small ζ=ζ0
(see also the discussion in Ref. [44]). Note that a sublinear
bT behavior for gK has already been suggested by several
authors—see, for instance, Eq. (79) in Ref. [44], Eq. (40) in
Ref. [48] and Eq. (24) in Ref. [49]).
Our analysis will be conducted by adopting the follow-

ing functional forms for the large-bT behavior of gK:

gK ∼bT→∞
logðMKbTÞ; ð14Þ

gK ∼bT→∞ðMKbTÞð1−2pKÞ 0 < pK < 1=2; ð15Þ

where the first expression is similar to that considered in
Ref. [48], while the second expression corresponds to the
model calculation presented in Ref. [49] for the CS kernel
as bT → ∞ (but with an undetermined power pK). Here,
MK is a free parameter with mass dimensions which
helps in shaping the bT dependence of gK . We have also
considered a constant asymptotic form, as suggested in
Ref. [38], but, limited to the data sample we are presently
fitting, we obtain consistently larger χ2’s compared to those
obtained using a sublinear asymptotic behavior for gK.

We stress that our main purpose is to test whether or not
gK ¼ oðbTÞ as bT → ∞ is a suitable asymptotic depend-
ence for the nonperturbative behavior of the Collins-Soper
kernel. In this sense, Eqs. (14) and (15) should be seen only
as a proxy for such a hypothesis. The consideration of
two models for gK will allow us to get a “measure” of the
correlations between MD and gK, and of the theoretical
uncertainties introduced by model choices.

D. Behavior of gK in the small-bT limit

There is a general consensus that the behavior of gK in
the small-bT limit should be powerlike—see, for example,
Refs. [4,44,47–50]. Often, phenomenological studies have
assumed

gK ∼bT→0
c1b2T: ð16Þ

For instance, Ref. [4] uses

gK ¼ c1b2T þ c2b4T; ð17Þ

where a strong suppression at small bT is necessary to reach
a satisfactory description of Drell-Yan data at extremely
large energies, which require high accuracy in the pertur-
bative and logarithmic expansion. For this analysis, where
the perturbative expansion only extends to NLL, we start by
testing two different models for gK which ensure a b2T
behavior at small bT, while respecting the asymptotic
trends discussed above. More specifically, we look at the
following functional forms:

c log ð1þ ðMKbTÞ2Þ; ð18Þ

abpk
T ð1 − e−b=ab

ð2−pkÞ
T Þ: ð19Þ

Both models show some drawbacks. First of all, the
parameter space is not well constrained. Moreover, larger
values of χ2 point to the inadequacy of the power 2 for bT.
In fact, in our preliminary tests, we find that our fit is rather
sensitive to the modulation of gK in the large-bT region.
Remarkably, it shows a strong preference for a sublinear
power or logarithmic rising of gK, while definitely ruling
out the b2T or b

4
T behavior at large bT. Indeed, it is likely that

increased perturbative accuracy could accommodate for
the behavior of Eq. (16) at small bT. We therefore relax the
constraint that gK should go to zero quadratically in the
small-bT limit by simply requiring it to go to zero as some
generic power pK > 0. This will also allow us to reduce the
number of free parameters for our final analysis. Thus, we
will focus on the following parametrizations:

gK ¼ log ð1þ ðMKbTÞpKÞ; ð20Þ
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gK ¼ ðMKbTÞð1−2pKÞ 0 < pK < 1=2: ð21Þ

The functional forms in Eqs. (20) and (21), labeled A
and B, respectively, are summarized in Table IV. They
optimize the quality of the fit while keeping the number of
free parameters under control.

E. Final models and data kinematics

For our main analysis, we use the BELLE data for
pion production with the weak decay subtracted out.
Furthermore, no integration on bin sizes is performed;
we consider the midpoint value of each bin in the ranges

0.375 ≤ zh ≤ 0.725; 0.750 ≤ T ≤ 0.875; ð22Þ

corresponding to Region 2 (see Ref. [25]). Furthermore, as
the TMD formalism of Refs. [25,29] regards the region in
which qT ¼ PT=zh ≪ Q, we adopt the cut

qT=Q ≤ 0.15; ð23Þ

which gives us some confidence that the appropriate
collinear TMD factorization theorem is applied, and we
perform a standard χ2 minimization procedure for each one
of the models summarized in Table IV. More restrictive cuts
make it difficult to find an optimal solution, while less
stringent ones result in large values of χ2.
As mentioned before, for our analysis we consider two

different models for each MD and gK, in order to provide a
reliable estimation of the uncertainties affecting the extrac-
tion of the TMD FF. For gK, we consider the functional
forms in Eqs. (20) and (21), which we call models A and B,
respectively. For MD, our starting point is the Fourier

transform of a power law in momentum space, taking into
account that a zh dependence is necessary for a successful
description of the BELLE cross sections [13]. These two
models, labeled I and II, differ only in the treatment of the
zh dependence. In total, we have four different cases we
will use, which we label as models IA, IB, IIA, and IIB.

