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A novel method of formulating the twist-3 gluon fragmentation function contribution to hyperon
polarization in the proton-proton collision is presented. The method employs a covariant gauge and takes
full advantage of the Ward-Takahashi identities before performing the collinear expansion. It provides a
robust way of constructing the general cross section formula and also a clear understanding for the absence
of the ghostlike terms in the twist-3 cross section in the leading order with respect to the QCD coupling
constant.
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I. INTRODUCTION where p, p’, and P, are the momenta of the particles and
S, is the transverse spin vector of final A'. This con-
tribution is diagrammatically shown in Fig. 1, and the
corresponding twist-3 cross section can be calculated from
the formula'

In our recent paper [1], we presented a formalism for
calculating the twist-3 gluon fragmentation function (FF)
contribution to the polarized hyperon production in the
proton-proton collision,

p(p) +p(p') = AT (P, S ) + X, (1)
|
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where f;(x) (i = ¢, q,g) is the twist-2 unpolarized quark,
antiquark, and gluon distributions in the unpolarized proton

JE—— . N . _ N2

'To get a gauge- and frame-independent twist-3 cross section, V:llth the pa?on s momentum fraction x,i, S.E N (p +f ) 18
the ¢gg-type FF contribution shown in Fig. 2 of Ref. [1] needsto 1€ center—.o -mass energy sql.lared, and - indicates the sum
be added to (2). Since the calculation of the contribution is over all spinor or Lorentz indices depending on the channels.

straightforward, it is not considered in this paper. Readers should The correlation functions I falﬁ and faﬂy 11
refer to Ref. [1] for that contribution. . R (Z)_’ g (.Z)’ F”bC(Z/ ’.Z)’
respectively, define intrinsic, kinematical, and dynamical
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(a)

FIG. 1.

()

Generic diagrams representing the twist-3 gluon FF contribution to pp — A'X for the quark and antiquark distributions in the

initial unpolarized protons. The gluon distribution functions in the initial protons also contribute. The diagrams (a), (b), and (c),

respectively, correspond to W, W and W' in (10).

~(0]AY (0)|hX) (hX|AL(E)gA%(n)|0), respectively. The
symbol Qf is defined as Qj = gy — Piw, with another
lightlike vector w satisfying P, -w = 1, and |.; implies
the collinear limit, k — Pj,/z. In Ref. [1], the formula (2) was
applied to the process (1), and the cross section was calculated
in the leading order (LO) with respect to the QCD coupling
constant. This completed the LO twist-3 cross section for (1)
together with the known results for the contribution from the
twist-3 distribution function [2-4] and the twist-3 quark
fragmentation function [5]. Since the formula (2) is a very
general one, it can be easily adopted for other processes such
as ete™ = ATX [6], ep — eATX [7,8], etc.

To derive the general formula (2), we applied in Ref. [1]
the collinear expansion to the hard parts S, (k) and
S¢be,(k, k). Using the Ward-Takahashi identities for the
partonic hard parts, we could eventually rewrite the twist-
3 cross sections in terms of the low derivatives of the hard
parts and the gauge-invariant correlation functions of the
gluon’s field strengths as in (2). Actual calculation,
however, is extremely complicated and lengthy and is
not easy to see how the correlation functions of the gauge
field A% is converted into those of the field strength
F¢, = 0,A% — 0,A% + gf**°AbA¢. Furthermore, vanishing
of the ghostlike terms appearing in the Ward-Takahashi
identities is essential to reach (2), which was not clearly
shown in Ref. [1]. Therefore, an easier way of deriving (2)
is very useful.

J

F{lﬂ

N2 Z/

= g G(z) — iMye"™ (S, - w)AG(z) —

where N =

In this paper, we present a much more robust and concise
way of deriving (2). In this method, we use Ward-Takahashi
identities from the outset to convert gauge fields into a part
of the field strengths, which results in substantial savings in
the actual calculation. This procedure was once adopted for
deriving the twist-3 three-gluon distribution contribution to
the single spin asymmetry in ep? — eDX, where three-
gluon distribution contributes as an only source for the
asymmetry and appears as a “pole contribution”[9]. For the
present case of the twist-3 gluon FF for (1), three types of
FFs contribute as a “nonpole contribution,” and hence the
situation is much more complicated. Furthermore, our
present method provides clear proof for the absence of
the ghostlike terms which appear in the Ward-Takahashi
identities. This is crucial to guarantee the gauge invariance
of the twist-3 cross section.

