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When the allowed range of an observable grows order by order in perturbation theory, its perturbative
expansion can have discontinuities (as in theC parameter) or discontinuities in its derivatives (as in thrust or
heavy jet mass) called Sudakov shoulders. We explore the origin of these logarithms using both
perturbation theory and effective field theory. We show that for thrust and heavy jet mass, the logarithms
arise from kinematic configurations with narrow jets and deduce the next-to-leading logarithmic series. The
left-shoulder logarithms in heavy jet mass (ρ) of the form rαns ln2nr with r ¼ 1

3
− ρ are particularly

dangerous, because they invalidate fixed-order perturbation theory in regions traditionally used to extract
αs. Although the factorization formula shows there are no nonglobal logarithms, we find Landau-pole-like
singularities in the resummed distribution associated with the cusp anomalous dimension and that power
corrections are exceptionally important.

DOI: 10.1103/PhysRevD.106.074011

I. INTRODUCTION

It is not uncommon for an observable to have a range that
grows order by order in perturbation theory. Traditional
eþe− event shapes, such as thrust, the C parameter, and
heavy jet mass [1], have this property as do some hadron-
collider observables like the jet shape [2,3]. Similar
behavior can also be seen in the soft-drop jet mass [4].
As observed by Catani and Webber [1], when the range
grows order by order, there can be incomplete cancellations
between the virtual contributions, which are confined to the
lower-order range, and the real-emission contributions,
which are not. The results are distributions with nonana-
lytic behavior at intermediate values of the observable:
discontinuities, cusps or kinks at any given finite order in
perturbation theory, collectively called Sudakov shoulders,
as shown in Fig. 2. Sudakov shoulders are caused by large
logarithms associated with kinematic regions not close to
the absolute (nonperturbative) phase space boundary. We
classify the Sudakov shoulders as either right shoulders,
which have large logarithms extending into regions acces-
sible only at higher orders in perturbation theory (i.e., to
the right of the shoulder as in thrust or C parameter) or
left shoulders, which have logarithms affecting regions

accessible at all orders in perturbation theory (i.e., to the left
of the shoulder, as in heavy jet mass). Left shoulders are
particularly problematic as they can invalidate the use of
fixed-order perturbation theory over a wide range of
observable values.
To understand Sudakov shoulders, consider first the

thrust observable [5]. Thrust is defined in the center-of-
mass frame of an eþe− collision as

T ≡max
n⃗

P
jjp⃗j · n⃗jP
jjp⃗jj

; ð1Þ

where the sum is over all particles in the event and the
maximum is over 3-vectors n⃗ of unit norm. It is common to
use τ ¼ 1 − T in place of T. The vector n⃗ that maximizes
thrust is known as the thrust axis. When there are only
two particles, they must be back to back, and then τ ¼ 0
exactly. If there are three massless particles, then the phase
space is two dimensional and can be parametrized with
sij ¼ ðpi þ pjÞ2=Q2 constrained by s12 þ s23 þ s13 ¼ 1

with Q the center-of-mass energy. Then

τ ¼ minðs12; s13; s23Þ ≤
1

3
: ð2Þ

The phase space point that saturates this bound has s12 ¼
s13 ¼ s23 ¼ 1

3
and comprises the symmetric trijet configu-

ration: three particles of equal energy and angular separa-
tion, as shown in Fig. 1. Near this point the spin-summed
three-body matrix element squared is not exceptional:
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jM1j2 ¼ jM0j22CFg2s
s212 þ s223 þ 2Q2s13

s12s13
≅ jM0j264πCFαs; ð3Þ

where jM0j2 is the γ� → qq̄ matrix element squared.
Because the phase space goes to zero at τ ¼ 1

3
, the differ-

ential cross section must vanish there. The result is that

1

σ0

dσ
dτ

≅ 3 × 48CF
αs
4π

Z
1
3
−τ

0

ds12

¼ 144CF
αs
4π

�
1

3
− τ

�
θ

�
1

3
− τ

�
ð4Þ

with the factor of 3 coming from the three choices of thrust
axis all of which contribute equally near τ ¼ 1

3
. Already

here we can see the Sudakov shoulder: there is a disconti-
nuity in the first derivative of the distribution from
−144CF

αs
4π for τ < 1

3
to 0 for τ > 1

3
.

Given the thrust axis from the maximization in Eq. (1),
the event is divided into two hemispheres. We can compute
the invariant masses m1 and m2 of all the partons in
hemisphere 1 and 2 and then heavy jet mass is defined as

ρ ¼ 1

Q2
maxðm2

1; m
2
2Þ: ð5Þ

At order αs one hemisphere must be massless and τ ¼ ρ,
and thus dσ

dρ has a discontinuity in its first derivative at
leading order, just like τ.
Now, consider what happens at higher order in perturba-

tion theory. The parton in the light hemisphere will radiate
gluons,making the light hemispheremassive. Since the cross
section for the light jet having mass less than m after one
emission scales like σ ∼ αs ln2m2 there is a Sudakov
enhancement to the cross section at small m2. As the
light-hemisphere jet grows, energy must be drawn away
from the heavy hemisphere, making it lighter. Roughly
speaking, setting Q ¼ 1 for simplicity, ρ≲ 1

3
−m2 (as we

will derive). As a consequence, the cross section at ρ ¼
1
3
−m2 will be enhanced by factors of ln2 m2 ¼ ln2ð1

3
− ρÞ.

Thus large Sudakov logs associated with radiation into the
light hemisphere translate into Sudakov shoulder logs. This
is the physical mechanism for the production of large logs in
the left shoulder for heavy jet mass.
To properly and systematically resum the Sudakov

shoulder logarithms, we must understand this mechanism,
as well as the consequences of radiation from the heavy-
hemisphere partons. At first glance, the mechanism,
which transfers large logs from the light to the heavy
hemisphere using energy conservation may seem difficult
to reconcile with factorization. Indeed, previous work has
noted the recoil sensitivity of Sudakov shoulder logarithms
starting at the next-to-leading logarithmic (NLL) level [3].
Nevertheless, as we will see it is still possible to factorize
the matrix elements and phase space near ρ ¼ 1

3
to isolate

and extract the large logarithms, at least at the next-to-
leading logarithmic level.
One may ask whether Sudakov shoulder resummation is

important. For observables with only a right shoulder, such
as thrust, one might argue that it is not so important, since
there is not much data for τ > 1

3
. However, for heavy jet

mass one should generically expect that logs of the form
αs ln2ð13 − ρÞ are as important away from the shoulder
region as logs αs ln2 ρ are away from the threshold
ρ ¼ 0. This leaves a rather narrow range of intermediate
values of ρ where fixed-order perturbation theory might be
trusted. Moreover, looking at Fig. 2 it seems that the
Sudakov shoulder effects on the left shoulder of heavy jet
mass curve tend to pull it down (and away from thrust), so
that resumming the left Sudakov shoulder might bring the
curves closer together. This difference of the left shoulder
in thrust and heavy jet mass could help explain long-
standing discrepancies between fits for αs using the two
event shapes [6,7].
In order to resum the Sudakov logs we first explore the

regions of phase space that can contribute logarithms near
the shoulder. We do this for the left shoulder of heavy jet
mass in Sec. II. We find that the phase space near ρ≲ 1

3
splits up into regions some of which generate large
logarithms of 1

3
− ρ and some of which do not. We find

that all the logarithms come from regions with narrow jets
in the light and heavy hemispheres. This is in contrast to the
threshold region, for which every allowed point of phase
space near ρ ∼ 0 can contribute logarithms of ρ. It is also in
contrast to nonglobal logarithms, such as for the light jet
mass. There, logarithms of the light jet mass come from
regions where the heavy jet side does not have to contain
only narrow jets.
In Sec. III we discuss the factorization of ρ and τ near 1

3
.

We find that near the shoulder region, the phase space and
matrix elements both neatly factorize. This allows us to
define a soft function, which, along with the inclusive jet
function, can be used to reproduce all the logarithms at
NLO and more generally the next-to-leading logarithmic
series. In Sec. IV we analyze the resummed expression. We

FIG. 1. The trijet configuration where ρ ¼ τ ¼ 1
3
has three

equally spaced jets of equal energy.
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show that there are no nonglobal logarithms for the
Sudakov shoulder; only regions related to the trijet con-
figuration by soft or collinear radiation can generate
the shoulder logs. We also find an unusual pole in the
resummed distribution, qualitatively similar to the Landau
pole in the running coupling. Unlike the QCD Landau pole,
however, the singularity in the resummed heavy jet mass
shoulder distribution is determined by the cusp anomalous
dimension. Thus it is a kind of Sudakov Landau pole.
Similar poles can be found in other observables, such as the
Drell-Yan spectrum at small pT [11–13]. We show that for
the Sudakov shoulder case, the large Sudakov anomalous
dimension contributing to this pole also enhances sublead-
ing power effects, making them comparable to the leading
power result allowing the pole to be canceled in the full
distribution. We conclude in Sec. VI.

II. NEXT-TO-LEADING-ORDER ANALYSIS

As a first step toward understanding Sudakov shoulder
logarithms, we analyze the matrix elements and phase
space near the shoulder region in full QCD. We concentrate
here on the heavy jet mass for concreteness, but the same
analysis works for thrust.
At next-to-leading order in QCD, there is the virtual

contribution with three partons in the final state and a real
emission contribution with four partons. The virtual con-
tribution is proportional to the LO cross section and serves
to regularize infrared and collinear divergences. Thus we
focus on the real emission contributions to extract the
logarithms.
To have ρ≲ 1

3
we can have configurations which differ

from the trijet configuration by soft and collinear emissions
or configurations which do not. For example, one could
take a nonplanar four-parton configuration with four well-
separated partons and ρ ∼ 0.4 and then adjust their
momenta to lower ρ. Staring from such a configuration,
one would not expect anything unusual to happen as ρ is

lowered through 1
3
. Indeed, ρ ¼ 1

3
is only special because it

is a kinematic limit for three-body phase space. Thus we
expect that the only four-parton configurations which will
contribute Sudakov shoulder logarithms are those close to
the trijet configuration. We will find that this is in fact
the case.

A. Kinematics

Let us define the momenta of the four particles in the
final state as pμ

1, p
μ
2, p

μ
3 and pμ

4. After momentum con-
servation, on-shell conditions and a frame choice, there
are five independent degrees of freedom of these four
momenta. Although we will not restrict the momenta to be
soft or collinear, it is helpful to choose variables so that the
soft and collinear limits are transparent. To impose the on-
shell constraints, it is helpful to parametrize the momenta
initially in light-cone coordinates:

p1 ¼ z1nμþ
p2⊥
4z1

n̄μþpμ
⊥; p2¼ z2nμþ

p2⊥
4z2

n̄μ−pμ
⊥; ð6Þ

p3 ¼ zωnμ þ q2⊥
4zω

n̄μ þ qμ⊥;

p4 ¼ ð1 − zÞωnμ þ q2⊥
4ð1 − zÞω n̄μ − qμ⊥; ð7Þ

where nμ ¼ ð1; 0; 0; 1Þ and n̄μ ¼ ð1; 0; 0;−1Þ are back-to-
back lightlike directions. Imposing momentum conserva-
tion and defining ϕ as the azimuthal angle between the 1-2
and 3-4 planes we can then express all the momenta in
terms of

s234¼ðp2þp3þp4Þ2; s34¼ðp3þp4Þ2; z; ω and ϕ:

ð8Þ

FIG. 2. Thrust (blue lines) and heavy jet mass (red lines) at next-to-leading order (NLO) compared to LO (dashed lines). The NLO
curve does not have LO added in. That is, the LO is the αs

2π times the “A” function and the NLO curves are ðαs
2πÞ2 times the “B” functions,

in the notation of Ref. [8]. Right is an enlargement of the Sudakov shoulder region near 1
3
. The NLO computation is performed with the

program EVENT2 [9,10]. All distributions are normalized to Born cross section σ0.
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We conventionally define ϕ by pμ
⊥ ¼ ð0; pT sinϕ;

pT cosϕ; 0Þ. The variables ω ¼ 1
2
n̄ · ðp3 þ p4Þ and s234

are hard variables, approaching 1
3
at the trijet configuration.

s34 is the invariantmass of one of the jets in the collinear limit

which approaches zero in the trijet limit. The collinear
momentum fraction z and the azimuthal angle are order 1
in the collinear limit, but z → 0 in the limit thatp4 is soft.We
also find it sometimes convenient to trade cosϕ for s23 using

s23 ¼
s234zþ 2s34ð1þ 2zω − 2z − 2ωÞωþ 4zs234ω2 þ s34s234ðz − 1þ 2ω − 4zωÞ

4ω2 − s34

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s34ð1 − zÞzð2ω − s34Þð1 − 2ωÞð2ω − s234Þð2ωs234 − s34Þ

p
4ω2 − s34

cosϕ: ð9Þ

When using s23 the physical constraint −1 ≤ cosϕ ≤ 1
must be imposed on the region of integration. Another
useful exact relation is

s12 ¼ 1 − 2ωþ s34

�
1 −

1

2ω

�
: ð10Þ

We can use this relation to trade ω for ρ when ρ ¼ s12.
To compute thrust or heavy jet mass, we need to determine

the thrust axis from the formula in Eq. (1).With four partons,
the two possibilities are that three partons are in one hemi-
sphere and one parton in the other, or two partons can be in
each hemisphere. If we know that partons p1…pm are to be
clustered in the same hemisphere, then

max
n⃗

Xm
j¼1

jp⃗j · n⃗j ¼ 2max
n⃗

�Xm
j¼1

p⃗j

�
· n⃗: ð11Þ

This dot product will be maximized if n⃗ ¼ jP p⃗jj−1
P

p⃗j

so that the thrust axis will always align with the sum of
momenta in each hemisphere. So there are seven possibilities
for the thrust axis. For each axis choice

