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We compute theoretical predictions for the production of aW boson in association with a bottom-quark
pair at hadron colliders at next-to-next-to-leading order (NNLO) in QCD, including the leptonic decay of
the W boson, while treating the bottom quark as massless. This calculation constitutes the very first 2 → 3

process with a massive external particle to be studied at such a perturbative order. We derive an analytic
expression for the required two-loop five-particle amplitudes in the leading color approximation employing
finite-field methods. Numerical results for the cross section and differential distributions are presented for
the Large Hadron Collider at

ffiffiffi
s

p ¼ 8 TeV. We observe an improvement of the perturbative convergence
for the inclusive case and for the prediction with a jet veto upon the inclusion of the NNLO QCD
corrections.
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I. INTRODUCTION

Studying vector boson production in association with
multijet final states at the Large Hadron Collider (LHC)
offers a wide variety of interesting phenomenological
explorations. In particular, the production of a W boson
in association with bottom quark (b) jets is very interesting
both from experimental and theoretical perspectives. It is
crucial to scrutinize experimental signatures for both
Wþ 1b jet and Wþ 2b jets, in order to test our knowledge
of the strong interaction at high energies and improve our
modeling of bottom-quark jets at the LHC. The cross
sections for both the signatures have been measured at the
Tevatron [1,2] and LHC [3–6]. While the Wþ 1b jet
signature provides a fundamental probe of the bottom-
quark parton distribution functions (PDFs), the Wþ 2b jets
final state constitutes an irreducible background to many
important reactions studied at the LHC, such as the Higgs-
strahlung process [pp → WH (H → bb̄)] and single top
production [pp → b̄t (t → Wb)], as well as many beyond
the Standard Model (BSM) searches. Moreover, the Wþ b

jets processes are interesting from a theoretical point of
view as they are a perfect testing ground to study the
different ways of treating the b quark. In particular, the
choice of whether to take its mass and presence in the PDF
into account leads to two disparate computational schemes:
the four- (4FS) and five-flavor number schemes (5FS).
In this paper, we compute the NNLO QCD corrections to

W boson production in association with a bottom-quark
pair, which we henceforth call Wbb̄, including the leptonic
decay of the W boson (W → lν). We work in 5FS, thus
treating the bottom quark, and additionally the charged
leptons, as massless particles. They contribute to the
Wþ 2b jets signature, as well as Wþ 1b jet production
when at least one b jet is tagged. Extensive studies of Wbb̄
production at NLO QCD accuracy [7–12] indicate a poor
perturbative behavior at such order (i.e., the corrections are
large, and the scale uncertainties do not improve with
respect to the leading order predictions for inclusive final
state) due to the opening of the qg-initiated channel.
Several efforts to assess corrections beyond NLO were
done by including additional jet radiations [13,14]. It is
clear that a fully fledged NNLO QCD prediction is
mandatory to improve the perturbative convergence of
Wbb̄ production.
Improvement of theoretical precision is also a critical

component of the progress in particle physics, as we enter
the precision LHC era with the upcoming Run 3 and high-
luminosity phases. We have seen spectacular breakthroughs
in perturbative QCD calculations in the recent years,
with a number of 2 → 3 processes computed at NNLO
QCD accuracy for fully massless final states [15–20].
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This success stems from both the advancements in the
scattering amplitude computations and the developments of
NNLO subtraction schemes.
The analytic computation of the required two-loop five-

particle amplitudes is one of the main bottlenecks toward
achieving NNLO QCD accuracy for 2 → 3 processes.
However, the progress for five-particle processes with a
single massive external particle has been spectacular
recently. All planar two-loop five-particle Feynman inte-
grals are now available analytically [21–24] in terms of
bases of special functions, which substantially simplify
computation of the finite remainders and allow for an
extremely efficient numerical evaluation [25,26]. Partial
results for the nonplanar integral families have also become
available recently [27–29]. This progress resulted in a
number of two-loop amplitudes computed at leading color
[25,30–32]. In this work, we derive the analytic form
of the leading color two-loop amplitude contributing to
Wð→lνÞbb̄ production and employ it to compute a number
of observables for this process at NNLO in QCD. Our
computation marks a significant precision-calculation mile-
stone, since it represents the very first prediction to be
derived for a 2 → 3 process involving a massive final state.
This paper is structured as follows. We begin by

discussing the derivation of the required two-loop matrix
elements and the tools used to perform the cross section
computation and then present phenomenological results for
the cross section and a number of interesting differential
distributions.

