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Sudakov shoulder resummation for thrust and heavy jet mass
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When the allowed range of an observable grows order by order in perturbation theory, its perturbative
expansion can have discontinuities (as in the C parameter) or discontinuities in its derivatives (as in thrust or
heavy jet mass) called Sudakov shoulders. We explore the origin of these logarithms using both
perturbation theory and effective field theory. We show that for thrust and heavy jet mass, the logarithms
arise from kinematic configurations with narrow jets and deduce the next-to-leading logarithmic series. The

left-shoulder logarithms in heavy jet mass (p) of the form ra’In*'r with r :%—p are particularly

dangerous, because they invalidate fixed-order perturbation theory in regions traditionally used to extract
a,. Although the factorization formula shows there are no nonglobal logarithms, we find Landau-pole-like
singularities in the resummed distribution associated with the cusp anomalous dimension and that power

corrections are exceptionally important.
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I. INTRODUCTION

It is not uncommon for an observable to have a range that
grows order by order in perturbation theory. Traditional
eTe™ event shapes, such as thrust, the C parameter, and
heavy jet mass [1], have this property as do some hadron-
collider observables like the jet shape [2,3]. Similar
behavior can also be seen in the soft-drop jet mass [4].
As observed by Catani and Webber [1], when the range
grows order by order, there can be incomplete cancellations
between the virtual contributions, which are confined to the
lower-order range, and the real-emission contributions,
which are not. The results are distributions with nonana-
lytic behavior at intermediate values of the observable:
discontinuities, cusps or kinks at any given finite order in
perturbation theory, collectively called Sudakov shoulders,
as shown in Fig. 2. Sudakov shoulders are caused by large
logarithms associated with kinematic regions not close to
the absolute (nonperturbative) phase space boundary. We
classify the Sudakov shoulders as either right shoulders,
which have large logarithms extending into regions acces-
sible only at higher orders in perturbation theory (i.e., to
the right of the shoulder as in thrust or C parameter) or
left shoulders, which have logarithms affecting regions
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accessible at all orders in perturbation theory (i.e., to the left
of the shoulder, as in heavy jet mass). Left shoulders are
particularly problematic as they can invalidate the use of
fixed-order perturbation theory over a wide range of
observable values.

To understand Sudakov shoulders, consider first the
thrust observable [5]. Thrust is defined in the center-of-
mass frame of an eTe™ collision as

5.5
szgxizjlp/ l

SR W

where the sum is over all particles in the event and the
maximum is over 3-vectors 7 of unit norm. It is common to
use 7 = 1 — T in place of T. The vector 1 that maximizes
thrust is known as the thrust axis. When there are only
two particles, they must be back to back, and then 7 = 0
exactly. If there are three massless particles, then the phase
space is two dimensional and can be parametrized with
sij = (pi + p;)*/Q* constrained by 515 + 553 + 513 = 1
with Q the center-of-mass energy. Then

: (2)

7 =min(sy, 13, 523) <

W | =

The phase space point that saturates this bound has s, =
S13 = Sp3 = % and comprises the symmetric trijet configu-
ration: three particles of equal energy and angular separa-
tion, as shown in Fig. 1. Near this point the spin-summed
three-body matrix element squared is not exceptional:
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FIG. 1. The trijet configuration where p =7 :% has three
equally spaced jets of equal energy.

sty + 533 +20%s13
$12513
=~ | M, |*64xCray, (3)

(M, = [M,|*2Crg?

where |M,[?> is the y* — gg matrix element squared.
Because the phase space goes to zero at 7 = % the differ-
ential cross section must vanish there. The result is that

1d [
PO B 48cFﬂ/3 ds,
47[ 0

oy dt
a, (1 1
= 144Cr 2 (=)o = - 4
F4n<3 T> <3 T> “)

with the factor of 3 coming from the three choices of thrust
axis all of which contribute equally near 7 = % Already
here we can see the Sudakov shoulder: there is a disconti-
nuity in the first derivative of the distribution from
—144Cp g fort < t0 0 for 7 > L.

Given the thrust axis from the maximization in Eq. (1),
the event is divided into two hemispheres. We can compute
the invariant masses m; and m, of all the partons in

hemisphere 1 and 2 and then heavy jet mass is defined as

p= émax(m%, m3). (5)

At order a; one hemisphere must be massless and 7 = p,
and thus Z—‘; has a discontinuity in its first derivative at
leading order, just like 7.

Now, consider what happens at higher order in perturba-
tion theory. The parton in the light hemisphere will radiate
gluons, making the light hemisphere massive. Since the cross
section for the light jet having mass less than m after one
emission scales like ¢~ a,In>m? there is a Sudakov
enhancement to the cross section at small m?. As the
light-hemisphere jet grows, energy must be drawn away
from the heavy hemisphere, making it lighter. Roughly
speaking, setting Q = 1 for simplicity, p < % —m? (as we
will derive). As a consequence, the cross section at p =

1+ —m? will be enhanced by factors of In* m? = In*(} — p).

Thus large Sudakov logs associated with radiation into the
light hemisphere translate into Sudakov shoulder logs. This
is the physical mechanism for the production of large logs in
the left shoulder for heavy jet mass.

To properly and systematically resum the Sudakov
shoulder logarithms, we must understand this mechanism,
as well as the consequences of radiation from the heavy-
hemisphere partons. At first glance, the mechanism,
which transfers large logs from the light to the heavy
hemisphere using energy conservation may seem difficult
to reconcile with factorization. Indeed, previous work has
noted the recoil sensitivity of Sudakov shoulder logarithms
starting at the next-to-leading logarithmic (NLL) level [3].
Nevertheless, as we will see it is still possible to factorize
the matrix elements and phase space near p = % to isolate
and extract the large logarithms, at least at the next-to-
leading logarithmic level.

One may ask whether Sudakov shoulder resummation is
important. For observables with only a right shoulder, such
as thrust, one might argue that it is not so important, since
there is not much data for 7 > % However, for heavy jet
mass one should generically expect that logs of the form
a,In*(3—p) are as important away from the shoulder
region as logs a,In?p are away from the threshold
p = 0. This leaves a rather narrow range of intermediate
values of p where fixed-order perturbation theory might be
trusted. Moreover, looking at Fig. 2 it seems that the
Sudakov shoulder effects on the left shoulder of heavy jet
mass curve tend to pull it down (and away from thrust), so
that resumming the left Sudakov shoulder might bring the
curves closer together. This difference of the left shoulder
in thrust and heavy jet mass could help explain long-
standing discrepancies between fits for a, using the two
event shapes [6,7].

In order to resum the Sudakov logs we first explore the
regions of phase space that can contribute logarithms near
the shoulder. We do this for the left shoulder of heavy jet
mass in Sec. II. We find that the phase space near p 5%
splits up into regions some of which generate large
logarithms of %— p and some of which do not. We find
that all the logarithms come from regions with narrow jets
in the light and heavy hemispheres. This is in contrast to the
threshold region, for which every allowed point of phase
space near p ~ 0 can contribute logarithms of p. It is also in
contrast to nonglobal logarithms, such as for the light jet
mass. There, logarithms of the light jet mass come from
regions where the heavy jet side does not have to contain
only narrow jets.

In Sec. III we discuss the factorization of p and 7z near %
We find that near the shoulder region, the phase space and
matrix elements both neatly factorize. This allows us to
define a soft function, which, along with the inclusive jet
function, can be used to reproduce all the logarithms at
NLO and more generally the next-to-leading logarithmic
series. In Sec. IV we analyze the resummed expression. We
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FIG. 2. Thrust (blue lines) and heavy jet mass (red lines) at next-to-leading order (NLO) compared to LO (dashed lines). The NLO
curve does not have LO added in. That is, the LO is the 5* times the “A” function and the NLO curves are (5*)? times the “B” functions,

s
y/2

in the notation of Ref. [8]. Right is an enlargement of the Sudakov shoulder region near % The NLO computation is performed with the
program EVENT2 [9,10]. All distributions are normalized to Born cross section o.

show that there are no nonglobal logarithms for the
Sudakov shoulder; only regions related to the trijet con-
figuration by soft or collinear radiation can generate
the shoulder logs. We also find an unusual pole in the
resummed distribution, qualitatively similar to the Landau
pole in the running coupling. Unlike the QCD Landau pole,
however, the singularity in the resummed heavy jet mass
shoulder distribution is determined by the cusp anomalous
dimension. Thus it is a kind of Sudakov Landau pole.
Similar poles can be found in other observables, such as the
Drell-Yan spectrum at small p; [11-13]. We show that for
the Sudakov shoulder case, the large Sudakov anomalous
dimension contributing to this pole also enhances sublead-
ing power effects, making them comparable to the leading
power result allowing the pole to be canceled in the full
distribution. We conclude in Sec. VI.

II. NEXT-TO-LEADING-ORDER ANALYSIS

As a first step toward understanding Sudakov shoulder
logarithms, we analyze the matrix elements and phase
space near the shoulder region in full QCD. We concentrate
here on the heavy jet mass for concreteness, but the same
analysis works for thrust.

At next-to-leading order in QCD, there is the virtual
contribution with three partons in the final state and a real
emission contribution with four partons. The virtual con-
tribution is proportional to the LO cross section and serves
to regularize infrared and collinear divergences. Thus we
focus on the real emission contributions to extract the
logarithms.

To have p 5% we can have configurations which differ
from the trijet configuration by soft and collinear emissions
or configurations which do not. For example, one could
take a nonplanar four-parton configuration with four well-
separated partons and p~0.4 and then adjust their
momenta to lower p. Staring from such a configuration,
one would not expect anything unusual to happen as p is

lowered through 1. Indeed, p = 1 is only special because it
is a kinematic limit for three-body phase space. Thus we
expect that the only four-parton configurations which will
contribute Sudakov shoulder logarithms are those close to
the trijet configuration. We will find that this is in fact
the case.

A. Kinematics

Let us define the momenta of the four particles in the
final state as p/, p5, p4 and p/. After momentum con-
servation, on-shell conditions and a frame choice, there
are five independent degrees of freedom of these four
momenta. Although we will not restrict the momenta to be
soft or collinear, it is helpful to choose variables so that the
soft and collinear limits are transparent. To impose the on-
shell constraints, it is helpful to parametrize the momenta
initially in light-cone coordinates:

J Pl
pir=znnt+ i+ p py=znt+Eit—pl, (6)
421 4Z2

2
. 91 -
s = zont +47th "+ g,
91
= (1 = 2)oom* it — g 7
P4 ( z)a)n +4(1—z)a)n qJ_ ( )

where n* = (1,0,0, 1) and 7# = (1,0,0,—1) are back-to-
back lightlike directions. Imposing momentum conserva-
tion and defining ¢ as the azimuthal angle between the 1-2
and 3-4 planes we can then express all the momenta in
terms of

spa=(p2+p3+ps)? suu=(p3+ps)? z. o and ¢.