Xm
j¼1

jp⃗j · n⃗j ¼ 2
1

jP p⃗jj
�X

p⃗j

�
·
�X

p⃗j

�

¼ 2

����Xm
j¼1

p⃗j

����: ð12Þ

Thus, to determine the thrust axis, we need to find which set
of partons has the largest value of 2jP p⃗jj or, equivalently,

T2
j ≡ 4

���X p⃗j

���2: ð13Þ

In terms of our variables in Eq. (8), the Tj with one parton in
one hemisphere are relatively simple:

T2
1 ¼ T2

234 ¼ ð1 − s234Þ2;

T2
2 ¼ T2

134 ¼
�
2ð1þ s234 − 2ωÞω − s34

2ω

	
2

; ð14Þ

T2
3 ¼ T2

124 ¼
�
4zω2 þ s34ð1 − zÞ

2ω

	
2

;

T2
4 ¼ T2

123 ¼
�
4ð1 − zÞω2 þ s34z

2ω

	
2

: ð15Þ

We also have

T2
12 ¼

�
4ω2 − s34

2ω

�
2

ð16Þ

and

T2
13¼

1

4ω2
½s234ð1−zÞ2

þ4ω2ð4s23þ s2234þð1−2ωzÞ2−2s234ð1þ2ωzÞÞ
−4s34ωð1þ s234−z− s234zþ2ωðz2− z−2ÞÞ�; ð17Þ

T2
14 ¼

�
s34z − 2ωð1þ s234 − 2ωð1 − zÞÞ

2ω

	
2

− 4s23: ð18Þ

All of these Tj values are exact.
Now we would like to consider the region ρ < 1

3
. The

heavy hemisphere can have either two partons or three
partons. We can therefore choose it to be ρ ¼ s234 with T1

maximal or s12 with T12 maximal. The other cases are given
by permutation of the indices. Figure 3 shows examples of
the phase space regions labeled by which Tj is greatest. All
regions in these plots contribute to some value of ρ.
However, to avoid overcounting we only need to consider
the green region on the left plot and the blue region in the
right plot.

B. Matrix elements

Let us define

r≡ 1

3
− ρ: ð19Þ

As we have discussed, we expect contributions to the NLO
heavy jet mass cross section with factors of ln r or ln2 r to
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come from soft or collinear regions of phase space close to
the trijet configuration. We can therefore power expand the
matrix elements and phase space constraints in soft and
collinear limits. This dramatically simplifies the calcula-
tion. There are two ways to confirm that only soft and
collinear limits are relevant. First, we can extend the
integration limits to the full phase space and verify that
no additional logarithms can be generated. Second, we can
compare the logarithms we extract with a numerical
computation of the heavy jet mass distribution at NLO.
For power counting we take r ∼ λ ≪ 1. In the collinear

limit where p4kp3, the phase space variables scale as

s34 ∼ λ; x≡ ω −
1

3
∼ λ; y≡ s234 −

1

3
∼ λ;

z ∼ λ0; ϕ ∼ s23 ∼ λ0: ð20Þ

In the soft limit, where p3 is soft, the scaling is the same
except that z ∼ λ instead of z ∼ λ0.
First we compute the matrix elements squared at leading

power. We do this by summing all the relevant Feynman
diagrams, squaring the amplitudes and summing over
spins, after which we take the leading power expansion.
We cross-check the results against the expectation for soft
and collinear limits from factorization.

The γ⋆ → qq̄g matrix element depends on whether the
gluon is polarized in the plane of scattering or out of the
plane. We find

ð21Þ

when the gluon polarization ϵin ¼ ð0; 0; 1; 0Þ in the con-
ventions of Fig. 1, where pg ¼ Q

3
ð1; 0; 0; 1Þ, and

ð22Þ

when the gluon polarization is ϵout ¼ ð0; 1; 0; 0Þ. The sum
of these agrees with Eq. (3).
The matrix elements depend on which partons are gluons

and which are quarks. If p2 is a quark and p4 is a gluon,
then to leading power in collinear scaling

ð23Þ

FIG. 3. Example slices of 5D phase space for four massless partons. The colors indicate which collection of momenta determines the
thrust axis. The left plot has z ¼ 0.06, s34 ¼ 0.02 and s234 ¼ 1

3
− 0.01. The green region in this plot would contribute to the heavy jet

mass distribution at r ¼ 1
3
− ρ ¼ 0.01. The right plot has ϕ ¼ π, s234 ¼ 1

3
and s12 ¼ 1

3
− 0.01. The blue region in this plot contributes also

at r ¼ 0.01.
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Here the blob represents all the diagrams that can contribute. We derive this by squaring the full matrix element for
γ⋆ → qgq̄g using Qgraf [14] and FORM [15] or FeynCalc [16–18], summing over spins and then power expanding in the small
s34 limit. The splitting function naturally appears.
When p3 and p4 are gluons, then we find

ð24Þ

Note the azimuthal angle dependence is due to the polari-
zation of the gluons. Indeed, the leading-order γ⋆ → qq̄g
matrix element is polarized, and we must therefore use
polarized splitting functions (see [19] for example). We have
checked that summing the polarized leading-order matrix
elements in Eqs. (21) and (22) with the polarized splitting
functions (see [19] for example) reproduces Eq. (24).
And finally when p3 and p4 are quarks (or antiquarks),

the leading power result is the same whether they are
identical or not:

ð25Þ

≅ jM0j2CFTfnfg4s
16

s34
ð2 − z − z2 − 6zð1 − zÞcos2ϕÞ

ð26Þ
This expression also depends on the azimuthal angle and,
like the gluon case, is consistent with using the polarized
three-parton matrix elements and polarization-dependent
splitting functions.
For the soft limits, we can power expand the full matrix

elements in the soft limit. When z is soft, we cannot drop
s34 with respect to z, or vice versa. When p3 and p4 are
both gluons, the result can be written as

jMsoft
γ�→qq̄ggj2 ≅ jM0j2CFg4s

64

3

��
CF −

1

2
CA

�
1

s14s24

þ CA

2

1

s14s34
þ CA

2

1

s24s34

	
; ð27Þ

where

s14s24 ¼ 9s234 þ 16z2 − 24s34z cosð2ϕÞ; ð28Þ
s14s34 ¼ 3s234 þ 4s34z − 4s34

ffiffiffiffiffiffiffiffiffiffiffi
3s34z

p
cosϕ; ð29Þ

s24s34 ¼ 3s234 þ 4s34zþ 4s34
ffiffiffiffiffiffiffiffiffiffiffi
3s34z

p
cosϕ: ð30Þ

This is consistent with the eikonal approximation.
To avoid double counting we also need the soft collinear

matrix elements which come from taking the soft limit
(small z) of the collinear matrix elements or, equivalently,
the collinear limit (s34 ≪ z) of the soft matrix elements.
These are therefore the same as the soft matrix elements but
keeping only the final term in Eqs. (28)–(30).

C. Phase space

For the phase space limits, we will first examine the soft-
collinear limit where z ∼ λ. To leading power in the soft-
collinear limit

T1 ≅
1

9
−
y
3
; T2 ≅

1

9
−
s34
2

−
2x
3
þ y
3
;

T3 ≅ 0; T4 ≅
1

9
þ 2x

3
−
2z
9
; ð31Þ

T12 ≅
1

9
−
s34
2

þ 2x
3
; T13 ≅

1

9
þ s23 −

y
3
−
4z
9
;

T23 ≅
1

9
− s23 −

2x
3
þ y
3
þ 2z

9
: ð32Þ

For the case where T1 is maximal, ρ ¼ s234 and y ¼ r.
We can then impose the constraints T1 > T2, T1 > T3, and
so on. Since we are using the variable s23 instead of cosϕ
we also have to impose −1 ≤ cosϕ ≤ 1. Reducing these
constraints leads to five integration regions:Z

dΠ1 ¼ 2

Z 1
2
sþ
34

0

ds34

Z
1−zþ

zþ
dz

Z
xB

xA

dx
Z

sϕþ
23

sϕ−
23

ds23J

þ 2

Z
sþ
34

0

ds34

Z
zþ

9
4
s34

dz
Z

xB

xC

dx
Z

4
9
z

sϕ−
23

ds23J

þ 2

Z
sþ
34

0

ds34

Z
zþ

9
4
s34

dz
Z

xC

xA

dx
Z

4
9
z

sA
23

ds23J

þ 2

Z
sþ
34

0

ds34

Z 9
4
s34

z−
dz

Z
xD

xC

dx
Z 4

9
z

sϕ−
23

ds23J

þ
Z
0

ds34

Z
9
4
s34

z−
dz

Z
xC

xE

dx
Z

4
9
z

sA
23

ds23J; ð33Þ
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where

sþ34 ¼
4

9
ð7 − 4

ffiffiffi
3

p
Þ; z� ¼ 9

4
ð7� 4

ffiffiffi
3

p
Þs34; ð34Þ

sϕ�23 ¼
� ffiffiffiffiffiffi

s34
4

r
�

ffiffiffi
z
3

r �
2

; sA23¼−
2

3
xþ2

3
yþ2

9
z; ð35Þ

xA ¼ −
3

4
s34 þ y; xB ¼ 3

4
s34 −

y
2
;

xC ¼ −
3

8
s34 þ yþ

ffiffiffiffiffiffiffiffiffiffiffi
3s34z

p
2

−
z
6
; ð36Þ

xD ¼ −
y
2
þ z
3
; xE ¼ y −

z
3
: ð37Þ

The Jacobian

J ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsϕþ23 − s23Þðs23 − sϕ−23 Þ

q ð38Þ

scales like J ∼ λ0. For the leading double log we need to
compute

Z
dΠ1jMj2 ∼

Z
dΠ1

1

s34z
: ð39Þ

Analyzing the integrals we find that none of them generate
ln r terms; the limit r → 0 in each of the integrals is smooth.
Thus the region with T1 max does not contribute to the
Sudakov shoulder at NLO. The logs must therefore come
from regions with two partons in each hemisphere.
Next, we consider configurations where T12 is maximal.

As before, we expand first assuming collinear scaling. In
this case, we no longer have r ¼ 1

3
− ρ ¼ y but instead

ρ ¼ s12 ¼ 1þ s34 −
s34
2ω

− 2ω ≈
1

3
−
1

2
s34 − 2x ð40Þ

so that r ¼ 1
2
s34 þ 2x. To hold r fixed we then can use r,

s34, z, y, and s23 as independent variables (instead of r, s34,
z, x, and s23 in the T1 max case). Now we find 40 relevant
integration regions. In most of these r can be set to zero
without consequence. Only four can possibly generate logs
of r:

Z
dΠ12 ¼

Z
r

0

ds34

Z
1−zþ

zþ
dz

Z
yB

yA

dy
Z

2π

0

dϕ

þ
Z r

3

0

ds34

Z
zþ

9s34
4

dz
Z

yC

yD

dy
Z

2π

0

dϕ

þ
Z r

3

0

ds34

Z
zþ

9s34
4

dz
Z

yB

yC

dy
Z

sþϕ

sB
23

ds23J

þ
Z r

3

0

ds34

Z
zþ

9s34
4

dz
Z

yD

yA

dy
Z

sC
23

sϕ−
23

ds23J; ð41Þ

where

yA¼−rþ2s34; yB¼2r−s34;

yC¼2r−
7s34
4

−
ffiffiffiffiffiffiffiffiffiffiffi
3s34z

p
þ z
3
;

yD¼−rþ11s34
4

þ
ffiffiffiffiffiffiffiffiffiffiffi
3s34z

p
−
z
3
;

sB23¼−
2r
3
þ5s34

6
þy
3
þ2z

9
; sC23¼

r
3
−
2s34
3

þy
3
þ4z

9
: ð42Þ

For the C2
F color structure, using the power-expanded

matrix elements in the collinear limit, Eq. (23), only the
first two integrals in Eq. (41) contribute. We find

SðCFÞ
c ¼ 4

Z
dΠ12jMcollinear

γ�→qggq̄j2

¼ 6α2s
π2

C2
Fr

�
−2ln2rþ

�
1−8 ln

3

2

�
lnrþ���

	
: ð43Þ

Similarly, integrating against the soft matrix element and
the soft-collinear overlap region, we find

SðCFÞ
s ¼

Z
dΠ12ð4jMsoft

γ�→qggq̄j2þ2jMsoft
γ�→qq̄ggj2Þ

¼ 12α2s
π2

C2
Fr

�
−ln2rþ2

�
1þ ln

4

3

�
lnrþ���

	
; ð44Þ

SðCFÞ
sc ¼ 4

Z
dΠ12jMsoft−coll

γ�→qggq̄j2

¼ 12α2s
π2

C2
Fr

�
−ln2rþ2

�
1−2 ln

3

2

�
lnrþ�� �

	
: ð45Þ

The constants in the integrals come from the permutations
of final state particles and we have accounted the symmetry
factor for identical gluons. The total is

1

σ0

dσðCFÞ

dr
¼ SðCFÞ

c þ SðCFÞ
s − SðCFÞ

sc

¼
�
αs
4π

�
2

C2
Fr½−192ln2r

þ ð96þ 768 ln 2 − 384 ln 3Þ ln rþ � � ��: ð46Þ
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This is compared to the exact (numerical) NLO calculation
in the shoulder region in Fig. 6.
For the CFCA color structure, there can be single

logarithms coming from both the z ∼ 0 and z ∼ 1 regions.
Moreover, the splitting functions in this case depend on the
polarization of the gluon that splits. However, because the
only integration regions that contribute logarithms are
uniform in ϕ [the first two in Eq. (41)], one can simply
azimuthally average the splitting functions, reducing them
to the unpolarized case. The final resums we find are

SðCAÞ
c ¼α2s

π2
CFCAr

�
−6ln2rþ

�
1−24ln

3

2

�
lnrþ���

	
;

SðCAÞ
s ¼6

α2s
π2

CFCAr

�
−ln2rþ2

�
1þ ln

4

3

�
lnrþ���

	
;

SðCAÞ
sc ¼6

α2s
π2

CFCAr

�
−ln2rþ2

�
1−2 ln

3

2

�
lnrþ���

	
; ð47Þ

which gives

1

σ0

dσðCAÞ

dr
¼

�
αs
4π

�
2

CFCAr½−96 ln2 r

þ ð16þ 384 ln 2 − 192 ln 3Þ ln rþ � � ��: ð48Þ

Again, this is compared to NLO in the shoulder region
in Fig. 6.
The nfTFCF color structure only contains a single

logarithm since there is no soft region. Integrating the
collinear matrix element Eq. (26) over power-expanded
phase space gives

1

σ0

dσðnfÞ

dr
¼ 64

�
αs
4π

�
2

CFTfnfr ln rþ � � � : ð49Þ

No overlap subtraction is needed. This is also shown
in Fig. 6.
One can perform a similar leading-power computation

for the right shoulder for thrust and heavy jet mass. For
these cases, we find it is only the phase space regions with
one parton in one hemisphere and three partons in the other
hemisphere that contribute. Since the equivalent calculation
is significantly easier using soft-collinear effective theory,
we skip the details of the right-shoulder cases using the full
theory and turn instead to the effective theory approach.