The remainder of the paper is organized as follows. In
Sec. II, a brief summary of the twist-3 gluon FFs which
appear in (2) is given. In Sec. III and the Appendix, we
present a novel derivation of (2) and prove the absence of
the ghostlike terms in the LO twist-3 cross section.
Section IV is devoted to a brief summary.

II. GLUON FRAGMENTATION FUNCTIONS

Here, we summarize the twist-3 gluon FFs in our
notation which appear in (2) [1].> The twist-3 intrinsic
gluon FFs are defined as

(0] ([oow, O] (0)) ,|A(Py, S3)X) (P, 1) X|(F**(Aw) 2w, cow]),,0)
iM P SL eyl NGy (2) + M et Silawft AGo7(2), (3)

(Py,,Sy)) is the spin-1/2 hyperon state with the 4-momentum P,

(P3 = M?) and the spin vector S;, (S7 = —M3), and [Aw, cow] is the gauge link in the adjoint representation connecting Aw
and oow. For the transversely polarized baryon, we use the spin vector S | normalized as Si = —1. In the twist-3 accuracy P},

2See also Refs. [6,10,11] for earlier references and more details about the gluon FFs.
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odd, contributing to hyperon polarization. Each function
in (3) has a support on 0 < z < 1.

The kinematical FFs are defined from the transverse
derivative of the correlation functions of the field
strengths,

can be regarded as lightlike. For a baryon with large
momentum, P, ~ (|P,|, P,), another lightlike vector w is
defined as w = 1/(2|P,|*)(|P4]. —P,), which satisfies
P,-w=1. G(z) and AG(z) are twist 2, and AG37(z)
and AG7(z) are twist 3. We also note AG57(z) is naively T

|

3 (2) (0] (Joow, O]F(0)) [ h(Py. S )X ) (h(Py. S 1) X|(F"(Aw) [w, cow]),|0) 0"

M A M A M N
= _iThgjﬂGPhWSﬂGg})(Z> + ThePhwaﬂS}’lAGg})(Z) _ i?h(GPhWSL{agi}y + €P”Wy{aS[i}>AH§~1)(Z>, (4)

where each function is defined to be real and has a support on 0 < z < 1.
The dynamical FFs are defined from the light-cone correlation functions of three field strengths,

af —li -

(5 s) =30 [ 5 [ pme et
lfabc aﬁ}/ 1 1 . N ~af 1 1

. +dahc_r“7 ——, 5

N 721 2 N*—4 B5\z." 2, ®)

where the gauge link operators are suppressed for simplicity, and f%*¢ and d*¢ are the antisymmetric and symmetric structure
constants of color SU(N). The dynamical FFs can be defined as the decomposition of the two correlation functions in (5) as

SO[F ()] (Py. $.1)X) (h(Py. S1)X|F3e (Aw)gFe (uw)[0)

_ifabc
N? -1

. 1 1
l"aﬁy —— | =
A <Zl Zz>

1 1 1
=-M, (N1 (_ _) ayGPhWSLﬂ + [\[2 (_ .
i1 22 21 2

A 1
Fa/iy < ) abc
F5\z21' 2 N> -1

1 1 1
_ _Mh (01 <_ _) a}’ePthJ_/f + 02 (_ o
71 22 i1 22

Correlation functions (6) and (7), respectivelyi defme two
independent set of the complex functions {N,N,} and

{0,,0,} due to the exchange symmetry of the field
strengths. Functions N, and O, satisfy the relations

~ (1 1 ~ (1 1 1
01(_3_> :01<___7_>' (8)
21 2 2 21 22

The real parts of these four FFs are T even, and the
imaginary parts are 7 odd, the latter being the sources of

single spin asymmetrles N, 2(— —) and O, (— —) have a

support on 5 > 1 and - 5 Zl > 0.