(8)
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We conventionally define ¢ by pf = (0, prsing,
prcos¢,0). The variables @ =17+ (p; + ps) and s34
are hard variables, approaching % at the trijet configuration.
§34 1s the invariant mass of one of the jets in the collinear limit

which approaches zero in the trijet limit. The collinear
momentum fraction z and the azimuthal angle are order 1
in the collinear limit, but z — 0 in the limit that p, is soft. We
also find it sometimes convenient to trade cos ¢ for s,5 using

52,2+ 2534(1 4 220 — 22 = 20) @ + 4259340% + s345034(2 — 1 + 20 — 4z0)

8§23 =

46()2 — S3q
4 2\/S34(1 —2)2(20 = s34)(1 2— 20) (20 = $334) (205234 — 534) cos . 9)
4w~ — S34
|
When using s,3 the physical constraint —1 < cos¢ <1 4207 + 534(1 = 2)]2
must be imposed on the region of integration. Another 73 =T3, = [ 234 } ,
useful exact relation is @
4(1 - 7)o@ + 5342
1 T;=Ths = [ ( )2 = } : (15)
S12:1—20)+S34 1—— . (10) @
2w
We can use this relation to trade @ for p when p = s,. We also have
To compute thrust or heavy jet mass, we need to determine 4o — s\ 2
the thrust axis from the formula in Eq. (1). With four partons, T3, = <734> (16)
the two possibilities are that three partons are in one hemi- 20
sphere and one parton in the other, or two partons can be in and
each hemisphere. If we know that partons p;...p,, are to be
clustered in the same hemisphere, then
T%3 :—2[S§4(1 - 2)2
m m 40)
m?XZlﬁj'ﬁ'l :2m?X<Zﬁj> . (11) +40% (4523 + 533 + (1 = 202)* = 25334 (1 + 202))
n — n i—1
’ ! —4s30(1+ 5034 —2— oz +2w(* —2-2))],  (17)
This dot product will be maximized if i = | Y- p;|™' >° p; 5
so that the thrust axis will always align with the sum of 72, — 5342 = 20(1 + 5534 — 20(1 ~ 2)) — 45y, (18)

momenta in each hemisphere. So there are seven possibilities
for the thrust axis. For each axis choice

> 15y = 2= (L 5) - (L7)

(12)

Thus, to determine the thrust axis, we need to find which set
of partons has the largest value of 2| 3" p;| or, equivalently,

=43 5[ (13)

In terms of our variables in Eq. (8), the T'; with one parton in
one hemisphere are relatively simple:

T% = T%34 = (1 - 5234)2,

2(1 + 5334 —20’)50—334]2’ (14)
2w

T% = T%34 = [

2w

All of these T'; values are exact.

Now we would like to consider the region p < % The
heavy hemisphere can have either two partons or three
partons. We can therefore choose it to be p = s534 with T
maximal or s, with T, maximal. The other cases are given
by permutation of the indices. Figure 3 shows examples of
the phase space regions labeled by which T is greatest. All
regions in these plots contribute to some value of p.
However, to avoid overcounting we only need to consider
the green region on the left plot and the blue region in the
right plot.

B. Matrix elements

Let us define

- p. (19)

r =

Q| =

As we have discussed, we expect contributions to the NLO
heavy jet mass cross section with factors of In r or In? r to

074011-4



SUDAKOV SHOULDER RESUMMATION FOR THRUST AND HEAVY ...

PHYS. REV. D 106, 074011 (2022)

< £ Ty max
T, max
S 3 T3 max
[ T4 max
0 Ty2 max
[ Ty3 max
[ T4 max

0

0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40
w

FIG. 3.

- \
0.8
0 Ty max
0.6
T2 max
1 T3 max
04 [ T4 max
[ T12 max
[J T13 max
0.2 [ T14 max
0.0

0.0000.0020.0040.0060.0080.0100.0120.014

S34

Example slices of SD phase space for four massless partons. The colors indicate which collection of momenta determines the

thrust axis. The left plot has z = 0.06, 53, = 0.02 and 5534 = % —0.01. The green region in this plot would contribute to the heavy jet
mass distribution at r = % —p = 0.01. The right plothas ¢ = 7, 5934 = %and Spp = % — 0.01. The blue region in this plot contributes also

at r = 0.01.

come from soft or collinear regions of phase space close to
the trijet configuration. We can therefore power expand the
matrix elements and phase space constraints in soft and
collinear limits. This dramatically simplifies the calcula-
tion. There are two ways to confirm that only soft and
collinear limits are relevant. First, we can extend the
integration limits to the full phase space and verify that
no additional logarithms can be generated. Second, we can
compare the logarithms we extract with a numerical
computation of the heavy jet mass distribution at NLO.
For power counting we take » ~ 1 < 1. In the collinear
limit where p,||ps3, the phase space variables scale as

$34 ~ 4 wa_g"l» y55234—§~/1,

2~ 0 sy ~ A0 (20)

In the soft limit, where pj is soft, the scaling is the same
except that z ~ 1 instead of z ~ 1°.

First we compute the matrix elements squared at leading
power. We do this by summing all the relevant Feynman
diagrams, squaring the amplitudes and summing over
spins, after which we take the leading power expansion.
We cross-check the results against the expectation for soft
and collinear limits from factorization.

p1
P3
llinear |2
| MERlinear |7 —
N
Y 9999 D4

b2

The y* — ggg matrix element depends on whether the
gluon is polarized in the plane of scattering or out of the
plane. We find

€in T

; 2
m _
Z |M'y*—>qq’g} T

spins

= |[Mo|*2¢2CF

(1)

when the gluon polarization ¢;, = (0,0, 1,0) in the con-
ventions of Fig. 1, where p, = %(1, 0,0,1), and

€out &

ou 2
Z |M’Y*t—>q¢?g - - |M0|2149§CF

spins

(22)

when the gluon polarization is ¢, = (0, 1,0, 0). The sum
of these agrees with Eq. (3).

The matrix elements depend on which partons are gluons
and which are quarks. If p, is a quark and p, is a gluon,
then to leading power in collinear scaling

1 14 22
= | Mo|*32¢'CE— " .

S34 1—2
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Here the blob represents all the diagrams that can contribute. We derive this by squaring the full matrix element for
y* — qgqg using Qgraf [14] and FORM [15] or FeynCalc [16—18], summing over spins and then power expanding in the small

s34 limit. The splitting function naturally appears.
When p; and p, are gluons, then we find

b1

‘Mcollincgr 2 —

YT —49999

P2

Note the azimuthal angle dependence is due to the polari-
zation of the gluons. Indeed, the leading-order y* — ggg
matrix element is polarized, and we must therefore use
polarized splitting functions (see [19] for example). We have
checked that summing the polarized leading-order matrix
elements in Egs. (21) and (22) with the polarized splitting
functions (see [19] for example) reproduces Eq. (24).

And finally when p; and p, are quarks (or antiquarks),
the leading power result is the same whether they are
identical or not:

1
b3
collinear 2 o collinear |2 _
|M * Sl 7! = |M7*—>q¢iqt? — .
P4
b2
(25)

16
= |M0|2CFTf"f9?a (2—z—22—6z(1 — z)cos*¢)

(26)

This expression also depends on the azimuthal angle and,
like the gluon case, is consistent with using the polarized
three-parton matrix elements and polarization-dependent
splitting functions.

For the soft limits, we can power expand the full matrix
elements in the soft limit. When z is soft, we cannot drop
s34 with respect to z, or vice versa. When p; and p, are
both gluons, the result can be written as

64 1 1
Mt 2 = [Mo|*Crgs — |:<CF 5C )

v’ —aagg 3 14524

c, 1 }
2 314534 2 524534

(27)
where
$14524 = 983, + 162% — 2453,z cos(2¢), (28)

§14534 = 36%4 + 4S34Z - 4S34\/ 35342 COS ¢, (29)

= M|’ CrCagi— | ——+=2(1 -
534

2

8$24834 = 35%4 + 4S34Z + 4S34\/ 3S34Z COS ¢ (30)
This is consistent with the eikonal approximation.

To avoid double counting we also need the soft collinear
matrix elements which come from taking the soft limit
(small z) of the collinear matrix elements or, equivalently,
the collinear limit (533, < z) of the soft matrix elements.
These are therefore the same as the soft matrix elements but
keeping only the final term in Egs. (28)-(30).

C. Phase space

For the phase space limits, we will first examine the soft-
collinear limit where z ~ A. To leading power in the soft-
collinear limit

Loy I s34 2x y
hi=g-3 hEg-5 3715
1 2x 2z
T;=0, T, 2—4+———, 31
3 4=9T3 77 (31)
REgT5 T BEGTSB =345
1 2x y 2z
Ty = g -3 t3tg (32)

For the case where T is maximal, p = 5,34 and y = r.
We can then impose the constraints 7y > T,, T > T3, and
so on. Since we are using the variable 5,3 instead of cos ¢
we also have to impose —1 < cos¢ < 1. Reducing these
constraints leads to five integration regions:

_ 4’*
/dHl —2/ dS34/ ° dZ/ dX/ dS23J
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where
4 9
i=50- 43),  * Z(7j:4\f )34, (34)
834 2 2
= - , (35
523 (\/ \/'> Sy = x+3y+9z (35)
3 y
XAI—ZS34+)’, Xp = 4545
3 35z z
Xe=—gSuty T 234 6’ (36)
y z z
=—— 42 =y—-=. 37
Xp 2+3 Xp =Yy 3 (37)
The Jacobian
1
J= (38)

VS = 529) (520 — 555

0. For the leading double log we need to

1
/dH1|M|2~/dH1—.
§342

Analyzing the integrals we find that none of them generate
In r terms; the limit » — 0 in each of the integrals is smooth.
Thus the region with 7; max does not contribute to the
Sudakov shoulder at NLO. The logs must therefore come
from regions with two partons in each hemisphere.

Next, we consider configurations where 7'y, is maximal.
As before, we expand first assuming collinear scaling. In

this case, we no longer have r = 1 — p = y but instead

3

scales like J ~
compute

(39)

S34 2

p_512_1+S34—%— (I)z——5534—2x (40)

3

so that r = %s34 + 2x. To hold r fixed we then can use r,
$34, Z, ¥, and s,3 as independent variables (instead of r, $34,
Z, X, and s,3 in the 7| max case). Now we find 40 relevant
integration regions. In most of these r can be set to zero
without consequence. Only four can possibly generate logs
of r:

r 1-z* Vg 27
/dH12 :/ dS34/ dZ/ dy/ d¢

/ dS34/ dZ/ dy/ d¢)
0 2534 0
VB Sp
+/ dS';4/ dZ/ dy/ d523.]
0
Yp
+/ dS';4/ dZ/ dy/ dS23J, (41)
0 YA g),%
where
YA=—T+2834, Yyp=2r—=suy,
Ts Z
yC:2r—%— 3534Z+§,
11s
yp=—r+ 434+ 38342—7,
2r Ss 2 r 2s 4
B ¥ Y 2 c 34 Y 42
=ttt — =———44—. (42
=3t 3ty w33 ity ()

For the C% color structure, using the power-expanded
matrix elements in the collinear limit, Eq. (23), only the
first two integrals in Eq. (41) contribute. We find

S((:CF) :4/dH1 |Mcollmear |2

7 49999

6a

{ —2In’r + (1—81n§> lnr—i—--}. (43)

Similarly, integrating against the soft matrix element and
the soft-collinear overlap region, we find

|2+2|Msoft | )

v 4999 7' 4499

Sch)2/6171_112(4|-/\/139ft

12a

4
[ ln2r+2<1+ln3> lnr+-~~], (44)

Sggr /dn |M50ft—coll|2

v 4999

12a

3
[ ln2r+2<1 —2ln2> lnr+-~}. (45)

The constants in the integrals come from the permutations
of final state particles and we have accounted the symmetry
factor for identical gluons. The total is

1 d (Cr)
1do) _ e, sien

oy dr
<Zﬂ> C2r[-192Inr

+ (96 +7681n2 —384In3)Inr+---|.