III. FACTORIZATION AND RESUMMATION

In Sec. II, we computed the Sudakov shoulder logs for
heavy jet mass and thrust at NLO using full QCD expanded
to leading power. We now want to generalize the analysis to
all orders leading to a factorization formula. To do so, we
first review the approach of [1] and discuss recoil sensi-
tivity. We then demonstrate a different approach inspired by

the NLO calculation that leads to a systematically improv-
able factorization formula.

A. Recoil sensitivity

One approach to resummation of Sudakov shoulders [1]
is that emissions from one of the hard partons will cause an
additive shift in heavy jet mass (or thrust) from
ρ → ρþm2. Then one could write the resummed distri-
bution as a convolution. Heuristically,

σresummedðρÞ ∼
Z

dm2σLOðρ −m2ÞJðm2Þ ð50Þ

with Jðm2Þ representing some sort of jet function and
σLOðρÞ the leading-order cross section.
Unfortunately, when one tries to make this formula more

precise it produces ambiguities beyond the leading loga-
rithmic order. To see this, consider how ρ changes due to
emissions in the light hemisphere making the light hemi-
sphere have a mass m2. With three massless partons taking
p1 and p2 in the heavy hemisphere and p3 in the light
hemisphere for concreteness, the heavy jet mass is

ρ ¼ ðpμ
1 þ pμ

2Þ2 ¼ ðpμ
tot − pμ

3Þ2 ¼ 1 − 2E3 ð51Þ

with E3 the energy of the light-hemisphere parton. Now say
the p3 parton becomes massive (i.e., turns into a jet) with
p2
3 ¼ m2. Then we have the exact relation

ρ ¼ ðpμ
1 þ pμ

2Þ2 ¼ ðpμ
tot − pμ

3Þ2 ¼ 1þm2 − 2E3: ð52Þ

So it seems ρ → ρþm2, as in Eq. (50). However, this was a
little too quick. Suppose instead of expressing ρ in terms of
E3 we expressed it in terms of jp⃗3j. Then, when p3 is
massless,

ρ ¼ 1 − 2jp⃗3j: ð53Þ

However, after the emissions,

ρ ¼ 1þm2 − 2E3 ¼ 1þm2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2
3 þm2

q
≅ 1þm2 − 2jp⃗3j −

m2

jp⃗3j
þ � � � : ð54Þ

Now, near threshold jp⃗3j ∼ 1
3
, so m2

jp⃗3j ≅ 3m2 and we find

ρ → ρ − 2m2 instead of ρ → ρþm2. Thus the way ρ shifts
depends on whether we hold the energy or the momentum
of the jet fixed after the emission. This recoil sensitivity
seems to violate factorization. Moreover, if ρ → ρ − 2m2,
one cannot write down a convolution for the distribution as
in (50), since the shift implies that emissions only decrease
the value of the heavy jet mass. Thus it becomes clear
that while one might use the emission picture for the
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double-logarithmic analysis of [1], it is inadequate for NLL
resummation.

B. Factorization

To proceed, recall from Sec. II which configurations
contributed to the NLO logs. With four partons, we can
have either two in each hemisphere or one in one light
hemisphere and three in the heavy hemisphere. For the left
shoulder of heavy jet mass at NLO we found that only the
case with two partons in each hemisphere contributed.
Moreover, the two partons in the heavy hemisphere were
hard, with invariant mass ρ ∼ 1

3
, while the two partons in the

light hemisphere formed a jet of small invariant mass,
s34 ∼ 1

3
− ρ ≪ 1. In contrast, for the right shoulder of heavy

jet mass or thrust, only the region with one parton in the
light hemisphere contributed. Moreover, the configuration
in the heavy hemisphere had two hard partons and one
parton which was soft or collinear to one of the hard
partons.
In the r ¼ 1

3
− ρ ≪ 1 region, we found integrals like

I ∼ jM0j2
αs
4π

C2
F

Z
r

0

ds34
s34

Z
1

9
4
s34

dz
z

Z 1
3
þ2r

1
3
−r

ds234 ð55Þ

≅ jM0j2
αs
4π

C2
Fr ln

2 r: ð56Þ

The integrals over s34 (the invariant mass of the 34 jet) and
z (the collinear splitting fraction in the 34 jet) are similar to
what we would have in an inclusive jet function. The s234
variable is a hard phase space variable, equal to s23 at
leading power. The last integral gives the factor of r which
is the same factor in the leading-order cross section, as in
Eq. (4). Thus at higher orders it is natural to expect the
generalization of this integral to one with a single integral
over hard kinematic phase space and an integral over the
kinematics of the light jet. Thus, instead of convolution of
the hard cross section with the emission cross section, as in
(50), we should expect the phase space to factorize into a
part which depends on the hard kinematics and a part which
depends on the emissions.
The first observation allowing us to factorize the cross

section in the region r ¼ 1
3
− ρ ≪ 1 is that only configu-

rations which differ from the trijet configuration by soft or
collinear emissions can generate logarithms of r. The
reason for this is that r ¼ 0 is only special from the point
of view of three-body massless kinematics. One can have
four-parton configurations with ρ close to 1

3
that are not

close to the trijet configuration. However, such configura-
tions contribute to the cross section both for r < 0 and
r > 0 and will be smooth across r ¼ 0. Hence they cannot
produce large logarithms (in Sec. IV B we use this same
argument to show there are no nonglobal logs in the
Sudakov shoulders).

So let use consider a generic configuration with three jets
pointing in the n1, n2 and n3 directions. Such a configu-
ration can have particles collinear to the three directions as
well as soft partons scattered throughout phase space. At
leading power, we can treat the collinear radiation as
generating masses m1, m2 and m3 for the three jets.
Thus we can approximate the state as having three hard,
massive particles with momenta p1, p2 and p3 and soft
radiation.
To compute heavy jet mass and thrust, we need to know

which direction the thrust axis points for a given amount of
collinear and soft radiation. To determine this, we first
observe that, as in Eq. (11), the thrust axis is determined by
the set of momenta in a given hemisphere that maximize

Tfpig ¼ 2

����X
pi

p⃗

����: ð57Þ

Then τ and ρ can be computed from the set fpig.
Let us begin with the case where there is only collinear

momenta, so we only have the three massive momenta to
consider. In this case, phase space is described by s12, s13
and s23 subject to s12 þ s13 þ s23 ¼ 1þm2

1 þm2
2 þm2

3,
where sij ¼ ðpi þ pjÞ2. Then

T2
1 ¼ 4p⃗2

1 ¼ ð1 − s23Þ2 − 2m2
1ð1þ s23Þ þm4

1 ð58Þ

and similarly for T2
2 and T

2
3 by permutation. Let us take the

case where T1 sets the thrust axis, so that r ¼ 1
3
− s23. Then

at leading power (assuming m2
i ∼ r ∼ s12 − 1

3
)

T1 ≅
2

3
þ r− 2m2

1; T2 ≅
1

3
− rþ s12 −m2

1 − 3m2
2 −m2

3;

T3 ≅ 1− s12 − 2m2
3: ð59Þ

So the conditions T1 > T2 and T1 > T3 imply

1

3
− rþ2m2

1−2m2
3<s12<

1

3
þ2r−m2

1þ3m2
2þm2

3: ð60Þ

These limits on s12 pinch off when r ¼ m2
2 þm2

3 −m2
1. At

m ¼ 0 the linear scaling with r of the s12 integration region
is what generates the linear falloff of the thrust or heavy jet
mass cross section as in Eq. (4). For the integration region
to be nonzero we therefore have

m2
1 < rþm2

2 þm2
3: ð61Þ

In other words, at fixedm2,m3 and r, there is an upper limit
on the light-hemisphere jet mass. The probability of finding
a light jet of mass at most m1 at leading power is
proportional to ln2m1, so for m2 ¼ m3 ¼ 0 the integral
over m1 up to r will give the ln2 r left Sudakov shoulder
logarithms. Combined with the factor of r from the s12
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integration gives an overall r ln2 r behavior. If m2 and m3

are parametrically larger than r, then we can drop r in
Eq. (61). In that case, no logs are generated. Thus the
shoulder logs are determined by the region of small m1, m2

and m3, consistent with a global observable.
The right shoulder for heavy jet mass is constrained by

Eq. (61), but with r < 0. For the right shoulder we define
s ¼ ρ − 1

3
. Then

m2
1 þ s < m2

2 þm2
3 ð62Þ

replaces Eq. (61).
For the thrust case, we define t ¼ τ − 1

3
. When T1

determines the thrust axis, then at leading power

t ¼ 2

3
− T1 ≅ 2m2

1 − r ð63Þ

and Eq. (61) becomes

t < m2
1 þm2

2 þm2
3: ð64Þ

Thus the right shoulder for thrust is defined by integrals
over any of the masses with a lower limit of t. Since the
inclusive integral, without this constraint, has no t depend-
ence, one can equivalently get the right Sudakov shoulder
logarithms by integrating over the masses constrained
by m2

1 þm2
2 þm2

3 < t.
For the soft radiation, we first need to determine when it

affects the thrust axis. Let us start with the configuration
with three massive partons and suppose some soft radiation
k enters hemisphere 1. We want to know whether the thrust
axis should shift so that hemisphere 1 excludes k or if it
should stay fixed, to include k. To find out, we need to
compare T1k, the thrust value with p1 and k included in the

hemisphere, to T1 where k is not the 1 hemisphere, but is
still included overall. A quick calculation shows that

T2
1k ≅ T2

1 þ
8

3
ðp2 · kþ p3 · k − 2p1 · kÞ: ð65Þ

Defining pj̄ as pj with its 3-momentum reversed, so

p1̄ ¼
Q
3
ð1; 0; 0;−1Þ ¼ 2

3
p2 þ

2

3
p3 −

1

3
p1; ð66Þ

we can write

T2
1k ≅ T2

1 þ 4ðp1̄ · k − p1 · kÞ: ð67Þ

When k is in the 1 hemisphere, it must be closer to p1 than
p1̄. In that case p1̄ · k > p1 · k. We conclude that thrust is
maximized when all the soft radiation in the hemisphere
centered on p1 is included. In other words, if radiation is
slightly on the opposite side of the hemisphere boundary,
the thrust axis should not shift to cluster k with p1.
Now suppose there is a lot of soft radiation with

momenta with fkμi g. Since the thrust value goes up when
radiation is included in a given hemisphere, to find the
thrust axis we only have to consider three sets of momenta:
for each j the set includes a hard jet’s momentum pj and all
the soft radiation khemi

j in the jet’s hemisphere. That is, the
maximal value of thrust for a hemisphere containing pj will
be given by

Tmax
j ¼ Tj þ 3ðpj̄ · k

hemi
j − pj · khemi

j Þ: ð68Þ

Since the jet hemispheres overlap, there will be some soft
radiation included in both khemi

1 and khemi
2 , for example. To

avoid overcounting, let us decompose the soft momenta
into six regions, as shown in Fig. 4. So

FIG. 4. Soft radiation from the trijet configuration can be categorized as entering one of six sextant wedges shaped like carpels of an
orange. The boundary of each sextant is determined by two planes orthogonal to the jet directions n1, n2 and n3. For example, radiation
in the sextant labeled k1̄ (backward to the 1-jet) is characterized by n̄2 · k > n2 · k and n̄3 · k > n3 · k.
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khemi
1 ¼ k1 þ k2̄ þ k3̄ ð69Þ

and so on. Here kj is the soft radiation in the sextant
centered on pj and kj̄ is the soft radiation in the sextant
opposite to pj.
Assuming p1 is the thrust axis, then heavy jet mass

