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QCD jets provide one of the best avenues to extract information about the quark-gluon plasma
produced in the aftermath of ultrarelativistic heavy-ion collisions. The structure of jets, determined by
multiparticle quantum interference, is hard to tackle using perturbative methods. When jets evolve in a
QCD medium this interference pattern is modified, adding another layer of complexity. By taking
advantage of recent developments in quantum technologies, such effects might be better understood via
direct quantum simulation of jet evolution. In this work, we introduce a precursor to such simulations.
Based on the light-front Hamiltonian formalism, we construct a digital quantum circuit that tracks the
evolution of a single hard probe in the presence of a stochastic color background. In terms of the jet
quenching parameter q̂, the results obtained using classical simulators of ideal quantum computers agree
with known analytical results. With this study, we hope to provide a baseline for future in-medium jet
physics studies using quantum computers.
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I. INTRODUCTION

In recent years, there has been an increasing interest
in applying novel developments in quantum information
science to other scientific areas, in particular high-
energy physics (HEP), where many directions have been
explored [1].
Some of these novel proposals to use quantum tech-

nologies have ranged from the simulation of scalar [2–11],
fermionic [12–14] and gauge field theories [15–27] to
thermal systems [28,29] and the thermalization of
nonequilibrium systems [30–32]. Beside field theory based
simulations, they have also been applied to specific topics
such as nuclear structure [33–38], neutrino oscillation [39],
and string theory [40]. Concerning collider oriented
physics, these technologies have, for example, been used
to simulate hard probes like heavy flavors [41] and

jets [42,43], optimize parton showers [44–46] and jet
clustering algorithms [47–49] as well as in the detection
of quantum anomalies [50–52] and the study of spin
correlations at high energies [53]. Although such applica-
tions are still highly constrained by the performance of
current quantum computers [54], even the (re)formulation
of problems in a language accessible to these machines
turns out to be highly nontrivial. Given the expected
melioration of quantum technologies in the future [55,56],
the current conceptual work and small-scale implementa-
tions will prove crucial for the success of future large-scale
applications.
One of the most important experimental programs being

pursued in HEP is the ultrarelativistic collision of heavy
ions [57]. In the aftermath of such collisions, one can
observe the production of the quark-gluon plasma, a state
of matter expected to have existed in the first few
microseconds of the Universe. Experimentally, the proper-
ties of such plasmas can only be indirectly extracted by
studying the yield and properties of a limited number of
hard probes self-generated in each collision [58,59]. One of
the most successful and widely studied probes are QCD
jets. Due to their multiparticle and multiscale structure, jets
are by nature complicated objects to understand, even in a
vacuum environment. When immersed in a dense back-
ground, their properties can be drastically modified and the
success of the heavy-ion physics program requires a clear
understanding of such effects. The collection of medium
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induced jet modifications is colloquially referred to as jet
quenching.
In the traditional picture of jet quenching, most jets’

modifications result from the interaction with a nearly
thermalized background, which admits a classical descrip-
tion. On the other hand, jets are quantum objects, so
studying them requires quantum field theory techniques.
This dichotomy between the medium and jets’ nature
motivated a hybrid quantum strategy to study jet evolution
in the medium [42] (see also Ref. [8]). The focus was
put on understanding the diffusion of a single parton
(i.e., jet constituent) due to the multiple interactions with
the background, but ignoring the production of induced
radiation.
In this work, we implement these ideas to simulate

medium-induced jet broadening on a quantum computer.
Our formulation is based on a nonperturbative light-front
Hamiltonian approach—the time-dependent basis light-
front quantization (tBLFQ) [60–62]. We simulate the real
time evolution of the jet in the medium at the amplitude
level, extracting physical observables directly from the
quantum state. A similar time-dependent quantum algo-
rithm has been applied to solve the nuclear inelastic
scatterings [63]. Although the current problem is easily
solved using analytical techniques (as detailed below) our
quantum implementation provides a baseline for future
simulations including, for example, multigluon produc-
tion. Such higher-order effects are already hard to com-
pletely tackle using traditional approaches, and quantum
technologies, with the anticipation of quantum speedup,
might find room to prosper. We perform the quantum
simulations using the IBM quantum framework QISKIT

[64]. From the final quantum state, we extract the trans-
verse momentum distribution and the associated jet
quenching coefficient, q̂, which plays a central role in
phenomenology.
This manuscript is organized as follows. In Sec. II, we

review the formulation of single parton evolution in the
presence of a dense medium and we introduce the quantum
simulation algorithm. Section III provides a detailed
description on how to formulate real-time evolution of a
single parton in the medium using a digital quantum
computer. In Sec. IV, we present numerical results of this
approach via available quantum simulators provided by
QISKIT. A summary of the results and future avenues of
research are discussed in Sec. V.

II. THEORETICAL SETUP

In this section, we first review the theoretical formulation
of a high-energy parton evolving through a medium, using
a nonperturbative light-front Hamiltonian approach. The
presentation closely follows our previous works [42,61].
We then outline the framework of the quantum simulation
algorithm [65,66], while leaving the details of our imple-
mentation to the next section.

A. Parton evolution in the Hamiltonian formalism

We consider the propagation of a highly energetic mass-
less parton with light cone momentum p ¼ ðpþ; p; p−Þ,
moving close to the light cone along the xþ direction (see
Appendix A for conventions of coordinates in this paper).
The evolution of this hard probe occurs in the presence of a
dense medium, which can be taken to be boosted along the
x− direction. The medium is assumed to have a finite length
Lη along xþ. This process is illustrated in Fig. 1.
We treat the probe as a completely quantum object,

whereas the medium, due to its large number of degrees of
freedom, is described in this picture by a classical stochas-
tic field AμðxÞ. Notice that this approximation should
be valid to characterize the quark-gluon plasma produced
after high-energy heavy-ion collisions at RHIC or the
LHC1 where jet quenching effects have been widely
observed [67,68].
We consider the quark jet2 in the leading Fock sector,

and the Hamiltonian (denoted as P̂−) can be obtained
following the canonical light-front quantization formalism
[61,69,70]. It can be split into two different terms

P̂− ≡ K̂ þ V̂: ð1Þ

FIG. 1. An illustration of the jet evolution in the presence of a
highly boosted background plasma described by a classical
field Aμ

a.

1Though in this work we are interested in the evolution of jets
in the quark-gluon plasma, the same formulation also applies to
jet evolution in cold nuclear matter.