(46)
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This is compared to the exact (numerical) NLO calculation
in the shoulder region in Fig. 6.

For the CpC, color structure, there can be single
logarithms coming from both the z ~ 0 and z ~ 1 regions.
Moreover, the splitting functions in this case depend on the
polarization of the gluon that splits. However, because the
only integration regions that contribute logarithms are
uniform in ¢ [the first two in Eq. (41)], one can simply
azimuthally average the splitting functions, reducing them
to the unpolarized case. The final resums we find are

(€ _% 3
S’ :ﬂ—;CFCAr[—ﬂnZH— (1—241n5> lnr—i—---],
: 4
SECA) :6a—;CFCAr|:—ln2r+2<1 +1n§) lnr_|_...] ,
T
(€ _ % 3
Sy’ :6_;CFCA’[_IHZI’+2<1—21HE> lnr—i—--} . (47)
T
which gives

() dr

1 do'Ca) 2
S <“—> CrCar[~961n? r
A

+ (16 +384In2—-192In3)Inr+---]. (48)

Again, this is compared to NLO in the shoulder region
in Fig. 6.

The n;TpCp color structure only contains a single
logarithm since there is no soft region. Integrating the
collinear matrix element Eq. (26) over power-expanded
phase space gives

1 do'mr)
(7_0 dr

a, \2

No overlap subtraction is needed. This is also shown
in Fig. 6.

One can perform a similar leading-power computation
for the right shoulder for thrust and heavy jet mass. For
these cases, we find it is only the phase space regions with
one parton in one hemisphere and three partons in the other
hemisphere that contribute. Since the equivalent calculation
is significantly easier using soft-collinear effective theory,
we skip the details of the right-shoulder cases using the full
theory and turn instead to the effective theory approach.

III. FACTORIZATION AND RESUMMATION

In Sec. II, we computed the Sudakov shoulder logs for
heavy jet mass and thrust at NLO using full QCD expanded
to leading power. We now want to generalize the analysis to
all orders leading to a factorization formula. To do so, we
first review the approach of [1] and discuss recoil sensi-
tivity. We then demonstrate a different approach inspired by

the NLO calculation that leads to a systematically improv-
able factorization formula.

A. Recoil sensitivity

One approach to resummation of Sudakov shoulders [1]
is that emissions from one of the hard partons will cause an
additive shift in heavy jet mass (or thrust) from
p — p+ m?. Then one could write the resummed distri-
bution as a convolution. Heuristically,

Gresammed () ~ / dnloyo(p—m2)I(m?)  (50)

with J(m?) representing some sort of jet function and
o10(p) the leading-order cross section.

Unfortunately, when one tries to make this formula more
precise it produces ambiguities beyond the leading loga-
rithmic order. To see this, consider how p changes due to
emissions in the light hemisphere making the light hemi-
sphere have a mass m?. With three massless partons taking
p1 and p, in the heavy hemisphere and p; in the light
hemisphere for concreteness, the heavy jet mass is

p=(P+p5)?=(pa—Pi)?=1-2E; (51

with E5 the energy of the light-hemisphere parton. Now say
the p; parton becomes massive (i.e., turns into a jet) with
p3 = m?. Then we have the exact relation

p= P+ 15)? = (Pl — P5)* =1+ m> =2E;. (52)

Soitseems p — p + m?, asin Eq. (50). However, this was a
little too quick. Suppose instead of expressing p in terms of
E; we expressed it in terms of |p3|. Then, when pj is
massless,

p=1=2|ps|. (53)

However, after the emissions,

p=1+m?>=2E;=1+m?—2./p%+m?

2
N m

Now, near threshold |p;| ~1, so % ~ 3m? and we find

p — p —2m? instead of p — p + m?>. Thus the way p shifts
depends on whether we hold the energy or the momentum
of the jet fixed after the emission. This recoil sensitivity
seems to violate factorization. Moreover, if p — p — 2m?,
one cannot write down a convolution for the distribution as
in (50), since the shift implies that emissions only decrease
the value of the heavy jet mass. Thus it becomes clear
that while one might use the emission picture for the

074011-8



SUDAKOV SHOULDER RESUMMATION FOR THRUST AND HEAVY ...

PHYS. REV. D 106, 074011 (2022)

double-logarithmic analysis of [1], it is inadequate for NLL
resummation.

B. Factorization

To proceed, recall from Sec. II which configurations
contributed to the NLO logs. With four partons, we can
have either two in each hemisphere or one in one light
hemisphere and three in the heavy hemisphere. For the left
shoulder of heavy jet mass at NLO we found that only the
case with two partons in each hemisphere contributed.
Moreover, the two partons in the heavy hemisphere were
hard, with invariant mass p ~ 1, while the two partons in the
light hemisphere formed a jet of small invariant mass,
S34 ~ % — p < 1. In contrast, for the right shoulder of heavy
jet mass or thrust, only the region with one parton in the
light hemisphere contributed. Moreover, the configuration
in the heavy hemisphere had two hard partons and one
parton which was soft or collinear to one of the hard
partons.

In the r = % — p < 1 region, we found integrals like

rd 1 d Loy
1~|M0|2ﬁc%/ ﬁ/ —Z/3 sy (55)
4r 0 34 Sy T Ji-r

3
= | Mo2 22 Chrin? r (56)

The integrals over s34 (the invariant mass of the 34 jet) and
Z (the collinear splitting fraction in the 34 jet) are similar to
what we would have in an inclusive jet function. The $,34
variable is a hard phase space variable, equal to s,3 at
leading power. The last integral gives the factor of r which
is the same factor in the leading-order cross section, as in
Eq. (4). Thus at higher orders it is natural to expect the
generalization of this integral to one with a single integral
over hard kinematic phase space and an integral over the
kinematics of the light jet. Thus, instead of convolution of
the hard cross section with the emission cross section, as in
(50), we should expect the phase space to factorize into a
part which depends on the hard kinematics and a part which
depends on the emissions.

The first observation allowing us to factorize the cross
section in the region r = %— p < 1 is that only configu-
rations which differ from the trijet configuration by soft or
collinear emissions can generate logarithms of r. The
reason for this is that » = 0 is only special from the point
of view of three-body massless kinematics. One can have
four-parton configurations with p close to % that are not
close to the trijet configuration. However, such configura-
tions contribute to the cross section both for r < 0 and
r > 0 and will be smooth across r = 0. Hence they cannot
produce large logarithms (in Sec. IV B we use this same
argument to show there are no nonglobal logs in the
Sudakov shoulders).

So let use consider a generic configuration with three jets
pointing in the n;, n, and n; directions. Such a configu-
ration can have particles collinear to the three directions as
well as soft partons scattered throughout phase space. At
leading power, we can treat the collinear radiation as
generating masses m;, m, and mj3 for the three jets.
Thus we can approximate the state as having three hard,
massive particles with momenta p;, p, and ps and soft
radiation.

To compute heavy jet mass and thrust, we need to know
which direction the thrust axis points for a given amount of
collinear and soft radiation. To determine this, we first
observe that, as in Eq. (11), the thrust axis is determined by
the set of momenta in a given hemisphere that maximize

> P

Pi

Ty =2> Bl (57)

Then 7z and p can be computed from the set {p;}.

Let us begin with the case where there is only collinear
momenta, so we only have the three massive momenta to
consider. In this case, phase space is described by 515, 513
and 5,3 subject to s15 + 513 + 53 = | +m3 + m3 + m3,
where s;; = (p; + p;)*. Then

T? =4p = (1 = 593)> = 2m3(1 + 593) + m}  (58)

and similarly for 73 and T3 by permutation. Let us take the
case where 7' sets the thrust axis, so that r = % — §23. Then

at leading power (assuming m? ~ r ~ s, — 1

T1§§+r—2m%, T2§§—r+s12—m%—3m%—m§,

T3 ~] - S12 —2m§ (59)

So the conditions 7y > T, and T > T3 imply
1 2 2 1 2 2 2
g—r+2m1 —2m3 < s, <§—|—2r—m1 +3ms5+m35.  (60)

These limits on s, pinch off when r = m3 + m3 — m?. At
m = 0 the linear scaling with r of the s, integration region
is what generates the linear falloff of the thrust or heavy jet
mass cross section as in Eq. (4). For the integration region
to be nonzero we therefore have

mi < r+m3+m3. (61)

In other words, at fixed m,, m5 and r, there is an upper limit
on the light-hemisphere jet mass. The probability of finding
a light jet of mass at most m; at leading power is
proportional to In?m,, so for m, = m; = 0 the integral
over m, up to r will give the In? r left Sudakov shoulder
logarithms. Combined with the factor of r from the s,
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integration gives an overall rIn” r behavior. If m, and m5
are parametrically larger than r, then we can drop r in
Eq. (61). In that case, no logs are generated. Thus the
shoulder logs are determined by the region of small m, m,
and m3, consistent with a global observable.

The right shoulder for heavy jet mass is constrained by
Eq. (61), but with r < 0. For the right shoulder we define
s=p— % Then

m}+s < m3 + m3 (62)
replaces Eq. (61).

For the thrust case, we define t =17 — % When T,
determines the thrust axis, then at leading power

2
and Eq. (61) becomes
t<mi—+mi+mi. (64)

Thus the right shoulder for thrust is defined by integrals
over any of the masses with a lower limit of ¢. Since the
inclusive integral, without this constraint, has no ¢ depend-
ence, one can equivalently get the right Sudakov shoulder
logarithms by integrating over the masses constrained
by m} +m3 +m3 <t

For the soft radiation, we first need to determine when it
affects the thrust axis. Let us start with the configuration
with three massive partons and suppose some soft radiation
k enters hemisphere 1. We want to know whether the thrust
axis should shift so that hemisphere 1 excludes k or if it
should stay fixed, to include k. To find out, we need to
compare 7', the thrust value with p, and k included in the

n2
Lk
ng-k>nsg-k
k1
ng-k>ng -k o
ks
ns

hemisphere, to T, where k is not the 1 hemisphere, but is
still included overall. A quick calculation shows that

8
T%kET%“‘g(Pz'k‘i‘Pz'k—zm'k)- (65)

Defining p; as p; with its 3-momentum reversed, so

0 2 2 1
i ==(1,0,0,-1) == Zps—=p;, (66
P 3( ) 3P taPs =3P (66)
we can write
T3, = T3 +4(p;-k—p, k). (67)

When £ is in the 1 hemisphere, it must be closer to p; than
pi. In that case pi -k > p; - k. We conclude that thrust is
maximized when all the soft radiation in the hemisphere
centered on p; is included. In other words, if radiation is
slightly on the opposite side of the hemisphere boundary,
the thrust axis should not shift to cluster k£ with p;.
Now suppose there is a lot of soft radiation with
momenta with {k}}. Since the thrust value goes up when
radiation is included in a given hemisphere, to find the
thrust axis we only have to consider three sets of momenta:
for each j the set includes a hard jet’s momentum p; and all

the soft radiation k™ in the jet'’s hemisphere. That is, the
maximal value of thrust for a hemisphere containing p; will
be given by

TP =T+ 3(p; - Kiemi — p, - khemi) (68)

Since the jet hemispheres overlap, there will be some soft
radiation included in both A°™ and kbe™i, for example. To
avoid overcounting, let us decompose the soft momenta
into six regions, as shown in Fig. 4. So

FIG. 4. Soft radiation from the trijet configuration can be categorized as entering one of six sextant wedges shaped like carpels of an
orange. The boundary of each sextant is determined by two planes orthogonal to the jet directions n;, n, and n3. For example, radiation
in the sextant labeled k; (backward to the 1-jet) is characterized by 7, - k > n, - k and 713 - k > ns - k.
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ket = ki + ks + k3 (69)

and so on. Here k; is the soft radiation in the sextant
centered on p; and k; is the soft radiation in the sextant
opposite to p;.