ρ ¼ ðp2 þ p3 þ k1̄ þ k2 þ k3Þ2: ð70Þ

For ρ < 1
3
we want to express constraints in terms of

r ¼ 1
3
− ρ. For the hard kinematic variable, we can use

anything equal to s12 at leading power. A convenient
choice is

ξ≡ s12 −
1

3
þ r − 2m2

1 þ 2m2
3

þ 2ðp2 − p1Þ · ðk1 þ k3̄Þ þ 2k2 · ðp1 þ p2Þ
− 4k2̄ · ðp1 − p3Þ þ 4k3 · p3 þ 4k1̄ · p3: ð71Þ

The variable ξ is defined so that Tmax
1k ¼ Tmax

2k at ξ ¼ 0.
Then phase space where Tmax

1k ¼ Tmax
2k and Tmax

1k ¼ Tmax
3k is

0 ≤ ξ ≤ 1
3
W, where

Wðr;mj; kiÞ ¼ r −m2
1 þm2

2 þm2
3 − 2p1k1 þ 2p2k2

þ 2p3k3 þ 2v1̄k1̄ − 2v2̄k2̄ − 2v3̄k3̄ ð72Þ

with

v1̄ ¼ −
1

3
p1 þ

2

3
p2 þ

2

3
p3 ¼

Q
3
ð1; 0; 0;−1Þ; ð73Þ

v2̄ ¼
4

3
p1 þ

1

3
p2 −

2

3
p3 ¼

Q
3

�
1; 0;

ffiffiffi
3

p

2
;
3

2

�
; ð74Þ

v3̄ ¼
4

3
p1 −

2

3
p2 þ

1

3
p3 ¼

Q
3

�
1; 0;−

ffiffiffi
3

p

2
;
3

2

�
: ð75Þ

We have fixed the signs of the vj̄ so that they all have
positive energy. Since v1̄ ¼ p1̄, and k1̄ is close to p1̄, we
will have v1̄ · k1̄ ≥ 0 for all k1̄. For the other directions,
v⃗2̄ · p⃗2 ¼ 0 and v⃗3̄ · p⃗3 ¼ 0, and they will also have v2̄ ·
k2̄ ≥ 0 and v3̄ · k3̄ ≥ 0.
For the integration range over ξ to be nonzero we

therefore need

m2
1 þ 2p1k1 þ 2v2̄k2̄ þ 2v3̄k3̄

< rþm2
2 þ 2p2k2 þm2

3 þ 2p3k3 þ 2v1̄k1̄; ð76Þ

which is the same as Wðr;mj; kiÞ > 0, with W in Eq. (72).
Every term in this expression is a positive quantity. This
inequality applies to both the left and right shoulders for
heavy jet mass (for the right shoulder we prefer to
use s ¼ −r ¼ ρ − 1

3
> 0).

For thrust, defining t ¼ τ − 1
3
¼ 2

3
− T1k the bound is

0 ≤ x ≤ T, where

Tðt; mj; kiÞ ¼ m2
1 þm2

2 þm2
3 þ 2p1k1 þ 2p2k2 þ 2p3k3

þ 2v1̄k1̄ þ 2v0̄
2
k2̄ þ 2v0̄

3
k3̄ − t; ð77Þ

where

v0̄
2
¼ 2p1 − v2̄ ¼

Q
3

�
1; 0;−

ffiffiffi
3

p

2
;
1

2

�
¼ Q

3
n̄2; ð78Þ

v0̄
3
¼ 2p1 − v3̄ ¼

Q
3

�
1; 0;

ffiffiffi
3

p

2
;
1

2

�
¼ Q

3
n̄3 ð79Þ

so that

t < m2
1 þm2

2 þm2
3 þ 2p1k1 þ 2p2k2 þ 2p3k3 þ 2v1̄k1̄

þ 2v0̄
2
k2̄ þ 2v0̄

3
k3̄: ð80Þ

For thrust, as for heavy jet mass, every term in this
inequality is positive.
As observed in Sec. II, we can setmj ¼ ki ¼ 0 to zero in

the hard matrix elements at leading power. Then the integral
over hard phase space simply gives the maximum value of ξ
from Eq. (72) or (77). That is, each channel of the LO
integral in Eq. (4) gets modified as

48CF
αs
4π

Z
1
3
−τ

0

ds12 → 48CF
αs
4π

Z
R=3

0

dξ ¼ 48CF
αs
4π

RθðRÞ

ð81Þ

with θðxÞ the Heaviside step function.
The rate for producing collinear radiation is given by

splitting functions, and the cross section for producing
collinear radiation of mass m is given by the inclusive jet
function Jðm2Þ. The rate for soft radiation is given by a soft
function, defined as an integral over emissions fromWilson
lines using a measurement function (see Sec. III C). The
key equation, Eq. (76), lets us then write the factorized
expression for the heavy jet mass Sudakov shoulder as

1

σ1

dσ
dr

¼ HðQÞ
Z

d3m2d6qJðm2
1ÞJðm2

2ÞJðm2
3ÞS6ðqiÞ

×Wðmj; qi; rÞθ½Wðmj; qi; rÞ�; ð82Þ

where

σ1 ¼ 48CF
αs
4π

σ0: ð83Þ

The arguments of the six-parameter soft function S6ðqiÞ are
the projections qi ¼ ni · ki and qī ¼ vī · kī. In terms of the
qi, Eq. (72) becomes
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Wðmj; qi; rÞ ¼ r −m2
1 þm2

2 þm2
3

þ 2Q
3

ðq2 þ q3 þ q1̄ − q1 − q3̄ − q2̄Þ: ð84Þ

We can simplify the factorized expression by defining a
two-parameter trijet hemisphere soft function

Sðql; qhÞ ¼
Z

d6qiS6ðqiÞδðql − q1 − q2̄ − q3̄Þ

× δðqh − q1̄ − q2 − q3Þ; ð85Þ

where ql and qh represent the soft radiation in the light and
heavy hemispheres, respectively. This soft function con-
tributes to the doubly differential distribution of the hemi-
sphere masses as

d2σ
dm2

ldm
2
h

¼ HðQ; μÞ
Z

dm2
1dm

2
2dm

2
3dqldqhJðm2

1; μÞ

× Jðm2
2; μÞJðm2

3; μÞSðql; qh; μÞ

× δ

�
m2

l −m2
1 −

2

3
qlQ

�

× δ

�
m2

h −m2
2 −m2

3 −
2

3
qhQ

�
: ð86Þ

And then

dσ
dr

¼
Z

dm2
hdm

2
l

d2σ
dm2

ldm
2
h

ðrþm2
h −m2

lÞΘðrþm2
h −m2

lÞ:

ð87Þ

One also must sum over channels, corresponding to which
jet is the quark jet, which is antiquark and which is gluon.
The factorization formula for thrust is similar:

dσ
dt

¼
Z

dm2
hdm

2
l

d2σ
dm2

ldm
2
h

ðm2
h þm2

l − tÞΘðm2
h þm2

l − tÞ:

ð88Þ

The soft function for thrust is the same as for heavy jet mass
after changing v → v0. As we will show in the Appendix,
changing v → v0 has no effect on the parts of the soft
function relevant to NLL resummation, so we will treat the
heavy jet mass and thrust trijet hemisphere soft functions as
being the same.

C. Soft function

According to the analysis in the previous section, the
factorization formula requires a soft function giving the rate
for producing gluons ki entering one of six sextants, as in
Fig. 4. In each sextant we need the projection pi · ki
for i ¼ 1; 2; 3 (sextants containing a jet) or vi…ki for
i ¼ 1̄; 2̄; 3̄ (sextants between jets). For NLL resummation,

we only need the anomalous dimension of the soft function
at one loop. This can be determined by RG invariance.
However, as a cross-check on the factorization formula, it is
important to compute the soft function explicitly.
It is convenient to introduce the scaleless vectors for the

six directions that appear in the measurement function:

pi ¼
Q
3
ni; vī ¼

Q
6
Ni; i ¼ 1; 2; 3; ð89Þ

where the ni can be read off from Fig. 1 and the Ni from
Eqs. (73)–(75) (or see the Appendix). The vectors pi, ni, v1̄
and N 1̄ are lightlike while v2̄, v3̄, N 2̄ and N 3̄ are spacelike.
For heavy jet mass, the measurement function Mðk; qiÞ is

Mðk;qiÞ ¼ θðn2̄ ·k−n2 ·kÞθðn3̄ ·k−n3 ·kÞδ
�
q1−

2

3
n1 ·k

�
ð90Þ

þθðn3̄ ·k−n3 ·kÞθðn1̄ ·k−n1 ·kÞδ
�
q2−

2

3
n2 ·k

�
ð91Þ

þθðn1̄ ·k−n1 ·kÞθðn2̄ ·k−n2 ·kÞδ
�
q3−

2

3
n3 ·k

�
ð92Þ

þθðn2 ·k−n2̄ ·kÞθðn3 ·k−n3̄ ·kÞδ
�
q1̄−

2

3
N1 ·k

�
ð93Þ

þθðn3 ·k−n3̄ ·kÞθðn1 ·k−n1̄ ·kÞδ
�
q2̄−

2

3
N2 ·k

�
ð94Þ

þθðn1 ·k−n1̄ ·kÞθðn2 ·k−n2̄ ·kÞδ
�
q3̄−

2

3
N3 ·k

�
:

ð95Þ
The matrix element for eikonal emission of one gluon off

of three Wilson lines is the same as for direct photon
production [20,21] or hard W=Z production [22,23]. There
are three Wilson lines in the trijet configuration, pointing in
the n1, n2 and n3 directions (see Fig. 1). When the jet in the
1 direction is a gluon, the one-loop soft function is

S6gðqiÞ ¼ 2g2sμ2ε
Z

ddk
ð2πÞd−1 δðk

2Þθðk0ÞMðk; qiÞ

×

��
CF −

1

2
CA

�
n2 · n3

ðn2 · kÞðn3 · kÞ

þ 1

2
CA

n1 · n2
ðn1 · kÞðn2 · kÞ

þ 1

2
CA

n1 · n3
ðn1 · kÞðn3 · kÞ

	
:

ð96Þ
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The soft function with a quarkWilson line in the 1 direction
has the color structures interchanged:

S6qðqiÞ ¼ 2g2sμ2ε
Z

ddk
ð2πÞd−1 δðk

2Þθðk0ÞMðk; qiÞ

×

��
CF −

1

2
CA

�
n1 · n2

ðn1 · kÞðn2 · kÞ

þ 1

2
CA

n1 · n3
ðn1 · kÞðn3 · kÞ

þ 1

2
CA

n2 · n3
ðn2 · kÞðn3 · kÞ

	
:

ð97Þ
Despite the preponderance of directions, the integrals

required are all of the same general form. By rotational
invariance, we can always take the Wilson lines to be the n1
and n2 directions. Then all the required integrals are special
cases of the general form

Ina;nb;NðqÞ ¼
Z

ddk
n1 · n2

ðn1 · kÞðn2 · kÞ
δðk2Þθðk0Þ

× δ

�
q −

2

3
N · k

�
θðna · k − n̄a · kÞ

× θðnb · k − n̄b · kÞ: ð98Þ
This integral is Lorentz invariant, so it can only dependondot
products of the 4-vectors involved and is also invariant under
separate rescaling of all theni. Related integrals,with a single
θ function, appear in the iterative solution of the Banfi-
Marchesini-Smye equation [24] for nonglobal logarithms of
the light-jet mass distribution. There, a larger SLð2; RÞ
symmetry constrains the functional form even more [25].
Here, the SLð2; RÞ is broken by the second θ function, so the
integration region is a cats-eye-shaped wedge inside the
Poincaré disk.However, the conformal coordinates proposed
in [25] can still provide a useful change of variableswhichwe
used to understand and simplify the integrals.
In the regions without a Wilson line, the anomalous

dimension of the soft function is insensitive to the projec-
tion vectors Ni; it only depends on the location of the
measurement region relative to the Wilson lines. Thus for
NLL resummation there are only four independent inte-
grals, as illustrated in Fig. 5. A detailed calculation of the
soft integrals can be found in the Appendix. Here we just
summarize the results. We find for the four integrals

I1ðqÞ¼ In2;n3;n1ðqÞ¼
1

q1þ2ϵ

�
1

ϵ
−
7

2
ln2þ ln3−

3κ

2π

�
; ð99Þ

I2ðqÞ ¼ In1;n2;n3ðqÞ ¼
1

q1þ2ϵ

�
− ln 2þ 3κ

π

�
; ð100Þ

I3ðqÞ ¼ In̄1;n̄2;Ni
ðqÞ ¼ 1

q1þ2ϵ

�
ln 2þ 3κ

π

�
; ð101Þ

I4ðqÞ ¼ In̄1;n̄3;Ni
ðqÞ ¼ 1

q1þ2ϵ

�
3

2
ln 2 −

3κ

2π

�
; ð102Þ

where

κ ¼ ImLi2e
πi
3 ≈ 1.0149 ð103Þ

is Gieseking’s constant. Gieseking’s constant is a trans-
ecendentality-2 number1 in the family with Catalan’s
constant C ¼ ImLi2e

πi
2 and π2 ¼ 6Li2ð1Þ.

Then, when we add in the color structures, the soft
function is

I6gðqiÞ∝ δðq1Þδðq2Þδðq2Þδðq1̄Þδðq2̄Þδðq3̄Þ

þδðq2Þδðq2Þδðq1̄Þδðq2̄Þδðq3̄Þ
��

CF−
1

2
CA

�
I2ðq1Þ

þCAI1ðq1Þ
	

þδðq1Þδðq2Þδðq3Þδðq2̄Þδðq3̄Þ
��

CF−
1

2
CA

�
I3ðq1̄Þ

þCAI4ðq1̄Þ
	
þ��� ð104Þ

and so on for the other four qi sectors and for I6qðqiÞ. For
the trijet hemisphere soft function in Eq. (85), we can set all
the qi in each hemisphere equal. For the channel with a
gluon jet in the light hemisphere we find

FIG. 5. There are four independent integrals needed for the soft function. The shaded region indicates the measurement region which
can be in various positions relative to the Wilson lines.