2The extension of our quantum approach to the case of gluon
jets is straightforward. It would however require more quantum
resources.
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In the absence of the background medium, the real-time
evolution of the jet is solely controlled by the kinetic energy
operator [69,70]

K̂ ¼ p̂2

2pþ ; ð2Þ

corresponding to the spatial quantum diffusion of the
probe at a fixed light cone energy pþ.3 In the presence
of a medium, the interaction term also comes into play,

V̂ ¼ gÂ−
a Ta; ð3Þ

with Ta denoting the color generators in the probe’s color
representation. At high energies, where pþ ≫ p⊥ > p−,
the probe is highly localized around x− ¼ 0 and one
can simplify the field’s spacetime dependence to be
AμðxÞ ≈ Aμðxþ; xÞ. Additionally, the structure describing
local parton-medium interactions, Ψ̄ðp − qÞγμAa

μðqÞ×
TaΨðpÞ, with q the exchanged momentum with the
medium, only receives contributions from the μ ¼ þ
component [69,71–73], up to power suppressed terms in
the jet energy pþ. Therefore, the probe evolution in the
medium is only sensitive to the component A−, as
in Eq. (3).
In modeling the statistics of the stochastic background

field, we take the simplest and most widely used approxi-
mation, which assumes that the plasma’s color charges are
completely uncorrelated and have white-noise statistics.
This corresponds to an extended version of the McLerran-
Venugopalan (MV) model [74,75], where the field satisfies
the reduced classical Yang-Mills equation,4

ðm2
g −∇2⊥ÞA−

a ðxþ; xÞ ¼ ρaðxþ; xÞ; ð4Þ

with mg an effective gluon mass introduced to regularize
the infrared (IR) divergence of the field and ensuring the
color neutrality of the source distribution [76]. The charge
density ρa describes the energetic degrees of freedom
generating the field, and its only nontrivial correlator reads

⟪ρaðxþ; xÞρbðyþ; yÞ⟫ ¼ g2μ2ðxÞδabδð2Þðx − yÞδðxþ − yþÞ:
ð5Þ

Here and throughout this paper, we use ⟪ � � �⟫ to denote the
average over medium configurations. The quantity μ can
be understood as the density of scattering centers in the

medium, which dictates the strength of the parton-medium
interaction. The resulting interaction between the medium
and the probe is local in position space.
The time evolution of the probe, in the Schrödinger

picture, is controlled by the time evolution operatorU, such
that the

jψLη
i ¼ UðLη; 0Þjψ0i
≡ T þe

−i
R

Lη
0

dxþP−ðxþÞjψ0i; ð6Þ

where T þ is the light-front time-ordering operator, and
jψxþi the quantum state of the jet at time xþ. From here, one
can see that the problem we are solving is equivalent to a
ð2þ 1Þ-dimensional quantum mechanical problem, with
the associated Hilbert space being that of a single particle
in a two-dimensional (transverse) space. We solve Eq. (6)
through a nonperturbative treatment, decomposing the
time-evolution operator as a sequence of small steps in
the light-front time xþ

UðLη; 0Þ ¼
YNt

k¼1

Uðxþk ; xþk−1Þ; ð7Þ

with the intermediate times defined as xþk ¼ kLη=Nt, and
Nt the total number of time segments. In this way, the
smallness of the step size allows to approximate the
exact evolution operator by a product formula within
each step, with the full evolution in whole being non-
perturbative. By doing so, we simulate the evolution of a
quantum state at amplitude level. We will address the
details of the implementation of the quantum circuit in the
next section.
With the quantum state obtained from the simulation,

one can directly study any given observable Ô from
its expectation value hÔðxþÞi≡ hψxþjÔjψxþi. For any
observable Ô, the field in a single simulation is generated
from a stochastic source configuration, i.e., ρa satisfying
Eq. (5), and one should take the configuration average at
the observable level,

⟪hÔi⟫ ¼ lim
n→∞

1
n

Xn
i¼1

hÔii; ð8Þ

where hÔii denotes the expectation value for the ith field
configuration. In reality, one can think of running the
simulation multiple times with different field configura-
tions as having multiple events in an actual collision
experiment, with field fluctuations corresponding to the
randomness of the medium in each event.
In this work we will be interested in the case where

Ô ¼ p̂2. The medium averaged expectation value of this
observable can be related to the jet quenching parameter via

3We write the Hamiltonian in the operator form, and its full
expression, in terms of field operators, can be found in Ref. [61].

4We consider the MV model since it is widely used and it also
allows for a simple comparison to analytical results. Nonetheless,
our quantum implementation is more general and others models
could be considered.

MEDIUM INDUCED JET BROADENING IN A QUANTUM … PHYS. REV. D 106, 074013 (2022)

074013-3



q̂≡ ⟪hp̂2ðLηÞi⟫ − ⟪hp̂2ð0Þi⟫
Lη

; ð9Þ

corresponding to the average squared transverse momen-
tum acquired per unit length.5 This coefficient is respon-
sible for describing both the diffusion of particles in the
medium and radiative energy loss [71].

B. Quantum simulation algorithm

The quantum simulation algorithm, as pioneered by
Feynman [65], allows access to the real-time dynamics
of a target quantum system by simulating them in another
controllable quantum system. Although classical analogous
of such an approach can be implemented, they entail a
linear growth in hardware and simulation time with the
system size. In contrast, using a quantum computer, the
computational resources and simulation time are expected
to only scale logarithmically. This so-called “quantum
speed up” stems from the possibility of being able to
explore the quantum nature of such devices, although its
realization is problem-dependent.
For the current problem of a bare quark evolving in a

dense medium, using the quantum simulation algorithm is
less likely to bring a significant computational enhance-
ment compared to a classical simulation, especially when
the problem size is relatively small. However, to extend the
current picture to allow for gluon emissions, which we will
address in the forthcoming work, the respective quantum
algorithm will enable an exponential speedup compared to
the classical counterpart.
Following Sec. II A, the evolution of the probe in the

medium can be mapped to a time-dependent quantum
mechanical problem. Thus, in principle, it can be solved
using a digital quantum computer [81], which can be
ideally thought as a collection of 1=2-spins (qubits) that
interact with each other via a system Hamiltonian. Such
devices can be described using the quantum circuit for-
malism, where the interactions between different qubits can
be decomposed in terms of basic unitary operations named
quantum gates. The digital quantum simulation algorithm
can be summarized in five generic steps (see also Chapter 4
of Ref. [81]):
(1) Input: description of the target quantum system in

terms of the system Hamiltonian and underlying
Hilbert space. If the original system lives in a
infinitely large Hilbert space, an adequate discre-
tized version must be provided.6

(2) Encoding: mapping the degrees of freedom of the
problem to qubits on the quantum computer.

(3) Initial state preparation: preparing the computa-
tional initial state jψ0i from a fiducial state native to
the computer.

(4) Time evolution: building the series of quantum gates
representing the evolution operator UðLη; 0Þ.

(5) Measurement: extracting information from the final
quantum state jψLη

i.

III. QUBITIZATION OF IN-MEDIUM
JET EVOLUTION

Following the procedure outlined in Sec. II, we now
implement the quantum algorithm for the problem of
interest—the evolution of a quantum probe through the
medium. We address four key elements of the implemen-
tation in this section.