Assuming p; is the thrust axis, then heavy jet mass

p=(pr+ps+ki+ky+ks)? (70)

For p <% we want to express constraints in terms of
r=1—p. For the hard kinematic variable, we can use

anything equal to s;, at leading power. A convenient
choice is

1
§Es12—§+r—2m%+2m§

+2(py—p1) - (ki +k3) +2ky - (p1 + p2)
—4ks - (p1 — p3) + 4k3 - p3 + 4kg - ps. (71)

The variable ¢ is defined so that T = T5™ at £ = 0.
Then phase space where T = T3 and T = T5™ is
0<¢ S%W, where

W(r, mj, ki)=r-— m% + m% + m% —2p1ky + 2porks
+ 2p3k3 + 211]]{1 - 21)2](2 - ngkg (72)

with

1 2 2 0
vy = —gpl +§P2 +§P3 :g(l,O,O,—l), (73)

4 1 2 0] V3 3
V3 :gpl +§P2—§P3 =3<1,0,2,2>7 (74)

4 2 1 0 V3 3
Ué_§P1—§P2+§P3_§<1707—75>~ (75)

We have fixed the signs of the v; so that they all have
positive energy. Since v; = pj, and kj is close to pj, we
will have v - kj > 0 for all k7. For the other directions,
U5 - p, =0 and 73 - p3 =0, and they will also have w3 -
kQZOand Ug-ngO.

For the integration range over £ to be nonzero we
therefore need

mi +2piky + 203k; + 203k
<r+ m% + 2prks + m% + 2psks + 207kg, (76)

which is the same as W(r,m;, k;) > 0, with W in Eq. (72).
Every term in this expression is a positive quantity. This
inequality applies to both the left and right shoulders for
heavy jet mass (for the right shoulder we prefer to
use s = —r =p—1>0).

For thrust, defining t =7—1= % — Ty the bound is

3
0 <x <T, where

T(1,m;, k;) = m7 +m3 +m3 + 2piky +2poks + 2psks

+ 2tk + 205ks + 20%ks — 1, (77)
where
0 YERA NS
’l)%—zp]—yi—§<1,0,—7,§ :gl’lz, (78)

0 V3 1 0.
ﬂ%:2p1—03:§(1,0,7,5) = n3 (79)

so that

t<m}+m3+m3+2piky + 2prks + 2psks + 2viky
+ 2%k + 20%ks. (80)

For thrust, as for heavy jet mass, every term in this
inequality is positive.

As observed in Sec. II, we can set m; = k; = 0 to zero in
the hard matrix elements at leading power. Then the integral
over hard phase space simply gives the maximum value of &
from Eq. (72) or (77). That is, each channel of the LO

integral in Eq. (4) gets modified as

1

3

_Tdslz—)48CF& a—
0 vi¥ys

R/3
dé = 48C > RO(R)

aS
48CF ¥s 0 47
(81)
with 0(x) the Heaviside step function.

The rate for producing collinear radiation is given by
splitting functions, and the cross section for producing
collinear radiation of mass m is given by the inclusive jet
function J(m?). The rate for soft radiation is given by a soft
function, defined as an integral over emissions from Wilson
lines using a measurement function (see Sec. III C). The
key equation, Eq. (76), lets us then write the factorized
expression for the heavy jet mass Sudakov shoulder as

1 d
L9 o) / Prd®q] (m2)J(md) I (m2)Ss(q,)
CT] dr
X W(m;. q;. )OW(m;. q;. ). (82)
where
aY
61 = 48CFEU(). (83)

The arguments of the six-parameter soft function S¢(g;) are
the projections ¢g; = n; - k; and g; = v; - k;. In terms of the
q;, Eq. (72) becomes
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W(mj,q;.r) =r—mi+m3+mj3

20
+7(qz+q3 +aq1—q1—q5—q5). (84)

We can simplify the factorized expression by defining a
two-parameter trijet hemisphere soft function
S(qe.an) = / d°q;S6(4:)5(q¢ — 41 — 42 — q3)

x8(qn — qi — 42— q3)- (85)

where ¢, and g, represent the soft radiation in the light and
heavy hemispheres, respectively. This soft function con-
tributes to the doubly differential distribution of the hemi-
sphere masses as

d’c
e = HQ.p) [ andmianag g, (o)
x J(m3, u)J (m3, 10)S(qz. qp- 1)
2
X 6<m§; —m} —g%Q)
2
X5<m%_m%_m§_§QhQ>- (86)
And then
do JZU
——= | dmjdm}———— (r+mj, — m3)®(r +mj, — m3).
dr / et dmdm ot O =)
(87)

One also must sum over channels, corresponding to which
jet is the quark jet, which is antiquark and which is gluon.
The factorization formula for thrust is similar:

(m? 4+ m2—1)®(m3 +m%—1).
(88)

The soft function for thrust is the same as for heavy jet mass
after changing v — v'. As we will show in the Appendix,
changing v — v’ has no effect on the parts of the soft
function relevant to NLL resummation, so we will treat the
heavy jet mass and thrust trijet hemisphere soft functions as
being the same.

C. Soft function

According to the analysis in the previous section, the
factorization formula requires a soft function giving the rate
for producing gluons k; entering one of six sextants, as in
Fig. 4. In each sextant we need the projection p; - k;
for i =1,2,3 (sextants containing a jet) or v,...k; for
i =1,2,3 (sextants between jets). For NLL resummation,

we only need the anomalous dimension of the soft function
at one loop. This can be determined by RG invariance.
However, as a cross-check on the factorization formula, it is
important to compute the soft function explicitly.

It is convenient to introduce the scaleless vectors for the
six directions that appear in the measurement function:

—g”h Ufngi,

c i=1,2.3, (89

where the n; can be read off from Fig. 1 and the N; from
Eqgs. (73)—(75) (or see the Appendix). The vectors p;, n;, vi
and Nj are lightlike while v5, v3, N5 and N3 are spacelike.
For heavy jet mass, the measurement function M(k, g;) is

2
M(k,q;) :9(n§-k—n2~k)6(n3-k—n3-k)5<q1 —3M -k>
2
+0(n3-k—n3-k)0(ni-k—n; -k)&(qz——nz-k)
2
+0(ny-k—n, -k)Q(nQ-k—nz-k)5<q3——n3-k)
+0(ny-k—n5-k)0(n3-k—nj3 -k)é(qi -
2
+0(n3-k—nsz-k)0(ny-k—n;j 'k)6<q§—§N2-k>

2
+0(n;-k—n; ~k)9(n2-k—n§-k)6<q3—§N3-k).
(95)

The matrix element for eikonal emission of one gluon off
of three Wilson lines is the same as for direct photon
production [20,21] or hard W/Z production [22,23]. There
are three Wilson lines in the trijet configuration, pointing in
the n;, n, and ny directions (see Fig. 1). When the jet in the
1 direction is a gluon, the one-loop soft function is

d
Seg(a) = 20207 / (;[)’j_la(kz)e(w(k, 4)

1 .
Cr—=Cy | ————
X[( F72 ) (ny - K)(n3 - )
1 .
+§CA%+,
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no I n2 Ip
%' . %‘ .

FIG. 5.
can be in various positions relative to the Wilson lines.

The soft function with a quark Wilson line in the 1 direction
has the color structures interchanged:

d
Sanla) = 203 [ S 600k M ko)

Despite the preponderance of directions, the integrals
required are all of the same general form. By rotational
invariance, we can always take the Wilson lines to be the n;
and n, directions. Then all the required integrals are special
cases of the general form

L (@) = / it B0
x5(q—§N-k>9(na-k—ﬁa-k)
x O(ny, - k — iy, - k). (98)

This integral is Lorentz invariant, so it can only depend on dot
products of the 4-vectors involved and is also invariant under
separate rescaling of all the n;. Related integrals, with a single
0 function, appear in the iterative solution of the Banfi-
Marchesini-Smye equation [24] for nonglobal logarithms of
the light-jet mass distribution. There, a larger SL(2,R)
symmetry constrains the functional form even more [25].
Here, the SL(2, R) is broken by the second @ function, so the
integration region is a cats-eye-shaped wedge inside the
Poincaré disk. However, the conformal coordinates proposed
in [25] can still provide a useful change of variables which we
used to understand and simplify the integrals.

In the regions without a Wilson line, the anomalous
dimension of the soft function is insensitive to the projec-
tion vectors N;; it only depends on the location of the
measurement region relative to the Wilson lines. Thus for
NLL resummation there are only four independent inte-
grals, as illustrated in Fig. 5. A detailed calculation of the
soft integrals can be found in the Appendix. Here we just
summarize the results. We find for the four integrals

n9 I3 n2 Iy
%‘ . %‘ .

There are four independent integrals needed for the soft function. The shaded region indicates the measurement region which

1 1 7 3k
Il(q):Inz,n3,n](Q):W(g_§1n2+ln3_g>7 (99)

1 3k
IZ(CI) :Iill,ﬂz,n3(q) :qlJrze<—lll2+ﬂ_>, (100)

1 3 3k
14(q) =I5, a,n,(q) = <—1n2—2—>7 (102)

where

k = ImLiye% ~ 1.0149 (103)

is Gieseking’s constant. Gieseking’s constant is a trans-
ecendentality-2 number' in the family with Catalan’s
constant C = ImLiye> and 7> = 6Li,(1).

