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We numerically estimate the divergence of several two-vertex diagrams that contribute to the radiative
corrections for the Lorentzian Engle-Pereira-Rovelli-Livine spin foam propagator. We compute the
amplitudes as functions of a homogeneous cutoff over the bulk quantum numbers, fixed boundary data, and
different Immirzi parameters, and find that for a class of two-vertex diagrams, those with fewer than six
internal faces are convergent. The calculations are done with the numerical framework sl2cfoam-next.
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I. INTRODUCTION

The main goal of spin foam theory is to define the
dynamics of loop quantum gravity in a background
independent and Lorentz covariant way, providing tran-
sition amplitudes between spin network states [1,2]. The
state of the art are the Engle-Pereira-Rovelli-Livine (EPRL)
and Freidel-Krasnov (FK) spin foam models [3,4]; in this
paper we will focus on the Lorentzian EPRL spin foam
model. These theories have a compelling connection with
discrete general relativity in the double limit of finer
discretization and vanishing ℏ [5–9].
The theory is ultraviolet finite; however, the unbounded

summation over the bulk degrees of freedom can cause
large-volume infrared divergences (although the infrared
divergences are not present in the extension of the theory
that includes a cosmological constant using quantum
groups [10]). A complete spin foam theory requires a
renormalization procedure to remove these low-energy
divergences, and renormalization will be essential to define
the continuum limit properly. Various renormalization
procedures have been proposed in the context of 2-complex
refinement [11,12], or in group field theory [13–15], but
despite this work there remain many important open
questions.
An important step in developing a renormalization

procedure in spin foam models is to consider “self-energy”
corrections to the propagator. These radiative corrections to
the EPRL model have been studied analytically [16],

numerically [17,18], and using hybrid techniques [19].
So far, the main object of study has been a particular
Feynman diagram believed to give the leading-order
radiative correction; this Feynman diagram (which is often
called the “melonic” self-energy diagram) is a particular
two-vertex spin foam diagram associated with a space-time
bubble. To calculate the contribution from this diagram, the
common strategy is to introduce a homogeneous cutoff on
all the spin foam bulk face summations and estimate the
degree of divergence of the amplitude, studying it as a
function of the cutoff. There are strong numerical indica-
tions that the divergence for the melonic self-energy graph
is linear in the cutoff [17,18]. There are also some general
(although weaker) bounds on the degree of divergence for
any spin foam diagram [20].
In general, different spin foam amplitudes are associated

with triangulations sharing the same fixed boundary. We
order the spin foam diagrams having the same boundary by
the number of vertices. The melonic self-energy diagram is
not the only two vertex diagrams contributing to the
radiative corrections to the Lorentzian EPRL propagator,
but most of the other diagrams have a smaller number of
bulk faces. Therefore, we expect most of them to contribute
to the self-energy calculation with subdominant divergen-
ces. This is indeed the case in topological SUð2Þ BF theory,
where the calculation can be done analytically (see
Appendix B), but even if there are some clear structural
analogies between the two theories (in particular, they share
the same propagator), there remain some important
differences and an explicit computation of the divergence
of all diagrams is needed for the EPRL spin foam model.
In this paper, we continue the numerical study of the

two-vertex diagrams contributing to the Lorentzian EPRL
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propagator started in [17]. We focus on the subclass of
diagrams with two vertices and two boundary edges that are
each contained by the four boundary faces. The diagrams
differ in the connectivity of the internal edges and faces,
and in particular the number of internal faces varies from
one diagram to another. Analytical calculations of tran-
sition amplitudes with the Lorentzian EPRL spin foam
theory are challenging and limited to the large spin regime.
Recently, there has been significant progress in numerical
techniques for spin foam models, and we use these new
developments for our numerical analysis. Specifically, we
use the numerical techniques from [17], including the
approximation scheme clarified in [21]. The numerical
calculations are done using the library sl2cfoam-next
[22] (available in the repository [23]), the state of the art
code to compute EPRL spin foam amplitudes on a
computer.
In Sec. II we review the Lorentzian EPRL transition

amplitude and point out the origin of infrared divergences,
and we also list a class of diagrams contributing to the

two-vertex correction to the propagator. Then, in Sec. III
we overview the main ingredients of our numerical recipe.
We conclude with Sec. IV where we analyze the amplitudes
and estimate the divergence of the spin foam diagrams
we study. For completeness, we also include a detailed
expression of the Lorentzian EPRL vertex amplitude in
Appendix A, the analytic calculation of the divergent two-
vertex diagrams for the topological SUð2Þ BF theory in
Appendix B, and a discussion concerning other self-energy
diagrams (that should be included or not in the calculation
depending on the symmetries of the spin foam model) in
Appendix C.

II. EPRL RADIATIVE CORRECTIONS

Spin foam diagrams are constructed by contracting
interaction vertices with spin foam propagators along the
spin foam edges. The Lorentzian EPRL spin foam model
prescribes a simplicial1 interaction vertex and the associ-
ated vertex amplitude is

ð1Þ

The amplitude (1) has fifteen arguments (ten spins jf and
five intertwiners ie), we report its detailed definition in
Appendix A. The form of the amplitude in (1) is known as
the booster decomposition of the vertex amplitude and
rewrites the vertex amplitude as a superposition of 15j
symbols weighted by booster functions Bγ

4 [25]. The
booster functions enforce the simplicity constraints of
the EPRL spin foam models, depend on the Immirzi
parameter γ, and have a compelling geometrical interpre-
tation in terms of boosted tetrahedra [26]. We refer to the
original paper [25] for an explicit expression in terms of
intertwiners and SLð2;CÞ γ-simple unitary irreducible
representations. The EPRL propagator is simple and is
given by

ð2Þ

forcing the intertwiners in two vertices corresponding to the
same edge to be the same.