A. Basis encoding

We start by formulating the problem of in-medium
single parton evolution in a lattice, such that the underlying
Hilbert space becomes finite and can be mapped to the
qubits in the quantum computer. We first build up the basis
for the spatial part and then extend it by adding a color
phase space. In this paper, we consider that the probe lives
in either the U(1) or SU(2) fundamental color representa-
tions.7 For the U(1) case, it is sufficient to consider the
spatial phase space. Choosing an encoding scheme is in
the same spirit as selecting a basis representation in the
classical counterpart using the tBLFQ approach [60,61].
In order to discretize the dynamics of the probe we

introduce a two-dimensional transverse lattice, with a span
of 2L⊥ and a number of 2N⊥ sites per dimension such that
the lattice spacing is a⊥ ¼ L⊥=N⊥. We impose periodic
boundary conditions to the lattice. Any position state vector
jxi ¼ jx1; x2i describing the location of the probe can be
mapped to a lattice vector jni ¼ jn1; n2i, such that
x ¼ na⊥. The reciprocal lattice corresponding to the trans-
verse momentum lattice has spacing b⊥ ¼ 2π=ð2L⊥Þ.
Similarly to the position space lattice, we can map a
momentum state vector jki to a momentum space lattice
vector jqi ¼ jq1; q2i, such that k ¼ qb⊥. The two recip-
rocal basis vectors are related through an inverse Fourier
transformation (see also Appendix A),

jni ¼ 1

2N⊥

X
q

ei2πq·n=ð2N⊥Þjqi: ð10Þ

5The definition of q̂ is not unique and dependent on the
particular regularization used for the underlying ultraviolet
diverge. We refer to reader to Refs. [77–80] for a more detailed
discussion on the definition of q̂.

6In our case, the inputs regard the Hamiltonian, which we have
detailed in Sec. II A.

7For QCD the relevant color group is SU(3). The SU(2) and
SU(3) groups are both non-Abelian, and for the problem of
interest we show that the results between the two groups only
differ by a global Casimir color factor. Nonetheless, and as
detailed in Ref. [42], the implementation of the quantum
algorithm for the SU(3) case is technically more complicated.
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It follows that for any quantum state jψi describing the jet,
there is a corresponding discretized version on the lattice
which can be written in terms of a finite superposition of
lattice state vectors fjnig (or equivalently fjqig).
Due to the periodic boundary conditions imposed on

the lattice, two grid points which differ by an integer
number of periods must be identified. As a result, for any
operator, we have

Ôjn1; n2i ¼ Ôjn1 þ ið2N⊥Þ; n2 þ jð2N⊥Þi; ð11Þ

with i; j ¼ 0;�1;�2;…, and likewise on the momentum
lattice. To extract the physical information from the
prepared quantum states, it is convenient to use the
fundamental Brillouin zone where ni; qi ∈ f−N⊥;
−N⊥ þ 1;…; N⊥ − 1g, with i ¼ 1, 2. On the other hand,
when performing the quantum simulations, it is more
advantageous to go to the Brillouin zone where ni; qi ∈
f0; 1;…; 2N⊥ − 1g, with i ¼ 1, 2. The advantage of this
choice is two-folded. First, using non-negative integers, we
can directly match each number in its decimal form to a
non-negative binary representation. Each binary digit can
be thought of as a spin-up state (j0i) or spin-down state
(j1i). As an example, we can represent the state j1; 3i (for
either jni or jqi basis) as

j1; 3i → j01; 11i → j0i ⊗ j1i ⊗ j1i ⊗ j1i
→ j↑i ⊗ j↓i ⊗ j↓i ⊗ j↓i; ð12Þ

using four spins (qubits). Second, having both jni and jqi
on the fundamental Brillouin zone, we can convert between
the two according to Eq. (10) using the standard quantum
Fourier transform (qFT) algorithm [81]. Using other
Brillouin zones would require a modified version of the
standard qFTalgorithm [6], incurring in extra quantum gate
operations. Therefore, we formulate the simulation algo-
rithm in the non-negative Brillouin zone, and interpret
physical observables on the fundamental zone using the
periodicity of the lattice as in Eq. (11).
Having encoded the transverse state fjn=pig to qubits,

we complete the basis encoding for the U(1) system. For
SU(2), we need to further encode the color sector of
the jet state. Since in the fundamental representation of
SU(2) there are only two color states, the color sector
can be described by a single qubit, where each classical
spin state corresponds to a different color state. As
such, the encoded SU(2) basis is fjn=pig ⊗ jci with
c ¼ 0, 1 denoting the color state. For the encoding of
the color sector with a general SUðNcÞ group, we refer
to Ref. [42].
The number of qubits required to encode the states per

transverse dimension is determined by

nQ ¼ log2 2N⊥: ð13Þ

Therefore, we need a total of 2nQ qubits to account for the
two-dimensional lattice as in the U(1) case, and 2nQ þ 1 in
the SU(2) case, with the extra qubit tracking the color state.

B. Gate encoding and time evolution

Having discussed the discretization of the system in
terms of qubits, let us now focus on the construction of the
time evolution operator U in terms of quantum gates.
To this purpose, we implement the simplest product

formula decomposition, splitting the evolution into
Nt ≡ Lη=δxþ steps of duration δxþ; see Eq. (7). For a
truly evolving background, the Hamiltonian P̂− can be time
dependent if, for example, the medium becomes more
dilute with time. In this work, we do not consider such
scenarios and assume that the medium profile is constant
in xþ. However, since we are dealing with a stochastic
background, there is an emergent xþ time dependence in
the Hamiltonian. To numerically simulate this feature, we
slice the medium into Nη layers along xþ [82,83], such that
the time duration for each layer is τ≡ Lη=Nη. The medium
at different time layers is generated from independently
sampled sources, thus ensuring that the correlators in
Eq. (5) are satisfied within a resolution window of τ in
the xþ dimension.
Within each small step δxþ, the Hamiltonian can be

approximated as being constant in xþ. Implementing a first-
order Trotter decomposition in each step, the time evolution
for each discretized time step, Uðxþkþ1; x

þ
k Þ, is approxi-

mated as [42]

Uðxþk þ δxþ; xþk Þ ≈UKðδxþÞUAðδxþ; xþk Þ

≡ exp

�
−iδxþ

p̂2

2pþ

�
exp f−igδxþÂ−

a ðxþk ÞTag; ð14Þ

with k ¼ 1; 2;…; Nt. Here, we denote the evolution oper-
ator according to the kinetic energy and the medium
interaction, for a small time duration δxþ, as UKðδxþÞ
and UAðδxþ; xþk Þ, respectively. This formula gets correc-
tions OððδxþÞ2Þ, and the full evolution UðLη; 0Þ as a
product is exact in the limit Nt → ∞. Note that with this
treatment, the duration of each time step δxþ cannot be
larger than τ.
Noting that the p̂2 and Â−

a operators are separately
diagonal in the transverse momentum and position spaces,
we implement Eq. (14) by first applying UKðδxþÞ in the
momentum basis fjqig, and then UAðδxþ; xþk Þ in the
coordinate basis fjnig, using a Fourier transform in order
to change basis fjqig → fjnig. After UA acts on the state,
we perform the transformation fjnig → fjqig, and iterate
the algorithm. In what follows, we detail the quantum gate
encoding for the two parts of the evolution accordingly.
A straightforward way of implementing UKðδxþÞ is to

first decompose the p̂2 operator as a sum of strings of Pauli
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operators, and then time evolve the Paulis, e.g., with the
PauliEvolutionGate class in QISKIT, or making a use
of further product formula decompositions [81]. However,
as the dimension of the underlying lattice grows, such a
decomposition becomes in general inefficient, since the
number of strings and their powers increase linearly with
the system size. Then, a potentially more efficient imple-
mentation consists in using a variation of the phase kick-
back algorithm [42,81,84,85]. Such an approach could in
principle shorten the circuit depth, however, it would
require using arithmetic gates to obtain the value of q2

from the q-encoded qubit and extra ancilla qubits.
In this work, we perform the quantum simulations