Then, when we add in the color structures, the soft
function is

Ieg(4i) <6(41)5(42)5(92)5(q1)5(42)5(q3)

+0(a2)3(a:)3(ar)00a2)00a5) | (€364 ) x(a)

+Cali(qy)

+3(a1)3(a:)3(ax)0(a2)50a3) | € =364 ) x(a)

+Cals(qr) |+

(104)

and so on for the other four g; sectors and for /¢, (q;). For
the trijet hemisphere soft function in Eq. (85), we can set all
the ¢g; in each hemisphere equal. For the channel with a
gluon jet in the light hemisphere we find

"It has not been proven whether Gieseking’s constant or
Catalan’s constant are transcendental, or even irrational. In this
context, transecendentality-2 refers to the representation of k as a
twofold iterated polylogarithmic integral.
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Shemi (g, qno ) < 8(qz)8(qp)

+d(qz) |:<CF _%CA> (I>(qn) + 213(qn)) + Ca(21,(qs) + 14(%))}

+ 6(qn) |:<CF _%CA> (I2(qr) +213(qr)) + Ca(211(q,) + 14(%))}

o (Iu) _4CFF0 In % + 2}’sqq oy (Iu) _2CAF0 hl% + 2}/sg
=0(q,)0 0 o 105
(00)3an) + 52 og) | B s [T o)
|
with T’y = 4 and C,=Cp, Cy=Cy, 7vjq=-3Cp, vjy==Po (111)
Ysqq = —4CrpIn6, Vsg = —2C4In3 +4CpIn2. (106) The Sudakov RG kernel is
Notation for the * distributions can be found in S(v. ) = — / () da Veusp(@) / @ dd
[20,22,26-28]. () pla)  Jaw )
In the channel where the light hemisphere has quark jet, ag N
the trijet hemisphere soft function has terms of the form - glﬂo In ; o (112)
Sgemi(('If7 qhn ,/«l) with
as('u) _2(CF+CA)FOIH%+27/S[19 a 2
0(qs)o 0 — (== s
« (QK) (Qh)"’_ Ax (QK |: q . 7cusp<as) 4 l—‘0 + 4 1—‘1 + ’ (113)
o (/’t) —2CFF01nqﬂ—/+ 2}/‘“1 2
) , 107 as s
r (1) [ qr (107) Blag) = 2a,|(—)po+ | ) Bt (114
* 47 47
where where
Ysq9 = —2(Ca + Cr) In6, 67 ¥\ 20
a9 . r,=4, T :4[CA<E—%> —?Tan}, (115)
Ysq = —2Cp ln§+2CA In2. (108)
11 4
=—Cy—=Tpng,
D. Resummation Po 3 4 3 Y
To resum the large Sudakov shoulder logarithms, we = %C/% —@CATan —4CpTeny. (116)
convolve the resummed hard, jet and soft function. The 3 3
resummation of these individual functions is the same as for To NLL order
thrust in the threshold limit [27-29] and other processes
[7,20,26,30-33]. a, () a vi . as(u)
The resummed quark and gluon jet functions have the ij (von) = =y, / da 4 = 27] n . (117)
a,(v) mpla) 2y a(v)
form [20]
. Finally,
Ji(m?, p) = exp[=4C;S(u;, p) + 24, (/Jj,/l)]h(an,-)
1 /m2\ " e~ 7en; Mig = ZCFAF<ﬂjaﬂ)v Mjg = 2CAAF(/"jv/")v (118)
X —5 <—2> T , (109)
AN (1)) where
where the Laplace transform of the one-loop jet functions is a; () us
Ar(v,p) = -/ gl gt ()
a(v) ﬂ(a) 4 H

2

Ji(L)y =1+ <%> {Ciro%—k y,»L} (110)

and the Casimirs and one-loop anomalous dimensions are

The hard function can be extracted from [34] or using the
general forms for hard functions in [35] or from the hard
function for n-jettiness [32]. It is
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H(Q, 1) = exp[(4Cp + 2C4)S(up 1) = 24,3 (ptps )]
Q2 (2Cr+Ca)Ar (1)
(M ) HQ.u).  (120)
h

where

2
H(Q.py) =1+ <&> [ (2CF+CA)ZIH2§ Vhan_z],

4n h Hi,
(121)
with
¥n=-202Cr+ C,)In3 = 6Cr — fy. (122)

The trijet hemisphere soft functions can be resummed in
exactly the same manner as the hemisphere soft function
[7,27-29,36]. At NLL level they factorize into the product
of soft functions for each hemisphere:

Shemi (K ks 1) = Sy(kpo 1) Sgq(kiopt),  (123)

Shemi(kp ko 1) = Sy (ko) Syg(kipopt).  (124)

The single-variable soft functions all have the same form:

Si(k’ﬂ) = CXp{ZCiS(/AY, )+ 2A (ﬂs’ )]

5 1 k ni e —YEMN;
<5007 (o) o

(125)

(L) =1+ <asi/; S)) [—2C,-F0%2+ 2y,L] (126)

ni = —2C,'A[‘(/ls,/l). (127)
The only difference is the anomalous dimensions. The
coefficient of the Sudakov logs are determined by Casimir
scaling as the sum of the color factors for each parton in the
hemisphere:

=2Cp,

Cg:CA, qu Cq:CF, and ng:CF+CA-

(128)

The anomalous dimensions g, 754> 7sqq and 7,4, are in
Egs. (106) and (108).

Now we just have to put everything together and
perform the integrals in Egs. (86)—(88). Since the various
functions after resummation are simply powers, e.g.,

J(m?) ~ (m?)1~!, the integrals are all products or

convolutions of powers, which can be done directly or
through Laplace transforms

For thrust, with t =7—3 > 0, the core measurement
function integral following from Eq. (80) is

/oo dx/00 dyxahyb N (x +y —1)0(x +y — 1)
0 0

[(a)l(b)

— t1+d+b7.
I'2+a+b)

(129)

For the left shoulder of heavy jet mass, the integral is
similar, but the sign flip in Eq. (76) as compared to Eq. (80)
gives an important change:

/oo dx/oo dyx® 'yl (r+y —x)0(r + y — x)
0 0

['(a)l'(b) sin(za)

= pltatb )
['(2+a+ b)sin(z(a+ b))

(130)

For the right shoulder of heavy jet mass we define
§=-r=p —% > 0. Then the core integral is

/oo d)c/oo dyx=1yr=l(y — x = $)0(y — x — )
0 0

T(a)l(b)  sin(zb)

— gltatb )
I'(2+ a+ b)sin(z(a + b))

(131)

These integrals are all UV and IR divergent, and so analytic
continuation has been used to complete them. We discuss
the integrals in more detail in Sec. IV B.

Putting everything together and applying algebraic
simplifications as in [20,28], we find that all three observ-
ables can be written in terms of the same RG evolution
kernel. For the gluon channels

1 do tO\ " [tQ\ e~ TEe+m)

_d_gzn (0y,+ 0y, )t ( ) < ) TR

oy dt Hs Hs) T(2+ns+ny)

(132)

1 do, 1,(3,.0, ) <FQ>’7£ <rQ>nh e~ TEe+m)

ordr 0\ ) Ny ) T@+ns+m)
sin(z(17, +ny))

ldO' sQ\ " (sQ\ M e~ rEUe+m)

oo () G2 metnw

oy ds H us) T2 +ns+mp)
sin(z(17, +ny))

where
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11,(9,,.9,,) = exp[4CrS(up. u;) +4CrS(pg. 1) +2CaS(un, pj) + 2CaS(us. ;)]
X exp[ZAysg(ﬂsvﬂh) + 2Aysqq(/"s7ﬂh) + 2ijg(/‘ju“h) + 4ijq(/"jv i)

< Ous \ ~ Ousn \ ~ Qs ~
XH(Q’/‘h)Jq<am+ln 2 Ja| Oy, +1n quh Jg| Oy, +1In zf Sqq(99,)%4(9y,)

J

and

My = MNjg + Msg = ZCAAF(/’tj’ﬂS)’ (136)

M =20, + Nggq = 4CrAr(u, py).- (137)

We have chosen the same jet scales for the light and heavy
hemispheres although one could also choose them to be
different. Similarly, we have taken the same soft scales for
the left and right hemispheres.

(135)

J ﬂ]

One can read off from Eq. (133) that the large logs will
be resummed for the left shoulder of heavy jet mass with
the canonical scale choices

u;=rQ,

For thrust or the right shoulder of heavy jet mass, the
canonical scale choices are the same with r replaced by 7 or
s, respectively. We have verified that the expansion of the
resummed distribution is independent of the matching
scales uj, uj and pg at order a;.

The quark channels have the same form as Egs. (132)—
(134) but with

= 0, ug =rQ. (138)

11,(9,,,0,,) = exp[(2Cr + Cx)[S(un. ;) + S, ;)] + 2Cp[S(pn, p) + S (s )]
X CXPDAY‘W(M‘;, /"h) + ZA}/ng(luS’ Iuh) + Zijq(:uj’ﬂh) + 2A}/jq(/’tj’ /'lh) + 2ijq(ﬂjv Iuh)]

~ Opy\ ~ Opy\ ~ Oy \ - <
XH(Q’”h)Jq<anh+ln 2 Jg| 9y, +1n 2 Jq a’lf+ln7 549(00,)34(0y,)

J

and
Ne =MNjg +Nsq = 2CpAr(u). py), (140)
M = Njg +Mjg +sqg = 2Cp +2C4)Ar(pj, ps).  (141)
The final resummed distribution for thrust is
do _do, | ,9% (142)

dt dr T dt

and similarly for heavy jet mass.

IV. ANALYSIS

In Sec. Il we derived a factorization formula for the left
and right Sudakov shoulders for heavy jet mass as well as
the right Sudakov shoulder for thrust (thrust has no left
shoulder). We will now perform some cross-checks on
those results. We first perform the fixed-order expansion
and compare to a numerical computation of the exact NLO
expression to verify the singular behavior. Then we
demonstrate that there are no nonglobal logarithms and
discuss power corrections.

(139)

J J

A. Fixed-order expansions

First of all, we observe that the full resummed distribu-
tions are renormalization-group invariant. This invariance
has let us write the evolution kernels in Egs. (135) and
(139) in a form that depends only on the hard, jet and soft
matching scales yu;, and not on u. The cancellation of the y
dependence is nontrivial and requires the Casimirs asso-
ciated with the Sudakov double logs to cancel and the
anomalous dimensions to satisfy

Yh =7jg + 2J/jq + Vsqq + Vsg

= y]!] + 2}/” + 7sqg + ysq- (143)

These relations can be checked explicitly using Eqgs. (122),
(111), (106), and (108).

Expanding the resummed distributions to order a; we
find

1 do ag
[e3] dt 477:

F[37g + 67 + 2759 + A sg + 20500 T ¥ sqq

3
{Blt—§<2CF + CA)Fotlnzf

+3(Cy +2CE)yIn t} (144)
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for some B;. The linear terms 3¢ and Bt are not predicted
with NLL resummation. So to be consistent we
should remove all the terms linear in ¢. This can be done
to all orders by subtracting from the full resummed
distribution &(7) the boundary condition t¢(1). That is,
we consider

(145)

1 do**® 1 do ; 1 do
- (o] dt [} dt l:l’

which has only terms of the form #In” ¢ to all orders in a.
We use an analogous definition with ¢ replaced by r or s for
the subtracted form of the heavy jet mass distribution.
Plugging in the anomalous dimensions

1 do*™® a,
— =_2{-6(2Cr + C4)tIn’t
oy dt 471'{ (2Cr + Cy)tin

+[6CH(1 —41n3) + C,4(1 —121n3)

+4n TrltInt} + O(a?). (146)

This is shown in comparison to the NLO calculation
in Fig. 6.