/ / ¢ e ST OF (O R(Py. S1)X) (h(Py. S1)XIF3 () gF e (uw) 0)

(1 1 1
>f7 PwS a _ ]v2 (_ _ )g PhWSl}/> (6)

2 24 22

/ [ S Ol O (P SR (P SLXIFE ()9 (i) 0)

)f}’ P,wS a + 02 (i _ l , i) gj(_ﬂé‘PhWSly) . (7)

X 4 2

III. TWIST-3 GLUON FRAGMENTATION
CONTRIBUTION TO pp — A'X

In this section, we present a robust way to derive the
basic formula (2). The twist-3 gluon FF contribution to (1)
can be written as

do(p.p'.Py;S,)

E
" &P,

dx
5 > S
167TSE1] 7..9

dx'
7fj(xl)Wg(xp7x,plvPh/ZvSJ_>’

©)

where W, represents the partonic hard scattering followed
by the fragmentation of a gluon into the final A'.
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Figure 1 -shows the generic structure of the LO diagrams for this contribution. Corresponding to Figs. 1(a)-1(c),
W, consists of three parts,

W (xp.X'p' . Py;S,) = W.Ela) + ng) + Wff)

d*k ab MY 1 d*k d'x abc INR L% / abc INR L% /
= (271_)4 [Sﬂv (k)rab(k)] +§ W W[SLﬂDﬂ(k’k )FLabc(k’k ) +SR;4yi<k’k )FRabc(k’k )]’ (10)
where [ (k), [%. (k, k'), and [, (k, k) are the hadronic matrix elements of the gauge (gluon) fields with k and k' the
4-momenta of the gluons fragmenting into the final A, and S5, (k), Sﬁ’;’l(k, k"), and S%’ﬁx(k k') are the corresponding
partonic hard scattering parts with the color indices a, b, ¢ and the Lorentz indices y, v, A. In (10), the factor 1/2 in front of

Wéb) and Wéc) takes into account the exchange symmetry of the gluon fields in the fragmentation matrix elements.

Hadronic matrix elements are defined as

AGESS / e (0] A% (0)| AX) (X AL(£)]0). (11)
P (k) =3 / i / e =T =R01(0] Y (0) |hX) (hX| A% (£)gAL (1)]0). (12)
o (k) =3 / i / e =T =0n(0] A% (0)gAZ () [hX) (R X|A%(£)[0). (13)

where the gauge coupling g associated with the attachment
of the extra gluon line to the hard part is included in
% (k.k') and T% (k,k'). Therefore, the hard parts
Sip(k), Sibe, (k, k'), and Sge, (k, k') are of O(g") in the

LO calculation. From Hermiticity, one has [** (k, k')* =

0 (K k) and S¢be, (k. k')* = S (K', k), which guar-
antees the reality of W . A standard procedure to extract the
twist-3 effect is the collinear expansion of the hard parts
with respect to k and k" around P;,. We followed the method
in Ref. [1] to get (2).

Here, we present an alternative method which leads to
(2) more easily. In this method, we fully use the Ward-
Takahashi identities for the hard parts to convert some
of the gluon field Ay into a part of the field strength F7,.
Ward-Takahashi identities for the hard part read

KAS2 (k) = k*S% (k) = 0, (14)
(= Ry (k. ) = 9 5,0 0) + Gite(l k). (15)
S (k) = 2075, (00) 4 Gk~ k k). (16
esite (k) =, 1)
(=P, () =275, ) (Gl (). (18)

[

abc ifabc ca *
RS (koK) = Sulk) + (G (k= K. K)*, (19)

k”S?e};i,l(kv k) =0, (20)

where S, (k) = 4 (k)8,,. The G terms are the ghostlike
terms which appear due to the off-shell-ness and the
nonphysical polarization of the gluon lines entering the
fragmentation matrix elements. Actual forms of those ghost-
like terms for pp — A'X were given in Appendix A of
Ref. [1] in the LO with respect to the QCD coupling. They
are proportional to f°¢ and satisfy the relation

kG (k,K') = K¥GEbe (k, K') = 0. (21)

We will see that use of the relations (14)—(21) from the outset
brings enormous saving in the actual calculation and clearer
understanding on the absence of the ghostlike terms in the
LO twist-3 cross section.’

