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In this work, we obtain the leading subeikonal corrections to the jet momentum broadening distribution
in a QCD medium arising from the transverse flow of the matter. We first derive the single-particle
propagator of a highly energetic parton resumming its multiple interactions with the homogeneous flowing
matter, explicitly keeping the leading subeikonal flow terms. Then, we use this propagator to obtain the jet
broadening distribution and its leading moments. We show that this distribution becomes anisotropic in the
presence of transverse flow, since its odd moments are generally nonzero and proportional to the transverse
velocity of the medium. Finally, we evaluate several odd moments, which we compare to the corresponding
results at first order in opacity, showing that accounting for multiple in-medium scatterings is essential to
describe some observables in dense nuclear matter.
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I. INTRODUCTION

One of the most important signatures of the formation
of the quark-gluon plasma (QGP) in high-energy nuclear
collisions is the suppression of highly energetic particles,
a phenomenon commonly known as jet quenching [1,2].
Although the suppression of such high-energy particles
has been largely explained in terms of the energy loss due
to their interactions with the QGP, recent developments
both from theory and experiment have shown that the
inner structure of the jets created by these particles is also
significantly modified. Due to the sensitivity to all these
effects, jets in heavy-ion collisions provide a unique tool to
study the properties and structure of the QGP. This concept
of jet tomography has attracted a great deal of attention in
the literature, see for instance [3–18] and references therein.
The interaction of high-energy colored particles with

the QGP is usually described within perturbative quantum
chromodynamics (pQCD) as a scattering process where
the medium is modeled with a background stochastic
color field, see e.g., [19–33]. In this picture, highly
energetic partons undergo multiple scatterings with the

QCD matter, resulting in both the broadening of their
transverse1 momentum distribution and the emission of
real radiation, also referred to as medium-induced radi-
ation. While this approach is rather general, several
approximations are made in order to simplify the calcu-
lations while capturing the main physical effects, see e.g.,
[31,34,35]. In this paper, we will focus on the high-energy
approximation, known also as eikonal approximation,
where all transverse momenta are considered smaller than
the energy of the final parton E. This assumption implies
that the broadening and radiation dynamics decouple from
the transverse structure and evolution of the medium, as
explained in [12].
At this point, it is important to make a clarification about

the use of this high-energy approximation in different
settings and what is usually understood by the eikonal
limit. On its most strict form, the eikonal limit refers to the
case where all contributions of order Oð⊥=EÞ, where ⊥
stands for any of the relevant transverse scales, are
neglected. This is the eikonal limit used for instance in
color glass condensate (CGC) calculations, where the
transverse positions of incoming partons are frozen during
the interaction with the target and its wave function is only
modified through a color rotation. For calculations involv-
ing in-medium emissions this approximation is too restric-
tive and nontrivial results are achieved only when terms
scaling as ⊥2

E z are kept to all orders, with z a longitudinal
position taking values up to the length of the medium, see
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1Here and throughout this manuscript, “transverse” means
orthogonal to the direction of the propagation of the high-energy
parton.

PHYSICAL REVIEW D 106, 074023 (2022)

2470-0010=2022=106(7)=074023(15) 074023-1 Published by the American Physical Society

https://orcid.org/0000-0002-8378-1302
https://orcid.org/0000-0003-2477-621X
https://orcid.org/0000-0001-9679-2409
https://orcid.org/0000-0003-4586-2758
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.074023&domain=pdf&date_stamp=2022-10-27
https://doi.org/10.1103/PhysRevD.106.074023
https://doi.org/10.1103/PhysRevD.106.074023
https://doi.org/10.1103/PhysRevD.106.074023
https://doi.org/10.1103/PhysRevD.106.074023
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


e.g., [23,24,36]. These terms include phases arising from
vacuum propagators in between scatterings, usually
referred to as Landau-Pomeranchuk-Migdal (LPM) phases,
which are essential to get the correct emission spectrum and
yield to the well-known LPM suppression in the multiple
scattering calculations. This is the case that will be used as
the zeroth order for the calculations in this paper, and
therefore we will refer to it as the eikonal limit, in contrast
to the subeikonal contributions which scale as⊥=E with no
explicit length enhancement.
Since jets decouple from the transverse structure and

dynamics of the QCD matter in the eikonal limit, these
medium effects can only be included into jet-quenching
formalisms by relaxing the eikonal approximation. Due to
the difficulties inherent to such beyond-eikonal calcula-
tions, several works attempted to account for transverse
flow effects focusing on the medium dilution effects [37–
39], using phenomenological motivated models [39–41],
or considering purely kinematic arguments [42–44]. It was
not until very recently that matter transverse structure
and flow were rigorously included in a pQCD description
of in-medium radiation and broadening [12], where
the flow effects were shown to enter at subeikonal order.
This calculation was performed at leading order in the
Gyulassy-Levai-Vitev opacity expansion framework
[23–25], where only one scattering with the medium is
allowed. Extending this result to account for all multiple
in-medium scatterings by means of the Baier, Dokshitzer,
Mueller, Peigné, Schiff, and Zakharov (BDMPS-Z)
framework [19–22] is then the next natural step in the
development of this theory. This program was already
started in [16] where the transverse gradients of matter
properties were taken into account for the calculation of
the broadening distribution.
In this work, we focus on the subeikonal corrections

to the broadening distribution due to the transverse flow of
the QGP. We first compute the in-medium propagator of a
highly energetic parton resumming its multiple interactions
with homogeneous flowing matter. Then, we use that
result to derive the leading subeikonal corrections to the
momentum broadening due to the transverse velocity of the
medium, generalizing the result of [12] to all orders in
opacity. We show that the all-order broadening distribution,
isotropic in the static case, becomes anisotropic due to these
transverse flow terms. While we focus here on the case of

the QGP, similar effects could also arise in cold nuclear
matter due to the collective motion of the nucleons.
The paper is organized as follows: in Sec. IIwe present the

derivation of the amplitude of a high-energy parton moving
throughout flowing homogeneous matter in the BDMPS-Z
formalism. We obtain in Sec. III the broadening distribution
by computing the average over the scattering centers of the
squared amplitude. In Sec. IVwe compute the oddmoments
of the final state momentum distribution, which in contrast
with the static case do not vanish, thus probing that jet
broadening is anisotropic in the presence of transverse flow.
Finally, we summarize and conclude in Sec. V.

II. RESUMMATION AT THE AMPLITUDE LEVEL:
THE PROPAGATOR

In this section, we show how to obtain the in-medium
amplitude of a fast moving parton with final energy E in
flowing homogeneous matter, accounting for multiple
parton-medium interactions. We will express this amplitude
in the form of a single-particle propagator, as usually done
in the BDMPS-Z formalism, keeping the leading subeiko-
nal corrections Oð⊥=EÞ to capture the flow effects but
disregarding effects of spin polarization by using scalar
QCD for the interactions involving the leading parton, as
done at first order in opacity in [12].
We consider the amplitude of the process in which the

highly energetic parton is created in the medium by some
source JðpÞ, and then interacts n times with the matter
which is modeled with a background field, as shown in
Fig. 1. The corresponding matrix element can be written as

iMnðpÞ ¼
Z Yn−1

j¼0

�
d4pj

ð2πÞ4 igAμðpjþ1 − pjÞ

× ðpjþ1 þ pjÞμ
i

p2
j þ iϵ

�
Jðp0Þ; ð1Þ

where pn ≡ p is the final four-momentum of the parton,
AμðqÞ ¼ Aa

μðqÞta is the background field, the index μ runs
over 4D space-time, ta is the color matrix in the repre-
sentation of the projectile (the highly energetic parton), and
the product is ordered from right to left with the nth field
insertion being the leftmost factor.