1. Models IA and IB

Model I for MD was already introduced in Sec. III B
(see Table II) and, as summarized in Table IV, it concen-
trates the full zh dependence of MD within the extra
FðbT; zhÞ factor, which is controlled by the mass parameter
Mz ¼ −M1 logðzhÞ, while the Bessel function and other
factors corresponding to the power law in momentum space
only depend on bT.
Thus, models IA and IB have initially six parameters

each. In both cases, we find that when trying to fit all of the
parameters simultaneously, some are poorly constrained
and/or show very strong correlations. This may indicate
some “redundancy”—i.e., the existence of nonindependent
parameters. This can be an issue when attempting to
provide a transparent statistical interpretation of results.
We find that we have to fix a total of three parameters—two
for MD and one for gK—in order to avoid such a situation.
We choose to fix the dimensionless powers, p, q, and pK,
so that we will find best-fit values of parameters that
may have the interpretation of a “typical mass” of the
observables. First, we set p ¼ 1.51, so that the derivative of
the Bessel function in model I vanishes at bT ¼ 0; this
prevents MD from being sharply peaked at bT ¼ 0. After
setting the value for p, we find that the minimum3 value
of χ2 that one can obtain (for both models IA and IB)
corresponds to q ≈ 8, so we fix q ¼ 8. Finally, provided
these choices for p and q, we perform a fit in order to obtain
the optimal values for the power parameter pK for each
model IA and IB. We show the results of this last step in
Fig. 7 for model IA (fixed p ¼ 1.51, q ¼ 8, and varying
pK) in order to illustrate the need to fix some of the
parameters. There, the circles display parameter configu-
rations i with χ2i values that deviate from the minimum χ20
by no more than a “tolerance”4 Δχ2 ¼ 9.72; green dots
represent the minimal configuration. While in this case it is
possible to find a minimum by varying M0, M1, MK, and
pK simultaneously, very strong correlations appear and
parameter configurations significantly deviate from ellip-
soidal shapes, as shown in Fig. 7. This makes it difficult to
draw regions in parameter space as is usually done, by
considering configurations for which χ2i < χ20 þ Δχ2, and
to interpret them in terms of confidence levels—i.e.,

TABLE IV. Models for MD and gK in impact parameter space
for our main analysis. MD is obtained by multiplying the BK
model, which corresponds to a power law in momentum space,
with an additional function of bT and zh.

MD ¼ 22−pðbTM0Þp−1
Γðp−1Þ Kp−1ðbTM0Þ × FðbT; zhÞ

ID MD model Parameters

I F ¼
	
1þlog ð1þðbTMzÞ2Þ

1þðbTMzÞ2


q M0, M1

p ¼ 1.51, q ¼ 8
Mz ¼ −M1 logðzhÞ

II F ¼ 1 z0

Mz ¼ Mπ
1

zhfðzhÞ2
ffiffiffiffiffiffiffiffiffiffiffiffi

3
1−fðzhÞ

q

pz ¼ 1þ 3
2

fðzhÞ
1−fðzhÞ

fðzhÞ ¼ 1 − ð1 − zhÞβ, β ¼ 1−z0
z0

gK model

A gK ¼ log ð1þ ðbTMKÞpKÞ MK, pK

B gK ¼ ðMKbTÞð1−2pKÞ MK, pK

3More precisely, a “lower bound,” not the minimum χ2 in the
mathematical sense.

4This value corresponds to a 2σ confidence level for varying
four parameters, but we do not attempt to make such an
interpretation in this particular case.
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statistical errors of our analysis. As we will see in the next
section, by varying only the three mass parametersM0,M1,
and MK, parameter space displays elliptical profiles for all
correlations, allowing for a more sound statistical inter-
pretation. It is interesting to note that the strong correlations
appear also between MD and gK parameters, as seen in the
right panel of Fig. 7.
The information regarding the values of p, q, and pK is

summarized in Table IV. We remark that these choices still
allow for enough flexibility in our models.
Note that while we could have treated pK as nuisance

parameters, for our purposes it is enough to fix them to
reasonable values, since we are mostly interested in
addressing the compatibility of the asymptotic behavior
of Eqs. (10), (14), and (15) with BELLE data; for this, it
suffices to consider reasonable profile functions. A possible
concern regards the estimation of statistical errors, which
may be affected by fixing parameters. However, we remark
that considering different models helps us in giving an
estimate of some of the theoretical uncertainties of our
extraction. All of our choices for models IA and IB are
summarized in Table V.