mainly using QISKIT’s classical backends for ideal quantum
computers, requiring a small number of qubits. Therefore,
it is more favorable to use the direct exponentiation
approach, since it requires no extra gates or qubits, unlike
the above mentioned strategies. Also, the circuit depth
using this approach is comparable to the other two
strategies for the lattices (N⊥ ¼ 16, 32) being considered.
The other approaches only become competitive for larger
size problems.
Our implementation of UAðδxþ; xþk Þ takes the classical

values of A−
a ðxþk ; xÞ as an input [42]. As introduced in

Sec. II A, these amplitudes carry configuration-wise
fluctuations, and are generated beforehand in a classical
computer following the procedure formulated in
Refs. [61,62] (see also Appendix B). This procedure
introduces a classical cost when compiling the full algo-
rithm. However, for a wide range of parameters, this
classical output can be generated in an economical fashion
using standard personal computers. Provided the values of
the medium, the simulation of UAðδxþ; xþÞ itself is purely
quantum mechanical. Let us now detail its implementation
for the U(1) and the SU(2) gauge groups.
In the case of a U(1) medium, the evolution operator is

diagonal in the full basis space fjnig. Thus, the operator
UAðδxþ; xþÞ can be implemented using the phase kick-
back approach discussed above in the context of UK , with
the same shortcomings (extra ancilla qubits and auxiliary
operations). An alternative to this method is to write a
generic diagonal operator in terms of smaller gates, where
the field values would be direct inputs to the algorithm.
However, such an approach would require the application
of a number of gates scaling linearly with the system size
[86,87]. A more feasible and efficient approach, general-
izing the ideas of Refs. [84,85], consists in further discretiz-
ing the field values. With such an extra discretization step,
it has been shown [88] that a diagonal operator can be
implemented efficiently at a cost of extra ancilla qubits and
applications of qFTs. In carrying the quantum simulations,
we take a small number of qubits, and we find it most
efficient to implement UA for the U(1) case by direct
exponentiation of field value matrix. In QISKIT, the equiv-
alent gate is constructed following the quantum Shannon

decomposition algorithm [89] using the native OPERATOR

class. As a result, when transpiling UA to a real device,
the length of the circuit becomes much longer than the
maximal coherence time of any available quantum
computer.
Following the gate encoding of UAðδxþ; xþÞ in the U(1)

case, we make the implementation for SU(2) by adding the
color sector. The respective operator is 2 × 2 block diago-
nal in the color-transverse coordinate basis, as formulated
in Sec. III A.
We implement UA in the SU(2) scenario by also using

direct exponentiation, which results in an exact implemen-
tation in each time step. Similar to the previous operator, one
could implement similar strategies to the ones discussed
above for a more efficient approximate implementation of
the evolution operator. Here we want to highlight a particu-
larly interesting modular approach, which splits position/
momentum and color space, allowing to reuse the U(1)
implementation. This is achieved by doing a product
decomposition of UA, such that each term is controlled
by a single color matrix. Then the evolution in position space
is captured the exact U(1) evolution matrix, with a control
based on the color qubit; see Ref. [42] for a more detailed
discussion. Despite the theoretical advantages of having
modularized quantum circuits and reduced number of qubits
in the evolution, this selection operation in practice can be
expensive by introducing a large number of single qubit
controls in the circuit. We found that the overall simulation
time actually increases dramatically for a reasonable lattice
size of N⊥ ¼ 16 compared to the exact implementation.
Therefore, all the simulation results we present in this work
use direct matrix exponentiation using the native OPERATOR

class, which is optimal given the scale of our problem.

C. Initial state preparation

Using the basis encoding detailed in Sec. III A, one can,
in principle, prepare any initial state jψ0i in terms of
superposition of basis states, though the preparation of an
arbitrary initial state might not always be achieved effi-
ciently in practice. Since we are interested in studying the
jet evolution in momentum space neglecting initial state
effects, we take jψ0i to be the zero transverse momentum
state, i.e., jq ¼ 0i. At the quantum circuit level, such a state
corresponds to all qubits being in the j0i state. Then, for the
color sector in the SU(2) case, we act on the color qubit
with a Hadamard gate [81], thereby generating a fully
balanced superposition color state. It should be noted that a
Gaussian initial state is also a common choice to study jet
broadening [90], and can be prepared using known quan-
tum algorithms [91,92].

D. Measurement

The last key element in our quantum algorithm is the
measurement, where we extract the information about the
transverse momentum distribution from the final quantum
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state jψLη
i. At the end of each quantum simulation, the

prepared quantum state is measured, collapsing to a momen-
tum eigenstate. By performing multiple measurements
(shots), we are able to reconstruct the distribution of the
jet state in momentum space. The required number of shots
would grow linearly with the system size if onemaintains the
desired measurement accuracy. Similarly, this projective
measurement approach would become more resource-
demanding if one wants to make a higher precision
measurement. Having reconstructed the underlying momen-
tum distribution, its expectation values can be computed
classically, from which the quenching parameter q̂, as
defined in Eq. (9), can be readily extracted.
Besides this approach to measuring the quantum state,

there are more efficient strategies to extract expectation
values of local operators without having to construct the
classical probability distribution function. However, these
strategies would, in general, lead to an increase in the
circuit length or require the usage of extra ancilla qubits.
Thus for the small circuits we construct, it is preferable just
to perform a large number of shots. Nevertheless, certain
strategies with their unique features are still worth noting
and could potentially become preferable once more power-
ful quantum devices are available in the future. In the
following, we lay out three further strategies to measure q̂.
The first strategy uses the so-called Hadamard test to

access the real and imaginary parts of operator expectations
value, and has been discussed in Ref. [42]. The second
alternative would be to consider the expectation value
hψLη

jp̂2jψLη
i, used in the definition of q̂ given in

Eq. (9). One could, for example, first prepare two states;
the final state jψLη

i ¼ UðLη; 0Þjψ0i and the state p̂2jψLη
i

in the quantum computer. Then, using a SWAP test (see
Ref. [93] and references therein), the contraction of these
two states gives access to q̂. However, p̂ is not an unitary
operator and its naive implementation in terms of quantum
gates is not possible. To solve this issue, one can either
rewrite p̂2 as a sum of Pauli strings or use more sophis-
ticated techniques that allow to implement Hermitian
operators under certain conditions [94,95]. Third and last,
another possible strategy that may be used to extract q̂ takes
advantage of the discretized form of the correlator in
Eq. (17) with classically computed Fourier transforms;
see Ref. [34] for further discussion.
As aforementioned, an efficient implementation of those

alternative strategies is nontrivial and would require extra
quantum resources or running time. With our method of
measuring q̂, an optimal choice at the current stage, we can
proceed and extract the necessary information from the
final state.