II. CALCULATION

We consider pp → Wþð→ lþνÞbb̄ production (with
l ¼ e or μ) up to Oðα2α4sÞ. The calculation has been
performed within the STRIPPER framework, a C++ imple-
mentation of the four-dimensional formulation of the
sector-improved residue subtraction scheme [33–35].
The tree-level matrix elements are supplied by the AVH

library [36], while the one-loop matrix elements are
provided by the OpenLoops package [37,38]. We compute
the double virtual contribution Vð2Þ in the leading color
approximation for

uðp1Þ þ d̄ðp2Þ → bðp3Þ þ b̄ðp4Þ þ lþðp5Þ þ νðp6Þ: ð1Þ

It consists of the (color and helicity summed) two-loop and
one-loop squared matrix elements,

Vð2Þ ¼
X
col:

X
hel:

f2Re½Mð0Þ�F ð2Þ� þ jF ð1Þj2g; ð2Þ

where Mð0Þ is the tree-level amplitude, and F ðLÞ is the
L-loop finite remainder. We decompose Vð2Þ at leading
color into

Vð2Þ
LC ¼ Vð2Þ;1 þ nf

Nc
Vð2Þ;nf þ n2f

N2
c
Vð2Þ;n2f ; ð3Þ

where nf is the number of massless closed fermion loops.
We note that the leading-color approximation is only
enforced in the scale-independent part of the double virtual
contribution,

Vð2Þðμ2RÞ ¼ Vð2Þ
LCðs12Þ þ

X4
i¼1

ci lni
�
μ2R
s12

�
; ð4Þ

where sij ¼ ðpi þ pjÞ2 [pi is the partonic momentum
defined in Eq. (1)], μR is the renormalization scale, and
the kinematic-dependent coefficients ci are expressed in
terms of full color lower-order matrix elements.1

The analytic computation of the two-loop amplitude
follows closely Ref. [25], with modifications implemented
to incorporate the decay of the W boson. We note that the
inclusion of the W-boson decay increases the complexity of
the calculation substantially with respect to the one with an
on-shell W, carried out in Ref. [25]. Since the QCD
corrections do not apply to the W → lν decay, we can

separate the six-point squared amplitude Mð2Þ
6 into the

product of the five-point W-production squared amplitude

Mð2Þ
5μν and the leptonic tensor Dμν,

Mð2Þ
6 ¼ Mð2Þ

5μνD
μνjPðs56Þj2; ð5Þ

where PðsÞ ¼ 1=ðs −M2
W þ iMWΓWÞ is the W-boson

propagator factor. We perform tensor decomposition on
the five-point W-production squared amplitude,

Mð2Þμν
5 ¼

X16
i¼1

að2Þi vμνi ; ð6Þ

using fp1; p2; p3; p5 þ p6g as the spanning basis to build

the vμνi basis tensors [39,40]. The coefficients að2Þi can be
determined by contracting Eq. (6) with viμν and inverting the
resulting linear system of equations. The analytic form of the

contracted squared amplitudes viμνM
ð2Þμν
5 was derived using

1We chose this decomposition because in the STRIPPER

scheme, all logarithms of the renormalization (and factorization)
scale are kept explicitly. Only those up to power 2 are contrib-
uting to cross sections and the higher powers cancel. This
cancellation is done numerically within STRIPPER scheme and
serves as a cross check. To ensure this cancellation, we keep the
logarithmic coefficients of the two-loop contribution in full color
and consequently, evaluate the finite remainder at the scale s12,
such that the logarithmic terms in Eq. (4) match exactly those
coming from the real radiation. However, we checked explicitly
that using a different scale, such as HT (7), leads to effects of
Oð1%Þ at the cross section level, which are contained within the
quoted scale uncertainties.
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finite-field reconstruction methods within the FINITEFLOW

framework [41,42]. We expressed them in terms of the
special functions of Ref. [26] and rational coefficients, which
we simplified usingMULTIVARIATEAPART [43] and SINGULAR