2. Models IIA and IIB

Model II stems from different considerations—namely,
we do not introduce the extra factor F, but rather assign a zh
dependence to the mass and power parameters of the
Bessel function themselves, M and p. This offers a nice
physical interpretation, especially if we recall that this bT

distribution originates as the Fourier transform of a
power law, which resembles a propagator of the form
½MðzÞ2 þ q2T �−pðzÞ in qT-conjugate space. In this sense, the
mass MðzÞ can be regarded as an effective mass, which
modifies the mass of the detected hadron Mh in a
zh-dependent way. The power pðzÞ can be rewritten as
pðzÞ ¼ 2þ γPðzÞ, where the whole zh dependence has
been encoded into an anomalous dimension γP. As for
model I, the strong correlations between pðzÞ and MðzÞ
makes it impossible to extract them simultaneously in a
converging fit; therefore, further constraints are required to

(a) (b)

FIG. 7. Preliminary study of parameter space using model I for MD and A for gK; see Table IV, with fixed p ¼ 1.51 and q ¼ 8. The
circles represent parameter configurations in a region where a minimum is found. The empty circles display the value of χ2 both by color
(as in palette) and by size (larger circles for smaller values of χ2) for configurations with χ2i < χ20 þ Δχ2, with Δχ2 ¼ 9.72. This value of
Δχ2 corresponds to a 2σ confidence level for varying four parameters simultaneously, in situations where the χ2 as a function of
parameters can be approximated as an ellipsoid around the minimum. In this case, however, such approximation is not valid, hindering
an interpretation in terms of confidence levels. Strong correlations such as those shown likely indicate some “redundancy” in parameter
space. (a) Correlation between MK and pK, where the green circle indicates the minimal configuration. (b) Correlation between
MK and M0.

TABLE V. Minimal χ2d:o:f: obtained by fitting models IA and IB,
according to Table IV. In each case, we perform fits in the
kinematical region of Eqs. (22) and (23). In both cases IA and IB,
all dimensionless parameters are fixed, indicated in the table by
an asterisk. Fixed values are as explained in Sec. III E.

qT=Q < 0.15 (pts ¼ 168)

IA IB

χ2d:o:f: 1.25 1.19

M0ðGeVÞ 0.300þ0.075
−0.062 0.003þ0.089

−0.003

M1ðGeVÞ 0.522þ0.037
−0.041 0.520þ0.027

−0.040

p� 1.51 1.51

q� 8 8

MKðGeVÞ 1.305þ0.139
−0.146 0.904þ0.037

−0.086

p�
K 0.609 0.229
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be able to proceed with our analysis. For model II, we
constrain the zh behavior of MD by analytically requiring
that the theory lines appropriately reproduce some basic
features of the measured cross section—namely, the peak
height and the width of the PT distributions—at each single
measured value of the kinematic variable zh. In particular
[13], the width of the measured cross section reaches its
maximum at intermediate values of zh (around ∼0.6, as
obtained in Ref. [13]) for all thrust bins belonging to the
two-jet region. This property can be used as a constraint for
the model with the help of a proper change of variables, that
trades p and M for the width W and the peak height P,

p ¼ 1

2

�
3

1 − R
− 1

�
; M ¼ W

z

ffiffiffiffiffiffiffiffiffiffiffi
3

1 − R

r
; ð24Þ

where W ≥ 0 and R is the ratio P=Pmax between the peak
height and its maximum possible value (0 < R < 1). The
advantage of this operation is that R andW can be regarded
as variables associated with the full cross section and not
only with the TMD model. However, being a mere change
of variables, this does not solve any correlation issues,
which are simply being moved from (p, M) to (R, W). In
particular, observation shows that R and W are inversely
proportional with respect to their zh dependence: where one
shows a maximum, the other has a minimum, and vice
versa. Therefore, we set