IV. QUANTUM SIMULATIONS AND RESULTS

In this section we study the quantum simulation results
for the evolution of a quark jet in a dense stochastic

medium, using the method formulated in the preceding
sections. The simulation accounts for both the quark
quantum diffusion and soft gluon interactions with the
medium as a static background field. We assume the
medium to be homogeneous (more precisely, both g2μ
and mg spatially constant) in the transverse plane, except in
Sec. IV C when we study the effect from an anisotropic
medium [90,96,97]. We perform the simulations using ideal
QASM simulators from QISKIT on both U(1) and SU(2)
media. With the simulation results, we study the effect of
quark-jet momentum broadening, in particular the quench-
ing parameter q̂ at different saturation scales Q2

s , as
discussed in Secs. IVA and IV B. Lastly, in Sec. IV D,
we examine the results from simulations with quantum
noise. For this purpose, we run the circuit using QASM
simulators with an underlying noise model and using a real
quantum IBM processor.
In the simulations, we take L⊥ ¼ 4.8 GeV−1 such that

the medium extends transversely about 2 fm. We fix the
strong coupling to g ¼ 1. The duration of the medium is
taken to be Lη ¼ 50 GeV−1 ¼ 9.87 fm, with the number of
layersNη ¼ 64, and the IR regulatormg ¼ 0.8 GeV, except
if mentioned otherwise. We take N⊥ ¼ 16, and the number
of qubits required in these simulations is therefore
2nQ ¼ 10 for the U(1) and 11 for the SU(2) case, according
to Eq. (13). For the charge density g2μ, which characterizes
the strength of the medium, we take four representative
values such that the saturation scale Q2

s defined as

Q2
s ≡ CF

g4μ2Lη

2π
; ð15Þ

is in the range of 5–35 GeV2. Here we introduce the
fundamental Casimir CF ≡ ðN2

c − 1Þ=ð2NcÞ for an SUðNcÞ
group, such that CF ¼ 3=4 for SU(2), and we take CF ¼ 1
for a U(1) gauge group. It should be noted that since the
transverse basis is discrete and finite, a pair of IR and UV
cutoffs exist naturally (see also Sec. III A). In determining
the values of the lattice spacing a⊥, we have taken into
account that lattice effects are mitigated and the relevant
physics is captured; see Appendix C for details.
Before presenting the simulation results, let us examine

the uncertainties associated to the output measurement. In
measuring an observable, an essential difference between
the quantum simulation and its classical counterpart is that
the former makes measurements on a quantum state,
whereas the latter operates on its obtained projected wave
function. Consequently, a large number of shots needs
to be taken to extract a single observable, as discussed in
Sec. III D. This statistical measurement of the quantum
circuit output is analogous to experimental measurements
of jets over multiple events. Accordingly, we quantify the
uncertainties from our quantum measurements as statistic
uncertainty. It should be noted that this uncertainty is
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different from the configuration fluctuations that arise from
the stochastic medium.
As a concrete example, we present a measurement of p̂2

by taking 819200 shots for each of five different medium
configurations, using N⊥ ¼ 32 and Q2

s ¼ 26.65 GeV2, in
Fig. 2. In the histogram, the height of each bin, Ni for
the ith bin, represents the number of counts for a shot with
p̂2 that falls into the corresponding interval. Since each shot
is independent, the probability distribution has a Poisson
form. We take its standard deviation, σSt;i ¼

ffiffiffiffiffi
Ni

p
, to be

the statistical uncertainty for each bin, denoted by the red
error bars in the figure. The configuration uncertainties,
indicated by the blue error bars in the figure, are

calculated as σρ;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

K¼5
I¼1 ðNI;i − N̄iÞ2=ðK − 1Þ

q
with

N̄i ¼
P

K
I¼1 NI;i=K, where the index I denotes the medium

configurations. We can see that with this number of shots,
the statistical uncertainty is negligible, with a bin-averaged
relative uncertainty of 1.2%, especially when compared to
the larger configuration uncertainties. In addition, for other
setups, we observe that the statistical uncertainty is neg-
ligible with 819,200 shots. In the simulation results that
follow, we take this number of shots for each measurement
and the plotted uncertainties are only from the medium
configuration fluctuations.

A. Momentum broadening

With the jet state obtained from the quantum simulation,
we are able to calculate the quenching parameter q̂ defined
in Eq. (9), as formulated in Sec. III D. We perform the
measurement by measuring all the qubits in the computer in
each run of the simulation, thus reconstructing the under-
lying distribution.
To have a baseline to compare our numerical results, we

first outline the analytical computation of the quenching

parameter. The analytical derivation of q̂ for a single quark
jet can be reduced to the computation of Wilson line
correlators, assuming the eikonal limit and that the medium
is homogeneous. Here, we briefly revisit the calculation in
the discretized basis introduced in Sect. III A. For that,
we first write Eq. (9) explicitly as

q̂ ¼ 1

Lη
⟪hψ0jU†ðLη; 0Þp̂2UðLη; 0Þjψ0⟫i; ð16Þ

where the initial state jψ0i describes a state with p ¼ 0, also
used in the simulations. In coordinate space, Eq. (16)
reduces to

q̂ ¼ 1

Lη

Z
x;y;k

e−ik·ðy−xÞk2⟪W†ðyÞWðxÞ⟫; ð17Þ

where W is a lightlike Wilson line along xþ

WðxÞ ¼ exp

�
−ig

Z
Lη

0

dxþA−ðxþ; xÞ
�
: ð18Þ

Notice that W is nothing but the time evolution operator
given by Eq. (6) in the exact eikonal limit, and it describes
the multiple-gluons exchanges between the jet probe and
the medium.8 Then taking the correlation relation Eq. (5),
Eq. (17) can be computed on the discrete transverse lattice,
and the result is

q̂ ¼ CFg4μ2

4π

�
log

�
1þ π2

a2⊥m2
g

�
−

1

1þ a2⊥m2
g=π2

�
; ð19Þ

where the Coulomb logarithm emerges due to the con-
tinuum UV divergence, here regulated by the ratio between
the largest momentum mode in the lattice, π=a⊥, and the
IR regulator mg.
Let us first consider the case of a U(1) homogeneous

medium. In Fig. 3 we show the extracted values of the
jet quenching parameter q̂ as a function of the saturation
scale Q2

s at selected values of 6.73, 13.24, 20.12, and
26.65 GeV2. We run the simulations on the basis of
N⊥¼16, such that the lattice spacing is a⊥¼0.3GeV−1.
We consider both the eikonal (pþ ¼ ∞) and subeikonal
(pþ ¼ 200 GeV) cases; the former are shown in red circles
while the latter are denoted by blue open triangles. Each
data point is averaged over five medium configurations, and
the error bars are calculated as the standard deviation. The
analytical result given in Eq. (19) is shown in the solid
black line for comparison.

Con gurations

1 2 3

4 5

Uncertainty

St, Statistical

, Con guration

6.85 61.70 117.00 171.00
0
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400000
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800000
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p2⊥ (GeV2)

C
ou
nt
s

Qs
2=26.60 GeV2

FIG. 2. Number of counts (shots) taken while measuring p̂2 on
the quantum circuit for five different medium configurations,
stacked in each bin. The dashed vertical line indicates the value
ofQ2

s . The statistical and configuration uncertainties are indicated
by red and blue error bars, respectively. See main text for
definitions and details.