1It has not been proven whether Gieseking’s constant or
Catalan’s constant are transcendental, or even irrational. In this
context, transecendentality-2 refers to the representation of κ as a
twofold iterated polylogarithmic integral.
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Shemi
g ðql; qh; μÞ ∝ δðqlÞδðqhÞ

þ δðqlÞ
��

CF −
1

2
CA

�
ðI2ðqhÞ þ 2I3ðqhÞÞ þ CAð2I1ðqhÞ þ I4ðqhÞÞ

	

þ δðqhÞ
��

CF −
1

2
CA

�
ðI2ðqlÞ þ 2I3ðqlÞÞ þ CAð2I1ðqlÞ þ I4ðqlÞÞ

	

¼ δðqlÞδðqhÞ þ
αsðμÞ
4π

δðqlÞ
�−4CFΓ0 ln

qh
μ þ 2γsqq

qh

	
⋆
þ αsðμÞ

4π
δðqhÞ

�−2CAΓ0 ln
ql
μ þ 2γsg

ql

	
⋆

ð105Þ

with Γ0 ¼ 4 and

γsqq ¼ −4CF ln 6; γsg ¼ −2CA ln 3þ 4CF ln 2: ð106Þ

Notation for the ⋆ distributions can be found in
[20,22,26–28].
In the channel where the light hemisphere has quark jet,

the trijet hemisphere soft function has terms of the form

Shemi
q ðql;qh;μÞ

∝δðqlÞδðqhÞþ
αsðμÞ
4π

δðqlÞ
�−2ðCFþCAÞΓ0 ln

qh
μ þ2γsqg

qh

	
⋆

þαsðμÞ
4π

δðqhÞ
�−2CFΓ0 ln

ql
μ þ2γsq

ql

	
⋆
; ð107Þ

where

γsqg ¼ −2ðCA þ CFÞ ln 6;

γsq ¼ −2CF ln
3

2
þ 2CA ln 2: ð108Þ

D. Resummation

To resum the large Sudakov shoulder logarithms, we
convolve the resummed hard, jet and soft function. The
resummation of these individual functions is the same as for
thrust in the threshold limit [27–29] and other processes
[7,20,26,30–33].
The resummed quark and gluon jet functions have the

form [20]

Jiðm2; μÞ ¼ exp½−4CiSðμj; μÞ þ 2Aγjðμj; μÞ�j̃ið∂ηjÞ

×
1

m2

�
m2

μ2j

�
ηj e−γEηj

ΓðηjÞ
; ð109Þ

where the Laplace transform of the one-loop jet functions is

ejiðLÞ ¼ 1þ
�
αsðμjÞ
4π

��
CiΓ0

L2

2
þ γiL

	
ð110Þ

and the Casimirs and one-loop anomalous dimensions are

Cq ¼CF; Cg¼CA; γjq ¼−3CF; γjg ¼−β0: ð111Þ

The Sudakov RG kernel is

Sðν; μÞ ¼ −
Z

αsðμÞ

αsðνÞ
dα

γcuspðαÞ
βðαÞ

Z
α

αsðνÞ

dα0

βðα0Þ
¼ −

αs
8π

Γ0 ln2
ν

μ
þ � � � ð112Þ

with

γcuspðαsÞ ¼
�
αs
4π

�
Γ0 þ

�
αs
4π

�
2

Γ1 þ � � � ; ð113Þ

βðαsÞ ¼ −2αs
��

αs
4π

�
β0 þ

�
αs
4π

�
2

β1 þ � � �
	
; ð114Þ

where

Γ0 ¼ 4; Γ1 ¼ 4

�
CA

�
67

9
−
π2

3

�
−
20

9
TFnf

	
; ð115Þ

β0 ¼
11

3
CA −

4

3
TFnf;

β1 ¼
34

3
C2
A −

20

3
CATFnf − 4CFTFnf: ð116Þ

To NLL order

Aγjðν; μÞ ¼ −γj
Z

αsðμÞ

αsðνÞ
dα

α

4πβðαÞ ¼
γj
2β0

ln
αsðμÞ
αsðνÞ

: ð117Þ

Finally,

ηjq ¼ 2CFAΓðμj; μÞ; ηjg ¼ 2CAAΓðμj; μÞ; ð118Þ

where

AΓðν; μÞ ¼ −
Z

αsðμÞ

αsðνÞ
dα

γcuspðαÞ
βðαÞ ¼ αs

4π
Γ0 ln

ν

μ
þ � � � : ð119Þ

The hard function can be extracted from [34] or using the
general forms for hard functions in [35] or from the hard
function for n-jettiness [32]. It is
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HðQ; μÞ ¼ exp½ð4CF þ 2CAÞSðμh; μÞ − 2Aγhðμh; μÞ�

×

�
Q2

μ2h

�−ð2CFþCAÞAΓðμh;μÞ
HðQ; μhÞ; ð120Þ

where

HðQ;μhÞ¼ 1þ
�
αs
4π

��
−ð2CFþCAÞ

Γ0

4
ln2

Q2

μ2h
− γh ln

Q2

μ2h

	
;

ð121Þ

with

γh ¼ −2ð2CF þ CAÞ ln 3 − 6CF − β0: ð122Þ

The trijet hemisphere soft functions can be resummed in
exactly the same manner as the hemisphere soft function
[7,27–29,36]. At NLL level they factorize into the product
of soft functions for each hemisphere:

Shemi
g ðkl; kh; μÞ ¼ Sgðkl; μÞSqqðkh; μÞ; ð123Þ

Shemi
q ðkl; kh; μÞ ¼ Sqðkl; μÞSqgðkh; μÞ: ð124Þ

The single-variable soft functions all have the same form:

Siðk; μÞ ¼ exp½2CiSðμs; μÞ þ 2Aγiðμs; μÞ�

× s̃ið∂ηiÞ
1

k

�
k
μs

�
ηi e−γEηi

ΓðηiÞ
; ð125Þ

where

s̃iðLÞ ¼ 1þ
�
αsðμsÞ
4π

��
−2CiΓ0

L2

2
þ 2γiL

	
ð126Þ

and

ηi ¼ −2CiAΓðμs; μÞ: ð127Þ

The only difference is the anomalous dimensions. The
coefficient of the Sudakov logs are determined by Casimir
scaling as the sum of the color factors for each parton in the
hemisphere:

Cg¼CA; Cqq ¼ 2CF; Cq ¼CF; and Cqg ¼CFþCA:

ð128Þ

The anomalous dimensions γsg, γsq, γsqq and γsqg are in
Eqs. (106) and (108).
Now we just have to put everything together and

perform the integrals in Eqs. (86)–(88). Since the various
functions after resummation are simply powers, e.g.,
Jðm2Þ ∼ ðm2Þηj−1, the integrals are all products or

convolutions of powers, which can be done directly or
through Laplace transforms.
For thrust, with t ¼ τ − 1

3
> 0, the core measurement

function integral following from Eq. (80) is

Z
∞

0

dx
Z

∞

0

dyxa−1yb−1ðxþ y − tÞθðxþ y − tÞ

¼ t1þaþb ΓðaÞΓðbÞ
Γð2þ aþ bÞ : ð129Þ

For the left shoulder of heavy jet mass, the integral is
similar, but the sign flip in Eq. (76) as compared to Eq. (80)
gives an important change:

Z
∞

0

dx
Z

∞

0

dyxa−1yb−1ðrþ y − xÞθðrþ y − xÞ

¼ r1þaþb ΓðaÞΓðbÞ
Γð2þ aþ bÞ

sinðπaÞ
sinðπðaþ bÞÞ : ð130Þ

For the right shoulder of heavy jet mass we define
s ¼ −r ¼ ρ − 1

3
> 0. Then the core integral is

Z
∞

0

dx
Z

∞

0

dyxa−1yb−1ðy − x − sÞθðy − x − sÞ

¼ s1þaþb ΓðaÞΓðbÞ
Γð2þ aþ bÞ

sinðπbÞ
sinðπðaþ bÞÞ : ð131Þ

These integrals are all UVand IR divergent, and so analytic
continuation has been used to complete them. We discuss
the integrals in more detail in Sec. IV B.
Putting everything together and applying algebraic

simplifications as in [20,28], we find that all three observ-
ables can be written in terms of the same RG evolution
kernel. For the gluon channels

1

σ1

dσg
dt

¼ Πgð∂ηl ; ∂ηhÞt
�
tQ
μs

�
ηl
�
tQ
μs

�
ηh e−γEðηlþηhÞ

Γð2þ ηl þ ηhÞ
;

ð132Þ

1

σ1

dσg
dr

¼ Πgð∂ηl ; ∂ηhÞr
�
rQ
μs

�
ηl
�
rQ
μs

�
ηh e−γEðηlþηhÞ

Γð2þ ηl þ ηhÞ

×
sinðπηlÞ

sinðπðηl þ ηhÞÞ
; ð133Þ

1

σ1

dσg
ds

¼ Πgð∂ηl ; ∂ηhÞs
�
sQ
μs

�
ηl
�
sQ
μs

�
ηh e−γEðηlþηhÞ

Γð2þ ηl þ ηhÞ

×
sinðπηhÞ

sinðπðηl þ ηhÞÞ
; ð134Þ

where
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Πgð∂ηl ; ∂ηhÞ ¼ exp½4CFSðμh; μjÞ þ 4CFSðμs; μjÞ þ 2CASðμh; μjÞ þ 2CASðμs; μjÞ�
× exp½2Aγsgðμs; μhÞ þ 2Aγsqqðμs; μhÞ þ 2Aγjgðμj; μhÞ þ 4Aγjqðμj; μhÞ�

×HðQ; μhÞj̃q
�
∂ηh þ ln

Qμs
μ2j

�
j̃q̄

�
∂ηh þ ln

Qμsh
μ2j

�
j̃g

�
∂ηl þ ln

Qμsl
μ2j

�
s̃qqð∂ηhÞs̃gð∂ηlÞ ð135Þ

and

ηl ¼ ηjg þ ηsg ¼ 2CAAΓðμj; μsÞ; ð136Þ

ηh ¼ 2ηjq þ ηsqq ¼ 4CFAΓðμj; μsÞ: ð137Þ

We have chosen the same jet scales for the light and heavy
hemispheres although one could also choose them to be
different. Similarly, we have taken the same soft scales for
the left and right hemispheres.

One can read off from Eq. (133) that the large logs will
be resummed for the left shoulder of heavy jet mass with
the canonical scale choices

μh ¼ Q; μj ¼
ffiffiffi
r

p
Q; μs ¼ rQ: ð138Þ

For thrust or the right shoulder of heavy jet mass, the
canonical scale choices are the same with r replaced by t or
s, respectively. We have verified that the expansion of the
resummed distribution is independent of the matching
scales μh, μj and μs at order αs.
The quark channels have the same form as Eqs. (132)–

(134) but with

Πqð∂ηl ; ∂ηhÞ ¼ exp½ð2CF þ CAÞ½Sðμh; μjÞ þ Sðμs; μjÞ� þ 2CF½Sðμh; μjÞ þ Sðμs; μjÞ��
× exp½2Aγsqðμs; μhÞ þ 2Aγsqgðμs; μhÞ þ 2Aγjqðμj; μhÞ þ 2Aγjqðμj; μhÞ þ 2Aγjqðμj; μhÞ�

×HðQ; μhÞj̃q
�
∂ηh þ ln

Qμs
μ2j

�
j̃g

�
∂ηh þ ln

Qμs
μ2j

�
j̃q

�
∂ηl þ ln

Qμs
μ2j

�
s̃qgð∂ηhÞs̃qð∂ηlÞ ð139Þ

and

ηl ¼ ηjq þ ηsq ¼ 2CFAΓðμj; μsÞ; ð140Þ

ηh ¼ ηjq þ ηjg þ ηsqg ¼ ð2CF þ 2CAÞAΓðμj; μsÞ: ð141Þ

The final resummed distribution for thrust is

dσ
dt

¼ dσg
dt

þ 2
dσq
dt

ð142Þ

and similarly for heavy jet mass.

IV. ANALYSIS

In Sec. III we derived a factorization formula for the left
and right Sudakov shoulders for heavy jet mass as well as
the right Sudakov shoulder for thrust (thrust has no left
shoulder). We will now perform some cross-checks on
those results. We first perform the fixed-order expansion
and compare to a numerical computation of the exact NLO
expression to verify the singular behavior. Then we
demonstrate that there are no nonglobal logarithms and
discuss power corrections.