[44]. We further implemented these amplitudes in C++ for a
fast numerical evaluation. We evaluate the special functions
using the PENTAGONFUNCTIONS++ library [26]. Our analytic
result is validated numerically against the Wþ 4 quarks
helicity amplitudes derived in Ref. [31] at the level of the
helicity-summed squared finite remainder, obtained after
renormalization and subtraction of IR singularities. We note
that our calculation employs significantly different method-
ologies with respect to Ref. [31]. We work with squared
matrix elements and carried out the calculation in the CDR
scheme employing the Larin prescription for the treatment of
γ5, while Ref. [31] derives the helicity amplitudes in the
t’Hooft-Veltman scheme. The agreement between the two
independent calculations not only provides a strong and
nontrivial cross check, but it is also important to practically
demonstrate the consistency of different schemes, particu-
larly in treating the γ5. The complete analytic expression is
included in Supplemental Material [45].

III. PHENOMENOLOGY

We present numerical results for the LHC center-of-mass
energy

ffiffiffi
s

p ¼ 8 TeV, focusing on the Wþð→lþνÞbb̄ final
state. The Standard Model input parameters are

MW ¼ 80.351972 GeV; ΓW ¼ 2.0842989 GeV;

MZ ¼ 91.153481 GeV; ΓZ ¼ 2.4942665 GeV;

GF ¼ 1.16638 × 10−5 GeV−2;

from which the electromagnetic coupling α can be derived
within the Gμ scheme. We assume a diagonal CKM matrix
and employ the =NNPDF31_as_0118= PDF sets [46]
with its perturbative ordermatching that of the corresponding
calculations. Sincewe treat the bottom quark asmassless, we
need a flavor-sensitive jet algorithm todefine the flavored jets
in an infrared-safe way. The partons are clustered into a jet
using the flavor-kT jet algorithm [47] with R ¼ 0.5. The jets
(including b jets) and charged leptons are required to fulfill
the following event-selection criteria [6]:

pT;l > 30 GeV; jηlj < 2.1;

pT;j > 25 GeV; jηjj < 2.4:

The central values of renormalization and factorization
scales are set to be equal, μR ¼ μF ¼ HT, with

HT ¼ ETðlνÞ þ pTðb1Þ þ pTðb2Þ; ð7Þ
where b1, b2 are correspondingly the hardest and sec-
ond hardest b-flavored (either b or b̄) jets. ETðlνÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðlνÞ þ p2

TðlνÞ
p

is the transverse energy of the off-shell

W boson, with MðlνÞ and pTðlνÞ being its invariant mass
and transverse momentum, respectively. Unless otherwise
specified, the scale uncertainties are obtained using the
seven-point scale variation, where μR and μF are varied by
a factor of 2 aroundHT,while satisfying the1=2≤ μR=μF ≤ 2
constraint.
Based on the number of jets required in the final states,

we can define the following configurations for the NLO and
NNLO predictions:

(i) inclusive (inc): at least 2b jets;
(ii) exclusive (exc): exactly 2b jets and no other jets.

The naïve scale variation of the exclusive prediction
generally leads to an underestimation of the scale uncer-
tainties [48]. For processes with a large K factor, however,
the standard scale variation prescription may be insufficient
to capture the missing higher-order effects also in the
inclusive calculation. This indeed applies to the Wbb̄
process under consideration. Hence, for the exclusive
configuration, we use also the uncorrelated prescription
of Ref. [48], in addition to the seven-point scale variation.
To obtain the uncorrelated scale uncertainty, we first write
the exlusive cross section as follows (we use the NNLO
case as an example):

