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We evaluate the contributions of ðπ0π0; π0η; ηηÞγ exclusive channels to the leading order hadronic
vacuum polarization (HVP) of the muon anomalous magnetic moment. These final states can be viewed as

decay subchannels in previous evaluations of the π0ω; ηω, and ηϕ contributions to ahad;LOμ , where the vector
resonances (decaying into π0=ηþ γ) are assumed to be on-shell. Since the separation of resonance and
background contributions in a given observable is, in general, a model-dependent procedure, here we use
pseudoscalar mesons and the photon as the in and out states of the eþe− → ðπ0π0; π0η; ηηÞγ S-matrix, such
that the cross section contains the interferences among different contributions to the amplitudes. We find

ahad;LOμ ðP0
1P

0
2γÞ ¼ ð1.17� 0.13Þ × 10−10, where uncertainties stem mainly from vector meson dominance

model parameters. Improved experimental studies of these exclusive channels in the whole range below
2 GeV would reduce model-dependency.

DOI: 10.1103/PhysRevD.106.073009

I. INTRODUCTION

During the last two decades, the most accurate mea-
surements of the muon anomalous magnetic moment aμ
[1,2] have defied an explanation within the standard model
(SM) framework. The reference value of aμ in the SM
prediction [3] lies 4.2σ below the average value of
experimental results Δaμ¼aexpμ −aSMμ ¼25.1ð5.9Þ×10−10

[1–3], where theoretical and experimental uncertainties, 4.3
and 4.1 × 10−10 respectively, contribute with similar
amounts [4–24]. The uncertainty in the theoretical value
is dominated by input data used to evaluate the Oðα2Þ
hadronic vacuum polarization (HVP) and also from eval-
uations of Oðα3Þ hadronic light-by-light (H-LbL) contri-
butions. The experimental value includes the recent
measurement of the Muon g − 2 experiment [2], which is
in good agreement with previous results from the BNL 821
collaboration [1]. Forthcoming experimental results from
next runs at Fermilab as well as J-PARC [25] and PSI [26]
will increase the accuracy reducing the current error by up
to a factor of three [3].

The recent measurement of aμ at Fermilab [2] arrived
simultaneously with a new determination of the hadronic
contributions based on lattice QCD [27]. This calculation
claims to have reached an accuracy similar to the one of
the reference value in the SM (dispersive calculation of the
HVP contributions), but it is closer to the experimental
valueΔaμ ¼ aexpμ − aSM;LQCD

μ ¼ 10.7ð6.9Þ × 10−10. Lattice
calculations are performed using QCD’s fundamental
degrees of freedom to evaluate the HVP contributions;
the dispersive evaluations are built up from the sum of cross
sections over exclusive hadronic channels to saturate the
HVP in the nonperturbative low energy regime. While
dispersive calculations of the HVP contributions using
the same input data seem to largely agree among them
[3–10,23,24], new independent and more precise lattice
evaluations may confirm or discard the results of Ref. [27].
If more precise evaluations confirm the difference

between lattice and dispersive ahad;LOμ results, currently at
the 2.1σ level, this will become another interesting anomaly
to focus attention on theoretical predictions of aμ. One
possible explanation for closing the gap may be that some
missing or poorly measured low-mass hadronic channels
in electron-positron collisions contribute to increasing the
value of the dispersive integral of the HVP. In this paper we
study the contributions of the P0

1P
0
2γ processes (P1;2 ¼ π or

η mesons) to the leading HVP contributions of the muon
g − 2 in the SM. These contributions are dominated by
a rich structure of resonances with masses below 2 GeV.
Actually, some of these resonance contributions like
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ωπ0;ϕη and ωη (with the subsequent radiative decay of
vector mesons) have been included in dispersive evalua-
tions of the leading order HVP [8,9], using measurements
of the eþe− → V0P0 cross sections (VðPÞ will refer here-
after to vector and pseudoscalar mesons). Other exclusive
channels involving ω=ϕ resonances as final states have also
been reported in dispersive evaluations of the aLO;hadμ [8,9].
Some of the eþe− → P0

1P
0
2γ channels have been studied

before at lower energies, both from theory and experiment.
Ref. [28] has used a dispersive approach to the π0π0γ
production and compared their results to measurements
of the SND [29] and CMD-2 [30] collaborations.
Reference [31] has studied the ðπ0π0; π0ηÞγ production
close to the ϕð1020Þ resonance including the effects
of scalar f0ð980Þ and a0ð980Þ mesons in the hadronic
system. The corresponding measurements of the
ϕð1020Þ → π0ηγ decays by the KLOE collaboration were
reported in [32,33]. These results from the KLOE experi-
ment were also studied within the approach provided in
Refs [34,35] where the γ� → ðπη; KK̄Þγ amplitudes satisfy
the two-channel unitarity. The effects of scalar resonances
in P0

1P
0
2γ decays of light vector mesons also have been

studied in Refs. [36–38]. In the vector meson model
described in the present paper, we focus on the produc-
tion of these neutral channels in the first and second
excited resonances region, where the contribution to the
HVP muon magnetic moment is larger than at lower
energies.
Strictly speaking, according to the properties of the

S-matrix, the amplitudes involving resonances as incoming/
outgoing states are not physical observables [39,40]: only
asymptotic physical states n (not resonances) must be
included as intermediate states when saturating the unitarity
relation:

2ImhαjTjαi ¼
X
n

jhnjTjαij2 ð1Þ

that stems from the S-matrix operator, with S ¼ 1þ iT and
SS† ¼ 11. This unitarity relation is at the base of the
dispersive representation of ahad;LOμ and the hadronic cross
sections of eþe− annihilations [41–43]. Therefore, from a
theoretical point of view it is not fully consistent to use
resonances as physical final states in hadronic eþe− cross
sections, even though it can be a good approximation,
particularly for very narrow resonances (see for instance
Ref. [44]). This is the main motivation behind the present
analysis on P0

1P
0
2γ exclusive channels contributions

to ahad;LOμ .1

The production cross section of P0
1P

0
2γ states are of the

same order in the fine structure constant α as P0γ states,
with the latter being included in evaluations of the HVP
contribution (ahad;LOμ ðπ0γ þ ηγÞ ≃ 5 × 10−10 [8,9]). Note
that the corresponding nonradiative eþe− → P0

1P
0
2 chan-

nels are not allowed final states, at least at leading order;
therefore, P0

1P
0
2γ do not correspond to their photon inclu-

sive processes. One may think that, given the low threshold
for the π0π0γ its contributions below the 1 GeV region may
be enhanced due to the low energy behavior of the QED
kernel in the dispersion integral for ahad;LOμ ; however, as it
will be shown, the cross sections for P0

1P
0
2γ production is

peaked above 1 GeV, leading to suppressed contributions.
This property follows from the particular Lorentz structure
entering the γ� → P0