FIG. 1. The contribution M4 with four in-medium scatterings to the full amplitude, where the final state momentum is on-shell
p ¼ ðE; p; E − p2⊥

2EÞ, see the details below.
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Now, following [12], the medium velocity can be
included in the calculation by modifying the background
field entering Eq. (1). In order to do so, we model the matter
as a collection of massive color sources moving with
nonrelativistic velocity2 uμ ¼ ð1; u; uzÞ, as explained in
detail in Sec. II C of [12]. We introduce here a subtle
modification with respect to [12]: we make use of the color
charge density ρ̂aðx; zÞ in coordinate space, allowing us to
have a continuous distribution of medium sources (which
will be averaged over after squaring the amplitude), as is
the common practice both in the CGC and BDMPS-Z
formalisms. We also set the longitudinal velocity equal to
zero uz ¼ 0, since its effects can be obtained by performing
a longitudinal boost. We focus, instead, on calculating the
subeikonal corrections arising from the transverse velocity
u, which cannot be recovered by a transverse boost, since
transverse boosts do not commute with the eikonal expan-
sion. Hence, the background field used in our calculation
has the following form:

gAaλðqÞ ¼ uλvðqÞ
�Z

d2xdze−iðq·xþqzzÞρ̂aðx; zÞ
�

× ð2πÞδðq0 − u · qÞ; ð2Þ
where v is the interaction potential, and we have neglected
the recoil of the sources. We rely on the Gyulassy-Wang
(GW) model [45], and thus set v to

vðqÞ ¼ g2

q2 − μ2 þ iϵ
; ð3Þ

where μ is the Debye mass of the QGP or another
characteristic screening scale (e.g., in the case of cold
nuclear matter).

Note that the field of a discrete collection of scattering
centers used in [12] can be straightforwardly obtained from
Eq. (2) by taking ρ̂aðx; zÞ ¼ P

j t
a
jδ

ð2Þðx − xjÞδðz − zjÞ,
where taj is the color generator of jth source.
Plugging (2) into (1) we can easily perform the integrals

over the zero components of all the momenta. Then, we
perform all the integrals over the z components using
contour integration, where only one type of poles of the
intermediate propagators of the fast moving parton con-
tributes to the desired accuracy, as explained for instance
in [12,34]. Indeed, since we are considering only highly
energetic partons, a single interaction is not able to change
the sign of the large component of the projectile momen-
tum, thus fixing the sign of pjz for all j up to higher
subeikonal orders. Notice also that the potentials vðqÞ are
screened and the corresponding poles are suppressed under
the assumption that the sources are sufficiently separated.
Then, the zero and longitudinal components of the inter-
mediate momenta are set to

pj0 ≃ u · pþ u · pj; ð4aÞ

pjz ≃ pj0 −
p2
j⊥
2E

¼ u · pþ u · pj −
p2
j⊥
2E

; ð4bÞ

where u · p≡ uμpμ ≃ E − u · p, p0 ≡ E is the parton final
energy, pj⊥ ≡ jpjj is the magnitude of the 2D vector pj, and
we have kept just the zeroth and first-order terms in the
eikonal expansion.
Now, upon reshuffling some of the Fourier factors, the

amplitude reduces to

iMnðpÞ ¼
Z Yn−1

j¼0

�
dzjþ1

d2pj
ð2πÞ2 i

�
1 −

u · pj
E

�
vðp̃jþ1 − p̃jÞρ̂ajþ1ðpjþ1 − pi; zjþ1Þtajþ1θðzjþ1 − zjÞe

i

�
u·pj−

p2
j⊥
2E

�
ðzjþ1−zjÞ

�

× e
−i
�
u·p−

p2⊥
2E

�
zn
Jðp̃0Þ; ð5Þ

where we have defined p̃j as the four-momentum of the
leading parton with its zero and longitudinal components
replaced according to Eq. (4), p̃j ¼ ðu · pþ u · pj;

pj; u · pþ u · pj −
p2
j⊥
2E Þ, taj is the color generator of the

leading parton after the jth interaction (not to be confused
with taj ), and, without loss of generality, we have set z0 ¼ 0.
Here we have also used the mixed representation
of the color charge operator where only the transverse

components are Fourier transformed while the longitudinal
coordinate is explicitly kept,

ρ̂aðq; zÞ ¼
Z

d2xe−iq·xρ̂aðx; zÞ: ð6Þ

Notice that the LPM phases in (5) are affected by the flow
velocity, as shown in [12].
At this point, we can write the amplitude as a con-

volution of the initial source J with an in-medium propa-
gator Gðp; L; p0; z0Þ in the following way:

iMnðpÞ¼ e
−i
�
u·p−

p2⊥
2E

�
L
Z

d2p0
ð2πÞ2Gnðp;L;p0;0ÞJðp̃0Þ; ð7Þ

2Throughout this manuscript bold font will be used for 2D
vectors in the transverse plane with respect to the leading parton
large momentum component pz.
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where the nth-order perturbative contribution to the propagator is given by

Gnðp; L; p0; z0Þ ¼
Yn
j¼1

�Z
L

z0

dzj

Z
d2pj
ð2πÞ2 i

�
1 −

u · pj−1
E

�
vðp̃j − p̃j−1Þρ̂ajðpj − pj−1; zjÞtaj

× θðzj − zj−1Þe
i

�
u·pj−1−

p2
j−1⊥
2E

�
ðzj−zj−1Þ

�
ð2πÞ2δð2Þðp − pnÞe

i

�
u·p−

p2⊥
2E

�
ðL−znÞ

: ð8Þ

Before turning to the resummation procedure, it is useful to cast (8) as a recursion relation in the following way:

Gnðp; L; p0; z0Þ ¼ i
Z

L

z0

dz
Z

d2l
ð2πÞ2

�
1 −

u · l
E

�
vðp̃ − l̃Þρ̂aðp − l; zÞtaei

�
u·p−

p2⊥
2E

�
ðL−zÞ

Gn−1ðl; z; p0; z0Þ; ð9Þ

where l̃ ¼ ðu · pþ u · l; l; u · pþ u · l − l2⊥
2EÞ. Now Eq. (9) can be straightforwardly summed over n from zero to infinity,

leading to an integral equation for the full propagator

Gðp; L; p0; z0Þ ¼ G0ðp; L; p0; z0Þ þ i
Z

L

z0

dz
Z

d2l
ð2πÞ2

�
1 −

u · l
E

�
vðp̃ − l̃Þρ̂aðp − l; zÞtaei

�
u·p−

p2⊥
2E

�
ðL−zÞ

Gðl; z; p0; z0Þ; ð10Þ

where, by focusing on the case of no interactions, one can
see that the correct initial propagator G0ðp; L; p0; z0Þ is
given by