For the left shoulder of heavy jet mass, the expansion
gives

bl Q
ol® CrneTr x 10
20t 1
10f 1
CrCh
0, 4

0331 0332 0333 0334 0335 0.336
o

= —~(2Cp + C4)Tyrin?r + [(C4 + 2CE)T,
o, dr 47

1do™ o 1
2

+Vjg+27q + 21 + 4ysq]rln r}

T

1 4
— 4+ 4In—
+CA<3+ 1’13)

4
- Z—S {—2(2CF +Cy)rinr + {2@ <1 + 4ln§>

4
—l—gnfTF]rlnr}. (147)

This agrees with our fixed-order computation in Sec. II and
with the leading shoulder logarithms at NLO as can be seen
in Fig. 6.

Breaking down the expression in Eq. (147) the anoma-
lous dimensions which appear are y;, + 2y, from the
gluon channel and y;, + 2y, from the quark and antiquark
channels. So in each channel only anomalous dimensions
associated with light-hemisphere side are contributing
logarithms as order a,. This is a somewhat remarkable
feature of the factorization formula: although both sides
contribute one-loop anomalous dimensions, as is required
for renormalization-group invariance, Eq. (143) only one
side contributes logarithms. Mechanically, what happens is

sin(zn,)
0 o, )[rteth —1]——————=vy rinr. (148
(710y, +7£0,,)[r ]SIH(”(Wf'f'nh)) verinr. (148)
So the % factor replaces the full anomalous

dimension y, 4y, with just y,.

120¢
100¢
80r 1
C,:nFTF x 10
3| 60f ]
40 1
C:Ca
20r ]
0

0.332 0333 0.334 0335 0.336
T

FIG. 6. Comparison of the resummed distribution expanded to NLO (colored curves) to the exact NLO distribution in the Sudakov
shoulder region (blue histograms) for heavy jet mass (left) and thrust (right). We include in the prediction an offset and a linear term
which are fit separately on either side of the peak. The Cgn ;T color structure has been scaled up by a factor of 10 for clarity. The NLO
histograms is this figure were computed using EVENT2 [9,10] with a cutoff of 107!2 and 12 trillion events and normalized to Born cross

section o).
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For the right shoulder of heavy jet mass

1 do™

o, ds

a\'
- E {=(2CF + C4)TysIn®s + [2(Cy + 2Cp)T

+27jg + 4 jg T 2isgq + 41 sqgls In s}

— Z—S {—4(2CF + Cy)sln’s + {4CF(1 —41n6)
T

2
+%(1—12ln6)+§nfTF}slns} (149)

In this case, only the anomalous dimensions in the heavy
hemisphere contribute at NLO. This distribution is also
shown in Fig. 6 and compared to the exact NLO
calculation.

B. Nonglobal logarithms

When observables are sensitive to emissions only in a
restricted region of phase space, there can be an incomplete
cancellation of virtual and real emissions leading to nonglobal
logarithms [37]. The classic example is the light-hemisphere
mass in ete™ collisions. For the light-hemisphere mass,
emissions into the heavy hemisphere do not affect the value
of the light-hemisphere mass, making it nonglobal. Generally,
to be able to resum logarithms using a factorization formula,
one would like the condition that the observable be small to
force soft and collinear kinematics. This does not happen with
the light-hemisphere mass, for example, since demanding it be
small does not prevent additional hard emissions into the
heavy hemisphere. For light-jet mass, the leading nonglobal
logarithm contributes to the cross section at order do/dp, ~
a2 1n? p, so it is the same order as terms in NLL resummation.
The leading logarithmic series of nonglobal logs for the light
jet mass and related observables is understood and can be
resummed [24,25]. Progress has also been made on systematic
higher-order resummation of nonglobal logarithms [38-42].
Thus, if there were nonglobal logs in the Sudakov shoulders, it
would not pose an insurmountable obstacle. Nevertheless, we
will show that for the Sudakov shoulders of thrust and heavy
jet mass, nonglobal logs are absent.

For the right shoulder of thrust, the constraint in Eq. (80)
is of the form ¢ < x 4+ y, where x and y represent con-
tributions to the mass of the heavy or light hemispheres,
respectively, from soft and collinear radiation near the trijet
region (i.e., x = m3 + m3 + 2psks + 2psks + 2v7k; and
y=m+2pk + v3ks + v3ks when the light jet is in the
1 direction). Since the constraint imposes a lower bound on
t, demanding ¢ < 1 does not force x and y to be small,
suggesting that the Sudakov shoulder for thrust might be
nonglobal. However, we can rewrite the core convolution
integral in Eq. (129) as

Am dono dyxa—lyb—l(x+y— NO(x+y—1) (150)
:/ dz{/ dx/ dyxalblfs(x—‘-y—z)}
x(z-1)8z-1) (151)

_ 11:((2)—1;(2)) {A‘” dzz9 1 (7 — 1) — At dzz00=1 (7 — t)}

scaleless global

(152)

(a)0(b)

— t1+a+b—'
I'2+a+b)

(153)

The first integral in brackets in Eq. (152) is divergent but
either independent of ¢ or linear in ¢, so it is smooth across
t = 0 and does not generate Sudakov shoulder logarithms.
The remaining integral has z = x +y < t, so taking r < 1
does force x, y < 1. We conclude that the right shoulder of
thrust should be free of nonglobal logarithms. The actual
divergence is an artifact of expanding the phase space limits
to leading power. In the full theory, the divergences would
cut off by the hard scale Q but still would not generate
logarithms of .

It is also worth noting that the scaleless integral in
Eq. (152) does generate a divergent term proportional to .
This would be the same order as terms in the NNLL
resummation of the Sudakov shoulder. The presence of
such a term does not imply that the factorization formula is
valid only to NLL. Indeed, this divergent contribution is
smooth across ¢ = 0, suggesting that it contributes similarly
to the left and right sides of 7 = % and therefore does not
give a discontinuity or akink at 7 = é In any case, since we
are only working to NLL in this paper, we can safely
ignore it.

For heavy jet mass, the analogous constraint is in
Eq. (76) which corresponds to x < r+y for the left
shoulder or x+ s <y for the right shoulder, as in
Egs. (130) and (131). We can rewrite Eq. (130) as

£(r) = / ® dx / ® dyx =y (r 4y — D)0+ y — )

1

— ood a+1 b—l‘
—a(a+1)A y(r+y)*ly

(154)
This integral is both UV and IR divergent (for a, b > 0) and
gets contributions from all scales, suggesting, again, that it
may generate nonglobal logarithms. To separate out the UV
and IR divergences, we can take two derivatives with
respect to r, leaving an integral which is UV finite for a,
b > 0. We also introduce a new scale R to separate small r
from large r. Then we have

074011-18



SUDAKOV SHOULDER RESUMMATION FOR THRUST AND HEAVY ...

PHYS. REV. D 106, 074011 (2022)

R 0o
f”(r)=/ dy(r+y)“‘1yb‘1+/ dy(r +y)e=ly"h.
0

R

global regularin r

(155)

Since we are interested in the region with r < 1, we can
take 0 < r < R < 1. Then the first integral in Eq. (155) is
global, since it gets contributions only from the region
where y < 1 and x <« 1 [we had integrated x from O to
r+y < 11in Eq. (154)]. The second integral in Eq. (155) is
regular as r — 0. Thus it does not contribute to any
discontinuities or kinks near the shoulder, at r = 0. As
with thrust, it may contribute terms linear in  but will not
give any Sudakov shoulder logs. So only the soft and
collinear regions should contribute to the Sudakov shoulder
logs for heavy jet mass, as with thrust, and there are no
nonglobal logarithms.

To complete the computation, as far as the Sudakov
shoulder logs are concerned, we have

fKHE{ARdNr+yV”y“I (156)

= / dy(r+y)*iy*!
0

= [Tty (157)

regularin r

. D(@)l'(b) sin(za) a+b-1
~ I'(a+b)sin(z(a + b))
1

a+b-1’

— Ri-a-b (158)

where we have taken R > r to simplify the second integral.
Integrating twice with respect to r then gives

£lr) = I'(a)I(b) sin(za) l+a+b
(2 + a + b) sin(z(a + b))
>
TR T rarte (1)

At small a and b (these are proportional to a;), the second
term on the right-hand side is suppressed by a factor of %
compared to the first term, so it only gives power
corrections and no Sudakov shoulder logs, as anticipated.
We should fix the integration constants ¢; and ¢, so that the
expansion of f(r) at small a and b only has terms of the
form rIn” r with n > 0. The constant term we can simply
discard, ¢y = 0. To fix ¢; we should set ¢; = —f(1). This
corresponds to integrating f'(r) from 1 to r. These
integration constants were used in Eq. (145).

In summary, the heavy jet mass distribution at a value of
pr % does get contributions from phase space regions with
jets whose masses are not small. In this sense it is similar to
light jet mass near p, = 0 which gets contributions from
phase space regions where p is not small. However, the
contributions corresponding to heavy jets for the Sudakov
shoulder do not generate large logarithms. This is because
the phase space regions with heavy jets can contribute to
both p <4 and p and are smooth across p = . All the
contributions to the distribution that are not smooth across
p = + come from the regions with one nearly massless jet in
the light hemisphere and two nearly massless jets in the
heavy hemisphere. There is no analog of this continuity
argument for light jet mass, which cannot have p, < 0.
Thus, the Sudakov shoulders of heavy jet mass (and thrust)
are free of nonglobal logarithms.

C. Power corrections

In resummed distributions, there are typically different
types of power corrections. For threshold resummation,

near p = 0 for example, there can be power corrections of

A
order —%2

associated with the strong dynamics of QCD.
There can also be hard power corrections, suppressed by

2
additional powers of p = % where my is the mass of the

heavy jet. The Agcp power corrections are often modeled
with parameters fit to data. This allows for predictivity
closer to threshold than with just the resummed distribution
alone, although one cannot get too close to threshold since
more and more nonperturbative parameters then become
relevant. The hard power corrections are typically
accounted for in matching to an exact fixed-order expres-
sion at large p.

For Sudakov shoulder resummation, it is not clear
whether 2o power corrections are important near the trijet
threshold. On the one hand, the resummed distribution
involves evaluating a; at scales such as y, = Qr which can
reach Agep for small enough r. On the other hand, the
shoulder is intrinsically perturbative, associated with fixed-
order phase space boundaries, so one might expect that it
might be invisible to nonperturbative physics.

The hard power corrections for the Sudakov shoulder are
more interesting. In Sec. IV B we argued that at leading
power all the nonanalytic behavior near the shoulder is
determined by soft and collinear physics. That is, there are
no nonglobal logarithms. One can see this from Eq. (159).
The quantities a and b are to be replaced by 5, and 7, in
the resummed distribution, which are parametrically of the
form n ~ a,ljInr. Thus at small «a,, all the terms of the
form rIn” r will come from the expansion of the first
term on the right-hand side in Eq. (159). On the other hand,
if r is sufficiently small, then a 4 b can be of order 1. As
a+ b nears 1 a pole from the sin~!(z(a + b)) factor in
Eq. (159) is approached. However, when a + b = 1, the
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FIG. 7. The solid red curve shows ri+e+? Z{00, sinjf{gj),?)
with @ = b = —6%1Inr and a; = 0.1. The pole is at a + b = 1.
The dashed curve shows this same function once the power-

suppressed term —Z5 Rt~ L is added with R = 1. The
power suppression is apparent at small r, where the difference
between the two curves is negligible. The pole at a + b = 2 is not

canceled and appears as the spike at r ~ 0.0003.

power-suppressed term is no longer power suppressed.
Indeed, it has precisely the behavior needed to remove the
singular behavior from the leading power term. We show
this in Fig. 7.