8It has been shown that the inclusion of the kinetic operator
at finite pþ and at leading eikonal order does not affect q̂,
cf. Ref. [98].
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We would like to address two key observations from
here. First, the two sets of results at infinite and finite pþ
overlap within their uncertainties. This agreement indicates
that the kinetic energy term K̂ does not contribute to q̂, as
expected. Note that the uncertainty bar tends to increase
with growingQ2

s . This is due to the fact that the fluctuations
of the medium are enhanced when the sources admit a

larger variance (∼g2μ) as a random Gaussian variable [see
also Eq. (B2)].
Second, the results from the simulations agree with the

analytical form in Eq. (19) in the lower Q2
s regime but start

to deviate at larger Q2
s. This deviation results from the

underlying transverse lattice being finite. When the jet state
reaches the boundaries of the lattice, the momentum square
p2 can no longer increase linearly as one would expect from
the analytical derivation of Eq. (19), but instead, results in
the observed nonlinear behavior.
To further examine the deviation at large Q2

s , we run the
simulations with a p-larger lattice, using N⊥ ¼ 32, such
that the lattice spacing is halved a⊥ ¼ 0.15 GeV−1 and the
covered momentum range is doubled ðλUV ¼ π=a⊥Þ, tak-
ing pþ ¼ ∞ case and without changing any other param-
eters. The results are shown in Fig. 4. In Fig. 4(a), the
quenching parameter q̂ at various saturation scales are
shown in red circles (blue open triangles) for the results at
N⊥ ¼ 16 (32), and the analytical results according to
Eq. (19) are shown in solid lines with their respective
colors. Note that both the simulation results and the
analytics have a steeper slope at N⊥ ¼ 32 compared to
N⊥ ¼ 16, resulting from having a finer resolution in
probing the UV-divergent medium [see also Eq. (5)].
From the figure, one can see that the simulation results
at N⊥ ¼ 32 agree well with the analytical expectation even
at larger Q2

s, in comparison to N⊥ ¼ 16.
In addition, we present in Fig. 4(b) the transverse

momentum distribution of the final jet state at the smallest
and largest values of the saturation scale Q2

s shown in
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FIG. 3. Quenching parameter q̂ in a U(1) medium as a function
of the saturation scale Q2

s . Results at finite (blue triangles) and
infinite (red circles) jet energy are compared to the analytical
result given in Eq. (19). Parameters used in the simulations;
L⊥ ¼ 4.8 GeV−1, mg ¼ 0.8 GeV, and N⊥ ¼ 16.
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FIG. 4. A comparison of simulations between the lattices N⊥ ¼ 16 and 32 at L⊥ ¼ 4.8 GeV−1. (a) Quenching parameter q̂ as a
function of the saturation scale Q2

s . (b) Transverse momentum distribution of final state at Q2
s ¼ 6.73 GeV2 and Q2

s ¼ 26.65 GeV2. In
(b), the range of right panel’s lattices is four times as large as the left ones. The dashed squares indicate the region covered by the smaller
lattices.
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Fig. 4(a), for both lattices considered. The results are shown
for a single medium configuration. Indeed, at the smaller
saturation scale of Q2

s ¼ 6.73 GeV2 (the top panels), one
can see that in both lattices, a large part of the state is
distributed away from the boundaries. On the contrary,
with a stronger medium with the larger saturation scale
Q2

s ¼ 26.65 GeV2 (the bottom panels), the state largely
reaches the boundaries on the p-smaller lattice (N⊥ ¼ 16,
left panel), whereas it is still further away from the
boundaries on the p-larger lattice (N⊥ ¼ 32, right panel).
In other words, at a large saturation scale, the smaller lattice
becomes “saturated” by the state.
The above simulation results have helped verify our

quantum simulation algorithm and examine the lattice
effects entering the observable. It should be noted that
although increasing the lattice size from N⊥ ¼ 16 to 32
could potentially mitigate the lattice effects, it requires one
extra qubit [see Eq. (13)], making it computationally more
demanding when performing simulations in more compli-
cated cases, such as at finite pþ. For this reason, in the
following results we mostly use the lattice with N⊥ ¼ 16,
being aware that the lattice effect enters the observable,
especially at large Q2

s .

B. Momentum broadening with color rotations

Having studied the jet momentum broadening with a
U(1) medium, we now introduce a SU(2) color dimension.
We present the results of the quenching parameter q̂ at
various saturation scales Q2

s in Fig. 5. The parameters in
these simulations are the same as those in Fig. 3, with the
color degree of freedom requiring one additional qubit.
Note that with the color dimension, the values of Q2

s

slightly vary since we keep the array of g2μ the same as
before, such that Q2

s ¼ 5.05, 9.93, 15.09, and 20.00 GeV2.
As we have observed in the U(1) case, in Fig. 3, the two sets
of results at infinite and finite pþ agree. It is therefore
further verified that the quenching parameter q̂ in terms
of Q2

s is not sensitive to the kinetic energy term. The
comparison to the analytical result given by Eq. (19)
also suggests an overall agreement with a deviation at
increasing Q2

s . The deviation happens due to the lattice
effect already discussed in Sec. IVA. We also measure the
jet’s color differential and total transverse momentum
distributions, for which we place selected results in
Appendix D for interested readers.
In the simulations, we treat the medium as having

multiple layers along xþ, as formulated in Sec. III B. In
particular, we take Nη ¼ 64 in producing the presented
results. We would like to emphasize the necessity of using
multiple layers, by demonstrating the evolution of a probe
with pþ ¼ 200 GeV in the SU(2) background, with vari-
ous Nη. In Fig. 6, we show q̂ at various Q2

s extracted
from simulations using increasing values forNη. With just a
single layer (Nη ¼ 1), there is a sizable discrepancy
between the simulation and the analytical results.
However, as the number of layers increases, we find that
all points at different Q2

s converge towards the large Nη

result, which agrees with the analytical result up to lattice
effects. In addition, the result at Nη ¼ 48 already overlaps
with that at Nη ¼ 64, indicating that the latter parameter is
sufficient to capture the longitudinal structure of the
medium for our simulations. The need of introducing

p+

200 GeV

analytical

0 5 10 15 20 25
0.00

0.25

0.50

0.75

1.00

Qs
2(GeV2)

q
(G
eV

3
)

FIG. 5. Quenching parameter q̂ in a SU(2) medium as a
function of the saturation scale Q2

s . The parameters used in
the simulations are the same as in Fig. 3. The analytical result is
given by Eq. (19).
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FIG. 6. Quenching parameter q̂ for a SU(2) medium as a
function of the saturation scale Q2

s for various number of
layers Nη. The jet energy is fixed at pþ ¼ 200 GeV. The data
points at Nη ¼ 64 are the same as those in Fig. 5. The remaining
simulation parameters are the same as used in Fig. 3. The
analytical result is given by Eq. (19).
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layers into the quantum simulation makes it distinct from
similar approaches in, for example, quantum chemistry,
where the potential term is not stochastic; for the latter, see
e.g., Ref. [88].