G0ðp; L; p0; z0Þ ¼ ð2πÞ2δð2Þðp − p0Þe
i

�
u·p−

p2⊥
2E

�
ðL−z0Þ

: ð11Þ

The integral equation above can also be rewritten as a
differential equation in L, which reads

∂

∂L
Gðp; L; p0; z0Þ ¼ i

�
u · p −

p2⊥
2E

�
Gðp; L; p0; z0Þ

þ i
Z

d2l
ð2πÞ2

�
1 −

u · l
E

�
vðp̃ − l̃Þ

× ρ̂aðp − l; LÞtaGðl; L; p0; z0Þ: ð12Þ

It is clear that in the limit of zero transverse flow velocity
this equation reduces to its standard form, see for in-
stance [46].
Besides the explicit terms with a factor of u, the

propagator in (12) also contains an implicit velocity
correction arising from the momentum dependence of
the potential v. For the GW model vðqÞ depends only
on q2 and the particular combination of momenta ðp̃ − l̃Þ2
expanded up to the first subeikonal order reads

ðp̃ − l̃Þ2 ≈ −ðp − lÞ2 þ u · ðp − lÞp
2⊥ − l2⊥
E

: ð13Þ

Without the velocity correction, the 0 component of
ðp̃ − l̃Þμ is zero, while the z component of the exchanged
momentum can be ignored at leading subeikonal order

given that it scales as ⊥2=E2. However, with a nonzero
velocity the correction at order ⊥=E shown in (13) arises,
which must be kept since it is of the same order as the
other velocity corrections considered up to now. Including
only subeikonal contributions at first order, we can write
the differential equation satisfied by the in-medium propa-
gator as

∂

∂L
Gðp; L; p0; z0Þ ¼ i

�
u · p −

p2⊥
2E

�
Gðp; L; p0; z0Þ

þ i
Z

d2q
ð2πÞ2 ½1þ u ·Ωðp; qÞ�vðq2⊥Þ

× ρ̂aðq; LÞtaGðp − q; L; p0; z0Þ; ð14Þ

where we have introduced a shorthand notation for the
leading subeikonal factors appearing outside of the LPM
phases

Ωðp; qÞ ¼ −
p − q
E

þ q
E

�ðp − qÞ2 − p2

vðq2⊥Þ
�

∂v
∂q2⊥

: ð15Þ

At this point, all the velocity contributions are explicit.
These new terms considerably complicate the differential
equation, since now the second term in (14) is not a
convolution between the interaction potential and the
propagator as in the absence of flow.Working in the eikonal
expansion, it is convenient to write the solution of (14) as

Gðp; L; p0; z0Þ ¼ Gð0Þðp; L; p0; z0Þ þ Gð1Þðp; L; p0; z0Þ

þO
�⊥2

E2

�
: ð16Þ

ANDRES, DOMINGUEZ, SADOFYEV, and SALGADO PHYS. REV. D 106, 074023 (2022)

074023-4



Keeping the terms resulting in the LPM phases to all orders, we find that the two contributions Gð0Þ and Gð1Þ satisfy

∂

∂L
Gð0Þðp; L; p0; z0Þ ¼ i

�
u · p −

p2⊥
2E

�
Gð0Þðp; L; p0; z0Þ þ i

Z
d2q
ð2πÞ2 vðq

2⊥Þρ̂aðq; LÞtaGð0Þðp − q; L; p0; z0Þ; ð17aÞ

∂

∂L
Gð1Þðp; L; p0; z0Þ ¼ i

�
u · p −

p2⊥
2E

�
Gð1Þðp; L; p0; z0Þ þ i

Z
d2q
ð2πÞ2 vðq

2⊥Þρ̂aðq; LÞtaGð1Þðp − q; L; p0; z0Þ;

þ i
Z

d2q
ð2πÞ2 u ·Ωðp; qÞvðq2⊥Þρ̂aðq; LÞtaGð0Þðp − q; L; p0; z0Þ; ð17bÞ

with initial conditions

Gð0Þðp; z0; p0; z0Þ ¼ ð2πÞ2δð2Þðp − p0Þ; ð18Þ

Gð1Þðp; z0; p0; z0Þ ¼ 0: ð19Þ

Let us first look at (17a). In the case of static matter this
equation has been widely studied, and its solution can be
written in terms of a path integral in coordinate space [34].
The additional velocity term in this equation introduces
only a time-dependent shift in the transverse coordinates of
the propagator Gð0Þðp; L; p0; z0Þ. In order to see this, we first
write (17a) as

∂

∂L
½e−iu·pðL−z0ÞGð0Þðp; L; p0; z0Þ� ¼ −i

p2⊥
2E

e−iu·pðL−z0ÞGð0Þðp; L; p0; z0Þ þ i
Z

d2q
ð2πÞ2 e

−iu·qðL−z0Þvðq2⊥Þρ̂aðq; LÞtae−iu·ðp−qÞðL−z0Þ

× Gð0Þðp − q; L; p0; z0Þ; ð20Þ

and notice that the rescaled function satisfies the same boundary conditions. Taking the Fourier transform into coordinate
space, we get

∂

∂L
Gð0Þðx− ðL− z0Þu;L;x0; z0Þ ¼

i
2E

∂
2
xGð0Þðx− ðL− z0Þu;L;x0; z0Þ þ iAðx− ðL− z0Þu;LÞGð0Þðx− ðL− z0Þu;L;x0; z0Þ;

ð21Þ

where Aðx; LÞ ¼ R d2q
ð2πÞ2 e

iq·xvðq2⊥Þρ̂aðq; LÞta is the coordinate space interaction potential weighted with the corresponding
color structure. The solution of (21) is well known, and can be written as

Gð0Þðx − ðL − z0Þu; L; x0; z0Þ ¼
Zx

x0

Dr exp

�
iE
2

Z
L

z0

dξ _r2ðξÞ
�
P exp

�
i
ZL

z0

dξAðrðξÞ − ðξ − z0Þu; ξÞ
�
; ð22Þ

or, equivalently,

Gð0Þðx; L; x0; z0Þ ¼
ZxþðL−z0Þu

x0

Dr exp

�
iE
2

Z
L

z0

dξ _r2ðξÞ
�
× P exp

�
i
ZL

z0

dξAðrðξÞ − ðξ − z0Þu; ξÞ
�
: ð23Þ

Now, turning to the subeikonal corrections, one can readily check that the solution of (17b) can be written in the
following form:

Gð1Þðp; L; p0; z0Þ ¼ i
Z

L

z0

dz
Z

d2q
ð2πÞ2

d2l
ð2πÞ2 G

ð0Þðp; L; l; zÞðu ·Ωðl; qÞÞvðq2⊥Þρ̂aðq; zÞtaGð0Þðl − q; z; p0; z0Þ: ð24Þ

This expression can also be obtained using the expansion (16) in the integral equation (10) and grouping the terms
accordingly.
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III. RESUMMATION AT THE CROSS-SECTION
LEVEL: BROADENING