We first consider W!(]a). The integration momentum k can
be decomposed as

k' = (k- w)P! + Q' (22)

3The absence of the ghost term contribution to the twist-3 cross
sections was discussed for the 3-gluon distribution contribution
to pp' — DX [12] and twist-3 quark FF contribution to
epT — enX [13].
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where Q) = ¢f — Piw,. Inserting (22) into (14), one gets

-1

S, (k) = —Q"k"S“b(k) (23)
-1
St (k) = - QUK SiD (k). (24)

Then, we can write

S ()%, (k) = St (K)gagy o (k) = S5 (k) (Phwi, + Q) (Phw + Q)T (k)

1 Q|
=Ty Sb (k) QUQE (— kW, + k- wa) (—kwy + k - wgh )T (k). (25)

where we have used (23) and (24) in the last equality. Noting that one can write

(=KW + k- was) (=K wy + k- wgh)E% (k) = > / d*ee M (0[FY™ (0)|hX) (hX|F™ (£)[0) = T35, k), (26)
X

where F' EP)’“’ = 0*AJ — 0°AX is the O(A) piece of the gluon’s field strength, one obtains
[ akispwrwl = [ 45 [ stk w @)
(277,')4 124 ab - (2”)4 ( )2 177 K=&t Fab .

To extract the twist-3 contribution, we apply the collinear expansion to the rhs of (27). Writing k - w = 1/z, the contribution
up to twist-3 from (27) can be obtained as

a d*k o ot
Wi = [ s

(21)°*
1 . S, (k .
- [a(Deaer[suairo+ el ). (28)
z ok" i Pu/z
where S,,(z) = S¢(P,,/z)6* and
fr(z) = A& iz (01 FO™ (0) ) (hX | FO* ()0 29
(@) =y 0 [ 5. VHOED ™ O)1RX) (X FS () 0), (29)
KT} 1 di —i ™w . Kw
mm—mZ/ 5 € OIF™ (0)|AX) (hX| (=)0 F™ (4)]0). (30)
X

Equations (29) and (30) are, respectively, identified as the O(¢°) parts of (3) and (4), and (28) represents the lowest-order
contribution to the first and second terms in (2).
Next, we proceed to analyze WE,b). Using (22) in (16), we have

fabc

(k- w) St (ke )+ QR S, (k. ) = <3S (K) + G (K = k. I), (31)
from which we obtain
abc / 1 H1.p Qabe / lfabc / cha (1) /
SLP/,M(k’k) = k-w -k SLlul//l(k’k) N2 Siu(k) G/lv (k - k’k) . (32)

Likewise, from (22) and (17), we have
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52755,, J(kK) = i ng’TS‘L’Z;'A(k, K. (33)

As in (25), Eq. (32) and (33) can be used to rewrite integrand of Wéb) as

abc FuvA abc v ATKTO
SLﬁpﬂ(k’ k,>F’2abc(k’ k/) = SLZy/l(k’ k/)%grgﬁr‘Labc (k’ k/)
=S¢, (k, k) (Phwie + Q) (Phw, + Q) (Phw, + QO (k. k)
1 1

T kowk - Wsiﬁiz(k, k’)Q’éQf;(—k“wK + k- wg?)(=kPw, + K - ngj)

(KTo 1 lf abe cha wio
X (P,}{Lwo + Q:lf) Lahc(k’ k/) + m <ﬁ SGT(k/) + Gagrj (k/ —k, k/)) Labc(k’ k/) (34)

Similarly to (26), we have
(ke + k- wgd) (=KPw, + K - wge )i (k. )
=D / d'¢ / d*ne= ke~ K =R (0| F{OP (0)|nX) (hX | F™ (£) gAZ (1)]0)
X
= [ rane (k. K). (35)
Using this equation, Eq. (34) can be rewritten as

1 1

g0 (ko RVDY ( K) = S30 (ke K ) e QU (P (K ) + QAT (. )
1 ﬂs (k') 4 Geba (k' =k, k) ) T79 (k. k). (36)
k-w N2 -1 oT ot abc