1P
0
2γ vertex which leads to eþe− cross

sections peaked at center of mass energies above 1.4 GeV.
Thus, when those cross sections are inserted into the
dispersion integral to evaluate ahad;LOμ , the kernel suppres-
sion above 1 GeV can be partially compensated by the
enhanced cross sections due to heavier resonances.
Previous calculations of eþe− → π0π0γ; π0ηγ cross sec-

tions in the region close to the ϕð1020Þ meson have been
provided in Refs. [31,35,45,46]. The corresponding cross
section measurements were reported in [32,33,47], focus-
ing mainly on the hadron mass distribution in ϕ → P1P2γ
decays. Measurements of the eþe− → π0ηγ cross section
in the

ffiffiffi
s

p ¼ 1.05–2.0 GeV region have been reported
by the SND collaboration [48]. More recently, the first
measurements of the ηηγ production cross section were
reported in [49].
In the absence of experimental data (except for the

π0ωð→ π0γÞ channel [50,51]) in the full range below
2.0 GeV, we base our estimate on a vector meson
dominance (VMD) model. This model captures the main
features of the dynamics of such processes at energies
around the resonance regions, and it can be validated with
available data as is the case with the measured cross section
for eþe− → π0π0γ [51]. Our purpose here is to describe the
cross section in the region of the excited vector meson
resonances, where an enhancement of the cross section can
give a larger contribution to ahad;LOμ from P0

1P
0
2γ states. A

more sophisticated treatment of the γ� → P0
1P

0
2γ vertex can

be done in the framework of resonance chiral theory by
including the one- (VPγ) and two-resonances (VV 0Pγ)
contributions. Although this analysis is possible, it involves
a larger set of free parameters associated with the coupling
of excited resonances. We do not consider this and other
approaches in the present work. As previously mentioned,
the description of ðπ0π0; π0ηÞγ production cross sections
below 1 GeV, was studied in Refs. [28,34,35] using
unitarity, analyticity, and low-energy constraints for the
amplitudes. Here, we validate our VMD model by compar-
ing it with some related measurements below 1 GeV.

1Given their large lifetimes compared to hadrons that undergo
dominant strong decays, π0=η mesons can be considered asymp-
totic states.
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We organize our paper as follows: after this introduction,
we describe in Sec. II the general amplitude and relevant
kinematics for the eþe− → P0

1P
0
2γ collisions and introduce

some useful notations. In Sec. III we derive the form factors
for the vector-vector contributions to the hadronic vertex.
Section III B considers the vector-scalar contributions in
the special case of the γ� → π0ηγ vertex. In Sec. IV we use
available data on the eþe− → π0ωð→ π0γÞ cross section
to fit some of the parameters of the model and describe
how the remaining parameters can be estimated from other
data; we also provide our results for the cross sections of
different channels. We use the calculated cross sections
to compute the dispersive integral and get results for
ahad;LOμ ðP0

1P
0
2γÞ in Sec. V. Finally, we give our conclusions

in Sec. VI and include two relevant appendices.

II. AMPLITUDE AND KINEMATICS

In S-matrix theory, the quantum amplitudes describe
transitions between incoming and outgoing stable states
[39]. These initial and final states contain particles that
must be described by asymptotic states, i.e., free particle
states that can be defined at times long enough before and
after the interaction point. According to this tenet of
quantum scattering theory, resonances are not asymptotic
states; instead, they are described by propagators of
unstable particles and appear as poles of the amplitudes
in the complex plane of unphysical sheets (see, for instance,
the section on resonances in Ref. [22]. Physical states also
form a complete set fjnig which satisfy the unitarity
condition

P
n jnihnj ¼ 1. The unitarity of the S-matrix

operator (S ¼ 1þ iT, where T is the transition operator)
implies Eq. (1).
Similarly, the use of unitarity in the form of the optical

theorem, which allows to relate the HVP of aμ to the cross
section for hadron production in electron-positron annihi-
lation via a dispersion relation [41–43], requires that only
asymptotic states are included in the final states of eþe−
annihilations. Experiments have revealed that multihadron
production processes are dominated by intermediate reso-
nances which interfere in the squared amplitude. Owing to
interference effects, we cannot isolate the observables
associated with the production of a given resonance,
although it can be a good approximation if the full
transition probability is dominated by the production of
that resonance [40,44]. One such example is precisely
eþe− → π0π0γ, where the intermediate state ω → π0γ
dominates the cross section.
In this paper, we study how the cross sections behave

when one considers the full eþe− → P0
1P

0
2γ processes

including all resonances and their interference and we
compare our results with the particular case where a single
resonance contribution is assumed to dominate the cross
section. Our purpose is to reevaluate the HVP contribution
to aμ by avoiding the use of resonances as final states.

For definiteness, we introduce the notation
eþðp1Þe−ðp2Þ → P0

1ðq1ÞP0
2ðq2Þγðq3; ϵ�Þ, with p2

1 ¼ p2
2 ¼

m2; q21 ¼ m2
1; q

2
2 ¼ m2

2; q
2
3 ¼ 0 the masses of particles. The

square of the center of mass energy is s¼q2¼ðp1þp2Þ2,
such that smin ¼ ðm1 þm2Þ2 ≫ 4m2. The final state can
be characterized by three Mandelstam-like variables q02 ¼
ðq2 þ q3Þ2, q002 ¼ ðq1 þ q3Þ2 and u ¼ ðq1 þ q2Þ2, which
satisfy the conditions q02 þ q002 þ u ¼ q2 þm2

1 þm2
2 and

q¼ q1 þ q2 þ q3 ¼ q0 þ q00 − q3 for the energy-momentum
conservation.
At the lowest order in α, the Feynman diagram for this

process is depicted in Fig. 1. The production amplitude can
be presented in the following factorized form:

Mðeþe− → P0
1P

0
2γÞ ¼ −ie

lμ

q2
Hμ; ð2Þ

where lμ ¼ v̄ðp2Þγμuðp1Þ is the leptonic current andHμ ¼
Hμσϵ

�σ ¼ hP0
1P

0
2γjjemμ j0i is the hadronic effective current

and ϵ� the photon polarization four-vector.
The most general form of the hadronic tensor Hμσ,

which satisfies the gauge invariance conditions qμHμσ ¼
Hμσqσ3 ¼ 0 was given in Eqs. (4)–(7) of Ref. [28]. There, a
clever set of independent momenta ðq; q3;Δ≡ q1 − q2Þ,
was used to describe Hμσ . Here, we use the redundant set
ðq; q0; q00; q3Þ because they are the “natural” momenta that
appear in our calculations (see below) to parametrize the
hadronic vertex. In this case, we have

Hμσ ¼Aðq ·q3gμσ−q3μqσÞþB½q ·q0ðq0 ·q3gμσ−q3μq0σÞ
−ðq0 ·q3qσ−q ·q3q0σÞq0μ�þC½q ·q00ðq00 ·q3gμσ−q3μq00σÞ
−ðq00 ·q3qσ−q ·q3q00σÞq00μ�: ð3Þ

Of course, only three momenta are independent owing to
the energy-momentum conservation q ¼ q0 þ q00 − q3. It
can be shown that replacing q0 → ðqþ q3 − ΔÞ=2 and
q00 → ðqþ q3 þ ΔÞ=2 into Eq. (3) above, we get for Hμσ

the same expression as the one given in Eqs. (4)–(7) of
Ref. [28]. The form factors A, B, C depend upon the
independent Lorentz invariants ðq2; q02; q002Þ and contain
the effects of the strong interactions in the relevant
kinematical domain.