A. Fixed-order expansions

First of all, we observe that the full resummed distribu-
tions are renormalization-group invariant. This invariance
has let us write the evolution kernels in Eqs. (135) and
(139) in a form that depends only on the hard, jet and soft
matching scales μi, and not on μ. The cancellation of the μ
dependence is nontrivial and requires the Casimirs asso-
ciated with the Sudakov double logs to cancel and the
anomalous dimensions to satisfy

γh ¼ γjg þ 2γjq þ γsqq þ γsg

¼ γjg þ 2γjq þ γsqg þ γsq: ð143Þ

These relations can be checked explicitly using Eqs. (122),
(111), (106), and (108).
Expanding the resummed distributions to order αs we

find

1

σ1

dσ
dt

¼ 3tþ αs
4π



B1t −

3

2
ð2CF þ CAÞΓ0tln2t

þ ½3γjg þ 6γjq þ 2γsg þ 4γsq þ 2γsqq þ 4γsqg

þ 3ðCA þ 2CFÞΓ0�t ln t
�

ð144Þ
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for some B1. The linear terms 3t and B1t are not predicted
with NLL resummation. So to be consistent we
should remove all the terms linear in t. This can be done
to all orders by subtracting from the full resummed
distribution σðtÞ the boundary condition tσð1Þ. That is,
we consider

1

σ1

dσsub

dt
≡ 1

σ1

dσ
dt

− t

�
1

σ1

dσ
dt

	
t¼1

; ð145Þ

which has only terms of the form t lnn t to all orders in αs.
We use an analogous definition with t replaced by r or s for
the subtracted form of the heavy jet mass distribution.
Plugging in the anomalous dimensions

1

σ1

dσsub

dt
¼ αs

4π
f−6ð2CF þ CAÞtln2t

þ ½6CFð1 − 4 ln 3Þ þ CAð1 − 12 ln 3Þ
þ 4nfTF�t ln tg þOðα2sÞ: ð146Þ

This is shown in comparison to the NLO calculation
in Fig. 6.
For the left shoulder of heavy jet mass, the expansion

gives

1

σ1

dσsub

dr
¼ αs

4π



−
1

2
ð2CF þ CAÞΓ0rln2rþ ½ðCA þ 2CFÞΓ0

þ γjg þ 2γjq þ 2γsg þ 4γsq�r ln r
�

¼ αs
4π



−2ð2CF þ CAÞrln2rþ

�
2CF

�
1þ 4 ln

4

3

�

þ CA

�
1

3
þ 4 ln

4

3

�
þ 4

3
nfTF

	
r ln r

�
: ð147Þ

This agrees with our fixed-order computation in Sec. II and
with the leading shoulder logarithms at NLO as can be seen
in Fig. 6.
Breaking down the expression in Eq. (147) the anoma-

lous dimensions which appear are γjg þ 2γsg from the
gluon channel and γjq þ 2γsq from the quark and antiquark
channels. So in each channel only anomalous dimensions
associated with light-hemisphere side are contributing
logarithms as order αs. This is a somewhat remarkable
feature of the factorization formula: although both sides
contribute one-loop anomalous dimensions, as is required
for renormalization-group invariance, Eq. (143) only one
side contributes logarithms. Mechanically, what happens is

ðγh∂ηh þ γl∂ηlÞ½rηlþηh −1� sinðπηlÞ
sinðπðηlþηhÞÞ

¼ γlr lnr: ð148Þ

So the sinðπηlÞ
sinðπðηlþηhÞÞ factor replaces the full anomalous

dimension γl þ γh with just γl.

FIG. 6. Comparison of the resummed distribution expanded to NLO (colored curves) to the exact NLO distribution in the Sudakov
shoulder region (blue histograms) for heavy jet mass (left) and thrust (right). We include in the prediction an offset and a linear term
which are fit separately on either side of the peak. The CFnfTF color structure has been scaled up by a factor of 10 for clarity. The NLO
histograms is this figure were computed using EVENT2 [9,10] with a cutoff of 10−12 and 12 trillion events and normalized to Born cross
section σ0.
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For the right shoulder of heavy jet mass

1

σ1

dσsub

ds
¼ αs

4π
f−ð2CF þ CAÞΓ0sln2sþ ½2ðCA þ 2CFÞΓ0

þ 2γjg þ 4γjq þ 2γsqq þ 4γsqg�s ln sg

¼ αs
4π



−4ð2CF þ CAÞsln2sþ

�
4CFð1 − 4 ln 6Þ

þ 2CA

3
ð1 − 12 ln 6Þ þ 8

3
nfTF

	
s ln s

�
: ð149Þ

In this case, only the anomalous dimensions in the heavy
hemisphere contribute at NLO. This distribution is also
shown in Fig. 6 and compared to the exact NLO
calculation.

B. Nonglobal logarithms

When observables are sensitive to emissions only in a
restricted region of phase space, there can be an incomplete
cancellationof virtual and real emissions leading to nonglobal
logarithms [37]. The classic example is the light-hemisphere
mass in eþe− collisions. For the light-hemisphere mass,
emissions into the heavy hemisphere do not affect the value
of the light-hemispheremass,making it nonglobal.Generally,
to be able to resum logarithms using a factorization formula,
one would like the condition that the observable be small to
force soft and collinear kinematics. This does not happenwith
the light-hemispheremass, for example, sincedemanding it be
small does not prevent additional hard emissions into the
heavy hemisphere. For light-jet mass, the leading nonglobal
logarithm contributes to the cross section at order dσ=dρl ∼
α2s ln2 ρl so it is the same order as terms inNLL resummation.
The leading logarithmic series of nonglobal logs for the light
jet mass and related observables is understood and can be
resummed[24,25].Progresshasalsobeenmadeonsystematic
higher-order resummation of nonglobal logarithms [38–42].
Thus, if therewerenonglobal logs in theSudakov shoulders, it
would not pose an insurmountable obstacle. Nevertheless, we
will show that for the Sudakov shoulders of thrust and heavy
jet mass, nonglobal logs are absent.
For the right shoulder of thrust, the constraint in Eq. (80)

is of the form t < xþ y, where x and y represent con-
tributions to the mass of the heavy or light hemispheres,
respectively, from soft and collinear radiation near the trijet
region (i.e., x ¼ m2

2 þm2
3 þ 2p2k2 þ 2p3k3 þ 2v1k1̄ and

y ¼ m2
1 þ 2p1k1 þ v0̄

2
k2̄ þ v0̄

3
k3̄ when the light jet is in the

1 direction). Since the constraint imposes a lower bound on
t, demanding t ≪ 1 does not force x and y to be small,
suggesting that the Sudakov shoulder for thrust might be
nonglobal. However, we can rewrite the core convolution
integral in Eq. (129) as

Z
∞

0

dx
Z

∞

0

dyxa−1yb−1ðxþ y − tÞΘðxþ y − tÞ ð150Þ

¼
Z

∞

0

dz

�Z
∞

0

dx
Z

∞

0

dyxa−1yb−1δðxþ y − zÞ
	

× ðz − tÞΘðz − tÞ ð151Þ

¼ ΓðaÞΓðbÞ
Γðaþ bÞ

�Z
∞

0

dzzaþb−1ðz − tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
scaleless

−
Z

t

0

dzzaþb−1ðz − tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
global

	

ð152Þ

¼ t1þaþb ΓðaÞΓðbÞ
Γð2þ aþ bÞ : ð153Þ

The first integral in brackets in Eq. (152) is divergent but
either independent of t or linear in t, so it is smooth across
t ¼ 0 and does not generate Sudakov shoulder logarithms.
The remaining integral has z ¼ xþ y < t, so taking t ≪ 1
does force x, y ≪ 1. We conclude that the right shoulder of
thrust should be free of nonglobal logarithms. The actual
divergence is an artifact of expanding the phase space limits
to leading power. In the full theory, the divergences would
cut off by the hard scale Q but still would not generate
logarithms of t.
It is also worth noting that the scaleless integral in

Eq. (152) does generate a divergent term proportional to t.
This would be the same order as terms in the NNLL
resummation of the Sudakov shoulder. The presence of
such a term does not imply that the factorization formula is
valid only to NLL. Indeed, this divergent contribution is
smooth across t ¼ 0, suggesting that it contributes similarly
to the left and right sides of τ ¼ 1

3
and therefore does not

give a discontinuity or a kink at τ ¼ 1
3
. In any case, since we

are only working to NLL in this paper, we can safely
ignore it.
For heavy jet mass, the analogous constraint is in

Eq. (76) which corresponds to x < rþ y for the left
shoulder or xþ s < y for the right shoulder, as in
Eqs. (130) and (131). We can rewrite Eq. (130) as

fðrÞ ¼
Z

∞

0

dx
Z

∞

0

dyxa−1yb−1ðrþ y − xÞθðrþ y − xÞ

¼ 1

aðaþ 1Þ
Z

∞

0

dyðrþ yÞaþ1yb−1: ð154Þ

This integral is both UVand IR divergent (for a, b > 0) and
gets contributions from all scales, suggesting, again, that it
may generate nonglobal logarithms. To separate out the UV
and IR divergences, we can take two derivatives with
respect to r, leaving an integral which is UV finite for a,
b > 0. We also introduce a new scale R to separate small r
from large r. Then we have
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f00ðrÞ ¼
Z

R

0

dyðrþ yÞa−1yb−1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
global

þ
Z

∞

R
dyðrþ yÞa−1yb−1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

regular in r

:

ð155Þ

Since we are interested in the region with r ≪ 1, we can
take 0 < r < R ≪ 1. Then the first integral in Eq. (155) is
global, since it gets contributions only from the region
where y ≪ 1 and x ≪ 1 [we had integrated x from 0 to
rþ y ≪ 1 in Eq. (154)]. The second integral in Eq. (155) is
regular as r → 0. Thus it does not contribute to any
discontinuities or kinks near the shoulder, at r ¼ 0. As
with thrust, it may contribute terms linear in r but will not
give any Sudakov shoulder logs. So only the soft and
collinear regions should contribute to the Sudakov shoulder
logs for heavy jet mass, as with thrust, and there are no
nonglobal logarithms.
To complete the computation, as far as the Sudakov

shoulder logs are concerned, we have

f00ðrÞ ≅
Z

R

0

dyðrþ yÞa−1yb−1 ð156Þ

¼
Z

∞

0

dyðrþ yÞa−1yb−1

−
Z

∞

R
dyðrþ yÞa−1yb−1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

regular in r

ð157Þ

≅
ΓðaÞΓðbÞ
Γðaþ bÞ

sinðπaÞ
sinðπðaþ bÞÞ r

aþb−1

− R1−a−b 1

aþ b − 1
; ð158Þ

where we have taken R ≫ r to simplify the second integral.
Integrating twice with respect to r then gives

fðrÞ ¼ ΓðaÞΓðbÞ
Γð2þ aþ bÞ

sinðπaÞ
sinðπðaþ bÞÞ r

1þaþb

−
r2

2
Raþb−1 1

1 − a − b
þ c1rþ c0: ð159Þ

At small a and b (these are proportional to αs), the second
term on the right-hand side is suppressed by a factor of r

R
compared to the first term, so it only gives power
corrections and no Sudakov shoulder logs, as anticipated.
We should fix the integration constants c1 and c2 so that the
expansion of fðrÞ at small a and b only has terms of the
form r lnn r with n > 0. The constant term we can simply
discard, c0 ¼ 0. To fix c1 we should set c1 ¼ −fð1Þ. This
corresponds to integrating f0ðrÞ from 1 to r. These
integration constants were used in Eq. (145).

In summary, the heavy jet mass distribution at a value of
ρ ≈ 1

3
does get contributions from phase space regions with

jets whose masses are not small. In this sense it is similar to
light jet mass near ρl ¼ 0 which gets contributions from
phase space regions where ρ is not small. However, the
contributions corresponding to heavy jets for the Sudakov
shoulder do not generate large logarithms. This is because
the phase space regions with heavy jets can contribute to
both ρ≲ 1

3
and ρ≳ 1

3
and are smooth across ρ ¼ 1

3
. All the

contributions to the distribution that are not smooth across
ρ ¼ 1

3
come from the regions with one nearly massless jet in

the light hemisphere and two nearly massless jets in the
heavy hemisphere. There is no analog of this continuity
argument for light jet mass, which cannot have ρl < 0.
Thus, the Sudakov shoulders of heavy jet mass (and thrust)
are free of nonglobal logarithms.

C. Power corrections

In resummed distributions, there are typically different
types of power corrections. For threshold resummation,
near ρ ¼ 0 for example, there can be power corrections of

order ΛQCD

Q associated with the strong dynamics of QCD.
There can also be hard power corrections, suppressed by

additional powers of ρ ¼ m2
H

Q2 , where mH is the mass of the

heavy jet. The ΛQCD power corrections are often modeled
with parameters fit to data. This allows for predictivity
closer to threshold than with just the resummed distribution
alone, although one cannot get too close to threshold since
more and more nonperturbative parameters then become
relevant. The hard power corrections are typically
accounted for in matching to an exact fixed-order expres-
sion at large ρ.
For Sudakov shoulder resummation, it is not clear

whether ΛQCD

Q power corrections are important near the trijet
threshold. On the one hand, the resummed distribution
involves evaluating αs at scales such as μs ¼ Qr which can
reach ΛQCD for small enough r. On the other hand, the
shoulder is intrinsically perturbative, associated with fixed-
order phase space boundaries, so one might expect that it
might be invisible to nonperturbative physics.
The hard power corrections for the Sudakov shoulder are

more interesting. In Sec. IV B we argued that at leading
power all the nonanalytic behavior near the shoulder is
determined by soft and collinear physics. That is, there are
no nonglobal logarithms. One can see this from Eq. (159).
The quantities a and b are to be replaced by ηl and ηh in
the resummed distribution, which are parametrically of the
form η ∼ αsΓ0 ln r. Thus at small αs, all the terms of the
form r lnn r will come from the expansion of the first
term on the right-hand side in Eq. (159). On the other hand,
if r is sufficiently small, then aþ b can be of order 1. As
aþ b nears 1 a pole from the sin−1ðπðaþ bÞÞ factor in
Eq. (159) is approached. However, when aþ b ≈ 1, the
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power-suppressed term is no longer power suppressed.
Indeed, it has precisely the behavior needed to remove the
singular behavior from the leading power term. We show
this in Fig. 7.
To see what is happening analytically, noting that the

leading power expression scales like r1þaþb we can write
the subleading power expression as

r2Raþb−1 ¼ r1þaþb

�
r
R

�
1−a−b

: ð160Þ

For aþ b ≪ 1 there is a r
R linear power suppression.