In order to obtain the distribution in transverse momen-
tum, one has to consider the squared amplitude averaged
over the scattering centers. From (7) we get

hjMðpÞj2i ¼
Z

d2p0
ð2πÞ2

d2p00
ð2πÞ2 hJ

†ðp̃0
0ÞG†ðp00; 0; p; LÞ

× Gðp; L; p0; 0ÞJðp̃0Þi; ð25Þ

where the arguments of the conjugated propagator are
given in reverse order.
The medium averaging acts only on the factors of ρ̂a

appearing in the propagators. For simplicity, we take a
Gaussian distribution for the scatterings in which the only
nontrivial correlation is the two-point function

hρ̂aðx;zxÞρ̂bðy;zyÞi¼
1

2CR̄
δabδð2Þðx−yÞδðzx− zyÞρðx;zxÞ;

ð26Þ

where we have defined CR̄ as CR̄ ¼ Nc for quarks and
CR̄ ¼ CF for gluons. We have also introduced the number
density of scattering centers ρðx; zÞ. This averaging pro-
cedure coincides with the usual GW model used in [12,16]
as well as the McLerran-Venugopalan model in the CGC
context. Taking the transverse Fourier transform of (26)
we get

hρ̂aðq;zÞρ̂bðq0;z0Þi¼ 1

2CR̄
δabδðz−z0Þ

Z
d2xe−iðqþq0Þ·xρðx;zÞ:

ð27Þ

From now on, we will focus on the case of transversely
homogeneous matter, setting ρ to be a function of z only.
The leading effects of medium transverse anisotropies on
jet-medium interactions, manifested through gradients of
the thermodynamic parameters, were already discussed in
[12,16]. In fact, in the absence of transverse flow, the
gradient contributions to jet broadening are also subeikonal
(although enhanced by the medium length), and can be
clearly separated from the flow effects up to first subeikonal
order. Cross terms involving both gradients and transverse
velocity have not yet been addressed in the literature,
and we leave them for future work. It is worth noticing,
however, that the leading cross contributions affect only the
even moments of the final distribution.
For transversely homogeneous matter ρðx; zÞ ¼ ρðzÞ,

and we can perform the Fourier transformation in (27)
getting

hρ̂aðq; zÞρ̂bðq0; z0Þi ¼ 1

2CR̄
δabδðz − z0Þδð2Þðqþ q0ÞρðzÞ:

ð28Þ

Note that since ρ̂a is real in coordinate space,
ρ̂a†ðq⊥; zÞ ¼ ρ̂að−q⊥; zÞ.
The source terms J and J† can be pulled out of the

medium averages, allowing us to focus on the combination
of two propagators appearing in (25). Moreover, the trivial
color structure of the averaging procedure (26) implies

hG†ðp00; 0; p; LÞGðp; L; p0; 0Þi

¼ 1
dproj

hTr½G†ðp00; 0; p; LÞGðp; L; p0; 0Þ�i; ð29Þ

where dproj is the dimension of the representation corre-
sponding to the projectile.
One could in principle calculate this average of two

propagators directly using their explicit expressions (23)
and (24), but that would entail summing all the contribu-
tions from all possible pairings of the explicit factor of ρ̂
appearing in (24) with other ρ̂’s hidden in the factors of
Gð0Þ. Instead, here we derive a differential equation in L
satisfied by this product of propagators, similarly to [47].
We start by considering an infinitesimal step in L and using
the convolution properties of the propagators we have

1

dproj
hTr½G†ðp00; 0; p; Lþ ϵÞGðp; Lþ ϵ; p0; 0Þ�i

¼
Z
l;l0

1

dproj
hTr½G†ðp00; 0; l0; LÞG†ðl0; L; p; Lþ ϵÞ

× Gðp; Lþ ϵ; l; LÞGðl; L; p0; 0Þ�i: ð30Þ

From (28) it is clear that the averages are local in the
longitudinal coordinate, meaning that only pairs of ρ̂’s at
the same longitudinal coordinate give a nonzero contribu-
tion to the average. This allows us to factorize the average
in (30) as the product of averages of propagators having a
common support in the longitudinal direction. Combining
this fact with the color triviality, as seen for instance in (29),
we can rewrite the trace in the right-hand side of (30) as

1

dproj
hTr½G†ðp00; 0; p; Lþ ϵÞGðp; Lþ ϵ; p0; 0Þ�i

¼
Z
l;l0

1

dproj
hTr½G†ðl0; L; p; Lþ ϵÞGðp; Lþ ϵ; l; LÞ�i

×
1

dproj
hTr½G†ðp00; 0; l0; LÞGðl; L; p0; 0Þ�i: ð31Þ

In order to find the terms linear in ϵ, one has to expand the
propagators going from L to Lþ ϵ using iteratively the
integral relation (10). At the required accuracy we have
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Gðp; Lþ ϵ; l; LÞ ≃ ð2πÞ2δð2Þðp − lÞei
�
u·p−

p2⊥
2E

�
ϵ þ i

Z
Lþϵ

L
dz

Z
d2q
ð2πÞ2 ð1þ u ·Ωðp; qÞÞvðq2⊥Þρ̂aðq; zÞtae

i

�
u·p−

p2⊥
2E

�
ðLþϵ−zÞ

× e
i

�
u·l−

l2⊥
2E

�
ðz−LÞð2πÞ2δð2Þðp − q − lÞ

−
Z

Lþϵ

L
dz2

Z
z2

L
dz1

Z
d2q2
ð2πÞ2

d2q1
ð2πÞ2 ð1þ u ·Ωðp; q2ÞÞð1þ u ·Ωðp − q2; q1ÞÞ

× vðq22⊥Þvðq21⊥Þρ̂a2ðq2; z2Þta2 ρ̂a1ðq1; z1Þta1e
i

�
u·p−

p2⊥
2E

�
ðLþϵ−z2Þ

e
i

�
u·ðp−q2Þ−ðp−q2Þ2

2E

�
ðz2−z1Þ

× e
i

�
u·l−

l2⊥
2E

�
ðz1−LÞð2πÞ2δð2Þðp − q2 − q1 − lÞ; ð32Þ

with G†ðl0; L; p; Lþ ϵÞ following from it.
When we take the average of the trace of two propa-

gators, the linear terms in ρ̂ cancel out, while the terms with
exactly two factors of ρ̂ yield to the linear contribution in ϵ.
The latter come either from the product of a term with no
ρ̂’s in one of the propagators times a term with two ρ̂’s in
the other one, the so-called double Born contributions, or

from the product of two terms with one ρ̂ each, referred to
as single Born contributions.
Let us first consider the double Born contributions,

involving the last term in (32) (or its conjugate).
According to (28), we have an additional δ function setting
q1 ¼ −q2, which also ensures that all the phases cancel out.
The corresponding contribution takes the form