FIG. 1. Feynman diagram for eþe− → P0
1P

0
2γ, where P

0
1;2 ¼ π0

or η. The bubble represents the effects of strong interactions.
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The squared amplitude depends upon four independent
kinematical invariants in addition to q2, which is fixed from
the total collision energy. Since the P0

1P
0
2γ final states are

produced from the s-channel one-photon annihilation of
eþe−, the cross section can be written in the following
simple form (see for example [52])

σðeþe− → P0
1P

0
2γÞ ¼

Z ð
ffiffiffiffi
q2

p
−m1Þ2

m2
2

dq02
Z

q002þ

q002−
dq002

d2σ
dq02dq002

;

ð4Þ

where q002� ¼ ðE⋆
1 þE⋆

3Þ2− ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E⋆2
1 −m2

1

p ∓E⋆
3Þ2, with E⋆

1 ¼
ðq2 − q02 −m2

1Þ=ð2
ffiffiffiffiffiffi
q02

p
Þ and E⋆

3 ¼ ðq02 −m2
2Þ=ð2

ffiffiffiffiffiffi
q02

p
Þ.

The differential cross section in the integrand of Eq. (4) is
given by

d2σ
dq02dq002

¼ α

48ð2πÞ2q6 jHμσH�μσj: ð5Þ

In the following section we consider the VMD model for
the hadronic current.

III. FORM FACTORS WITHIN THE VMD MODEL

In the region
ffiffiffiffiffi
q2

p
≤ 2 GeV, the γ�ðqÞ →

P0
1ðq1ÞP0

2ðq2Þγðq3Þ vertex is dominated by the production
and decay of lowest-lying and excited intermediate reso-
nances. We will denote with VðV 0Þ the intermediate vector
resonances as shown in Fig. 2(a); within the VMD model,
the coupling of the virtual photon to the P0

1P
0
2γ is

dominated by the V vector meson (V ¼ ρ;ω;ϕ and their
radial excitations). The final state is assumed to be
dominated by either, the P0

i V
0 (i ¼ 1; 2; V 0 ¼ ρ;ω;ϕ) or

the Sγ intermediate states, with the subsequent radiative V0

decay or the strong S → P0
1P

0
2 decay of the scalar meson

[see Fig. 2(b)]. Accordingly, we can decompose the
hadronic tensor into two components Hμσ ¼ HV

μσ þHS
μσ ,

where the superscripts V and S refer to the contributions of
diagrams (a) and (b) in Fig. 2, respectively.

A. Vector-vector contributions

The contributions to diagrams with two vector resonan-
ces in the VMD model are shown in Fig. 2(a). We need in
this case to consider the VðV 0ÞPγ and VV 0P interaction
Lagrangians. The phenomenological Lagrangian density
required to describe the VPγ vertices is given by [53]

LVPγ ¼ gϵμναβ∂μAνTr½Qð∂αVβPþ P∂αVβÞ�: ð6Þ

In this Lagrangian g is a generic coupling, Aμ is the photon
field, PðVβÞ is the 3 × 3 matrix of light pseudoscalar
(vector) mesons, and Q ¼ diagð2=3;−1=3;−1=3Þ is the
matrix of light quark charges.
Also, one can include isospin and SU(3) breaking

effects and try to extract, for lowest-lying mesons, the
relevant parameters from a global fit to the available data on
radiative meson decays, as done for example in Refs. [54]
with effective couplings gVPγ (which is related to g defined
in (6) for each specific channel [53,54]). The couplings
gVPγ can be extracted from the measured rates of radiative
meson decays [53,54]

ΓðV → PγÞ ¼ 1

3
ΓðP → VγÞ ¼ 1

12π
g2VPγj Pγ

�!j3; ð7Þ

where gVPγ is the coupling for the specific VPγ vertex and

P⃗γ the photon three-momentum in the decaying particle’s
rest frame in each specific decay. The values extracted from
the radiative decays of light vector mesons are displayed in
the lower part of Table I.
In addition, we need information on the VV 0P couplings

of the radially excited vector mesons V (here V 0 is a light
vector meson) and its couplings to photons that enter the
γ� → V → V 0P vertex. Individual measurements of the
strong or lepton-pair decays of excited vector mesons
needed to determine such couplings are not reported by
the PDG [22]. However, some (model-dependent) analysis
of experimental data, mainly from the SND [48,51,55,57],
CMD-3 [56], BABAR [58], and BESIII [59] collaborations,
allow to extract the ratio of relevant constants gVV 0P=γV ,

(a) (b)

FIG. 2. Feynman diagrams describing the γ� → P0
1P

0
2γ vertex in a meson dominance model. Here V (and V 0) are intermediate vector

meson resonances and S is a scalar meson. Diagrams with exchanged mesons in the final states for diagram (a) must be added to account
for Bose statistics (P0

1 ¼ P0
2) or allowed exchange contributions (P0

1 ≠ P0
2).
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where V represents an excited vector meson and em2
V=γV

its coupling to virtual photons. This product of coupling
constants can be extracted from measurements of the cross
section at the peak of these V resonances which determines
the product of their decay rates into V 0P and lepton pairs
[22] through the expression

σpeakðeþe− → V 0PÞ ¼ 12π

m2
V
·
ΓðV → eþe−ÞΓðV → V 0PÞ

Γ2
V

;

ð8Þ

where mVðΓVÞ is the mass (width) of the intermediate
s-channel resonances and ΓðV → XÞ their partial decay
widths into the X channel. The values of the XVV 0P ≡
gVV 0P=γV ratios extracted from Eqs. (8) and (20) are given
in the upper part of Table I.
With the above ingredients, we can build the amplitude

for VV 0 contributions of Fig. 2(a). The hadronic tensor
corresponding to the specific configuration shown in that
figure reads:

HV
μσ ¼ FP1P2γðu; q02; q002; q2Þεανμβεαλσωq0νqβq0λqω3

¼ FP1P2γðu; q02; q002; q2Þ × fq02½ðq · q3Þgμσ − qμ3q
σ�

− ðq · q0Þ½ðq0 · q3Þgμσ − qμ3q
0σ� þ ðq0 · q3Þq0μqσ

− ðq · q3Þq0μq0σg þ ðq1 ↔ q2Þ: ð9Þ

Note that, the last term in Eq. (9) symmetrizes the amplitude
for identical mesons in the final state (π0π0; ηη), and

considers the case with exchanged π0 ↔ η in the πη channel.
In the case of identical mesons a 1=2! factor must be
included in the phase space factor. In the above expression,
the form factor FP1P2γðu; q02; q002; q2Þ contains information
on the production and decay of intermediate resonance
states. As expected, the hadronic tensor for vector contri-
butions has the structure derived in Eq. (3).
The squared amplitude for vector-vector contributions

will be enhanced at higher c.m.s. energies owing to the
Lorentz structure involving quartic momentum dependence
of the hadronic vertex [see Eq. (9)]; in addition, this
enhancement is further favored by the effects of radially
excited s-channel resonances produced. Owing to this
behavior we will include the light and first/second radially
excited V resonances in the s-channel, but we keep only the
contributions of the lightest vector V 0 resonances decaying
into ðP0

2; P
0
1Þγ final states. Accordingly, we write the form

factors for the three processes under consideration as
follows (the variables q02; q002; u, and q2 in the argument
of the form factors are omitted):

Fπ0π0γ ¼ Fπ0π0γ
ρ þ Fπ0π0γ

ω þ Fπ0π0γ
ϕ ; ð10Þ

Fπ0ηγ ¼ Fπ0ηγ
ρ þ Fπ0ηγ

ω þ Fπ0ηγ
ϕ ; ð11Þ

Fηηγ ¼ Fηηγ
ρ þ Fηηγ

ω þ Fηηγ
ϕ : ð12Þ

The subindices on the right-hand side refer to the light vector
resonances V 0 decaying into ðP0

2; P
0
1Þγ. An analogous

TABLE I. Values of model-dependent coupling constants. Entries in the upper part refer to the values extracted
from the peak cross sections of eþe− → V → V 0P as explained in the text using Eqs. (8), (20). Values of the middle
part are extracted using the VMD expressions for V → Pγ and gVPγ couplings (lower part of table) from Ref. [54].