σNNLO;exc ¼ σNNLO;inc − σNLOþ1j;inc; ð8Þ

where σNNLO;exc (σNNLO;inc) is the NNLO Wbb̄ exclusive
(inclusive) cross section, while σNLOþ1j;inc is the Wbb̄j
inclusive NLO cross section. The jet-veto value follows the
jet definition specified above. The uncorrelated scale
uncertainty is then obtained by adding the individually
scale-varied cross sections in quadrature

ΔσNNLO;exc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔσNNLO;incÞ2 þ ðΔσNLOþ1j;incÞ2

q
; ð9Þ

where ΔσNNLO;inc (ΔσNLOþ1j;inc) is the scale uncertainty of
the inclusive NNLO Wbb̄ (NLO Wbb̄j) cross section
computed using the standard seven-point scale variation.
In Table I, we present numerical results for the fiducial

cross section for the inclusive and exclusive configurations
at different perturbative orders. As observed in the previous
studies [9,14], the NLO QCD corrections are large in the
case of the inclusive phase space. In our calculation, this
amounts to about 70% corrections. The jet veto in the
exclusive selection reduces the NLO QCD corrections to a
moderate 17%. A similar observation holds at NNLO
QCD, where we find a positive correction of 23% in the
inclusive and 6.7% in the exclusive case. The NNLO QCD
corrections are smaller than the NLO QCD corrections in
both cases indicating perturbative convergence. In that
respect, by using the scale dependence as the canonical
way to estimate the uncertainties from missing higher
orders, we conclude that theoretical uncertainty reduces
with inclusion of higher order terms. However, for the
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inclusive phase space, the NLO corrections are signifi-
cantly larger than the LO scale dependence. The situation at
NNLO QCD slightly improves, but the corrections are still
only barely covered by the NLO scale band. For the
exclusive case, the NLO corrections are within the LO
band; however, the estimated uncertainty from the seven-
point scale variation is comparatively small, only 5%. The
NNLO corrections here are also smaller but are well outside
the NLO scale uncertainty, indicating that the NLO scale
dependence is underestimated. This motivates the alter-
native prescription of Ref. [48] to estimate theory uncer-
tainties, taking into account the jet veto effect. The
uncertainties resulting from this prescription are shown
in the parentheses and are significantly larger. The higher-
order corrections fall well within the uncertainty bands,
implying that this method is more reliable, but also quite
conservative.
The double virtual corrections, which have been

included only in the leading color approximation, deserve
an additional comment. For the inclusive setup, we find that
the contribution of Eq. (4) to the cross section is about 5%.
In the exclusive case, the Born configurations are unaf-
fected by the jet veto, but a fraction of the hard radiative
corrections are suppressed. This leads to an enhancement of
the sensitivity to the double virtual matrix element, which
contributes ∼10% of the fiducial cross section in this case.
The naïve expectation for the subleading color effects is
that they are about 10% of the double virtual matrix
element, implying that potential corrections to the fiducial
cross section would be about 1% (0.5%) for the exclusive
(inclusive) case.
Turning to the differential distributions, we present the

transverse momentum of the charged lepton, pT;l, in Fig. 1,
for the inclusive, as well as exclusive, phase space
selection. Focusing on the perturbative convergence of
the spectrum, we can draw similar conclusions as for the
fiducial cross section. In the inclusive case, we find sizeable
NNLO QCD corrections of ∼20%, which are barely

contained in the NLO uncertainty. The corrections have
a tendency to increase at higher energies, being the largest
around pT;l ≈ 100 GeV, similarly to the NLO corrections.
For the exclusive phase space, we find positive corrections
of about 7% for low pT;l, and negative corrections of order
∼10% for pT;l > 100 GeV. Again, we observe that the
decorrelated prescription to estimate the uncertainty is
more reliable.
The next two distributions characterize the bb̄ system. In