However for aþ b ∼ 1 there is no power suppression at
all; for aþ b ¼ 1 this expressions reduces to r2 as does
r1þaþb. In effect, the scaling dimensions of the leading
power and subleading power pick up such large anomalous
contributions that their relative scaling changes.
Taking R → ∞ gives the leading contribution. The first

subleading power contribution in this limit cancels the pole
at aþ b ¼ 1. To cancel subsequent poles, one can use the
exact integrated form of Eq. (155). This effectively replaces
fðrÞ in Eq. (159) by

fðrÞ¼r1þaþbe−ibπ
1

aðaþ1ÞB−R
r
ðb;2þaÞþc1rþc0; ð161Þ

where Bzðx; yÞ is the incomplete Euler β function and c0
and c1 are again integration constants to be fixed with
physical boundary conditions.

V. DISCUSSION

Next, we want to evaluate the resummed distribution
numerically and compare to fixed order, to see the effect of

the higher-order logarithms. There are a number of issues
which complicate the analysis, compared with typical
threshold resummation of large logarithms.
First, the relevant domain of the observable is rather

small for Sudakov shoulders. For example, for thrust in the
threshold limit, although the logarithms are largest at small
τ, power corrections and subleading logs are also large
there. Typical fits restrict τ ≳ 0.1where perturbative control
is best. For example, with Q ¼ 92 GeV, Ref. [28] used
0.1 < τ < 0.24 for their αs fits to thrust while Ref. [43]
took τ ≳ 6 GeV

Q ¼ 0.066. For the right shoulder of thrust

which begins at the three-parton maximum τ ¼ 1
3
if one

excludes the region up to 1
3
þ 0.1 ¼ 0.43 there is no cross

section or phase space left. Moreover, the four-particle
phase space forces τ ≲ 0.42, so there is another Sudakov
shoulder at this thrust value whose logs must be resummed
separately. So it is not clear if there is a region on the right
shoulder where the resummed formula might even be valid.
For the left shoulder, in contrast, one can exclude the region
with r ¼ 1

3
− ρ < 0.1 which still leaves a region of 0.1≲

ρ≲ 0.23 in which Sudakov shoulder logarithms might be
important and renormalization-group improved perturba-
tion theory could be valid.
Second, in the threshold region, the logarithms of thrust are

of the form dσ
dτ ∼ αns

lnm τ
τ . In contrast, the logarithms near the

shoulder region are of the form dσ
dt ∼ αns t lnm t. So they are

suppressed effectively by t2 compared to the threshold region.
The thrust andheavymass distributions are indeed finite at the
trijet threshold to all orderswhile they are divergent at thedijet
threshold. Despite this additional suppression, the logarithms
are noticeable, as can be been in Fig. 2.
Third, in the important left-shoulder region for heavy jet

mass, the resummed distribution has usually singular
behavior. Let us recall the form of the resummed heavy
jet mass distribution in the region r ¼ 1

3
− ρ ≪ 1 when the

light hemisphere has a gluon jet from Eq. (133):

1

σ1

dσg
dr

¼ Πgð∂ηl ; ∂ηhÞr
�
rQ
μsl

�
ηl
�
rQ
μsh

�
ηh e−γEðηlþηhÞ

Γð2þ ηl þ ηhÞ

×
sinðπηlÞ

sinðπðηl þ ηhÞÞ
ð162Þ

with ηh and ηl in Eqs. (141) and (140). This expression has
singularities whenever ηl þ ηh ∈ Z.
Choosing canonical scales as in Eq. (138) at leading

logarithmic level gives

ηl þ ηh ¼ −
αs
2π

ðCA þ 2CFÞΓ0 ln
μj
μs

¼ αs
4π

ðCA þ 2CFÞΓ0 ln r: ð163Þ

The singularity ηl þ ηh ¼ 0 occurs when μj ¼ μs, which
happens at r ¼ 1. At r ¼ 1 there are no logarithms, so this
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FIG. 7. The solid red curve shows r1þaþb ΓðaÞΓðbÞ
Γð2þaþbÞ

sinðπaÞ
sinðπðaþbÞÞ

with a ¼ b ¼ −6 αs
π ln r and αs ¼ 0.1. The pole is at aþ b ¼ 1.

The dashed curve shows this same function once the power-
suppressed term − r2

2
Raþb−1 1

1−a−b is added with R ¼ 1. The
power suppression is apparent at small r, where the difference
between the two curves is negligible. The pole at aþ b ¼ 2 is not
canceled and appears as the spike at r ≈ 0.0003.
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singularity is entirely removed by the subtraction in
Eq. (145). That is,

dσsub

dr
¼ dσ

dr
− r

�
dσ
dr

	
r¼1

ð164Þ

is regular at r ¼ 1. Note, however, if the soft and jet
scales meet at some lower scale, this singularity may be
reintroduced.
The singularity at ηl þ ηh ¼ 1 is more troublesome.

Similar singularities have been seen in other processes,
such as Drell-Yan or Higgs production at small pT

[11–13,44,45] or the jet shape [2,46]. Writing L ¼ ln 1
r,

resummation at order NLL is meant to get right all terms of
order αnsLj with j ≥ 2n − 1 in RðrÞ or equivalently all
terms of order αnsLj with j ≥ n in the exponent, i.e., in
lnRðrÞ. In the notation of [47], we can write

ln
dσsub

dr
¼ Lg1ðαsLÞ þ g2ðαsLÞ þ � � �
¼ ∼ � � � − ln sinðπðηl þ ηhÞÞ þ � � � ð165Þ

with g1ðαsLÞ and g2ðαsLÞ completely fixed by the expan-
sion and reorganization of our resummed expression.
Normally, when αsL ∼ 1 then we must go to higher order
in RG-improved perturbation theory; at NNLL level, we
would have additionally Lg3ðαsLÞ which would extend the
validity of the theoretical prediction. Here, instead we find
a singularity in the exponent: lnRsub is infinite at αsL ∼ 1
due to the ηl þ ηh ¼ 1 singularity. Therefore, going
beyond NLL would not allow us to make perturbative
predictions beyond where the singularity occurs. Instead,
the singularity is canceled by including subleading power
effects, as discussed in Sec. IV C and shown in Fig. 7.
The singularity at α ln r ∼ 1 is reminiscent of the Landau

pole in QCD. There, already at one loop one can see a pole
in the running coupling at μ ¼ ΛQCD. With two-loop or
higher-order running, the precise location of ΛQCD moves
around but cannot be surpassed. Thus what we see here is a
kind of Sudakov Landau pole. Using the LL form in
Eq. (163) it occurs at

r ¼ exp

�
−

4π

ðCA þ 2CFÞαsΓ0

	
¼ exp

�
−

3π

17αs

	
: ð166Þ

For αs ¼ 0.119 this gives r ≈ 0.01. Using the NLL expres-
sions for ηl and ηh with canonical scale choices [Eq. (138)]
the pole ascends to r ≈ 0.06. Thus we cannot expect the
leading-power NLL resummed distribution to be predictive
between 0.27 < ρ < 0.39. This essentially excludes the
entire region on the right shoulder but leaves the region
with ρ≲ 0.27 as potentially viable for a precise prediction.
To stay well away from the singular region, however, one

must take ρ smaller, ρ≲ 0.2 where the logarithms are no
longer particularly large.
We emphasize that the excluded range is larger than that

associated with strong coupling. With two-loop running
and αsðmZÞ ¼ 0.119, we find αsðmsÞ ¼ 1 at r ¼ 0.005.
Thus the singularity comes in at a factor of 10 larger values
of r than where the soft scale probes strong dynamics. This
is because the singularity is associated with the cusp
anomalous dimension, not the QCD β function: the two
Landau poles are unrelated.
Because of the Sudakov Landau pole in the resummed

distribution it is difficult to make quantitative predictions,
particularly at the NLL level, without a better understand-
ing of the power corrections. There are a number of
approaches that could be applied to ameliorate the problem.
In [11], a similar pole in the Drell-Yan spectrum at small pT

[at q⋆ ¼ mZ expð− 3π
8αs
Þ [48]] was shown to be associated

with a power-suppressed region of small impact parameter
but could be softened with higher-order resummation. In
[13] it is argued that one could also do resummation in
momentum space directly with a modified expansion of the
Sudakov radiator. Related ideas can be found in [46,49]. It
will be important to understand which of these approaches
might apply for Sudakov shoulder resummation, but we do
not attempt a complete analysis here.
At the LL level, however, because the Sudakov Landau

pole is very close to the shoulder, we can at least begin to get a
quantitative feel of how important resummation is. Consider
the LLdistribution using canonical scales in Eq. (138).When
the jet in the light hemisphere is a gluon, it has the form as in
Eq. (162) with Πg from Eq. (135) becoming

Πg ¼ e−
αs
8πΓ0ðCAþ2CFÞlog2r

�
1 −

αs
8π

Γ0ðCA∂
2
ηl þ 2CF∂

2
ηhÞ

	
:

ð167Þ

Note that we include every term with Γ0 in it for leading-log
resummation, not just the exponential prefactor. Including
only the prefactor would give the double-logarithmic
approximation, as used in previous work on resummation
of the C parameter Sudakov shoulder [1]. We subtract off
from the resummed distribution r times its r → 1 limit as
done in Eq. (145). Note that this subtraction must be done
before setting canonical scales. We then match to the fixed-
order LOþ NLO calculation by subtracting from the
resummed distribution its expansion to order αs. In this
case, the matching subtraction is

1

σ1

dσmatch

dr
¼ αs

4π
ðCA þ 2CFÞΓ0

�
r ln r −

1

2
r ln2 r

�
: ð168Þ

Finally we include the subtraction of the first subleading
power contribution. For the gluon channel this amounts to
subtracting
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1

σ1

dσRg
dr

¼ r2

2R
Πgð∂ηl ; ∂ηhÞ

�
RQ
μsl

�
ηl
�
RQ
μsh

�
ηh

×
e−γEðηlþηhÞ

ΓðηlÞΓðηhÞ
1

ð1 − ηl − ηhÞ
ð169Þ

from the resummed distribution. The resulting LL resummed
and matched result atQ ¼ mZ and αsðQÞ ¼ 0.119withR ¼
1
3
for the left shoulder is shown in Fig. 8. To be clear, this is not

the complete power correction but amounts to integrating the
leading power soft and collinear matrix elements outside of
their formal region of validity up to the kinematic limit
of r ¼ 1

3
.

VI. CONCLUSION

Thrust τ and heavy jet mass ρ are two of the most
important observables at eþe− colliders. They have been
used for decades for tests of precision QCD and measure-
ments of αs. At leading order in perturbation theory, both ρ
and τ are phase-space limited to be less than 1

3
and have a

nonvanishing slope as 1
3
is approached. At next-to-leading

order, thrust behaves like α2sðτ − 1
3
Þ ln2ðτ − 1

3
Þ for τ > 1

3
so

that the slope diverges as 1
3
is approached from the right.

This behavior is called a right Sudakov shoulder. Heavy jet
mass has a slope which diverges as ρ nears 1

3
both from the

left and the right: it has two Sudakov shoulders. The left
shoulder of heavy jet mass is particularly important as the
large logarithms can extend well into the region where αs
fits are typically done (0.1≲ ρ≲ 0.24). Thus understand-
ing and resumming its Sudakov shoulders could be very
important for improving agreement of theoretical predic-
tions with data and subsequent extractions of αs. We also
point out that it has been noted recently in the literature that
in the context of other event shape observables such as
fractional moments of energy-energy correlation [45] or

projected energy correlators [50], one must resort to a joint
resummation of the Sudakov shoulders and end point
peaks.
We derived a factorization formula for both thrust and

heavy jet mass in the Sudakov shoulder region. The basic
mechanism for generating Sudakov shoulder logs is when a
soft or collinear emission goes into one hemisphere a global
constraint such as m2 < ρ − 1

3
transfers large logs from the

emissions to the shoulder. Although the constraint seems
nonlocal, involving both hemispheres, and therefore might
violate factorization, we show that it does not. Moreover
regions of large jet mass do not contribute Sudakov
shoulder logs, showing that there is no nonglobal log
contribution in the shoulder region. We checked our
factorization formula by expanding to NLO and comparing
to the exact numerical NLO calculation very close to the
shoulder region. As can be seen in Fig. 6 the agreement is
excellent.
The calculation involves some unusual ingredients.

Since the emissions come off a trijet configuration with
two quarks and one gluon, there is no azimuthal symmetry
(unlike the threshold case), and the polarization of the
gluon affects the spectrum. At leading order, only a uniform
azimuthal angle integral was needed for the resummed
expression, but in general polarized splitting function may
be necessary. We also saw the appearance of Gieseking’s
constant, a transcendentally two number. Although it also
drops out of the NLL expression, at higher orders it or
related constants may be involved.
The resummed distribution for heavy jet mass has a term

of the form sin−1ðπηÞ with η ∼ αsΓ0 ln r, where r ¼ 1
3
− ρ.