Parameter Transition Value Reference

gVV 0P=γV ½GeV−1�

ρð1450Þ → ωπ0 0.5351� 0.0709 SND 2016 [51]
ρð1700Þ → ωπ0 0.0425� 0.0207 SND 2016 [51]
ωð1420Þ → ρπ0 0.6808� 0.1564 SND 2015 [55]
ωð1650Þ → ρπ0 0.2329� 0.0286 SND 2015 [55]
ωð1420Þ → ωη 0.1984� 0.1237 SND 2020 [48]
ωð1650Þ → ωη 0.0735� 0.0120 SND 2020 [48]
ρð1450Þ → ρη 0.5177� 0.0430 CMD-3 2020 [56]
ρð1700Þ → ρη 0.0048� 0.0013 CMD-3 2020 [56]
ϕð1680Þ → ϕη 0.2875� 0.0818 SND 2019 [57]
ϕð2170Þ → ϕη 0.0048� 0.0074 BABAR 2007 [58]
ϕð2170Þ → ωη 0.0027� 0.0006 BESIII 2020 [59]

gVVP=γV [GeV−1]
ρ → ρη 1.5181� 0.0234
ϕ → ϕη 0.6912� 0.0152
ω → ωη 0.4580� 0.0287

gVPγ ½GeV−1�

ρ → π0γ 0.2441� 0.0071 [54]
ρ → ηγ 0.4597� 0.0174 [54]
ω → π0γ 0.6935� 0.0104 [54]
ω → ηγ 0.1387� 0.0087 [54]
ϕ → π0γ 0.0410� 0.0037 [54]
ϕ → ηγ 0.2093� 0.0046 [54]
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expressiontoEq. (11),namelyFηπ0γ,mustbetakenintoaccount
for the exchange π0 ↔ η in the final state. The explicit
expressions for each contribution are given in Appendix.

B. Vector-scalar contributions

In addition to VV 0 contributions discussed in the
previous section, scalar resonances can contribute to
eþe− → P0

1P
0
2γ as shown in Fig. 2(b). Among the different

final states studied in this paper, only the a0ð980Þ → π0η
(and possibly its “excited” scalar state) and the f0ð980Þ →
π0π0 can contribute sizably [32,33,35,47,48].
The hadronic tensor in this case has a simpler form:

HS
μσ ¼ ieSP1P2γðq02; q002; u; q2Þðq · q3gμσ − q3μqσÞ: ð13Þ

This Lorentz structure agrees with the general parametri-
zation given in Eq. (3).
According to Fig. 2(b), we need information about

the VSγ and Sηπ interaction couplings. The vertex VSγ
responsible for the scalar resonance production is described
by the Lagrangian L¼ðegVSγ=2ÞFμνVμνϕS, where ðV; FÞμν
are the field strength tensors of the vector-meson and
photon, respectively, while ϕS denotes the field of the scalar
meson. The Feynman rule describing the SP1P2 vertex is
given by igSP1P2

. The form factor describing the γ�ðqÞ →
VðqÞ → Sð→ P0

1P
0
2Þγ vertex is given by

SP1P2γðq02; q002; u; q2Þ ¼ e
X
V

m2
V

γVDVðq2Þ
X
S

gVSγ ·
gSP1P2

DSðuÞ
:

ð14Þ

In the above expressions, DV;SðxÞ¼m2
V;S−x− i

ffiffiffi
x

p
ΓV;SðxÞ

denote the denominators of vector (V) and scalar (S)
resonance propagators, while ΓiðxÞ denote their total decay
widths at squared momentum x.
In the case of the π0π0 channels, we can have the

contributions of the isoscalar scalar f0ð500Þ and f0ð980Þ
states; we will consider the effects of the latter as it is better
established as a resonance [22]. For the π0η channel, we
will include the contributions of the isovector a0ð980Þ,
a0ð1450Þ (or a0; a00, respectively, for short) decaying (this
expression agrees with Eq. (4.1) in Ref. [31] in the case of a
single vector and scalar resonance).
One may attempt to extract the relevant couplings of

scalar mesons from experimental data. Unfortunately, the
experimental information on these decays is rather scarce,
if not completely missing.2 Therefore, we will proceed to
use a combination of experimental information, theoretical

predictions and make the assumption that, in a specific
energy region, only one vector resonance V in the s-channel
dominates the scalar meson (V→Sγ→P1P2γ) production to
provide an estimate of their effects in the cross section:

1. We will assume that the dominant contribution to the
eþe− → π0ηγ cross section below

ffiffiffi
s

p ¼ 1.2 GeV
comes from the γ� → ϕð1020Þ → a0ð980Þ½→π0η�γ
transition, because both (ϕ and a0) can be produced
on their mass-shell. Therefore, we use the resonance
parameters of the a0ð980Þ scalar meson as deter-
mined in the analysis of the ϕ → π0ηγ hadronic mass
distribution measured by KLOE [32] using the
resonance model of Ref. [31], namely: jga0ηπj ¼
2.46ð14Þ GeV andma0 ¼ 982.5 MeV (fixed), Γa0 ¼
80 MeV. The coupling gϕa0γ ¼ 0.524ð11Þ GeV−1 is
extracted from the measured branching fraction of
ϕ → a0γ [22].

2. The measured branching fraction of a00ð1450Þ → ηπ
is reported in [22]. Using the Γða00 → ηπÞ ¼
ðg2a0

0
ηπ=8πÞ · jp⃗πj=m2

a0
0
decay rate we get ga0

0
ηπ ¼

1.46ð16Þ GeV. The mass and width parameters of
the a00 are taken from the PDG [22].