Fig. 2, we show the transverse momentum of the bb̄
system, pT;bb̄. In terms of perturbative corrections, we find
a similar trend as for the charged lepton transverse
momentum. Additionally, the absolute distributions high-
light that the inclusive spectrum is, in general, harder than
the exclusive case, confirming the intuition that the jet veto
suppresses additional large transverse momentum jets. In
the case of exclusive phase space, this differential distri-
bution can be understood as a proxy for the W transverse
momentum.
The distribution of the invariant mass of the bb̄ system,

Mbb̄, is shown in Fig. 3. This observable is interesting when
considering the QCD process Wbb̄ as background to the

TABLE I. Fiducial cross sections for pp → Wþð→lþνÞbb̄
production at the LHC with

ffiffiffi
s

p ¼ 8 TeV at LO, NLO and
NNLO for both inclusive (inc) and exclusive (exc) final states.
The corresponding NNLO and NLO K factors are defined as
KNNLO ¼ σNNLO=σNLO and KNLO ¼ σNLO=σLO. The statistical
errors are shown for the central predictions. Scale uncertainties
for the exclusive predictions are provided using both the standard
seven-point scale variation and uncorrelated prescription of
Ref. [48]. The latter is quoted inside parentheses in the error
estimates.

Inclusive [fb] Kinc Exclusive [fb] Kexc

σLO 213.2ð1Þþ21.4%
−16.1% � � � 213.2ð1Þþ21.4%

−16.1% � � �
σNLO 362.0ð6Þþ13.7%

−11.4% 1.7 249.8ð4Þþ3.9ðþ41Þ%
−6.0ð−28Þ% 1.17

σNNLO 445ð5Þþ6.7%
−7.0% 1.23 267ð3Þþ1.8ðþ16Þ%

−2.5ð−16Þ% 1.067

FIG. 1. The charged lepton’s transverse momentum distribu-
tion. The upper panel shows the absolute predictions for the
inclusive and exclusive selection at different perturbative orders.
The middle panel shows the inclusive cross sections as a ratio
with respect to the central NLO prediction, with the colored
bands indicating the seven-point scale variation. The lower panel
shows the same ratio for the exclusive configuration. Here, the
colored bands correspond to the decorrelated scale variation, and
the hashed bands to the standard 7-point variation. The vertical
bars indicate the statistical uncertainty.
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Higgs-strahlung process WHð→bb̄Þ. Around the Higgs
mass, we can see that the NNLO QCD corrections are
about 20% in the inclusive selection and only ∼5% in
the exclusive case. By comparing the two prescriptions

for estimating the uncertainty, we see that around the
Higgs mass, the seven-point prescription implies a two
to three times smaller uncertainty than the decorrelated
method.
Finally, we would like to comment on the fluctuations

between bins in the presented differential observables.
We checked that these fluctuations are indeed compatible
with those expected from Monte Carlo integration to
exclude numerical instabilities as their source. The con-
tributions from double real radiation diagrams have the
largest statistical uncertainty and also required the largest
computational effort. The reader is invited to find our
results for other observables in Supplemental Material [45]
to this publication.

IV. CONCLUSIONS

We presented fiducial and differential cross sections for
the Wbb̄ process at the LHC with 8 TeV center-of-mass
energy. This includes the computation of the double virtual
amplitudes in the leading color approximation with incor-
porated decay of the W boson.
We addressed the observation of large NLO QCD

corrections in this process and found that the NNLO
QCD corrections are significantly smaller. We observe a
significant reduction of the scale dependence, which indi-
cates perturbative convergence. We discussed the behavior
of the jet-vetoed cross section, which exhibits much smaller
corrections but suffers from accidental cancellations in the
scale dependence, rendering the theory uncertainty esti-
mates from canonical scale variation unreliable. At NNLO
accuracy, we validated the alternative prescription of
Ref. [48] for estimating the theory uncertainties.
This work constitutes the first NNLO QCD calculation

for a 2 → 3 process including a massive final state particle.
Studying this class of processes at such accuracy is of the
utmost importance for the physics programme of the LHC.
However, the steep requirements for amplitudes involving
many loops and high multiplicities used to put them beyond
the reach of computational capabilities. Our results dem-
onstrate that the door of precision phenomenology is finally
open for these processes as well.
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