Since (36) is integrated over k and k' in (10), one can change the integration variable as k — k' — k in the last term of (36)
containing the ghostlike term. Furthermore, because of %9 (k' — k, k') = I'9™ (k, k'), one can change this term as

1 wio !
_ Gg?a (k/ —k, kl)FLabc (k’ kl) - m

T Gebe (ke KFE (, K) =

m anb'c(kv k,)f‘z%c(k’ k/) (37)

Using this form for the last term in (36) and applying the collinear expansion to the first term in (36) up to twist 3, one
obtains

R . 11 asabe, (i, K S, (K K)| ) rarp
st (kP (k0 = cand s, (11 + o Blin BB g Shir WO Agen 1)
<z ok cl. ok cl.
+ /Qﬂgvgﬂsuhc 1 l f*aﬂff (k k/)
2T 3canagaceO ) 207 ) LFAabe\™
47z ifabc S (k/)"wnr (k k/)_|_ Gabc(k k/)f*m’w (k k/) (38)
N2_1"° Labc\"*» 1/2/—1/Z ot ’ Labc\™> ’

where we have set k- w :% and k' -w = % The first term of (38) can be further rewritten by the Ward-Takahashi
identity (15). The collinear limit of (15) gives

11 1 —jfabe 11
Sabc -] = S '/ Gabc S . 39
LuvP), (Z ZI) l/ZI _ l/Z {Nz -1 /41/(2 ) + uv (Z Z/) } ( )

Similarly from the collinear limit of the first derivatives of (15) with respect to k and k', one obtains
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aSgbe, (kK| 1 we (11 +ac;gfc(k, K) (40)
ok’ . U =1z T\ ok |

oSihep, (kK| 1 we (11 0Gabe (k, k') _if 08, (K) (1)
ok w1/ =1/z | T\ okt |, N -1 ok* | J

In the last term in the rhs of (38), using the relation (21) and following a similar procedure as (34) and (35), one can rewrite
Gt (k. KT (k) = 22/ Ggbe (k, K ) QG (K, K). (42)

Using this form, one sees the collinear expansion of the last term in (38) yields the identical terms as the ghostlike terms in
(39), (40), and (41). This way, one obtains the ghostlike terms (i.e., terms containing Gﬁfc) in (38) as

abc FuvA ghost Uy 77 abe 11
8¢5 RODY (kP = 200 1 /Z{G <,Z,

9GaL< (k, k')
ok*

o G (K K)
ak//l

cl.

+Q <k7

D htaen. @)

Using the actual forms of the ghostlike terms given in Appendix A of Ref. [1], we will show in the Appendix that (43) does
not contribute to the LO twist-3 cross section. Hence, we will discard (43) below.
Remaining terms in (38) can be written as

. 1 Z/ _ifabc
Sabe (ke KNP (K, K)]™53 = QLo ooy (kK
[ Lﬂvﬂ( ) Lahc( )] /}1/Z+l€1/z _1/Z+l€ N2_1 /4 ( ) LFAIlh(,( )
1 v 1 1
QﬁQ"Q’l Sabc
* P 1)z +iel)7 — 1)z +ie L"”(z z)

afw 1 1 ]
s =T ) 4 (5= )}

1 7 ifabeN 98, (K
QﬁQVQ’I k7 Hv
+ P 1)z +iel)7 — 1)z +ie (N2—1 ok

” }
cl.

<
(=K%, + K - wg?) (=kPw, + K - wdﬁ)f‘f%c(/{, k), (44)

z@yﬁwbc(k k/)

cl.
35, (K)
ak//l

+ QL0 {SD( ")+ QKT

P1)z + ie
: rabc

X lf
N> -1

where the third term in (38) was rewritten as the last term by using (14) and subsequent collinear expansion of S, (k). We
have introduced ie in the denominators, which gives rise to the future pointing gauge links. Integration of (44) over k and &’
proceeds as follows. We first write for the last term of (44)

(=KW, + K - wg) (—KPw. + K wgd TV (K, k)
/d4§/d4ne—lk§e—l(k —k)n Z<O|F Wﬂ( 0)|hX)
X

x (hX|g(0" AL (£)A%(n) — g(9"AL(£))AY (n) + gAL (E)F" () + gF " (£)AY ()[0)
= VAN ) (45)