R ¼ fðzh; z0Þ; W ¼ Mπ

fðzh; z0Þ2
; ð25Þ

where Mπ ¼ 0.14 GeV is the mass of charged pions and f
has to be a positive-definite function, never larger than 1
and with a minimum in zh ¼ z0. This is where the
information associated with the experimental observation
comes into play, helping to select an appropriate zh
dependence for the TMD model. In fact, the function f
has a minimum in the exact point where the width W has a
maximum. One of the simplest functional forms which
fulfills such requirements is

fðz; z0Þ ¼ 1 − ð1 − zÞβ; with β ¼ 1 − z0
z0

: ð26Þ

This is what we adopt for model II. The expression of Mz
and pz in terms of fðzÞ are summarized in Table IV.
Following the indication of these preliminary tests, we

will focus on the study of the large-bT (i.e., small-PT)
behavior of the fitted cross sections, leaving the exploration
of the small-bT region to further analyses. By large bT, here
we mean “the largest bT experimentally accessible,” as
the asymptotic behavior may not be so relevant for this
dataset, as discussed in Sec. III B. For our main analysis
with model II, we will adopt the functional forms of
Eqs. (20) and (21), both characterized by two free

parameters, MK and pK. This gives two new models,
which we label “IIA” and “IIB” (see Table IV).
We thus minimize χ2 with respect to the free parameters

(z0,MK, pK) for models IIA and IIB. In these two cases, as
for model I, we will estimate statistical errors by determin-
ing the 2σ confidence region in parameter space. Note that,
while the parameter space shown in next section for
model II has a distortion with respect to elliptical shapes,
we have checked that rescaling the parameters allows us to
correct for this. Nonetheless, we present results in terms of
(z0, MK, pK), since they are closely related to features of
the data.
Following the above considerations, the main results of

our analysis will be presented in the next subsection for all
of our models.

F. Phenomenological results

With our final choices, we perform fits for each of the
considered models, labeled IA, IB, IIA, and IIB, where
“I” and “II” indicate the choice of parametrization for MD,
while “A” and “B” indicate the model chosen for gK,
according to the notation introduced in Table IV. In each
case, we perform a χ2-minimization procedure using
MINUIT [51], fitting a total of three parameters in each
model. We estimate parameter errors by considering 2σ
confidence regions. In other words, for each model we
consider configurations in parameter space around the
minimal one, varying all parameters simultaneously and
accepting those for which χ2i < χ20þΔχ2, with Δχ2 ¼ 8.02;
this value of Δχ2 is consistent with varying three param-
eters simultaneously. For statistical uncertainties, we per-
form fits with the central replica of the NNFFs in all cases.
Final results for models IA and IB are reported in Table V.
For models IIA and IIB, results are displayed in Table VI.
From a superficial look at Table V, one may conclude

that the quality of model IB is higher, given the smaller
values of χ2d:o:f:. However, we note that model IB has the
disadvantage that the ellipsoidal approximation extends
down to negative values of M0, which must be excluded.
This is reflected by the asymmetric errors inM0 andMK in
the third column of Table V.

TABLE VI. Minimal χ2d:o:f: obtained by fitting models IIA and
IIB, according to Table IV. In each case, we perform fits in the
kinematical region of Eqs. (22) and (23). There are no nuisance
parameters in model II.

qT=Q < 0.15 (pts ¼ 168)

IIA IIB

χ2d:o:f: 1.35 1.33

z0 0.574þ0.039
−0.041 0.556þ0.047

−0.051

MKðGeVÞ 1.633þ0.103
−0.105 0.687þ0.114

−0.171

pk 0.588þ0.127
−0.141 0.293þ0.047

−0.038
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Fits performed with model II have slightly higher χ2’s, as
shown in Table VI. This is probably due to the fact that
this model, being more tightly constrained, with only one
free parameter controlling the zh behavior of MD, shows a
limited flexibility compared to model I. Nonetheless, clear
differences between models cannot be observed when
comparing to data. We thus consider models I and II to
be equally acceptable to describe the general profile of our
functions MD and gK. We choose model IA to display the

agreement of our predicted cross sections to the BELLE
data in Fig. 8, noting that corresponding comparisons for
models IB, IIA, IIB would indeed be very similar. Figure 8
shows two types of error bands: Darker bands represent the
statistical uncertainty of the fit. The lighter bands are an
estimate of the error induced by the collinear fragmentation
functions used in the analysis. They are produced by
refitting the model function for each of the replicas
provided by the NNFF NLO extraction of Ref. [33].

FIG. 8. Results of fitting model IA from Table IV to BELLE data on pion production from eþe− annihilation [13], in the kinematical
region of Eqs. (22) and (23). Darker shaded bands represent the statistical uncertainty of the fit at a 2σ confidence level and correspond to
the parameter configurations of Fig. 9. The lighter shaded bands are an estimate of the error induced by the collinear fragmentation
functions used in the analysis, and they are produced by refitting the model function for each of the replicas provided by the NNFF NLO
extraction of Ref. [33]. For a better visualization of results, central lines are not included, but they generally lie in the middle of the thin,
darker statistical error bands. Models IB, IIA, and IIB give analogous results. We do not show them in the plot, as they would be
indistinguishable.