−C
Z

Lþϵ

L
dz2

Z
z2

L
dz1

Z
d2q
ð2πÞ2 ð1þu ·Ωðp;qÞÞð1þu ·Ωðp−q;−qÞÞv2ðq2⊥Þδðz2−z1Þρðz1Þð2πÞ2δð2Þðp− lÞð2πÞ2δð2Þðp− l0Þ;

ð33Þ

where we have combined the color structure coming from
the projectile generators with the color factor in (28),

introducing C ¼ Cproj

2CR̄
, where Cproj is the Casimir of the

projectile representation. One may notice that the double z
integration in (33) is not fully defined, since it involves a
delta function on the edge of the domain. However, due to
the locality of the medium average (28), the result has to be
symmetric under the exchange of z2 and z1 in (33), and thus
this particular δ function is symmetric, yieldingZ

Lþϵ

L
dz2

Z
z2

L
dz1δðz2 − z1Þρðz1Þ ≃

ϵ

2
ρðLÞ: ð34Þ

Keeping only the leading subeikonal corrections, we can
write

ð1þ u ·Ωðp; qÞÞð1þ u ·Ωðp − q;−qÞÞ
≃ 1þ u · ½Ωðp; qÞ þΩðp − q;−qÞ�; ð35Þ

and thus, the q integration in (33) reduces to

Z
d2q
ð2πÞ2 ð1þ u · ½Ωðp; qÞ þΩðp − q;−qÞ�Þv2ðq2⊥Þ

¼
Z

d2q
ð2πÞ2 ð1þ 2u ·Ωðp; qÞÞv2ðq2⊥Þ; ð36Þ

where we have used the explicit form of Ω in (15).

Now, let us consider the term in which each propagator
contributes with a factor of ρ̂. The additional δ function
coming from the average of the ρ̂’s sets the momentum
exchange equal on both the amplitude and conjugate
amplitude. Then, this contribution takes the following
form:

C
Z

Lþϵ

L
dz

Z
Lþϵ

L
dz0

Z
d2q
ð2πÞ2 ð1þ u ·Ωðp; qÞÞ2v2ðq2⊥Þ

× δðz − z0ÞρðzÞ
× ð2πÞ2δð2Þðp − q − lÞð2πÞ2δð2Þðp − q − l0Þ: ð37Þ

Since the line z − z0 ¼ 0 is always within the integration
domain, the z integrations can be readily performed and one
finds

Z
Lþϵ

L
dz

Z
Lþϵ

L
dz0δðz − z0ÞρðzÞ ≃ ϵρðLÞ: ð38Þ

Up to leading subeikonal order, we also have

ð1þ u ·Ωðp; qÞÞ2 ≃ 1þ 2u ·Ωðp; qÞ; ð39Þ

and putting the single and the two double Born contribu-
tions together it is easy to see that
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1

dproj
hTr½G†ðl0; L; p; Lþ ϵÞGðp; Lþ ϵ; l; LÞ�i

¼ ð2πÞ4δð2Þðp − lÞδð2Þðl − l0Þ

− ϵ

Z
d2q
ð2πÞ2 σðp; q;LÞð2πÞ

4δð2Þðp − q − lÞ

× δð2Þðl − l0Þ þOðϵ2Þ; ð40Þ

where we have introduced σðp; q;LÞ, a specific combina-
tion of the in-medium color potentials in the GW model
given by

σðp;q;LÞ ¼ −CρðLÞð1þ 2u ·Ωðp;qÞÞv2ðq2⊥Þ

þ CρðLÞδð2ÞðqÞ
Z

d2lð1þ 2u ·Ωðp; lÞÞv2ðl2⊥Þ:

ð41Þ

Its eikonal limit is related to the forward scattering
amplitude for a color dipole, and it is often referred to
as the dipole cross section or dipole potential.
Equation (40) gives both the L evolution and the initial

condition of the average of two propagators. Indeed, taking
both L ¼ 0 and ϵ ¼ 0 in (40), the initial condition reads

1

dproj
hTr½G†ðp00; 0; p; 0ÞGðp; 0; p0; 0Þ�i

¼ ð2πÞ4δð2Þðp − p0Þδð2Þðp0 − p00Þ: ð42Þ

It is worth noticing that the L evolution in (40) is given by a
convolution, involving only the final momenta, and thus the
delta function forcing the initial momenta to be equal in the
initial condition (42) is still present for arbitrary L, and we
can write

1

dproj
hTr½G†ðp00; 0; p;LÞGðp; L; p0; 0Þ�i

≡ ð2πÞ2δð2Þðp0 − p00ÞPðp; L; p0; 0Þ; ð43Þ

where Pðp; L; p0; 0Þ is the broadening probability. The
differential equation on the average of two propagators
1

dproj
hTr½G†ðp00; 0; p; LÞGðp; L; p0; 0Þ�i can now be reduced to

∂

∂L
Pðp;L;p0;0Þ¼−

Z
d2q
ð2πÞ2 σðp;q;LÞPðp−q;L;p0;0Þ;

ð44Þ

with initial condition

Pðp; 0; p0; 0Þ ¼ ð2πÞ2δð2Þðp − p0Þ: ð45Þ

We can further consider this differential equation order
by order in inverse powers of E. At zeroth order we have

∂

∂L
Pð0Þðp;L;p0;0Þ¼−

Z
d2q
ð2πÞ2Vðq;LÞP

ð0Þðp−q;L;p0;0Þ;

ð46Þ

with initial condition

Pð0Þðp; 0; p0; 0Þ ¼ ð2πÞ2δð2Þðp − p0Þ; ð47Þ

where the superscript corresponds to the order in the
eikonal expansion, and we have defined V, the eikonal
limit of the dipole cross section

Vðq;LÞ≡ σðp; q;LÞju¼0: ð48Þ

Equation (46) can be easily solved in coordinate space.
Focusing for simplicity on the case of constant ρ, we find,
as expected, the standard result for the broadening prob-
ability in static uniform matter

Pð0Þðr; L; r0; 0Þ ¼ e−VðrÞLδð2Þðr − r0Þ; ð49Þ

which in momentum space reads

Pð0Þðp; L; p0; 0Þ ¼
Z

d2re−iðp−p0Þre−VðrÞL: ð50Þ

Using this solution, we can obtain the leading subeikonal
contribution to the differential equation (44), which reads

∂

∂L
Pð1Þðp; L; p0; 0Þ

¼ −
Z

d2q
ð2πÞ2 VðqÞP

ð1Þðp − q; L; p0; 0Þ

−
Z

d2q
ð2πÞ2 ½σðp; qÞ − VðqÞ�Pð0Þðp − q; L; p0; 0Þ: ð51Þ

Let us take a closer look at the subeikonal contribution to
the interaction potential, we can reexpress the correspond-
ing kernel as

σðp; qÞ − VðqÞ ¼ −2
u · ðp − qÞ

E
VðqÞ

−
uα
E
VαβðqÞð2ðp − qÞβ þ qβÞ; ð52Þ

with

VαβðqÞ¼Cρ
�
−qαqβ

∂v2

∂q2⊥
−ð2πÞ2δð2ÞðqÞδαβ

2

Z
d2l
ð2πÞ2v

2ðl2⊥Þ
�
;