Then, the contribution from the first term in {} of the last term of (44) reads
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d'k [ d*K i pap
| Gate 1s,w<z'>n@aa,w<k, 3

n)*) Qr)* P 1)z +ieN? -
fabc

—/ < > < >Q”Q” 12 ' / / oMz g=ip(1/7~1/z)

XZ 01 F3"P(0)[AX) (hX|gA% (Aw) A% (uw) — gAZ(Aw)AY (uw)|0)

1 1 Z/2 lfabc
dal = d Qﬁgy e~ Mz p=in (1/7-1/z2)
“faz)/ <> e 5 o
x 3 (01F"(0)[1X) (hX| g (Gw) FEO™ (uw) + gF & (2w) A% (uw) [0). (46)
X

where, in the first term, we have performed integration by parts for 4 integration, which kills the factor ———. Integration

1/z+ie +
over 1/z of this equation can be done immediately. The second term in {} of the last term of (44) can be integrated

parallelly. Following this procedure, ng) is obtained by the integral of (44) as

(b) 1 d4k / d4k/ b I\ TUVA 7\ 1twist—3
Wo' == | —= [ —= 597, (k, K')I” k, k
g 2/(271_)4 (27[) [ L;wi( ) Labc( )]
e 1 abc 12 / 1 di —il)7 (O)wp w a
= —QuQ [ d{ )18 x g D [ 5, OIF " (0)1hX) (hX |9 (aw) A2 ()| 0)
X
H O 1 abc 12 / 1 di —il/Z (O)wp (O)wa 4 w
+ €00 [ d g LA SMD(Z)WZ 7, ¢ OIF T (O)|AX) (hX|gFa ™ (Aw) | - duA (uw)|0)
X

) N o0 08,01 i o o
wononr [ a5 )eripn i) LS [ e 0 0)h) (X1 Ay ) ) 0
cl.

1 08, (K) di _ »
_ngggﬁ/d<z> 2jfabe ak/ﬂ —12/ /2 (0|F" (0) |hX)

A
x <hX‘ / dp{ (0 F™ (w) gAY (uw) + Fi" (aw) gor A2 (uw) }0)

i o (1] /7 /1 27 11 11
— - QL1 / d( = / d( =) " Sgbe o : 47
2 pr . <Z/> 0 z I/Z/ _ I/Z Luva 77 LFabc Z Z/ ( )

where
Q 11 dA d/'l —i —i I 0)w, 0)wa 0)w
(i (53) = 3 [ 55 [ Ser e s O 0P ) ). (39

The first four terms in (47) come from the combination of the first, third, and the last terms in (44), while the last term in (47)
is from the second term of (44). l“iﬁF”abL(1 1) can be identified as the lowest-order part of the dynamical FF (5).
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Calculation of WEJC) can be performed in the same way. The result reads

o 1 [ &k [ d¥ " .
W<g) :2/( ) (2 ) [S%Zi//l(k7k/)rl;?abc(k’k/)]t S

_Q';Q;/ < >fabc 28, (2)

Z/d/l e=%2(0]AY (0)gAZ(0)|hX) (hX|F{" (2w)|0)

e 2/ ()f 25003 P2 [ See 01 [ duaron ™ 0)x) (xlgF ™ () o)
k i _. wa
-y [ ()i akg = ﬁe"‘/%ow(omé(m|hx><hX|arF£P> ([0}

e Y abc
()

i o (] 1z (1 7
— ot [ df- / df =) 5 gue
2 ' 7[ <Z> o Z/ ]/ZI—I/Z Ruva

where

~afy
l—‘RFabc ( )