(a) (b)

FIG. 9. 2σ confidence regions centered around the minimum configuration, shown in green, for the fit of model IA of Table IV in the
kinematical region of Eqs. (22) and (23).
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For this estimate, only about 65% of the NNFF replicas
allowed for a convergent fit.5 A more detailed study of such
errors is a necessity in this type of studies that need
constraints from independent analyses. For now, we con-
sider our estimate as a useful tool to understand the effect of
the choice of collinear FFs in a TMD extraction. In fact, it is
useful to observe in Fig. 8 that errors from the collinear
functions are consistently larger than statistical errors.
Arguably, the former render a more realistic picture of
the precision at which TMDs can be extracted from data. It
is clear from Fig. 8 that the quality of the description of data
deteriorates at smaller values of T. This is not surprising,
since the formalism employed [25,28,29] is expected to fail
at smaller values of thrust, where the topology of the
eþe− → hX events starts deviating from a two-jet-like
configuration.
Further developments in the theoretical treatment of the

interplay between the rapidity divergence regularization
and the thrust dependence will likely improve the quality of
the extraction by allowing the possible inclusion of more
data points while achieving an improved agreement with
data [25]. We leave this for future work [30].
Interesting results are found about gKðbTÞ. We focus on

the study of the large-bT (i.e., small-PT) behavior of the
fitted cross sections, leaving to further analyses the explo-
ration of the small-bT region, on which we are unable to
draw definite conclusions, as explained in Sec. III D. Our fit
is rather sensitive to the modulation of gK in the large-bT
region. Remarkably, it shows a strong preference for a
sublinear power or logarithmic rising of gK, while definitely

ruling out the b2T or b4T behavior at large bT. We stress that
by large bT, here we mean “the largest bT experimentally
accesible,” as the asymptotic behavior may not be so
relevant for this dataset, as discussed in Sec. III B.
It is important to understand the strength of correlations

betweenMD and gK and the impact of model choices in the
extraction of profile functions. Although these two points
are not necessarily unrelated, we discuss them separately in
what follows.
First, regarding correlations between MD and gK for a

given model, in an ideal scenario one would expect them
to be mild, which would provide some level of confidence
when comparing results to other analyses or datasets.

(a) (b)

FIG. 10. 2σ confidence regions centered around the minimum configuration, shown in green, for the fit of model IIB of Table IV in the
kinematic region of Eqs. (22) and (23). Here, the presence of some correlation among the free parameters controlling the behavior ofMD
and gK is signaled by a slight deformation from the expected ellipsoidal shapes.

FIG. 11. Extractions of the unpolarized TMD FF, Eq. (3), from
one-hadron production BELLE data of Ref. [13], using models
IA, IB, IIA, and IIB of Table IV, in the kinematic region of
Eqs. (22) and (23). The TMD FF for the u → πþ þ π− channel is
shown in momentum space.

5We checked that the uncertainty bands corresponding to
this 65% span most of the uncertainties obtained with all of
the NNFF sets.
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This situation is, however, not guaranteed. We find that in
fact MD and gK are correlated, as shown in Fig. 9, where
correlations between MK and the mass parameters of MD,
M0, and M1 are displayed for model IA, and in Fig. 10,
where analogous scatter plots are presented for model IIB,
for the correlation of z0 with MK and pK. We obtain
analogous results for model IB, with the added feature that
confidence regions in parameter space appear as ellipses
truncated in the region M0 < 0. For models of type II, the
correlation betweenMD and gK appears to be stronger than
in the parametrizations of type I, so much so that a slight
residual deformation from the ellipsoidal form is still
visible in Fig. 10, although the constraints intrinsically
built in model I drastically limit the number of its free
parameters. We checked that a transformation of parame-
ters MK and pK render scatter plots with an approximate
elliptical shape. It is noteworthy that the regions corre-
sponding to the 2σ confidence level have well-defined
contours, allowing for a reliable determination of the error
affecting the extracted parameters.
Second, we find that the profile of the extracted functions

strongly depends on model choices. Note that the full TMD
in momentum space, shown in Fig. 11, shows differences
beyond statistical error bands. Discrepancies are more
visible when considering separately the results obtained
for the extractions of MD and gK, as seen in Fig. 12, where
the profile functions differ beyond statistical error bands.
As such, those discrepancies should be considered as a kind
of theoretical error. While this is only a rough estimate of
one kind of theoretical uncertainties, it makes the case that
statistical uncertainties are generally not enough to asses
the quality of an extraction. Even though this is especially
the case in studies like the present one, where only one
process is considered, it is a matter of concern even for
global fits.