ð53Þ

where α and β run over the transverse 2D subspace. Taking
the Fourier transform of the convolution in (51), we can
replace the factors of p − q by derivatives acting on Pð0Þ
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and the factors of q alone by derivatives acting on v2ðq2⊥Þ.
Then, the differential equation (51) can be written in the
following compact form:

∂

∂L
Pð1Þðr; L; r0; 0Þ ¼ −VðrÞPð1Þðr; L; r0; 0Þ

− i
uα
E
½2ðVðrÞδαβ þ VαβðrÞÞ∇β

þ∇βVαβðrÞ�Pð0Þðr; L; r0; 0Þ; ð54Þ

where VαβðrÞ is the Fourier transform of VαβðqÞ, which can
be written in terms of VðrÞ as

VαβðrÞ ¼ −
δαβ
2

VðrÞ − rαrβ
∂

∂r2⊥
VðrÞ: ð55Þ

Plugging now (49) into the equation above, the integration
over L can be easily performed. Using the trivial initial
condition Pð1Þðr; 0; r0; 0Þ ¼ 0, we find

Pð1Þðr; L; r0; 0Þ ¼ e−VðrÞL
uα
E
f−2iLðVðrÞδαβ þ VαβðrÞÞ∇βδ

ð2Þðr − r0Þ þ ½−iL∇βVαβðrÞ þ iL2ðVðrÞδαβ
þ VαβðrÞÞ∇βVðrÞ�δð2Þðr − r0Þg: ð56Þ

Finally, taking the Fourier transform back to momentum space, we have

Pð1Þðp; L; p0; 0Þ ¼
Z

d2re−iðp−p0Þ·re−VðrÞL
uα
E
½2LpβðVðrÞδαβ þ VαβðrÞÞ þ iL∇βVαβðrÞ þ 2iL∇αVðrÞ

− iL2ðVðrÞδαβ þ VαβðrÞÞ∇βVðrÞ�; ð57Þ

or, alternatively, after some algebra and integrating by parts

Pð1Þðp; L; p0; 0Þ ¼
Z

d2re−iðp−p0Þ·re−VðrÞL
uα
E
½2Lp0βðVðrÞδαβ þ VαβðrÞÞ − iL∇βVαβðrÞ þ iL2ðVðrÞδαβ þ VαβðrÞÞ∇βVðrÞ�:

ð58Þ

This leading subeikonal correction to the broadening
probability distribution3 resulting from the medium flow
effects is one of the main results of this paper. For
completeness, we show in the Appendix the results for
the eikonal and leading subeikonal contributions to the
broadening in the so-called harmonic oscillator regime, in
which the dipole cross section is approximated by its
leading logarithmic behavior VðrÞ ¼ q̂r2⊥=4.
We can now use Eqs. (25), (29), and (43) to write the

amplitude squared as

hjMðpÞj2i ¼
Z

d2p0
ð2πÞ2 Pðp; L; p0; 0ÞjJðp̃0Þj2: ð59Þ

Recognizing that the leading subeikonal expansion of the
source term enters as a shift in the energy, as explained in
[12], we get

jJðp̃0Þj2 ¼ jJðE; p0Þj2 − u · ðp − p0Þ
∂

∂E
jJðE; p0Þj2: ð60Þ

Then, at leading subeikonal order, the amplitude squared
takes the form

hjMðpÞj2i ¼
Z

d2p0
ð2πÞ2

�
Pð0Þðp; L; p0; 0Þ

þ
�
Pð1Þðp; L; p0; 0Þ − u · ðp − p0Þ

× Pð0Þðp; L; p0; 0Þ
∂

∂E

��
jJðE; p0Þj2: ð61Þ

IV. FINAL-STATE DISTRIBUTION AND ITS
MOMENTS

The final state jet momentum distribution can be written
in terms of the squared scattering amplitude as

E
dN

d2pdE
≡ 1

2ð2πÞ3 hjMðpÞj2i; ð62Þ

which, using Eq. (61), can be related to the initial state
distribution E dN ð0Þ

d2p0dE
≡ 1

2ð2πÞ3 jJðE; p0Þj2 by
3Notice that the momentum space form of the distribution is in

fact real as expected from the form of (51).
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E
dN

d2pdE
¼

Z
d2p0
ð2πÞ2

�
Pð0Þðp; L; p0; 0Þ

þ
�
Pð1Þðp; L; p0; 0Þ − u · ðp − p0Þ

× Pð0Þðp; L; p0; 0Þ
∂

∂E

��
E

dN ð0Þ

d2p0dE
: ð63Þ

It is well known that in the exact eikonal limit the final
distribution can be written as a convolution of the medium
effects and the initial distribution, which implies a factori-
zation in coordinate space. However, the leading subeiko-
nal terms related to the medium flow clearly break this
separation, since the final distribution is sensitive to the
slope of the energy dependence of the initial distribution, as
it can be clearly seen in (63). This situation is similar to the
case of broadening in inhomogeneous matter [16], where a
spatial gradient of the coordinate space representation of
the initial distribution appears coupled to the transverse
gradients of the hydrodynamic parameters of the matter at
leading subeikonal order, thus breaking the factorization.
The main difference between these two types of leading
subeikonal corrections relies in the fact that the energy
dependence of the initial distribution plays a crucial role in
the description of most jet observables, while this is not the
case for its transverse spatial gradients. Hence, one may
model the initial distribution in a way that its transverse
spatial gradients vanish, taking the limit of a narrow
distribution in momentum space E dN ð0Þ

d2pdE ∼ δð2ÞðpÞ as done
in [16], whereas one can never disregard the energy
derivative of the initial distribution in Eq. (63).
Given that the derivation of (63) is kinematically

restricted to t-channel interactions, the number of jets
(partons) cannot change due to medium effects

Z
d2p

dN
d2pdE

¼
Z

d2p
dN ð0Þ

d2pdE
: ð64Þ

Since this unitarity condition is clearly satisfied by the
eikonal broadening, we only need to check it for the flow
effects arising at leading subeikonal order

Z
d2pd2p0
ð2πÞ4

�
Pð1Þðp; L; p0; 0Þ − u

· ðp − p0ÞPð0Þðp; L; p0; 0Þ
∂

∂E

�
E

dN ð0Þ

d2p0dE
¼ 0: ð65Þ

First we notice that the angular integration in the second
term in (65) is zero since Pð0Þðp; L; p0; 0Þ is a function
of jp − p0j only, as can be seen from (49). For the first term
in (65), the p integration results in a delta function setting
r ¼ 0 in the integrand of (58). One can readily check
that Vð0Þ ¼ 0 and Vαβð0Þ ¼ 0, as well as their first
gradients, thus, giving a vanishing contribution which
ensures unitarity.
It was shown in [12] that, at leading order in opacity,

flow effects lead to nonzero odd moments of the final
momentum distribution, which would vanish in the case of
isotropic broadening when the flow velocity is zero. Here,
we extend this result to the case of multiple scatterings,
accurate to all orders in the opacity expansion. To compare
to the results in [12], let us consider the same family of
moments of the momentum distribution

hFðpÞi ¼
R
d2pFðpÞ dN

d2pdER
d2p dN ð0Þ

d2pdE

; ð66Þ

with FðpÞ ¼ p2k⊥ p, and assume that the initial distribution is
highly collimated