We can now compare the sum of Wg (47) and Wg (49)
with (2). We first remember that the gluon s field strength is
FZD — ()”AU auAll + gfahcAMAzz _ ( fuhLAﬂAy
The first terms of (47) and (49) are the O( ) contribution to
(2) from the O(A?) term of the field strength in the intrinsic
FF (3). The second terms of (47) and (49) are the O(g)
contribution to (2) from the gauge links in the intrinsic FF.
The third terms of (47) and (49) are the O(g) contribution to
(2) from the O(A?) term of the field strength in the
kinematical FF (4). The fourth terms of (47) and (49)
are the O(g) contribution to (2) from the gauge links in the
kinematical FF. To identify the fifth terms of (47) and (49),
we note the following relations:

o (11N e (11
FRﬁIZabc (Z Z/) Iﬁ[L}Igb(u <Z Z) ’ (51)
11 11
abc bac
SR(I[i;/ (E ’ ?) SL/}(Z;/ (Z Z) . (52)

From these relations, the sum of the last terms in (47)
and (49) is the O(g) contribution to (2) from the dynamical
FF (5). This way, the basic formula (2) has been proved in
the leading order with respect to the QCD coupling
constant.

The method used here for the twist-3 gluon FF contri-
bution to pp — ATX can also be applied to the twist-3
gluon distribution function contribution to the double-spin
asymmetry in pp' — DX, which occurs as a nonpole
contribution [12]. Our method provides a clearer

dj
1N2—1Z/ e OI/ dugAy (uw)F
C.

11 11
| e 49
(25t (33) ()

"7 (0)|nx) (hX|o" F™ (2w)[0)

/ / e~ it2g= (/=112 (0| F\ (0) gF L™ (yow) | nX) (hX|FO™(Aw)[0).  (50)

understanding for the absence of the ghostlike terms in
the corresponding LO twist-3 cross section.

IV. SUMMARY

In this paper, we presented a new derivation of the basic
formula (2) for the twist-3 gluon FF contribution to
pp — ATX. Our method uses the Ward-Takahashi iden-
tities for the partonic hard parts from the outset before
performing the collinear expansion. This method provides a
robust shortcut to convert the correlation functions of the
gauge (gluon) fields into the gauge-invariant correlation
functions for the gluon’s field strengths. Furthermore, it
provides a clear understanding that the ghostlike terms
appearing in the Ward-Takahashi identities do not contrib-
ute to the LO twist-3 cross section. Since this method is
quite general, it will become a useful tool to extend the
formula in the next-to-leading-order calculation.
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APPENDIX: ABSENCE OF THE GHOSTLIKE
CONTRIBUTION AT LO TWIST 3

Here, we show that the ghostlike term (43) does not
contribute to the twist-3 cross section. Actual forms of
G4be (k, k') are given in Eq. (A7) for the g — gg channel,
Eq. (A9) for the g9 — gq channel, and Egs. (A10)—(A14)

|

fabc Z/

abc FUVA host " ~
[SLZM(k7 k/)l—"ll‘abc(k’ k/)]g = ZQIUICQ/)’ m {_kﬂGPhy <

i (g 2l R)
z v ok*

From this form, one sees that all terms in {- - -} except for the first one contribute only at twist 4: QﬁPhﬂ extracts “a = —

apw

A
+ QK7

cl.

for the gg — gg channel in Ref. [1]. In all channels, they
take the structure

Gbe(k, k') = (K2g,, — k.k,) [P Gl(k. k'), (Al)
where G, (k, k') is some function of k and k' (and xp and
x'p’). Inserting this form into (43), one obtains

11 . (11 . (11
Z,Z,> +2P, - kG, <Z,Z,> - Qik'P,, G, (Z,Z,>

aGPhu(k’ k/)
ak/i

~afw
), (A2)

2

component from "% wape (k. k'), which is subleading, and Q!k” and P, - k, respectively, cause additional one- and two-
power suppressions. For the first term which contributes at twist 3, we obtain from (35)

Qlik, T ok K) =D / & / d*pe=kee= 1K=k (0| FIO" (0)|nX) (hX|(~i)
X

Here, we note that the QCD equation of motion D, F® + gyt®dw = 0 implies 0,F

0
a g(l

FO™ (£)gA%(1)]0).

(A3)

(0>aw(§) is of O(g), and hence the first

term in {-- -} of (A2) becomes O(¢®). Consistent treatment of this term requires the inclusion of all O(¢®) diagrams, which
is beyond the scope of this work. We thus conclude that it does not contribute to the LO cross section. This proves that (43)

does not contribute to the LO twist-3 cross section.
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