We now compare our results against other recent TMD
analyses. Since the relevant TMD FF in our studies is
different from that of the usual CSS, SCET, and related
treatments [see Eq. (5a)], we can only compare our results
for the CS kernel, which, up to trivial constant factors, is
the same in each scheme. In Fig. 13, we plot the CS
kernel [6,50] computed to NLL accuracy:

K̃ðbT; μÞ ¼
1

2

�
gK1 ðλÞ þ

1

L�
b
gK2 ðλÞ

�
−
1

2
gKðbTÞ; ð27Þ

where the functions gK1 and gK2 , which depend only on the
combination λ ¼ 2β0aSðμÞL�

b, with L�
b ¼ log ðμ=μb� Þ, are

reported in the Appendix. Our extraction of the CS kernel
for all our models is compared to the results obtained in the
analyses of PV19 [4] and SV19 [47].6 For clarity, we do not
show central lines, but only error bands in each case.
Figure 13 shows a good agreement between our extraction
of the CS kernel and the SV19 analysis in the region just
above bT ∼ 2 GeV−1. Note that these two extractions are
based on different factorization schemes and exploit differ-
ent datasets.7 The large-bT behavior of our extraction is
clearly different from the PV19 results, which adopts a b4T
asymptotic behavior in order to describe Drell-Yan pro-
duction data from different experiments on a very wide
kinematic range, and up to extremely high energies.

FIG. 12. Extractions ofMD and gK in Eq. (3) from eþe− → hX BELLE data [13], in the kinematic region of Eqs. (22) and (23). In all
cases, 2σ statistical error bands are shown. For model IA, they correspond to the region of parameter space of Fig. 9 while for model IIB,
they correspond to that of Fig. 10. Left: MD according to models IA, IB, IIA, and IIB of Table IV. Right: Corresponding results for gK.

6Note that for the CS kernel, PV19 follows the conventions of
Ref. [6]; the SV19 results must be multiplied by a factor of −2,
and ours should be divided by a factor of 2.

7At this point, we can give a more quantitative indication of
what we mean by large and small bT values. When we talk about
small bT , we refer to values much smaller than bmax

T , typically
around 0.2–0.5 GeV−1. Conversely, large bT’s are considered to
be values much larger than bmax

T —say, larger than 2 GeV−1.
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Instead, in the small-bT region, our extraction of the CS
kernel differs from both PV19 and SV19 results, where the
perturbative part of the CS kernel is expected to dominate,
making all bands coincide.
This is mostly due to two factors. The first is the behavior

of our model for gK at small distances—it approaches zero
only as bpT, with 0 < p < 1, significantly more slowly
compared to the b2T behavior of the PV19 and SV19
parametrizations also at small distances. In fact, the effects
of our extractions for gK are still significant at relatively
small values of bT. Second, the approximations of Eq. (3)
are likely not optimal to describe the small-bT behavior of
the TMDFF. Future improvements in the perturbative
accuracy and a better treatment of the thrust dependence
could resolve these discrepancies with respect to the results
of the PV19 and SV19 analyses.
Recently, several lattice QCD calculations of the CS

kernel have been performed by different groups and
reported in Refs. [52–57]; it is therefore interesting to
compare our extraction to some of these computations. We
do this in Fig. 14, where for clarity we compare error bands
of all our models with the most recent calculation of each
lattice QCD collaboration [54–57]. The logarithmic- and
sublinear-power large-bT behavior assumed for our extrac-
tions seem to be well supported by lattice QCD estimations
of the CS kernel. We note that while our results are in better
agreement with the SWZ21 [56] and LPC22 [57] calcu-
lations, the general trend of our extractions is also con-
sistent with the ETMC/PKU [55] and SVZES [54] results,

characterized by a slow variation of the CS kernel at
large bT. Once again, we underline that in our analysis,
little can be said about the small-bT behavior of the CS
kernel; thus, we focus our attention on the large-bT regime,
where BELLE experimental data offer good coverage.

IV. CONCLUSIONS

We performed an analysis of recent BELLE data for one-
hadron production in eþe− annihilation [13] and extracted
the TMD FF following the newly developed formalism
of Ref. [25,28,29]. In this framework, the short-distance
behavior of the TMD FF is constrained by collinear FFs, as
in the standard CSS and SCET formalisms, while the long-
distance behavior requires the parametrization and deter-
mination, via comparison to data, of two functions, MD
and gK. We introduced constraints for these functions in the
asymptotically large region of bT, consistently with pre-
vious theoretical results from Refs. [44,48,49,58]. Our
analysis is based on a maximum-likelihood procedure,
carried out by χ2 minimization. Statistical errors are
estimated by a standard determination of confidence
regions at the 2σ level.
Upon testing how different choices of available collinear