The expansion near αs ¼ 0 (or ln r ¼ 0) produces the
leading and next-to-leading logarithmic series: terms like
αn ln2n r. However, there is also a pole at η ¼ 1. This pole
in the resummed distribution is not due to the running
coupling—it is present even with βðαsÞ ¼ 0—but due to
the cusp anomalous dimension. Thus it is a kind of
Sudakov Landau pole. Similar behavior has been seen
before, in the Drell-Yan process at small pT , for example
[11,13,44]. In both cases there is a connection between the
pole and subleading power effects (subleading in r for the
shoulder, or in impact parameter b for Drell-Yan). We show
that subleading power terms can in fact cancel the η ¼ 1
pole but do not affect the NLL series. This implies that a
better understanding of power corrections will be necessary
to establish proper theoretical uncertainty on the resummed
distribution. There are many approaches that may help
improve the convergences of the resummed distribution
[13,30,49].
Although our results are only valid to NLL level, the

factorization formula applies to all orders. In fact, since
the anomalous dimensions of the jet and hard functions are
known to two loops, and therefore the soft function
anomalous dimension as well by renormalization-group
invariance, NNLL resummation should be possible.
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FIG. 8. Resummation of the left Sudakov shoulder for heavy jet
mass at leading-logarithmic level (upper curve) compared to
NLO (lower curve). The strong coupling constant is fixed
to αs ¼ 0.119.
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At NNLL level, terms linear in ρ or τ are determined. The
slope can be discontinuous from the left to right side of the
shoulder, as it is already at LO. This discontinuity should
be computable. However, because there is also a linear term
in the distribution not associated with the shoulder, con-
firming the predictions at NNLL will be challenging.
Nevertheless, pushing the limits of Sudakov shoulder
resummation, not just for eþe− event shapes but for collider
observables more broadly, provides opportunities to
improve our understanding of precision QCD.
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APPENDIX: CALCULATION OF THE ONE-LOOP
TRIJET SOFT FUNCTION

Before using rotational invariance all the integrals
needed for the one-loop trijet soft functions are of the form

Ina;nb;nc;nd;NðqÞ ¼
Z

ddk
na · nb

ðna · kÞðnb · kÞ
δðk2Þθðk0Þ

× δ

�
q −

2

3
N · k

�
θðnc · k − n̄c · kÞ

× θðnd · k − n̄d · kÞ; ðA1Þ

where the N is selected from the direction vectors

n1 ¼ ð1; 0; 0; 1Þ; n2 ¼
�
1; 0;

ffiffiffi
3

p

2
;−

1

2

�
;

n3 ¼
�
1; 0;−

ffiffiffi
3

p

2
;−

1

2

�
; ðA2Þ

N1 ¼ ð2; 0; 0;−2Þ; N2 ¼ ð2; 0;
ffiffiffi
3

p
; 3Þ;

N3 ¼ ð2; 0;−
ffiffiffi
3

p
; 3Þ ðA3Þ

and na � � � nd only from the nj in Eq. (A2). The θ functions
restrict the phase space to one of the sextants in Fig. 4.
The Wilson lines in the trijet configuration have an S3

symmetry which includes a Z3 rotational invariance and a
reflection symmetry. We can use the rotational invariance to
rotate the Wilson lines so that they always point in the n1
and n2 directions. Thus we only need to consider integrals
as in Eq. (98):

Ina;nb;NðqÞ ¼
Z

ddk
n1 · n2

ðn1 · kÞðn2 · kÞ
δðk2Þθðk0Þ

× δ

�
q −

2

3
N · k

�
θðna · k − n̄a · kÞ

× θðnb · k − n̄b · kÞ: ðA4Þ

WhenN ¼ ni is one of theWilson line directions, then only
two sextants are relevant, I1ðqÞ and I2ðqÞ from Fig. 5:

I1ðqÞ ¼ In2;n3;n1ðqÞ; I2ðqÞ ¼ In1;n2;n3ðqÞ: ðA5Þ

When N ¼ N1 ¼ 2n̄1, there are two configurations rel-
evant, with both Wilson lines adjacent to the n1̄ measure-
ment region or just one of them adjacent two it. The two
integrals are, as in Fig. 5,

I3ðqÞ ¼ In̄1;n̄2;2n̄3ðqÞ; I4ðqÞ ¼ In̄1;n̄3;2n̄2ðqÞ; ðA6Þ

where 2n̄3 comes from rotating N1 as the Wilson lines are
rotated to the n1 and n2 directions.
The remaining integrals involve N2 and N3. These

vectors are not lightlike, but they are related by a Z2

symmetry. (Recall that the origin of the asymmetry between
N1 and N2=N3 is that n1 points to the light hemisphere
which affects the soft projections in the factorization
formula.) Since N2 and N3 are related by a reflection in
the y direction, which is a symmetry of the Wilson lines, if
we know the integral for all Wilson line configurations for
N2 we know it for N3 as well. So there are three
possibilities, corresponding to the location of the three
measurement regions with respect to the Wilson line.
Rotating the N2 Wilson line by 2π

3
and 4π

3
gives

N0
2 ¼ ð2; 0; 2

ffiffiffi
3

p
; 0Þ; N00

2 ¼ ð2; 0;−
ffiffiffi
3

p
;−3Þ: ðA7Þ

Thus the last three integrals we need are

I5ðqÞ ¼ In̄1;n̄2;N3
ðqÞ; I6ðqÞ ¼ In̄1;n̄3;N0

3
ðqÞ;

I7ðqÞ ¼ In̄2;n̄3;N00
3
ðqÞ: ðA8Þ

To perform the integrals, we parametrize the phase space
with light-cone components in some direction n1:

kμ ¼ kþ
nμ1
2
þ k−

n̄μ1
2
þ kμ⊥ ðA9Þ

so that

ddk ¼ 1

2
dΩd−2kd−3⊥ dk⊥dkþdk−

¼ 1

2
dΩd−3 sind−4 θdθkd−3⊥ dk⊥dkþdk− ðA10Þ

and
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δðk2Þ ¼ δðk⃗2⊥ − kþk−Þ: ðA11Þ

The integral over k⊥ can be calculated using the δ function
and then kþ and k− rescaled by q to obtain the q dependence
qd−5 as expected by dimensional analysis.We also introduce

t ¼
ffiffiffiffiffiffiffiffiffiffiffi
1−cos θ
1þcos θ

q
to rationalize sin θ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2 θ

p
.

With these preliminaries, the integral I1ðqÞ ¼ In2;n3;n1ðqÞ
takes the form in d ¼ 4 − 2ϵ dimensions

I1 ¼
31−2ϵΩ1−2ϵ

q1þ2ϵ

Z
∞

0

dt
t2ϵð1þ t2Þ1−2ϵ

×
Z

∞

0

dkþ
kϵþ

1

1þ 3kþ − 2
ffiffiffiffiffiffi
3kþ

p
ð1−t2Þ

1þt2

ðA12Þ

× θð1þ kþÞθ
�
−1þ kþ −

2
ffiffiffiffiffiffiffiffi
3kþ

p ð1 − t2Þ
1þ t2

�

× θ

�
−1þ kþ þ 2

ffiffiffiffiffiffiffiffi
3kþ

p ð1 − t2Þ
1þ t2

�
: ðA13Þ

The θ functions impose that

0<t<∞;

kþ>
7−10t2þ7t4

ð1þt2Þ2 þ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1−t2Þ2ð1−t2þt4Þ

p
ð1þt2Þ2 ≡kc: ðA14Þ

To handle the UV divergence as kþ → ∞, we can add and
subtract the integral Idiv2 over the integrand expanded at
large kþ. This subtraction term requires the integral

Z
∞

0

dt
t2ϵð1þ t2Þ1−2ϵ

Z
∞

kc

dkþ
kϵþ

1

3kþ

¼ π

6

1

ϵ
þ 1

9

�
−5κ þ π ln

64

3

�
þOðϵÞ; ðA15Þ

where κ ¼ ImLi2e
πi
3 is Gieseking’s constant. Then Ifin1 ¼

I1 − Idiv1 is finite and can be expanded in ϵ and integrated
order by order. Eventually, we arrive at

I1ðqÞ¼ π−ϵe−γEϵ
�
2

3

�
2ϵ

×
1

q1þ2ϵ

�
1

ϵ
þ ln3−

7

2
ln2−

3

2π
κþOðϵÞ

�
: ðA16Þ

The calculations for other soft integrals are similar, and
the results up to order OðϵÞ are summarized as follows:

I1ðqÞ ¼ N
�
1

ϵ
þ ln 3 −

7

2
ln 2 −

3

2π
κ

þ ϵ

�
18

5π
c1 þ

8

π
c2 −

103

180
π2 þ 3

π
κ ln 2þ 10

3
ln22

−
7

2
ln 2 ln 3þ 17

40
ln23þ 5

12
Li2

�
1

4

��
þOðϵ2Þ

	
;

ðA17Þ

I2ðqÞ¼N
�
3

π
κ− ln2þϵ

�
2ln22þ 3

2π
c3−

6

π
κ ln2

�
þOðϵ2Þ

	
;

ðA18Þ

I3ðqÞ ¼ N
�
3

π
κ þ ln 2þ ϵ

�
−2ln22 −

6

π
κ ln 2þ 3

2π
c5

�

þOðϵ2Þ
	
; ðA19Þ

I4ðqÞ¼N
�
−

3

2π
κþ3

2
ln2

þ ϵ

�
−3ln22þ 3

2π
c4þ

3

π
κ ln2

�
þOðϵ2Þ

	
; ðA20Þ

I5ðqÞ¼N
�
3

π
κþ ln2

þ ϵ

�
−2ln22þ 3

2π
c7−

6

π
κ ln2

�
þOðϵ2Þ

	
; ðA21Þ

I6ðqÞ¼N
�
−

3

2π
κþ3

2
ln2

þ ϵ

�
−3ln22þ 3

2π
c6þ

3

π
κ ln2

�
þOðϵ2Þ

	
; ðA22Þ

I7ðqÞ¼N
�
−

3

2π
κþ3

2
ln2

þ ϵ

�
−3ln22þ 3

2π
c8þ

3

π
κ ln2

�
þOðϵ2Þ

	
: ðA23Þ

Here the normalization factor is

N ¼ π−ϵe−γEϵ
�
2

3

�
2ϵ 1

q1þ2ϵ ðA24Þ

with

c1 ¼ Im

�
Li3

�
iffiffiffi
3

p
�	

; c2 ¼ Im½Li3ð1þ i
ffiffiffi
3

p
Þ�; ðA25Þ

and
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c3¼−0.949789416853385; c4¼−0.305492372030520;

c5¼−1.34784474998184; c6¼4.39528715012114;

c7¼12.8006547420728; c8¼3.37308464401608:

ðA26Þ

As a cross-check, we can add the three sextants in one
hemisphere with the same axis projection and compare to
the hemisphere soft function [7,20,29,51,52]:

In̄1;n̄1;n1ðqÞ ¼ I1ðqÞ þ In̄1;n̄3;n1ðqÞ þ In̄1;n̄2;n1ðqÞ: ðA27Þ

The extra two soft integrals are

In̄1;n̄3;n1ðqÞ ¼N
�
3

2
ln2−

3

2π
κ

þ ϵ

�
71

540
π2þ 18

5π
c1−

4

π
c2þ

3

π
κ ln2−

8

3
ln22

þ3

2
ln2 ln3−

3

40
ln23−

13

12
Li2

�
1

4

��
þOðϵ2Þ

	
;

In̄1;n̄2;n1ðqÞ ¼N
�
ln2þ 3

π
κ

þ ϵ

�
119

270
π2−

36

5π
c1−

4

π
c2−

6

π
κ ln2−

2

3
ln22

þ ln2 ln3þ 3

20
ln23þ1

6
Li2

�
1

4

��
þOðϵ2Þ

	
;

ðA28Þ

which leads to the same hemisphere soft function as
in Ref. [20].
Another interesting fact is that the divergent part of our

trijet soft function does not depend on the projection vector
N. The soft function integral is

Ina;nb;nc;nd;NðqÞ∼
Z

ddk
na · nb

ðna · kÞðnb · kÞ
δðk2Þδ

�
q−

2

3
N · k

�
× ½� � ��: ðA29Þ

If we rotate the projection vector N to another direction N0,
then the δ function transforms as

δ

�
q −

2

3
N0 · k

�
¼ δ

�
q −

2

3
ðN · kÞN

0 · k
N · k

�

¼ N · k
N0 · k

δ

�
N · k
N0 · k

q −
2

3
N · k

�
: ðA30Þ

Then after rescaling

k →
N · q
N0 · q

k; ðA31Þ

the integral becomes

Ina;nb;nc;nd;NðqÞ∼
�
N ·q
N0 ·q

�
2ϵ

qd−5
Z

ddk
na ·nb

ðna ·kÞðnb ·kÞ
δðk2Þ

×δ

�
q−

2

3
N ·k

�
× ½� � ��: ðA32Þ

So the effect of using different N’s only shows up at order ϵ
in the expansion. This only affects the anomalous dimen-
sion for the integrals which have soft-collinear divergences.
This is only I1ðqÞ, since that is the only integral where a
Wilson line is in within the integration region. However, for
I1ðqÞ the projection is on n1 (the Wilson line direction) in
both thrust and heavy jet mass. For the others, using the
definitions in Eqs. (A5), (A6), and (A8), we see that at NLL
level after rescaling the projection vector N

I5ðqÞ¼I3ðqÞ; I6ðqÞ¼I4ðqÞ; and I7ðqÞ¼I6ðqÞ; ðA33Þ

where we need a reflection with respect to the z axis to see
the third equation. This agrees with our explicit calculations
in Eqs. (A17)–(A23) to order ϵ0. Note however, that the ϵ1

terms differ, as expected. In summary, at the NLL level, the
thrust and heavy jet mass trijet soft function can be taken to
be the same. For NNLL resummation and beyond, they will
generically be different.
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