To see what is happening analytically, noting that the
leading power expression scales like r'+%*? we can write
the subleading power expression as

7\ l—a=b
r2Ra+h—l — r1+u+h E .

(160)
For a +b <1 there is a ¢ linear power suppression.
However for a + b ~ 1 there is no power suppression at
all; for a + b = 1 this expressions reduces to r* as does
rita+b Tn effect, the scaling dimensions of the leading
power and subleading power pick up such large anomalous
contributions that their relative scaling changes.

Taking R — oo gives the leading contribution. The first
subleading power contribution in this limit cancels the pole
at a + b = 1. To cancel subsequent poles, one can use the
exact integrated form of Eq. (155). This effectively replaces
f(r) in Eq. (159) by

f(r)=rl+atbo=ibe B_x(b,2+a)+cr+cy, (161)

ala+1)

where B, (x,y) is the incomplete Euler # function and ¢
and ¢, are again integration constants to be fixed with
physical boundary conditions.

V. DISCUSSION

Next, we want to evaluate the resummed distribution
numerically and compare to fixed order, to see the effect of

the higher-order logarithms. There are a number of issues
which complicate the analysis, compared with typical
threshold resummation of large logarithms.

First, the relevant domain of the observable is rather
small for Sudakov shoulders. For example, for thrust in the
threshold limit, although the logarithms are largest at small
7, power corrections and subleading logs are also large
there. Typical fits restrict z 22 0.1 where perturbative control
is best. For example, with Q = 92 GeV, Ref. [28] used
0.1 < 7 <0.24 for their a, fits to thrust while Ref. [43]
took 72 &Y = 0.066. For the right shoulder of thrust

which begins at the three-parton maximum 7 :% if one
excludes the region up to %—k 0.1 = 0.43 there is no cross
section or phase space left. Moreover, the four-particle
phase space forces 7 < 0.42, so there is another Sudakov
shoulder at this thrust value whose logs must be resummed
separately. So it is not clear if there is a region on the right
shoulder where the resummed formula might even be valid.
For the left shoulder, in contrast, one can exclude the region
with r = % — p < 0.1 which still leaves a region of 0.1 <
p < 0.23 in which Sudakov shoulder logarithms might be
important and renormalization-group improved perturba-
tion theory could be valid.

Second, in the threshold region, the logarithms of thrust are
of the form % ~al % In contrast, the logarithms near the

do

shoulder region are of the form 97 ~ a7 In" 1. So they are

suppressed effectively by > compared to the threshold region.
The thrust and heavy mass distributions are indeed finite at the
trijet threshold to all orders while they are divergent at the dijet
threshold. Despite this additional suppression, the logarithms
are noticeable, as can be been in Fig. 2.

Third, in the important left-shoulder region for heavy jet
mass, the resummed distribution has usually singular
behavior. Let us recall the form of the resummed heavy
jet mass distribution in the region r = % — p < 1 when the
light hemisphere has a gluon jet from Eq. (133):

1 do rO\" (rQ\n e~ et
= %% _ I1,(9,,, 6,,h)r<—> <—> -
oy dr He tsn) T2 +ne+np)

sin(zn,)

sin(z(n, +ny)) (162)

with 77, and 7, in Egs. (141) and (140). This expression has
singularities whenever 5, + 1, € Z.

Choosing canonical scales as in Eq. (138) at leading
logarithmic level gives

A i
Ne +np = —— (CA + 2CF>FO lnﬂ—"
27 u

s

= Z—; (Cy +2CH) Ty Inr. (163)

The singularity n, + n;, = 0 occurs when u; = u,, which
happens at r = 1. At r = 1 there are no logarithms, so this
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singularity is entirely removed by the subtraction in
Eq. (145). That is,

d sub d d
7 G—r{ ”] (164)

dr — dr dr —1

is regular at r = 1. Note, however, if the soft and jet
scales meet at some lower scale, this singularity may be
reintroduced.

The singularity at 7, +#;, =1 is more troublesome.
Similar singularities have been seen in other processes,
such as Drell-Yan or Higgs production at small pr
[11-13,44,45] or the jet shape [2,46]. Writing L = 1n];,
resummation at order NLL is meant to get right all terms of
order oL’/ with j>2n—1 in R(r) or equivalently all
terms of order afgL/ with j > n in the exponent, i.e., in
InR(r). In the notation of [47], we can write

sub

dr

In = Lgl (OCSL) + gQ(“sL) +e

=~ —In sin(z(n, +n,)) +---  (165)
with g, (a,L) and g,(a,L) completely fixed by the expan-
sion and reorganization of our resummed expression.
Normally, when a,L ~ 1 then we must go to higher order
in RG-improved perturbation theory; at NNLL level, we
would have additionally Lg;(a,L) which would extend the
validity of the theoretical prediction. Here, instead we find
a singularity in the exponent: In R**® is infinite at a, L ~ 1
due to the n,+mn, =1 singularity. Therefore, going
beyond NLL would not allow us to make perturbative
predictions beyond where the singularity occurs. Instead,
the singularity is canceled by including subleading power
effects, as discussed in Sec. IV C and shown in Fig. 7.

The singularity at @ In r ~ 1 is reminiscent of the Landau
pole in QCD. There, already at one loop one can see a pole
in the running coupling at y = Agcp. With two-loop or
higher-order running, the precise location of Agcp moves
around but cannot be surpassed. Thus what we see here is a
kind of Sudakov Landau pole. Using the LL form in
Eq. (163) it occurs at

Az ~ exp |- 3
(Cr12CHa,]l ~ P 17a,

r=exp |—

]. (166)

For a, = 0.119 this gives r ~ 0.01. Using the NLL expres-
sions for 77, and #;, with canonical scale choices [Eq. (138)]
the pole ascends to r =~ 0.06. Thus we cannot expect the
leading-power NLL resummed distribution to be predictive
between 0.27 < p < 0.39. This essentially excludes the
entire region on the right shoulder but leaves the region
with p < 0.27 as potentially viable for a precise prediction.
To stay well away from the singular region, however, one

must take p smaller, p < 0.2 where the logarithms are no
longer particularly large.

We emphasize that the excluded range is larger than that
associated with strong coupling. With two-loop running
and a;(myz) =0.119, we find a,(m,) =1 at r = 0.005.
Thus the singularity comes in at a factor of 10 larger values
of r than where the soft scale probes strong dynamics. This
is because the singularity is associated with the cusp
anomalous dimension, not the QCD g function: the two
Landau poles are unrelated.

Because of the Sudakov Landau pole in the resummed
distribution it is difficult to make quantitative predictions,
particularly at the NLL level, without a better understand-
ing of the power corrections. There are a number of
approaches that could be applied to ameliorate the problem.
In [11], a similar pole in the Drell-Yan spectrum at small p7
[at g* = my, exp(—é—f\_) [48]] was shown to be associated
with a power-suppressed region of small impact parameter
but could be softened with higher-order resummation. In
[13] it is argued that one could also do resummation in
momentum space directly with a modified expansion of the
Sudakov radiator. Related ideas can be found in [46,49]. It
will be important to understand which of these approaches
might apply for Sudakov shoulder resummation, but we do
not attempt a complete analysis here.

At the LL level, however, because the Sudakov Landau
poleis very close to the shoulder, we can at least begin to geta
quantitative feel of how important resummation is. Consider
the LL distribution using canonical scales in Eq. (138). When
the jet in the light hemisphere is a gluon, it has the form as in
Eq. (162) with T1, from Eq. (135) becoming

I, = e BRCoCer || — 28T (Cy0h, +2C403) .
(167)

Note that we include every term with I in it for leading-log
resummation, not just the exponential prefactor. Including
only the prefactor would give the double-logarithmic
approximation, as used in previous work on resummation
of the C parameter Sudakov shoulder [1]. We subtract off
from the resummed distribution r times its » — 1 limit as
done in Eq. (145). Note that this subtraction must be done
before setting canonical scales. We then match to the fixed-
order LO + NLO calculation by subtracting from the
resummed distribution its expansion to order «,. In this
case, the matching subtraction is

1d Gmalch

oy 1

p— E(CA+2CF)FO<rlnr—5rln2r>. (168)
Finally we include the subtraction of the first subleading
power contribution. For the gluon channel this amounts to

subtracting
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FIG. 8. Resummation of the left Sudakov shoulder for heavy jet
mass at leading-logarithmic level (upper curve) compared to
NLO (lower curve). The strong coupling constant is fixed
to ay, = 0.119.

1 dof 2 RO\ ([RO\
_ﬁ:r_ng@n ,9,,) RO\ (RO
oy dr 2R o \ e Hsh

e~ 7EMe+m) 1
X
()T () (1 =np — 1)

(169)

from the resummed distribution. The resulting LL resummed
and matched resultat Q = my and a,(Q) = 0.119 with R =
% for the left shoulder is shown in Fig. 8. To be clear, this is not
the complete power correction but amounts to integrating the
leading power soft and collinear matrix elements outside of
their formal region of validity up to the kinematic limit
1

0fr=§.

VI. CONCLUSION

Thrust 7 and heavy jet mass p are two of the most
important observables at e"e™ colliders. They have been
used for decades for tests of precision QCD and measure-
ments of a,. At leading order in perturbation theory, both p
and 7 are phase-space limited to be less than % and have a

nonvanishing slope as % is approached. At next-to-leading

order, thrust behaves like oZ(7 — 1) In*(z — 1) for 7 > 1 so

that the slope diverges as % is approached from the right.
This behavior is called a right Sudakov shoulder. Heavy jet
mass has a slope which diverges as p nears % both from the
left and the right: it has two Sudakov shoulders. The left
shoulder of heavy jet mass is particularly important as the
large logarithms can extend well into the region where a;
fits are typically done (0.1 < p < 0.24). Thus understand-
ing and resumming its Sudakov shoulders could be very
important for improving agreement of theoretical predic-
tions with data and subsequent extractions of a,. We also
point out that it has been noted recently in the literature that
in the context of other event shape observables such as
fractional moments of energy-energy correlation [45] or

projected energy correlators [50], one must resort to a joint
resummation of the Sudakov shoulders and end point
peaks.

We derived a factorization formula for both thrust and
heavy jet mass in the Sudakov shoulder region. The basic
mechanism for generating Sudakov shoulder logs is when a
soft or collinear emission goes into one hemisphere a global
constraint such as m? < p — % transfers large logs from the
emissions to the shoulder. Although the constraint seems
nonlocal, involving both hemispheres, and therefore might
violate factorization, we show that it does not. Moreover
regions of large jet mass do not contribute Sudakov
shoulder logs, showing that there is no nonglobal log
contribution in the shoulder region. We checked our
factorization formula by expanding to NLO and comparing
to the exact numerical NLO calculation very close to the
shoulder region. As can be seen in Fig. 6 the agreement is
excellent.