FFs perform when compared to data, we found that both
JAM20 [35] and NNFF [33] sets, although showing non-
negligible differences (at least in some specific regions of
zh and bT), are consistent with the PT-dependent BELLE
cross sections, within our approach.
For our extraction, constraints for both MD and gK in

the asymptotically large-bT region were imposed. For MD,
we considered models characterized by an exponential

FIG. 13. Extractions of the CS kernel obtained in this analysis
with models IA, IB, IIA, and IIB are compared with the PV19 [4]
and SV19 [47] extractions. For clarity, central lines are not
shown. While there is a good agreement between the linear and
sublinear large-bT behavior of this extraction and Ref. [47], the
result of Ref. [4] shows an evident deviation at large bT, where gK
goes like b4T. Discrepancies at small bT are due to the higher
pQCD accuracy of the PV19 and SV19 analyses. We also note
that our models are essentially different at small bT compared to
those used in Refs. [4,47], as explained in the text.

FIG. 14. The CS kernels obtained in this analysis by adopting
models IA, IB, IIA, and IIB are compared to the CS kernel
computed in lattice QCD in Refs. [54–57], at μ ¼ 2 GeV. For
clarity, central lines for our extractions are not shown, and we
display only the most recent lattice calculation for each group.
The logarithmic- and sublinear-power large-bT behavior assumed
for our extraction seem to be well supported by lattice QCD
estimations of the CS kernel.
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asymptotic bT decay, according to previous theoretical
results from Refs. [44,58] and argued that, for consistency
with universality of the large-distance behavior of TMDs,
the CS kernel should grow more weakly than a linear
function of bT in the asymptotic limit. We considered two
models for gK satisfying that condition, which follow a
sublinear power and a logarithmic behavior, as suggested in
Refs. [49] and [48], respectively, in this limit. We showed
that, in the considered kinematic region, all aforementioned
constraints imposed in the very large bT range are con-
sistent with the data. We remark, however, that the
asymptotic behavior of different models plays a role in
extending results to smaller scales, and that the slow
evolution characteristic of the region of a few GeV can
be accommodated by the type of models we tested in this
work (see detailed discussion in Ref. [44]).
A remarkable result of this analysis is the insight of the

influence of the profile function of gK in the region of
intermediate moderate values of bT, which we expect to be
accessible at BELLE kinematics. Compared to previous
studies [4,47], which gave indications on the preferred
behavior of gK at small bT, our analysis based on the
BELLE data, which correspond to a relatively moderate
scale Q ¼ 10.6 GeV, shows a significant sensitivity to
larger values of bT. We find clear signals that a b2T or b4T
functional form is inappropriate to describe the long-
distance behavior of the CSS kernel. In fact, the analyzed
data show a definite preference for a logarithmic or sub-
linear modulation at large bT, in line with the studies of
Refs. [49,50] based on more general formal considerations.
The large-bT behavior of our models, supplemented with

constraints from BELLE data, seems to be well supported
by the lattice determinations of the CS kernel from quasi-
TMD wave functions [54–57], which evidence the slow
variation of the kernel in this region of bT. Remarkably, our
extractions are in very good agreement with the calcula-
tions of Refs. [56,57] where an NLO matching is applied.
This is a very important cross check, as lattice QCD
calculations are based on totally different and independent
methodologies.
On the other hand, little can be inferred from this

analysis about the small-bT behavior of the CS kernel
and of gK. This might be at least partially due to the
relatively low energy of the BELLE experiment, but this is
an issue which deserves more extensive studies, including
higher accuracy in the perturbative expansion. A more
rigorous formal treatment will be presented in Ref. [30].
A very important theoretical consideration regards the

transition between short- and long-distance behavior,
which should be carefully treated when embedding models
into the type of TMD FF definition like that of Eq. (3),
where the small-bT behavior is, in principle, constrained by
collinear factorization. In general, such constraints are not
guaranteed unless models are optimally embedded, espe-
cially at small and moderate scales. Recently, this and

related issues have been comprehensively addressed in
Ref. [59] where, based on theoretical considerations, a
practical recipe for phenomenology was provided that
allows a more reliable combination of models of non-
perturbative behavior into the CSS formalism. These
considerations will likely help to resolve some of the
issues we found at small bT in our analysis. We plan to
pursue these techniques in future work.
Another relevant aspect concerns the estimation of the