E
dNð0Þ

d2pdE
¼ fðEÞδð2ÞðpÞ; ð67Þ

where fðEÞ is some arbitrary energy dependence.
We choose to focus on the odd moments since they are

zero in the eikonal limit but receive a correction at first
subeikonal order, as opposed to the even moments which
are nonzero in the eikonal limit but the first nontrivial
correction appears at second subeikonal order. Focusing on
the first term of (63) and its contributions to (66), it can be
easily seen why in the eikonal limit the odd moments of the
momentum distribution are zero. Indeed,

hp2k⊥ pið0Þ ¼
Z

d2pd2r
ð2πÞ2 p2k⊥ pe−ip·re−VðrÞL ¼ 0; ð68Þ

since VðrÞ depends only on the magnitude r⊥ and therefore
the two angular integrations vanish. Here and in what
follows, the superscript of averages indicates the particular
order of the expressions in eikonal expansion. The correc-
tion to these moments at first subeikonal order is given by

hp2k⊥ pið1Þ ¼
Z

d2pd2r
ð2πÞ2 p2k⊥ pe−ip·re−VðrÞL

uα
E

�
iL2ðVðrÞδαβ þ VαβðrÞÞ∇βVðrÞ − iL∇βVαβðrÞ − E

f0ðEÞ
fðEÞ pα

�

¼ −
u
2

f0ðEÞ
fðEÞ hp

2kþ2⊥ i þ
Z

d2pd2r
ð2πÞ2 p2k⊥ pe−ip·re−VðrÞL

uα
E
½iL2ðVðrÞδαβ þ VαβðrÞÞ∇βVðrÞ − iL∇βVαβðrÞ�; ð69Þ

ANDRES, DOMINGUEZ, SADOFYEV, and SALGADO PHYS. REV. D 106, 074023 (2022)

074023-10



where the even momentum hp2kþ2⊥ i is calculated in the eikonal limit, since its first nonvanishing subeikonal corrections
appear at second subeikonal order and fðEÞ scales as E−n with n > 0 [and thus the ratio f0ðEÞ=fðEÞ ¼ −n=E]. Replacing
the momentum vector p by the spatial gradient in (69), integrating by parts, and averaging over the angles in the spatial
integral we get

hp2k⊥ pið1Þ ¼ −
u
2

f0ðEÞ
fðEÞ hp

2kþ2⊥ i − i
u
2E

Z
d2pd2r
ð2πÞ2 p2k⊥ e−ip·r∇αfe−VðrÞL½iL2ðVðrÞδαβ þ VαβðrÞÞ∇βVðrÞ − iL∇βVαβðrÞ�g: ð70Þ

It is instructive to consider some simple cases allowing analytic treatment. First, we can recover the leading nonzero
contribution in the opacity expansion by expanding (70) in powers of the coupling g2 [which enters in (70) through V]

hp2k⊥ pið1ÞjN¼1 ¼ −
u
2

f0ðEÞ
fðEÞ hp

2kþ2⊥ ijN¼1 −
u
2E

L
Z

d2pd2r
ð2πÞ2 p2k⊥ e−ip·r∇β∇γVβγðrÞ

¼ −
u
2E

CρL
Z

d2p
ð2πÞ2 p

2kþ2⊥
�
E
f0ðEÞ
fðEÞ v

2ðp⊥Þ þ p2⊥
∂v2

∂p2⊥

�
; ð71Þ

which agrees with the results in [12], as expected. Focusing on the particular value k ¼ 0, we notice that the result at first
order in opacity is exact. Indeed, since VðrÞ,∇αVðrÞ, and VαβðrÞ are zero at r ¼ 0, we find that for k ¼ 0 the all-order result
in (70) yields

hpið1Þ ¼ −
u
2

f0ðEÞ
fðEÞ hp

2⊥i − i
u
2E

∇βfe−VðrÞL½iL2ðVðrÞδβγ þ VβγðrÞÞ∇γVðrÞ − iL∇γVβγðrÞ�gjr¼0

¼ −
u
2E

CρL
Z

d2p
ð2πÞ2 p

2⊥
�
E
f0ðEÞ
fðEÞ v

2ðp⊥Þ þ p2⊥
∂v2

∂p2⊥

�
ð72Þ

which agrees with (71) for k ¼ 0. In general, for integer k > 0, the opacity series up to kþ 1th order is necessary to obtain
the exact all-order result.
The momentum integrals in (69) are well defined for k > −1. However, we are also interested in comparing with the

result for k ¼ −1 obtained at leading order in opacity in [12], and thus we have to be careful with their regularization. Since
the additional insertions of V in (69) make the momentum integrals more convergent, the only possibly divergent term in
this equation is the zeroth order in opacity (or equivalently, the L ¼ 0 contribution). This contribution is expected to
disappear though, since in the absence of matter the broadening effects are controlled by the initial distribution (67) and one
has to regulate (69) accordingly. Indeed, if we take L ¼ 0 in (63), then up to the first subeikonal order the corresponding
moment reads

�
p
p2⊥

	




L¼0

¼ 1

N

Z
d2pd2p0
ð2πÞ2

p
p2⊥

δð2Þðp − p0Þ
�
1 − u · ðp − p0Þ

∂

∂E

�
dN ð0Þ

d2p0dE
; ð73Þ

where N is a normalization factor. Assuming that the initial distribution is isotropic, and has a small but finite width, we
find that hp=p2⊥ijL¼0 ¼ 0 after angular integration.
To first order in opacity, all momentum integrals are well defined and (71) is still valid. Using the explicit form of v from

the GW model given in (3), we get

�
p
p2⊥

	ð1Þ




N¼1

¼ −χ
u
2

�
f0ðEÞ
fðEÞ −

1

E

�
; ð74Þ

where we have introduced the opacity χ ≡ Cg4ρL=ð4πμ2Þ. This result is, as expected, in full agreement with the outcome
of [12].
It is also interesting to compare hp=p2⊥ijN¼1 with the full result accurate to all orders in opacity. In order to do so, we

regularize hp2k⊥ pi for k ¼ −1 in (69) with a finite mass

JET BROADENING IN FLOWING MATTER: RESUMMATION PHYS. REV. D 106, 074023 (2022)

074023-11



�
p

p2⊥ þm2

	ð1Þ
¼ −

u
2

f0ðEÞ
fðEÞ

Z
d2pd2r
ð2πÞ2

p2⊥
p2⊥ þm2

e−ip·re−VðrÞL þ
Z

d2pd2r
ð2πÞ2

p
p2⊥ þm2

e−ip·r

× e−VðrÞL
uα
E
½iL2ðVðrÞδαβ þ VαβðrÞÞ∇βVðrÞ − iL∇βVαβðrÞ�; ð75Þ

which can be numerically evaluated. Setting fðEÞ ∝ E−n and removing dimensionful factors in (70), we find