The calculation involves some unusual ingredients.
Since the emissions come off a trijet configuration with
two quarks and one gluon, there is no azimuthal symmetry
(unlike the threshold case), and the polarization of the
gluon affects the spectrum. At leading order, only a uniform
azimuthal angle integral was needed for the resummed
expression, but in general polarized splitting function may
be necessary. We also saw the appearance of Gieseking’s
constant, a transcendentally two number. Although it also
drops out of the NLL expression, at higher orders it or
related constants may be involved.

The resummed distribution for heavy jet mass has a term
of the form sin™!(z57) with n ~ @,y Inr, where r =1 — p.
The expansion near a; =0 (or Inr = 0) produces the
leading and next-to-leading logarithmic series: terms like
a" In*" r. However, there is also a pole at # = 1. This pole
in the resummed distribution is not due to the running
coupling—it is present even with f(a;) = 0—but due to
the cusp anomalous dimension. Thus it is a kind of
Sudakov Landau pole. Similar behavior has been seen
before, in the Drell-Yan process at small pz, for example
[11,13,44]. In both cases there is a connection between the
pole and subleading power effects (subleading in r for the
shoulder, or in impact parameter b for Drell-Yan). We show
that subleading power terms can in fact cancel the n = 1
pole but do not affect the NLL series. This implies that a
better understanding of power corrections will be necessary
to establish proper theoretical uncertainty on the resummed
distribution. There are many approaches that may help
improve the convergences of the resummed distribution
[13,30,49].

Although our results are only valid to NLL level, the
factorization formula applies to all orders. In fact, since
the anomalous dimensions of the jet and hard functions are
known to two loops, and therefore the soft function
anomalous dimension as well by renormalization-group
invariance, NNLL resummation should be possible.
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At NNLL level, terms linear in p or 7 are determined. The
slope can be discontinuous from the left to right side of the
shoulder, as it is already at LO. This discontinuity should
be computable. However, because there is also a linear term
in the distribution not associated with the shoulder, con-
firming the predictions at NNLL will be challenging.
Nevertheless, pushing the limits of Sudakov shoulder
resummation, not just for e e~ event shapes but for collider
observables more broadly, provides opportunities to
improve our understanding of precision QCD.
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APPENDIX: CALCULATION OF THE ONE-LOOP
TRIJET SOFT FUNCTION

Before using rotational invariance all the integrals
needed for the one-loop trijet soft functions are of the form

Ina.nb,nc,nd.N(q) = /ddk%(%kz)g(ko)

2
x6<q—3N-k>9(nc-k—ﬁc-k)

xﬁ(nd-k—ﬁd-k), (Al)
where the N is selected from the direction vectors
V31
=(1,0,0,1), =(1L0,—,—%].
n= 0.0, n=(105-)
3 1
ny = <1,0,—£,——>, (A2)
2
N, =(2,0,0,-2), N, =(2,0,V3.3),
N; = (2,0,—V/3,3) (A3)

and n, - - - ny only from the n; in Eq. (A2). The 6 functions
restrict the phase space to one of the sextants in Fig. 4.

The Wilson lines in the trijet configuration have an Sy
symmetry which includes a Z; rotational invariance and a
reflection symmetry. We can use the rotational invariance to
rotate the Wilson lines so that they always point in the n;
and n, directions. Thus we only need to consider integrals
as in Eq. (98):

ny-np

(ny - k)(ny - k)
x5<q—§N-k>9(nu-k—fza-k)

x@(nbk—ﬁbk)

zwm@=/ﬂk 5(k2)6(KY)

(A4)

When N = n; is one of the Wilson line directions, then only
two sextants are relevant, /,(g) and I,(g) from Fig. 5:
Ii(q) = L(q) (AS)

Inz,n3,n] <Q)’ = IVllle,n3 (q)

When N = N, = 2n,, there are two configurations rel-
evant, with both Wilson lines adjacent to the nj measure-
ment region or just one of them adjacent two it. The two
integrals are, as in Fig. 5,

I5(q) = Ih].ﬁz.Zhg(Q)’ I,(q) = Iﬁ,,m,b@(ﬂ)» (A6)

where 27i; comes from rotating N; as the Wilson lines are
rotated to the n; and n, directions.

The remaining integrals involve N, and Nj. These
vectors are not lightlike, but they are related by a Z,
symmetry. (Recall that the origin of the asymmetry between
N, and N,/N; is that n; points to the light hemisphere
which affects the soft projections in the factorization
formula.) Since N, and N; are related by a reflection in
the y direction, which is a symmetry of the Wilson lines, if
we know the integral for all Wilson line configurations for
N, we know it for N3 as well. So there are three
possibilities, corresponding to the location of the three
measurement regions with respect to the Wilson line.
Rotating the N, Wilson line by 27” and 43—” gives

Ny =(2.0.23.0),  N§y=(2.0.-V3.-3). (A7)

Thus the last three integrals we need are

IS(‘]) = Iﬁ],fzz,N3(q)’
17(‘1) = 1h2.h3,Ng’(4>-

ls(q) = Iﬁ,,r’zg,N’3 (),

(A8)

To perform the integrals, we parametrize the phase space
with light-cone components in some direction 7;:

n,u }Tlﬂ
ket = +7‘+k_—‘+k’i (A9)
so that
1
ddk - Ede_zkjl__3ddek+dk_
1
= Ede_3 sind* 0d«9ki‘3dkldk+dk_ (A10)

and

074011-23



BHATTACHARYA, SCHWARTZ, and ZHANG

PHYS. REV. D 106, 074011 (2022)

5(k?) = 8(k% — k., k_). (A11)

The integral over k; can be calculated using the é function
and then k, and k_ rescaled by ¢ to obtain the g dependence
g7 as expected by dimensional analysis. We also introduce

t=4/1 +igzz to rationalize sin@ = V1 — cos? @.
With these preliminaries, the integral 1,(q) = I,,, 4, », (q)
takes the form in d = 4 — 2¢ dimensions
[ = 3172¢Q 5. [ dt
1= q1+2€ 0 t26(1 + t2)1—2e
(A12)

o[ !
0o k& 1—|—3k+—2 3k, (1-12)

1+

x 0(1 + k+)9(—1 k-

/12

1+

x0<—1+k++%(12_t2)). (A13)
The 6 functions impose that
O<t<oo,
k+>7‘(i(ﬁj)27’4 4\/3(1—(21(21)2—#“4)5;(6, (Al4)

To handle the UV divergence as k, — oo, we can add and
subtract the integral I‘giv over the integrand expanded at
large k. This subtraction term requires the integral

| mma=),
0 l2€(1+[2>1_2€ K,

rl

_z1 1 (—SK + ﬂln63—4) +0(e),  (Al5)

dk, 1
k. 3k,

6¢

where k = ImLize”?i is Gieseking’s constant. Then I*f“ =
I; — IV is finite and can be expanded in € and integrated
order by order. Eventually, we arrive at

2\ 2¢
nr=rere(2)

1 1 7 3

The calculations for other soft integrals are similar, and
the results up to order O(¢) are summarized as follows:

1
I,(q) = J\/[ +ln3——ln2—ik

2 2w
18 8 103 , 3 10
2 - In2 4+ —1n22
“(5;:01+ €2~ 1gg7 T K2+
——ln2 In3 +—ln23+ > Li ! + O(e?)
2 40 12 *\4 ’
(A17)

3 36
L{g)=N [_K_1n2+€ <21n22—|——c3 ——Kln2> +C’)(€2)} ,
T 2 T

(A18)

I(q) = J\/’EK +1n2 + 6(—21n22 —gkln2 +%c5>

; o@} , (A19)
I(q)=N|-=— +§1 2
4\q) = 2”1< n
3 3
—3In 22—|—2—c4+ Kln2>+(’)( )} (A20)
3
]S(q):N[ﬂK+ln2
—l—e( —2In 22+—c7——1<1n2>—|—(’)( )] (A21)
3 3
Iﬁ(q)—N[—E 211'12
) 3 3
+e| =3In 2+2—66+ “kIn2 | +0(e?)|, (A22)
3 3
17(q)—./\/[—%1<+§ln2
2 3 3 2
+e( -3In"2+—cg+—xIn2 )| +O(e*)|. (A23)
2 T
Here the normalization factor is
e 2 2e 1
N =nferE (§> R (A24)
with
i
ci=Im|Li;(—= )|, ¢ =Im[Li;(1+iV3)], (A25
1 [(ﬁ)} s = ImlLis(1+iV3)),  (A25)

and
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c3=—0.949789416853385,
c5=—1.34784474998184,
c7=12.8006547420728,

¢y =—0.305492372030520,
ce =4.39528715012114,
3 =3.37308464401608.
(A26)
As a cross-check, we can add the three sextants in one

hemisphere with the same axis projection and compare to
the hemisphere soft function [7,20,29,51,52]:

Ir'll,r'll,nl (61) = Il(Q) + Iﬁlﬁ3,nl (61) + Iﬁl,ﬁz,nl(Q)' (A27)

The extra two soft integrals are

3 3
Iﬁl.fz3,nl (Q) :N |:§1n2 _%K

540 Sn

3 3 13 1
+3 In21In3 —EIHZS —Ele <4>> + (’)(62)] ,

3
Iﬁl,ﬁz,n] (Q) :N |:1n2 +—K

71 18 4 3 8
+e<—7r +—c1——cz+ Kln2—§ln22

19, 36 4 6 2
e A P P S P il P
+€<270 520 TR T A TR

3 1. /1
+In21In3 + 2—Oln23 +6L12 (Z) ) + (9(52)] ,
(A28)
which leads to the same hemisphere soft function as
in Ref. [20].
Another interesting fact is that the divergent part of our

trijet soft function does not depend on the projection vector
N. The soft function integral is

2
IﬂawanmﬂdyN( ) /ddkm5(k2) (q — §N . k>
X [ . ] (A29)

If we rotate the projection vector N to another direction N’,
then the 6 function transforms as

54
T

i

(A30)

Then after rescaling

=
LS}

k, A31
p (A31)

the integral becomes

Nq 2¢ i n,
Ly nyneng (@) ~ <N,,q> q* S/ddkm5(k2)

cofa-2) Lo

So the effect of using different N’s only shows up at order ¢
in the expansion. This only affects the anomalous dimen-
sion for the integrals which have soft-collinear divergences.
This is only 7,(g), since that is the only integral where a
Wilson line is in within the integration region. However, for
I,(q) the projection is on n; (the Wilson line direction) in
both thrust and heavy jet mass. For the others, using the
definitions in Egs. (AS), (A6), and (A8), we see that at NLL
level after rescaling the projection vector N

I5(q)

(A32)

=I3(q). Is(q)=14(q). and I;(q)=1s(q). (A33)
where we need a reflection with respect to the z axis to see
the third equation. This agrees with our explicit calculations
in Egs. (A17)-(A23) to order €”. Note however, that the ¢!
terms differ, as expected. In summary, at the NLL level, the
thrust and heavy jet mass trijet soft function can be taken to
be the same. For NNLL resummation and beyond, they will

generically be different.
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