errors affecting the phenomenological extraction of TMDs
from experimental data. It is important to stress that while
statistical errors do provide insight into the precision with
which TMDs can be extracted, theoretical errors also play
an important role, which remarkably affects accuracy. We
addressed two sources of such errors and provided rough
estimates of their size. First, we considered the effect that
the statistical errors of the collinear functions have in the
extraction of the unpolarized TMD FF by refitting our
model with each one of the sets provided by the NNFF
Collaboration. Second, the use of two different models for
gK allowed us to assess how profile functions extracted
depend on model choices, as seen in Fig. 12. In both cases,
our estimates are meant to provide examples of how
important it is to perform error estimation beyond statistical
uncertainties. More work is needed in order to address these
issues with a more robust approach.
A possible future improvement in our analysis regards

the treatment of experimental errors. For our work, we
added in quadrature all errors provided by the BELLE
Collaboration which may be a matter of concern, especially
regarding correlated systematic errors, since they should
be treated on a different footing. This can be done, for
instance, by introducing nuisance parameters in the χ2

statistic, in the form of a shift to theoretical estimates. This,
however, likely requires more detailed information about
the different sources of correlated systematic uncertainties.
In our case, attempting to employ such methodology
resulted in large values of the minimal χ2, although it
rendered almost identical results in the profile functions.
Although our analysis was carried out on a rather limited

subset of the BELLE data, we consider this work an
essential first step. We stress that, to the best of our
knowledge, this is the only phenomenological analysis
where the thrust dependence of the cross section is
explicitly taken into account and well described over three
different bins. Other studies [12,60] resort to a combination
of the thrust bins, resulting in a cross section which is some
sort of average over thrust, or they simply integrate it over.
Extending our results to a wider range of thrust and zh bins
requires further formal developments on identifying and
extending the optimal kinematic region where the TMD
formalism developed for Region 2 in eþe− → hX can be
successfully applied [25,45]. Moreover, the connection
between the regularization of the rapidity divergences
and the thrust dependence must be set on a more solid
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formal ground, as it crucially affects the correlation among
T, PT , and zh. This will likely improve the quality of the
extraction by allowing us to possibly include more data
points while achieving an even better agreement with
data [30].8
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APPENDIX: WILSON COEFFICIENTS
AND gi FUNCTIONS

In this appendix, we provide the explicit expression
of the quantities necessary to compute the perturbative
part of the TMD FF. The one-loop Wilson coefficients
C½1�ðzÞ≡ C½1�ðz; b�; μb� ; μ2b�Þ appearing in Eq. (3) are cal-
culable in pQCD and are given by [6]

z2C½1�q=qðzÞ ¼ 2CF

�
1 − zþ 2

1þ z2

1 − z
log z

�

− CF
π2

6
δð1 − zÞ; ðA1Þ

z2C½1�g=qðzÞ ¼ 2CF

�
zþ 2

1þ ð1 − zÞ2
z

log z

�
: ðA2Þ

To reach NLL accuracy, the anomalous dimension γK of the
soft kernel is expanded up to two loops, while all other
quantities are written to one loop. The functions gi, i ¼ 1, 2

and gKj , j ¼ 2, 3, required to reach NLL accuracy in the
expression of the TMD FF of Eq. (3), depend on the
variable λ ¼ 2β0aSðQÞ log Q

μb�
and are given by [29]

g1ðλÞ ¼
γ½1�K

4β0

�
1þ log ð1 − λÞ

λ

�
; ðA3Þ

g2ðλÞ ¼
γ½1�K

8β20

β1
β0

λ

1− λ

�
1þ log ð1− λÞ

λ
þ 1

2

1− λ

λ
log2ð1− λÞ

�

−
γ½2�K

8β20

�
λ

1− λ
þ logð1− λÞ

�
−
γ½1�d

2β0
log ð1− λÞ;

ðA4Þ

gK1 ðλÞ ¼
γ½1�K

2β0
log ð1 − λÞ; ðA5Þ

gK2 ðλÞ¼
γ½1�K

4β20

β1
β0

λ2

1−λ

�
1þ logð1−λÞ

λ

�
−
γ½2�K

4β20

λ2

1−λ
; ðA6Þ

with

γ½1�K ¼ 16CF; ðA7aÞ

γ½2�K ¼ 2CACF

�
536

9
−
8π2

3

�
−
160

9
CFnf; ðA7bÞ

where nf is the total number of fermion fields considered,
while β0 and β1 are the coefficients of the beta functions up
to two loops:

β0 ¼
11

3
CA −

2

3
nf; ðA8aÞ

β1 ¼
34

3
C2
A −

10

3
CAnf − 2CFnf: ðA8bÞ

We refer to Ref. [50] for the explicit values of the
anomalous dimensions, the Collins-Soper kernel, and the
QCD beta function coefficients, having taken care of
multiplying by 2 all the coefficients related to the CS
kernel.
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