C. Momentum broadening in anisotropic media

In recent times, there has been an increase interest in
studying jet evolution in the presence of anisotropic
backgrounds [90,96,97]. Such studies aim to provide a
better understanding of how jets can be used as tomo-
graphic tools of the medium [99,100] Here we extend the
previous results and exemplify how our approach can be
used to study jet evolution in structured matter.
In particular, following Eq. (4) and Eq. (5), we consider

medium profiles where either the IR regulator mg or the
medium density g2μ have a spatial dependence. For the
former case we use the fact that Eq. (4) is formally solved
for a constantmg by Eq. (B1) and then reinstate a transverse
coordinate dependence on the thermal mass, such that

A−
a ðxþ; xÞ ¼

Z
z;k

e−ik·ðx−zÞ

m2
gðxÞ þ k2

ρaðxþ; zÞ: ð20Þ

Following the strategy used in Refs. [90,96], we allow mg

to vary linearly along a direction in transverse space,

mg → m2
gðxÞ ¼ m2

gð1þ c · ΔxÞ; ð21Þ

where in spatial coordinates we have that a⊥c ¼ ð∇mg; 0ÞT
and Δx ¼ x − ð−L⊥; 0ÞT . The anisotropy effects are con-
trolled by the parameter ∇mg. In the following numerical
results we took ∇mg ¼ 0.01, 0.10.
Anisotropic effects can also be included by allowing the

background field to have an anisotropic profile in trans-
verse space. For that we follow the strategy used in
Ref. [61] and apply a profile function on the field A−

a ,

A−
a ðxþ; xÞ → A−

a ðxþ; xÞfðxÞ: ð22Þ

We consider the profile function in the format of

fðxÞ ¼ 1þ c · Δx; ð23Þ

where a⊥c ¼ ð∇f; 0ÞT and ∇f ¼ 0.01, 0.1. This smearing
of the background field tries to capture the spacetime
dependence of quasiparticles in the plasma, and its effect
is phenomenologically similar to modifying the charge
density g2μ.
In Fig. 7 we present the simulation results using

N⊥ ¼ 16 and considering a U(1) background, including
∇mg (top) and ∇f (bottom) effects. The curves without
anisotropic effects (∇f ¼ ∇mg ¼ 0) match the ones shown
in Fig. 3. For both types of modifications, we observe that
there is a clear sensitivity of q̂ to the medium profile. This is

especially true for ∇f effect. Such corrections are expected
to get possible logarithmic enhancements compared to the
modification of the thermal mass [96]. Interestingly, we see
that the anisotropy effect alters q̂ differently in both
scenarios: for ∇mg the jet suffers less broadening, while
for∇f we see a drastic increase in the diffusion coefficient.
This is expected, because the former correction leads to an
overall weaker field, whereas the latter a stronger field.
Another interesting observation comes from comparing

simulations using the same background profile but at
different jet energies pþ. Indeed, for all studied cases
we see that the corrections to q̂ are not sensitive to the

(a)

(b)

FIG. 7. Quenching parameter q̂ in a U(1) medium as a function
of the saturation scale Q2

s , including anisotropic effects in the
screen mass (a) and the medium density (b). Results at finite
(infinite) jet energy are shown with closed (open) markers. The
parameters used are the same as in Fig. 3(a). The analytical result
is given by Eq. (19).
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kinetic phases. This result might appear to contradict the
findings in Ref. [96], where it was shown that (1) q̂ gets
no correction at leading order in the anisotropy coefficient
and (2) all other possible corrections enter only at sub-
eikonal accuracy, and thus should be highly sensitive to pþ.
In this work, q̂ receives contributions from all power
corrections in the anisotropy coefficient through direct
exponentiation in the time evolution. Therefore, it captures
both the energy dependent corrections considered in
Ref. [96], and higher-order terms, which can become
dominant. A possible way to explore the same region as
in Ref. [96] is to consider a much smaller jet energy pþ and
calculate directional expectation values such as hp̂p̂2i.

D. Simulations in a noisy quantum computer

When running the circuit in a real device, the simulations
become sensitive to quantum errors and decoherence
effects in the quantum computer. In addition, the current
circuit implementation has not been optimized to reduce the
impact of such effects on the extracted results. We leave
such improvements for a future study.
In Fig. 8, we present our results from simulations

performed using simple noise models, implemented using
the QASM QISKIT backend, and the results from running
the simulation in a public IBM quantum processor. The
extracted quenching parameter q̂ is plotted as a function of
the saturation scale Q2

s , in the case of a U(1) background,
taking N⊥ ¼ 4, a⊥ ¼ 8 GeV−1, and mg ¼ 0.1 GeV.
Though this set of parameters is not expected to depict a

real physical scenario, it requires a small computational
time and its features replicate those observed for the
previous results. The solid black curve provides the
analytical baseline according to Eq. (19), while the zero
noise points give the result in the case of an ideal quantum
computer. The red (green) data set provides the results for
the case of quantum computer with 1-qubit error rates
of 0.05% (0.1%) and 2-qubit error rates of 0.5% (1%).
The error probabilities correspond to the value taken by the
depolarizing error parameter in the QISKIT native method
depolarizing_error.
Comparing all the curves we observe that indeed the

current implementation is not resilient to even the simplest
noise model. This reflects the fact that the circuit for theUA
operator has not been optimized to reduce its length and
gate complexity. This could be done by, for example,
implementing the operators approximately (i.e., within
some error bound of the exact quantum gate) or by
discretizing the background field values [88]. We note
however, that for both error models, the resulting curves
are essentially shifted from the ideal one by a constant,
leading us to speculate that the zero noise result might be
extractable by extrapolation [101,102]. We expect this
trend to be modified when including more realistic noise
models. Also, note that the sensitivity to the computer noise
will most likely worsen as N⊥ increases.
For the simulation using a real device, the last set of data

points depicts the output obtained from running the circuit
in the recently released public quantum computer IBM
Oslo. In addition to various single and double qubit errors
(0.032% and 0.864% respectively), IBM Oslo also expe-
riences additional readout error averaged around 1.68% and
a limited quantum volume of 32, which is expected to be
insufficient for the current circuit implementation. Indeed,
one observes that the result is essentially dominated by
noise and one can not extract physically relevant informa-
tion from the output.

V. CONCLUSION AND OUTLOOK

In this work, we have developed a framework to simulate
medium induced jet broadening on a quantum computer.
Our formulation is based on the light-front Hamiltonian
formalism, particularly in the recent development of the
tBLFQ approach [61], implementing the quantum algo-
rithm proposed in Ref. [42]. We numerically simulated the
time evolution of a single quark jet, thus providing the
opportunity to study effects beyond the eikonal limit and
the evolution in more realistic media.
In the current approach, the jet quantum state after

having traversed the medium was prepared by implement-
ing a digital quantum algorithm. By performing multiple
projective measurements of such a state, we extracted the
underlying transverse momentum distribution and the jet
quenching parameter q̂ at various saturation scales. In this
study we considered the jet evolution in homogeneous