3. We will assume that, in the region of excited vector
V resonances, only one of them dominates the γ� →
V → a00γ vertex. Further, we assume that this vector
resonance is the excited state ϕ0 ¼ ϕð1680Þ. From
the following vector-meson dominance relations
among the couplings (a similar relation holds for
the a0γ�γ coupling)

ga0
0
γ�γðq2Þ ¼ e

X
V

ga0
0
Vγ

γV
·

m2
V

DVðq2Þ
; ð15Þ

and assuming the dominance of the ϕ0ð1680Þ, one
gets at q2¼0, ga0

0
γγ ¼ ega0

0
ϕ0γ=γϕ0 . Using the predicted

rate for the Γa0
0
γγ¼ðg2a0

0
γγ=4πÞm3

a0
0
¼1.05ð5ÞkeV [34],

we get ga0
0
ϕ0γ=γϕ0 ¼ 0.0067ð2Þ GeV−1 from the above

VMD relation.3

4. There are two possible isoscalar scalar mesons that
can mediate the π0π0 system: the f0ð500Þ and the
f0ð980Þ below the 1.2 GeV region. As in the
previous case, we assume their contribution will
be larger when both, the vector resonance in the
s-channel and the scalar resonances can be on-shell.
The dominant contribution comes from the γ� →
ϕð1020Þ → f0ð980Þ½→ π0π0�γ decay chain. We use
the resonance parameters of the f0ð980Þ scalar meson
as determined in the analysis of the ϕ→π0π0γ
hadronic mass distribution measured by KLOE [60]:

2The nature of scalar mesons and their classification is still
controversial [22]. The resonance parameters and some relevant
decay channels of the a00 are better known than those of the
lightest a0 meson. [22].

3Note that our ga0
0
γγ and the one g̃a0

0
γγ used in Ref. [34], are

related by ga0
0
γγm2

a0
0
¼ g̃a0

0
γγ=2.
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jgf0π0π0 j ¼ 0.926ð64Þ GeV and mf0 ¼ ð984.7�
0.4þ2.4

−3.7Þ MeV (the first error is from the fit and the
second one has a systematic nature), and an energy-
dependent width of the f0ð980Þ is assumed [60]. We
also use gϕf0γ ¼ ð2.61� 0.02þ0.31

−0.08Þ GeV−1 [60].
5. Some evidence has been reported for the lighter

isoscalar meson in ðρ0;ωÞ → f0ð500Þ½→ π0π0�γ
transitions (see [22] and references therein). Direct
experimental information on its parameters and
partial widths is scarce and indicates that f0ð500Þ
is a broad state, which is rather difficult to describe
as a resonance with a Breit-Wigner propagator.
Although the existence of this state is better estab-
lished nowadays [61,62], we do not include it in
our analysis because information on relevant cou-
plings is missing. We expect its contribution to
ahad;LOμ ðπ0π0γÞ to be small and covered by the quoted
uncertainties of the dominant ωð→π0γÞπ0 term.

Given all the approximations contained in the derivation of
scalar couplings, we must take the predicted effects of scalar
mesons in the cross section and ahad;LOμ ðπ0ηγÞ as an
indication of their real size.

IV. CROSS SECTIONS FOR P0
1P

0
2γ CHANNELS

In this section, we consider separately the cross sections
for the eþe− → ðπ0π0; π0η; ηηÞγ reactions. We focus first, in
more detail, on the π0π0γ channel in order to fix some of the
parameters of the model by comparing it with available data;
this is the channel with the largest cross section amongP0

1P
0
2γ

final states owing to the large branching ratio for theω → π0γ
decay. Thereafter we consider the predictions for the other
two channels. We do not expect our model to give a good
description of the low-energy data. However, we compare our
model with the cross section for π0π0γ production below
1 GeV, and with the data on the di-photon spectrum in η →
π0γγ decay as a validation of our model at lower energies.

A. π0π0γ final state

Different experiments have reported measurements of
the eþe− → π0π0γ cross section below 2 GeV. In the energy
region below 1 GeV, the measurements of π0π0γ production
have been reported in references [29,30]. Above 1 GeV, the
SND collaboration has provided results in the energy rangeffiffiffi
s

p ¼ 1.05–2.0 GeV [50] and
ffiffiffi
s

p ¼ 1.047–2.005 GeV
[51], while the CMD-2 collaboration in the energy domain

0.920–1.380 GeV and DM2 [63] in the energy range from
1.350–2.4 GeV. The latter experiments focus on final states
where the π0γ system originates from the ωð782Þ meson
decays which, according to the present discussion, is one
contribution to the full S-matrix amplitude for the π0π0γ
final state. In the VMD model, the different contributions
with intermediate resonances are given by eþe− → V →
π0ðρ;ω;ϕÞ → π0π0γ. Accordingly, the general form of the

hadronic tensor was given in Eq. (9) with the specific
invariant form factor

Fπ0π0γðu; q02; q002; q2Þ ¼ Fπ0π0γ
ρ þ Fπ0π0γ

ω þ Fπ0π0γ
ϕ : ð16Þ

The explicit expressions for the different terms are given in
Appendix. Dependence upon the same invariant variables
must be understood for each term on the right-hand side of
the above equation.
For the denominators of excited resonances’ propagators

in Eqs. (16) and (A1) we use Breit-Wigner forms with
constant widths, namely DVðsÞ ¼ m2

V − s − imVΓV, where
mVðΓVÞ denote the mass (width) of resonances. The same
consideration applies to the narrow ðω;ϕÞ light meson
resonances. However, following the SND collaboration
[50,51] (and our own efforts to achieve a good fit), we use
the following expression for the energy-dependent width of
the ρð770Þ meson propagator DρðsÞ ¼ m2

ρ − s − imρΓρðsÞ:

ΓρðsÞ ¼ Γρ→ππðsÞθð
ffiffiffi
s

p
− 2mπÞ

þ Γρ→ωπðsÞθð
ffiffiffi
s

p
−mω −mπÞ; ð17Þ

where the energy-dependent partial widths are

Γρ→ππðsÞ ¼ Γρ
m2

ρ

s

�
s − 4m2

π

m2
ρ − 4m2

π

�
3=2

; ð18Þ

ΓV→V 0P ¼ g2VV 0P

96π

�
λðs;m2

V 0 ; m2
PÞ

s

�
3=2

ð19Þ

with θðxÞ and λðx; y; zÞ are the step and Kallen functions,
respectively. Although Eq. (17) may look unusual, the
opening of new thresholds (like ωπ; KK; � � �) must be
included in the decay width as the invariant mass of the
resonance increases.4

The form factors given in Appendix depend upon several
parameters: (a) the couplings gVPγ needed to describe
ðρ;ω;ϕÞ → P0γ decays in the sequence V → PV 0 →
PP0γ are taken from the fits of Ref. [54], and are listed
in the lower part of Table I; (b) the ratio of couplings
XVV 0P ≡ gVV 0P=γV shown in the upper part of Table I were
extracted from experimental values of the peak cross
sections (8) using the theoretical expression

ΓV→eþe−ΓV→V 0P

Γ2
V

¼ X2
VV 0Pα

2

72
·
λ3=2ðm2

V;m
2
V 0 ; m2

PÞ
m2

VΓ2
V

; ð20Þ

(c) the strong VV 0η couplings for light resonances quoted in
the middle part of Table I were extracted by combining the
gVηγ couplings obtained in [54] and the emV=γV couplings

4The KK̄ channel opens at
ffiffiffi
s

p ¼ 0.99 GeV, however it
remains smaller than 6% of the ππ contribution in the region
below

ffiffiffi
s

p ¼ mρ þ 2Γρ.
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for the γ − V conversion extracted from measured [22]
ΓV→eþe− ¼ ð4πα2=3γ2VÞmV partial rates and; (d) the masses
and decay widths of remaining radially excited vector
resonances were taken from [22]. For light vector resonances
ρ=ω=ϕ we assume their masses and widths world averaged
values [22]. In the case of the isovector ρ0 ¼ ρð1450Þ and