E
u
u2⊥

·

�
p

p2⊥ þm2

	
¼ n

2

Z
d2pd2r
ð2πÞ2

p2⊥
p2⊥ þm2

e−ip·re−VðrÞL −
i
2

Z
d2pd2r
ð2πÞ2

1

p2⊥ þm2
e−ip·r

×∇αfe−VðrÞL½iL2ðVðrÞδαβ þ VαβðrÞÞ∇βVðrÞ − iL∇βVαβðrÞ�g; ð76Þ

which is independent of E and u. Notice also that we have
omitted the superscript for brevity.
We illustrate the full dependence of the all order result on

the opacity variable χ in Fig. 2 where we present the
numerical evaluation of (76) for n ¼ 4, with m sufficiently
small, and with the L ¼ 0 contribution subtracted for
stability. The curve clearly shows a linear behavior for
small values of χ, consistent with the N ¼ 1 result in
Eq. (74). For larger values of χ, however, the curve
saturates. This latter property is not present at any fixed
order in the opacity expansion, thus showing how the
resummed picture is essential to describe some observables
in dense nuclear matter.

V. CONCLUSIONS AND OUTLOOK

In this paper, we study how jets interact with homo-
geneous flowing QCD matter accounting for multiple
interactions of the leading parton with the medium. By
combining the leading subeikonal terms obtained at first
order in opacity in [12] with the resummation techniques of
the BDMPS-Z framework (which resums all orders in
opacity in the eikonal limit), we succeed in finding the

leading subeikonal corrections to the in-medium parton
propagation to all orders in opacity. This is achieved at the
amplitude level by deriving a single-particle in-medium
propagator, see (23) and (24). This result is then used to
obtain the jet broadening distribution by computing the
medium average of two propagators. Having a preferred
direction set by the flow velocity clearly breaks azimuthal
symmetry, and thus induces an anisotropy in the corre-
sponding momentum distributions. In order to quantify and
illustrate this effect, we have obtained the odd moments
of the final state distribution hp2k⊥ pi, which, contrary to the
static case, do not vanish, and thus serve as the simplest
probe of flow effects in jet-medium interactions. As
expected, our all-order in opacity result agrees with the
first order case examined in [12] in the small opacity limit.
In particular we have analyzed two specific cases: k ¼ 0
where the first order in opacity gives the exact (all-order)
result, and k ¼ −1 where a complete description can only
be achieved when all orders in opacity are resummed.
Now that we have an expression for the in-medium

propagator in the presence of flow and know how to
compute medium averages of products of these propaga-
tors, the next natural step would be to derive the medium-
induced radiation spectrum to all orders in opacity (includ-
ing flow). This will be addressed in a separate publication.
In principle, one would expect in-medium radiation, and
more generally jet substructure observables, to be more
sensitive to the transverse dynamics of the medium as
daughter partons are less energetic. Further analyses on jet
observables, in the direction of [14] and extensions to the
all-order in opacity calculations, will thus provide addi-
tional tools for studying the medium flow.
It is worth emphasizing that the formalism developed here

can in principle be adapted to be used in general nuclear
matter (hot or cold), where, in some cases, modeling the
medium as a background field, like in Eq. (2), is still a
reasonable approximation. Incorporating the effects of
collective motion to jet observables for small collision
systems may help elucidating the origin of the nonzero
flow harmonics in proton-ion collisions or the recent
measurements on high-pT jet-v2. In this direction, it would

FIG. 2. Numerical evaluation of (76) for n ¼ 4 and m ¼ 0.01μ
as a function of χ. Note that the L ¼ 0 contribution given in (73)
has been subtracted.
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be interesting to compare the results arising from our
formalism both to recent developments in the subeikonal
expansion in the CGC context [48,49], and to calculations of
broadening in the glasma phase in the early stages of heavy
ion collisions yielding to sizable anisotropies [15,50,51].
Similarly, one may attempt applying the developed descrip-
tion in the context of probe-matter interaction in deep
inelastic scattering, see e.g., [18,26,31,52–57], where the
anisotropy is caused for instance by collective motion of
nucleons.
Finally, it would also be interesting to gain insight into

the sensitivity of medium evolution effects to the strength
of the interactions. In the case of strongly coupled holo-
graphic models, the effects due to flow, hydrodynamic
gradients, and background fields have been studied for a
wide variety of hard probes [58–67]. The framework
developed in this paper, along with the results in
[12,16], could be used to provide the weak coupling
counterpart of these analyses.
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APPENDIX: THE HARMONIC OSCILLATOR
APPROXIMATION

The harmonic approximation is easily formulated in
coordinate space, where the interaction potential is

VðrÞ ¼ 1

4
q̂r2⊥: ðA1Þ

We thus have

VαβðrÞ ¼ −
1

4
q̂

�
δαβ
2

r2⊥ þ rαrβ

�
: ðA2Þ

We can now go back to the expressions for the broad-
ening probability in Sec. III and evaluate them for this
particular approximation. Eq. (49) then takes the form

Pð0Þðr; L; r0; 0Þ ¼ e−
1
4
q̂r2⊥Lδð2Þðr − r0Þ; ðA3Þ

with Fourier transform

Pð0Þðp; L; p0; 0Þ ¼
4π

q̂L
e−

ðp−p0Þ2
q̂L ; ðA4Þ

and Eq. (56)

Pð1Þðr; L; r0; 0Þ ¼ e−
1
4
q̂r2⊥L

uα
E

�
−
i
2
q̂L

�
δαβ
2

r2⊥ − rαrβ

�
∇βδ

ð2Þðr − r0Þþiq̂Lrα

�
1 −

1

16
q̂Lr2⊥

�
δð2Þðr − r0Þ

�
: ðA5Þ

Fourier transforming to momentum space, we get from Eq. (58)

Pð1Þðp; L; p0; 0Þ ¼
Z

d2re−iðp−p0Þ·re−
1
4
q̂r2⊥L

uα
E

�
1

2
q̂Lp0β

�
δαβ
2

r2⊥ − rαrβ

�
þiq̂Lrα

�
1 −

1

16
q̂Lr2⊥

��
: ðA6Þ

All the additional factors of r appearing inside the square brackets can be replaced by derivatives with respect to p, yielding

Pð1Þðp; L; p0; 0Þ ¼ 2π
uα
E

�
−p0β

�
δαβ
2

∇2
p −∇α

p∇β
p

�
−
�
2þ 1

8
q̂L∇2

p

�
∇α

p

�
e−

ðp−p0Þ2
q̂L

¼ 2π

q̂2L2

uα
E
e−

ðp−p0Þ2
q̂L ½ðp − p0Þαðp2⊥ þ 2p · p0 − 3p2

0⊥ þ 2q̂LÞ − 2p0αðp − p0Þ2�: ðA7Þ
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