FIG. 8. Quenching parameter q̂ in a U(1) medium as a function
of the saturation scaleQ2

s , extracted from noisy simulations (open
markers) and the IBM Oslo quantum computer (black stars) at
infinite jet energy. For the IBM Oslo data, each data point is
measured with one medium configuration using the maximal
available number of shots: 20000. Other parameters used in
the simulations: N⊥¼4, L⊥¼32GeV−1, mg ¼ 0.1 GeV, Lη ¼
50 GeV−1, and Nη ¼ 1. The analytical result is given by Eq. (19).
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medium, for both the U(1) and SU(2) probes. We showed
that the simulation results agree with the analytical ones.
We then studied two types of anisotropic medium profiles,
where the problem is hard to tackle out analytically. In both
scenarios, we found sizable corrections to q̂, revealing the
importance of studying such medium configurations for
jet quenching phenomenology. Lastly, we examined the
behavior of the constructed circuit to noisy quantum
simulators, and to a real quantum processor. We found
that the current circuits need to be further optimized to deal
with quantum noise, which we leave for a future study.
The current approach can be extended to the case

where gluon emissions are included. In such a regime,
it is expected that quantum computers surpass their
classical counterparts, since the problem’s computational
complexity scales exponentially with the number of
particles. In forthcoming work we will address such
questions, extending the present algorithm to include soft
radiation produced from the hard part of the jet. Such an
application might provide further insight into radiative
corrections to momentum broadening [103–105], color
coherence effects [106,107] or the QCD LPM effect with
multiple gluons [108]. On the other hand, the current
approach can also be extended to jet evolution in other
phases in heavy ion collisions, such as the glasma phase at
early stages [83,109,110].
On the strict quantum circuit implementation there are

several open challenges. The principal future task is to
reduce the circuit depth, so that the computation can be
more efficient and noise resilient. We plan to improve the
quantum algorithms for the time evolution operator and
use approximate (instead of exact) implementations for
the quantum gates, as mentioned in Sec. III D. Another
possible direction is to write the Hamiltonian in terms of
Pauli strings, which might be convenient when looking at a
specialized background fields in related problems. Finally,
for the circuit implementation to ever work in a real device,
error mitigation and error correction strategies have to be
implemented, as discussed above.
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APPENDIX A: CONVENTIONS

The light-front coordinates are defined as ðxþ; x; x−Þ,
where xþ ¼ x0 þ x3 is the light-front time, x− ¼ x0 − x3

the longitudinal coordinate, and x ¼ ðx1; x2Þ the transverse
coordinates. The letters in bold, such as x, denote transverse
vectors, while their magnitude is denoted by x⊥ ≡ jxj. The
nonvanishing elements of the metric tensors gμν and gμν are,
gþ− ¼ g−þ ¼ 2, gþ− ¼ g−þ ¼ 1=2, gii ¼ gii ¼ −1 with
i ¼ 1, 2.
In addition, we use the following shorthand notation

Z
x
≡
Z

d2x;
Z
p
≡
Z

d2p
ð2πÞ2 ; ðA1Þ

for transverse integrals in position and momentum space,
respectively. Upon discretization, integrations over the
phase space convert to sums over all lattice points, such that

Z
x
→ a2⊥

X
x

;
Z
p
→

b2⊥
ð2πÞ2

X
p

: ðA2Þ

In the continuum, any state in the transverse plane can be
written in terms of position of momentum space states jxi
and jki, respectively. These two basis are related by a
Fourier transform, which when discretized reads

jki≡
Z
x
e−ip·xjxi ¼ a2⊥

X
n

e−iπn·q=N⊥ jna⊥i; ðA3Þ

in agreement with the conventions used in Fourier trans-
form definition in Eq. (10).

APPENDIX B: COMPUTATION OF THE
BACKGROUND FIELD

In this appendix we briefly detail the classical compu-
tation of the background field, following the approach in,
e.g., Ref. [61].
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Formally, the solution to Eq. (4) can be written as

A−
a ðxþ; xÞ ¼

Z
z;k

e−ik·ðx−zÞ

m2
g þ k2

ρaðxþ; zÞ: ðB1Þ

Thus, given a color source ρa, we numerically solve
Eq. (B1) over the transverse lattice. To insure that
Eq. (5) is satisfied, we sample the color sources from
the Gaussian distribution functional

f½ρaðx; xþÞ� ¼ N exp

�
−
ΔxþðΔxÞ2

g2μ2
ρ2aðx; xþÞ

�
; ðB2Þ

with N a normalization constant, Δxþ ¼ τ and Δx ¼ a⊥,
the smallest lengths that can be resolved by the delta
functions in Eq. (5).

APPENDIX C: CRITERIA FOR CHOOSING
SIMULATION PARAMETERS

The discretized transverse basis used in the main text,
introduces natural IR and UV cutoffs λIR ¼ π=L⊥ and
λUV ¼ π=a⊥ ¼ N⊥λIR. To ensure the results are not sensi-
tive to the discretization employed, we use two criteria;
one ensuring the physics of interest is being captured
(range coverage) and another ensuring that the result is
not sensitive to the finiteness of the lattice (broadening
coverage).
(a) Range coverage To ensure the physical range of

interest is covered by the lattice, one should require
λIR to be smaller than the physical IR regulator mg,
while λUV must be taken larger than typical momen-
tum transferQs. In terms of a⊥, these conditions imply

π

N⊥mg
≪ a⊥ ≪

π

Qs
: ðC1Þ

(b) Broadening coverage The evolution of the quantum
state should not be sensitive to lattice edge effects
otherwise the final distribution would become asymp-
totically uniform due to the lattice periodicity. For the
particular case of p̂2, one would obtain

hp2i ⟶Lη≫0 1

ð2N⊥Þ2
XN⊥−1

i¼−N⊥

XN⊥−1

j¼−N⊥
ði2 þ j2Þb2⊥

≈
2

3

π2

a2⊥
≡ hp2iasy: ðC2Þ

This saturated expectation value is reached in a time
tsat: ≡ hp2iasy=q̂. To avoid this type of edge effects, we

require tsat: > Lη. In terms of a⊥, this is equivalent to
ensuring that

Λða⊥Þ≡ −a⊥ þ 2πffiffiffi
3

p
Qs

�
log

�
1

a2⊥m2
g=π2

þ 1

�

−
1

1þ a2⊥m2
g=π2

�
−1=2

; ðC3Þ

is always positive. In obtaining the above equation we
used Eq. (19).
We illustrate the selection of a⊥ using the two conditions

discussed above, for the simulations shown in this
work. Given the lattice of N⊥ ¼ 16, we consider the
saturation scale Q2

s in the range of 5–25 GeV2, and set
mg ¼ 0.8 GeV. We show in Fig. 9, the range coverage
condition by dashed vertical lines denoting the domains
satisfying Eq. (C1), and the broadening coverage condition
by plotting Λ as a function of a⊥. We observe that the value
a⊥ ¼ 0.3 GeV−1 is an eligible choice for this set up.

APPENDIX D: COLOR DIFFERENTIAL
MEASUREMENT

The framework presented in the main text also allows to
extract color differential information out of the final quantum
state. The capability of accessing the color structure is very
important since many jet quenching observables are driven
by color flow modifications. In Fig. 10 we show the color
differential momentum distributions in transverse space.
Since the initial state is a color singlet, the distributions
in both color spaces match qualitatively.

FIG. 9. Criteria for selecting a⊥ for various values of Qs and
usingN⊥ ¼ 16. The vertical dashed lines with arrows indicate the
domain satisfying Eq. (C1) for each value of Qs. Positive values
of the Λ curves indicate that the broadening coverage condition is
satisfied.
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FIG. 10. Final state probability distribution for Q2
s ¼ 5.05 GeV2 (a) and Q2

s ¼ 20.00 GeV2 (b) after evolution in a SU(2) background
at infinite jet energy. The first column shows the distribution for the color state jci ¼ j0i, the second column has the result for the color
state jci ¼ j1i, and the rightmost columns shows the color summed distributions. The weight of each color to the net distribution is
indicated in each plot by “norm”.
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