ρ00 ¼ ρð1700Þ mesons we extract the resonance parameters
from a fit to the data of the SND collaboration [51], by
assuming their contributions to be complex relative to the
lightest ρð770Þ vector resonance.
In order to be more explicit, we rewrite the dominant

contribution in Eq. (16) as follows:

Fπ0π0γ
ω ¼ ieXρωπ

�
m2

ρ

Dρðq2Þ
þ Xρ0ωπeiϕ1

Xρωπ

m2
ρ0

Dρ0 ðq2Þ
þ Xρ00ωπeiϕ2

Xρωπ

m2
ρ00

Dρ00 ðq2Þ
�

gωπ0γ
Dωðq02Þ

; ð21Þ

where XV are taken to be real, since the relative phases are
given explicitly. The ρð770Þmeson propagatorDρðq2Þwith
the energy-dependent width is given in Eq. (17).
We can evaluate the cross section using the full S-matrix

amplitude by inserting the form factors into Eq. (9), taking
into account Bose symmetrization terms, and using Eq. (4)
for the cross section. In order to compare to available data
from SND [51] on the eþe− → π0ωð→π0γÞ cross section in
the

ffiffiffiffiffi
q2

p
¼ 1.05–2.0 GeV region,5 we turn off the first and

last terms in Eq. (16). We let as free parameters: the
resonance parameters of the ρð1450Þ, the complex param-
eters Xρ0ωπ; Xρ00ωπ (phases ϕ1;ϕ2, respectively), and the
gρωπ coupling. The third column in Table II collects results
of our fit to the cross section data of Ref. [51].
A comparison of the second and third columns in the

same Table shows a good agreement between our results
and those reported by the SND collaboration [51]. Our fit to
the experimental data is shown with a dashed line in Fig. 3.
In the same figure, we include (solid blue line) the cross
section for π0π0γ production by taking into account all
terms in Eq. (16); except for the narrow peaks at the ρð770Þ
(suppressed) and at the ϕð1020Þ (more prominent)

resonance positions, the full and ω-dominance contribu-
tions agree in all the kinematical range under consideration.
References [29,30] have reported measurements of the

π0π0γ cross section at lower energies, in the center of mass
energy

ffiffiffi
s

p
∼ 600–970 MeV. Our model, extrapolated at

these energies, is compared to these data in Fig. 4. The
curve predicted by our model lies below the experimental
data and the fit of Ref. [28], in the region of the ρð770Þ
resonance but they agree reasonably well outside the
resonance domain. A more quantitative comparison can
be achieved by evaluating the χ̂2 ¼ ð1=NÞPiðσexpi −
σModel
i Þ2=ðΔσiÞ2 function, where N is the number of

experimental data points in each dataset and Δσi, the
quadrature of model and experimental uncertainties for
the ith data point. We get χ̂2 ¼ 1.13 for the dataset of
Ref. [29] dataset; χ̂2 ¼ 1.01 for Ref. [30], and χ̂2 ¼ 1.54
for the combination of both datasets. Our model is not
optimal in this region, but given the large experimental
errors, the value of χ̂2 is reasonably good so far.

B. π0ηγ final state

The amplitude corresponding to VV 0 contributions
[Fig. 2(a)] for eþe− → π0ηγ must be added with the
diagram arising from the exchange of π0 and η mesons
in the final state. Note, however, that the intermediate
resonances V and V 0 must be chosen to conserve strong

TABLE II. Results of our fit (third column) to the eþe− → π0ωð→π0γÞ cross section data [51], compared to results of Ref. [51] and the
PDG values [22]. The † symbol means that the parameter has been fixed to their PDG values in the fit.

Parameter SND values [51] This work PDG values [22]

mρð1450Þ [MeV] 1510� 7 1510� 12 1465� 25
Γρð1450Þ [MeV] 440� 40 420� 50 400� 60
mρð1700Þ [MeV]† 1720� 20 1720� 20 1720� 20
Γρð1700Þ [MeV] † 250� 100 250� 100 250� 100
gρωπ [GeV−1] 15.9� 0.4 17.5� 1.3 12.47
γρ � � � � � � 4.98
Xρ0ωπ 0.56� 0.05 0.51� 0.06 0.535 [51]
Xρ00ωπ 0.044� 0.013 0.037� 0.012 0.0425 [51]
ϕ1 [deg] 124� 17 114� 34 127� 12 � � �
ϕ2 [deg] −63� 21 −80� 18 � � �
χ2=n:d:f 0.97 0.86 � � �

5We use this dataset because it covers most of the range of
center of mass energies. It is the only reason to avoid including
data from CMD2 and DM2 collaborations.

J. L. GUTIÉRREZ SANTIAGO and G. LÓPEZ CASTRO PHYS. REV. D 106, 073009 (2022)

073009-8



interaction symmetries in the V → ηV 0 and V → π0V 0
vertices. Since this exchange contribution does not corre-
spond to the exchange of identical particles in the final
states, we do not have to add a 1=2! factor in the
phase space.

As it was discussed in Sec. III B, contributions mediated
by scalar mesons can appear in the π0η system through the
eþe− → γSð→ηπÞ mechanism ðS ¼ a0; a00Þ. Unfortunately,
the situation concerning the experimental information on
decay properties of the a0ð¼a0ð980ÞÞ resonance and its

FIG. 3. Cross section for the eþe− → π0π0γ process. The solid line includes all the resonance contributions in Eq. (16). The dashed
line corresponds to the dominance of the ω → π0γ decay, the second term in (16). The data points correspond to eþe− → π0ωð→π0γÞ
measured by SND [51].

FIG. 4. Cross section for the eþe− → π0π0γ process below
ffiffiffi
s

p ¼ 0.97 GeV. The dotted line corresponds to the VMD model used in
this work. The dashed (solid) line corresponds to the fit of the model of Ref. [28] with (non)vanishing parameters βρ, βω to a combined
dataset of SND [29] (triangles) and CMD-2 [30] (bullets) collaborations.
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nature as a qq̄, as tetraquark or as a molecular state is not
very clear so far [22,64–67]. In contrast, the corresponding
information for the a00ð¼ a0ð1450ÞÞ properties is better
known [22].
Despite these limitations, we have attempted an estimate

of the effects of scalar resonances. We assume that the
dominant contribution is given by the γ�→ϕð1020Þ→a0γ
chain contribution. Similarly, we assume that the a00¼
a0ð1450Þ production is dominated by γ�→ϕ0ð1680Þ→a00γ.
Our assumptions are based on the fact that at these center of
mass energies, both the ðϕ;ϕ0Þ vector and the ða0; a00Þ
scalar resonances can be produced on-shell, giving the
largest contributions to the cross sections. Values of the
coupling constants required in the model were described
in Sec. III B. Of course, it corresponds to experiments
to resolve the resonant structures present in the ηπ0 and
s-channels in the energy region under consideration.
The cross section plots are given in Fig. 5 as a function of

the center of mass energy. The continuous line represents
the sum of all the contributions, while the dashed line
corresponds to the pure vector-vector (V, V 0) contributions.
The sharp peak observed to the left is the effect of the ϕ
meson decaying into the a0ð980Þ meson and a photon;
since the ϕ is a very narrow resonance, its contribution
to ahad;LOμ ðπ0ηγÞ is subdominant. On the other hand, the
effects of the a0ð1450Þ scalar meson will be suppressed in
ahad;LOμ given the falling of the QED kernel in the dispersive
relation.
The VMD for the π0ηγ production channel can be

compared to lower energy data of the crossed reactions
γγ → π0η or η → π0γγ. In the case of the latter decay, both

photons are real and a different kinematical region is tested,
which lies well below the resonance region under consid-
eration in this paper. In Fig. 6 the diphoton spectrum of
η → π0γγ decays predicted in the VMD model of this work
is compared to experimental data of Refs. [68,69]. Our
prediction lies below data in the intermediate diphoton
mass region.
By integrating over the full phase space, we get the

following predictions for the partial decay width:

Γðη → π0γγÞ

¼
�
0.216� 0.021 eV; for V; V 0 contribs:

0.225� 0.021 eV; for V; V 0 þ a0 þ a00 contribs:

ð22Þ

This result can be compared to the prediction of Ref. [34]
Γðη → π0γγÞ ¼ ð0.237þ0.060

−0.043Þ eV, and the current experi-
mental value reported by the Particle Data Group Γðη →
π0γγÞ ¼ ð0.334� 0.032Þ eV [22].

C. ηηγ final state

The threshold energy for the eþe− → ηηγ isffiffiffi
s

p
≈ 1.096 GeV, well above the region of light vector

resonances in the s-channel. The form factors for this final
state are given in Eq. (12) and (A1), and the hadronic tensor
(9) must include a symmetrization term according to Bose
statistics. Using the input couplings shown in Table I, and
the convention for the propagators discussed in previous
sections, we evaluate the cross section using Eq. (4).

FIG. 5. Cross section for the eþe− → π0ηγ process. The dashed line corresponds to the pure ðV; V 0Þ ¼ ð1−−; 1−−Þ contributions. The
solid line includes, in addition, the effects of the a0ð980Þ and a00ð1450Þ scalar mesons.
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In Fig. 7 we plot the eþe− → ηηγ cross section
from threshold up to 3.0 GeV. In the absence of exper-
imental information on this decay channel, we assume
the different contributions to add coherently with real
and positive couplings between different resonance

contributions.6 A dominant peak is observed due to the
ρð1700Þ, and a smaller peak is barely visible at the ϕð2170Þ

FIG. 6. The prediction of the VDM in this work is compared to experimental data of Refs. [68,69] on the diphoton spectrum of
η → π0γγ decays. The dashed line corresponds to the pure vector contributions, whereas the solid line corresponds to the vector and
scalar a0ð980Þ þ a0ð1450Þ contributions.

FIG. 7. Cross section for the eþe− → ηηγ process. We use the VMD parameters reported in Table I.

6Given that ηηγ contribution to ahad;LOμ is at the level of 10−12,
for now we can keep this approximation as safe.
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resonance position. As expected, the cross section for ηηγ is
smaller than the one due to π0π0γ and π0ηγ.

V. P0
1P

0
2γ CONTRIBUTIONS TO aμ

The HVP contributions to aμ due to eþe− → P0
1P

0
2γ

processes can be written as follows [70,71]

ahad;LOμ ðP0
1P

0
2γÞ¼

�
α

3π

�
2
Z

∞

ðm1þm2Þ2
ds

KðsÞ
s

σðeþe−→P0
1P

0
2γÞ

σpt
;

ð23Þ

where σpt is the point cross section for muon-pair produc-
tion and KðsÞ is the QED kernel that can be found, for
instance, in Ref. [3].
If we insert the cross sections evaluated in this work into

Eq. (23), we get the values shown in the second column of
Table III. The second of the two results indicated for the π0ηγ
contribution corresponds to the inclusion of scalar resonan-
ces in this channel. The quoted errors stem from the
uncertainties in couplings, masses and widths of vector
and scalar intermediate resonances involved in each exclu-
sive channel. Our largest uncertainty appears in the π0π0γ
contribution; it arises mainly from the uncertainties in the
fitted ρ0ωπ coupling quoted in Table II [22]. Since we do not
use the dataset of all eþe− → π0ωð→π0γÞ experimental
cross sections, our quoted uncertainty for the ahad;LOμ ðπ0π0γÞ
channel basically turns out to be larger than the ones quoted
by references [8,9] (see discussion below).
We can attempt to make a (risky) comparison with

Refs. [8,9], who have provided the evaluations of the
π0ωðω → π0γÞ, ηω, and ηϕ contributions. For the values
of ahad;LOμ for the latter two channels provided in Refs. [8,9],
we add the subsequent decays of ðω;ϕÞmesons into ðπ0; ηÞγ
decays, which is justified in Appendix A. Under these
assumptions, we can estimate the P0

1P
0
2γ contributions as

follows (BðXÞ denotes the branching fraction for channel X):

aμðπ0ηγÞ ≃ aμðηωÞ · Bðω → π0γÞ þ aμðηϕÞ · Bðϕ → π0γÞ;
aμðηηγÞ ≃ aμðηωÞ · Bðω → ηγÞ þ aμðηϕÞ · Bðϕ → ηγÞ:

ð24Þ

Clearly, this represents, at most, an approximation to the
complete evaluation. We use the values ahad;LOμ ðηωÞ¼
0.35ð1Þð1Þ½0.30ð2Þ� and ahad;LOμ ðηϕÞ¼0.33ð1Þð1Þ½0.41ð2Þ�
from Ref. [8] (values obtained in [9] are indicated within
square brackets), all numbers in 10−10 units, and the
branching ratios reported in [22] for the radiative decays
of vector mesons.
In columns fourth and fifth of Table III we write the

values “estimated” following the above procedure. These
values are underestimated with respect to our results and,
in the case of the ηηγ channel, by almost one order of
magnitude. It is expected since ρη and ρπ0 exclusive
channels are not reported separately and Eqs. (24) neglect
interferences.
The contribution of the π0π0γ channel to ahad;LOμ in the

energy region below
ffiffiffi
s

p ¼ 0.95 GeV reported in [28] is
ahad;LOμ ðπ0π0γÞ ¼ 0.033ð5Þ × 10−10. Our corresponding
contribution in the same interval is lower 0.020ð3Þ×
10−10, as it is expected from Fig. 4. The effects of the
scalar resonances to ahad;LOμ ðP0

1P
0
2γÞ is roughly 4% of the

total contributions, well within the quoted uncertainties of
the dominant channel.

VI. CONCLUSIONS

In this paper we have considered the contributions of the
neutral eþe− → π0π0γ; π0ηγ and ηηγ exclusive channels to
the leading order HVP contributions of the muon anoma-
lous magnetic moment. We evaluate these contributions by
considering the full S-matrix amplitude for transitions
between these asymptotic states, without cutting intermedi-
ate resonances. These decays are not the photon-inclusive

TABLE III. Contributions of X ¼ P1P0γ exclusive channels to ahad;LOμ (in 10−10 units). The results of this work are given in the third
column. Columns fourth and fifth for the ðπ0η; ηηÞγ contributions refer to the values estimated according to Eqs. (24) from the values of
ηω and ηϕ contributions reported in Refs. [8,9], respectively. The effects of scalar ðf0; a0; a00Þ mesons are shown separately.

ahad;LOμ ðXÞ × 10−10

X Channel Contributions This work DHMZ [8] KNT [9]

π0π0γ ðV; V 0Þ 1.002þ0.129
−0.136 0.94(1)(3) 0.88(2)

π0π0γ ðV; V 0Þ þ f0ð980Þ 1.041þ0.128
−0.137

π0ηγ ðV; V 0Þ 0.086þ0.002
−0.001 0.030(2) 0.026(2)

π0ηγ ðV; V 0Þ þ a0 þ a00 0.087� 0.001
ηηγ ðV; V 0Þ 0.043þ0.001

−0.002 0.0045(2) 0.0055(3)
ðV; V 0Þ 1.131þ0.129

−0.136
Sum ðV; V 0Þ þ a0 þ a00 þ f0ð980Þ 1.171þ0.128

−0.137
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channels of eþe− → P0
1P

0
2, P1;2 ¼ η or π, because such

transitions are not allowed (at least at the lowest order in α)
and are expected to be of the same order in α as the π0γ and
ηγ channels. As it is well known [8,9], the latter contribute
close to 1% to the total contributions of ahad;LOμ .
We describe the γ� → P0

1P
0
2γ vertex in the framework of

vector meson dominance model. We validate this particular
model by fitting the available data on the eþe− →
π0ωðω → π0γÞ channel; we also compared the predictions
of our model to low energy data of the eþe− → π0π0γ cross
section, and to the measured diphoton spectrum and the
partial width of η → π0γγ decay. From the calculated cross
sections we evaluate the corresponding dispersion integral
and get the following prediction:

ahad;LOμ ðπ0π0γ þ π0ηγ þ ηηγÞ ¼ ð1.17þ0.13
−0.14Þ × 10−10:

The π0π0γ exclusive channel dominates this result; this is
in reasonable good agreement with the evaluation of
Refs. [8,9] for the π0ωðω → π0γÞ, where a comparison
is possible. The other two contributions are more sup-
pressed and a comparison with existing calculations is not
straightforward. Our quoted uncertainty is dominated by
errors in the strength coupling of the ρ0 → π0π0γ decay
within the VMD model and the particular dataset of
eþe− → π0ωð→π0γÞ measurements [51] used in our
analysis.
The cross sections for P0

1P
0
2γ production are peaked in

the region populated by excited vector resonances in the
s-channel. It introduces important uncertainties in the
calculation as long as the information on the parameters
and decay properties of excited resonances are rather scarce
or not very well known. In order to avoid all the
uncertainties related to a particular model, it would be
necessary to have better experimental data for these P0

1P
0
2γ

final states in electron-positron collisions in the region
below 2 GeV.
Of course, the dispersive calculation of ahad;LOμ ðP0

1P
0
2γÞ

presented in this paper does not contribute sizably to
closing the gap with the measured [1,2] and the lattice
calculations of Ref. [27]. We address the problem of using
exclusive channels with resonances and using them as
inputs in the evaluation of ahad;LOμ . Using the S-matrix
formalism with asymptotic states is important to assess the
size of approximations done when one considers resonan-
ces as on-shell states and neglects interference with other
contributions to the amplitude. It may not be obvious that
separating resonance and background contributions from
measured observables, is just an approximation. The
clearest example that shows that interference effects are
important is frequently found in the PDG [22], where the sum
over final states involving resonances sometimes exceeds
the branching ratios for some specific channels (for example

BðD0 → πþπ−π0Þ ¼ ð1.49� 0.06Þ% while
P

i;j BðD0 →
ðρið770ÞπjÞ0 → πþπ−π0Þ ¼ ð1.91� 0.05Þ% [22]).
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APPENDIX: FORM FACTORS
IN P0

1P
0
2γ TRANSITIONS

In this appendix we provide the expressions for the form
factors that contribute to the P0

1P
0
2γ transitions as defined in

Sec. III A

Fπ0π0γ
ρ ¼ ie

X
V¼ω;ϕ;���

gVρ0π0

γV
·

m2
V

DVðq2Þ
·
gρ0π0γ
Dρðq02Þ

Fπ0π0γ
ω ¼ ie

X
V¼ρ;ρ0;���

gVωπ0
γV

·
m2

V

DVðq2Þ
·

gωπ0γ
Dωðq02Þ

Fπ0π0γ
ϕ ¼ ie

X
V¼ρ;ρ0;���

gVϕπ0

γV
·

m2
V

DVðq2Þ
·

gϕπ0γ
Dϕðq02Þ

Fπ0ηγ
ρ ¼ ie

X
V¼ω;ϕ;���

gVρ0π0

γV
·

m2
V

DVðq2Þ
·

gρ0ηγ
Dρðq02Þ

Fπ0ηγ
ω ¼ ie

X
V¼ρ;ρ0;���

gVωπ0
γV

·
m2

V

DVðq2Þ
·

gωηγ
Dωðq02Þ

Fπ0ηγ
ϕ ¼ ie

X
V¼ρ;ρ0;���

gVϕπ0

γV
·

m2
V

DVðq2Þ
·

gϕηγ
Dϕðq02Þ

Fηπ0γ
ρ ¼ ie

X
V¼ρ;ρ0���

gVρ0η
γV

·
m2

V

DVðq2Þ
·
gρ0π0γ
Dρðq02Þ

Fηπ0γ
ω ¼ ie

X
V¼ω;ϕ���

gVωη
γV

·
m2

V

DVðq2Þ
·

gωπ0γ
Dωðq02Þ

Fηπ0γ
ϕ ¼ ie

X
V¼ω;ϕ���

gVϕη
γV

·
m2

V

DVðq2Þ
·

gϕπ0γ
Dϕðq02Þ

Fηηγ
ρ ¼ ie

X
V¼ρ;ρ0;ρ00���

gVρ0η
γV

·
m2

V

DVðq2Þ
·

gρ0ηγ
Dρðq02Þ

Fηηγ
ω ¼ ie

X
V¼ω;ϕ;���

gVωη
γV

·
m2

V

DVðq2Þ
·

gωηγ
Dωðq02Þ

Fηηγ
ϕ ¼ ie

X
V¼ω;ϕ;���

gVϕη
γV

·
m2

V

DVðq2Þ
·

gϕηγ
Dϕðq02Þ

: ðA1Þ
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In the above expressions, the ellipsis in the sum over V
s-channel resonances includes all possible radial excita-
tions of vector mesons. For identical pseudoscalar mesons
in the final state, one needs to exchange q1 ↔ q2 in
the decay amplitudes, with the corresponding q0 ↔ q00

two-particle momenta. Note that for nonidentical particles
(π0η), the form factors for exchanged mesons are not
given by the simple exchange of momenta because of
the different isospin of π0 (isovector) and η (isoscalar)
mesons.
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