A spin foam transition amplitude associated with the
2-complex of a triangulation Δ is given by the contraction
of vertices and propagators dual to the 2-complex, spins
and intertwiners associated with bulk faces and edges are
summed over. Each face is weighted with a dimensional
factor AfðjfÞ ¼ 2jf þ 1 and the whole amplitude is

AΔ ¼
X
jf;ie

Y
f

AfðjfÞ
Y
e

AeðieÞ
Y
v

Avðjf; ieÞ: ð3Þ

We focus on diagrams contributing radiative corrections
that satisfy three requirements to avoid an excessive
proliferation of diagrams to study. Each diagram we
consider has
(1) Two vertices.
(2) Two boundary edges.
(3) Four boundary faces, and each one of these faces

contains both boundary edges.
(4) Only trivial propagators, preserving the order of

the faces.
We give some examples of diagrams excluded by these
conditions in Appendix C. There are four classes of
diagrams that differ by the combinatorics of the bulk edges
shared by the two vertices, as shown in Fig. 1.
The diagrams in each class differ by the combinatorics

of the faces in the bulk. For the diagrams satisfying the

1A general form of the spin foam vertex exists for an arbitrary
number of edges [24], but we do not consider it here since in this
case there is an infinite number of diagrams contributing to the
radiative corrections to the theory. We restrict to the simplicial
vertex to avoid this uncontrolled proliferation of diagrams.
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4 conditions listed above, we find: (a) two diagrams with
6 unbounded faces, one in class 1A and one in class 1D,
(b) in each of class B and D there are two diagrams with
four unbounded faces, and there is another one in class C,
(c) finally, there are two diagrams in class A with two
unbounded faces. To complete the analysis, we also
mention that there are other diagrams across all four classes
where the sums on the internal spins and intertwiners are
fully bounded due to SUð2Þ triangular inequalities, in
which case the corresponding amplitude is a sum of a
limited number of terms and the summation is trivially
finite.

III. NUMERICAL CALCULATIONS

We study the divergences of the Lorentzian EPRL spin
foam diagrams of Fig. 1 using sl2cfoam-next. The
library is an open-source library written in C to calculate
EPRL transition amplitudes numerically, with an optional
user-friendly Julia interface. It is based on the booster
decomposition of the vertex amplitude (1) and implements
the calculation of the vertex amplitude with a homogeneous
truncation of the unbounded sums over the virtual spins lf
parametrized by Δl

X∞
lf¼jf

→
XjfþΔl

lf¼jf

: ð4Þ

We compute the diagrams following the strategy
described in [17,18] where the diagram in class A with
6 internal faces is studied in great detail. We refer to those
articles for an updated analysis of the divergence of the
melonic self-energy EPRL spin foam diagram.
We fix the boundary spins jb and intertwiners ib and

choose a truncation parameter Δl. The sums over the spin
of the bulk faces jf are unbounded and potentially
divergent. We introduce a homogeneous cutoff K on these
sums while we sum over all the possible values of the bulk

intertwiners ie. We take this chance to stress the difference
between Δl and K. At first glance, they look similar, as
they are both introduced as an upper bound of a previously
unbounded summation but are profoundly different. The
parameter Δl represents the unavoidable truncation to
approximate the convergent series in the vertex amplitude.
On the other hand, K is the cutoff on the divergent sums on
the bulk degrees of freedom responsible for the large
volume divergences of the diagrams.
The parametersΔl and K are independent. Nevertheless,

we have some technical constraints. We want a value for
the cutoff K large enough to estimate the degree of
divergence of the amplitude but compatible with the
computational resources at our disposal. We also want a
truncation Δl large enough to obtain a good numerical
approximation of the amplitude. Increasing the truncation
will improve the numerical estimate of the amplitude;
however, although the resources necessary for the calcu-
lation will grow considerably with the truncation, the
numerical accuracy will improve very little. It is essential
to choose a balanced value of the parameters. Previous
work suggests that choosing similar values for Δl and K
gives good numerical results [17]. Given the computational
resources at our disposal we choose Δl ¼ 10, and consider
K running from 0 to 10 in half-integer steps.
In the following, we neglect the dimensional factors

related to boundary faces and intertwiners, as these
correspond to a constant multiplicative factor that does
not affect the functional dependence of the amplitude on K.
To minimize the dependence on the parameterΔl, we use

the convergence acceleration technique described in [21].
Using the value of the amplitude at fixed K obtained with
the three largest truncations available Δl, Δl − 1, and
Δl − 2, we approximate the amplitude (corresponding to
the limit Δl → ∞) with

AðKÞ ≈ AðK;ΔlÞAðK;Δl − 2Þ − A2ðK;Δl − 1Þ
AðK;ΔlÞ − 2AðK;Δl − 1Þ þ AðK;Δl − 2Þ : ð5Þ

The Julia scripts used to compute the diagrams, the
Wolfram’s Mathematica notebooks in which we analyze
the amplitudes, and the numerical values of the amplitudes
are available in the public repository [27]. The scripts can
be parallelized on multiple CPU cores to optimize the
numerical calculations. For each spin foam diagram, the
sums over the spins of the bulk faces shared by the two
vertex amplitudes (1) are distributed on the available tasks,
using the distributed memory parallel computing imple-
mentation of Julia. Then, the sums over the spins of the
bulk faces on every single vertex are parallelized on the
threads of each task. Finally, the contraction over bulk
intertwiners uses the loop vectorization technique. The
code we used is scalable on a supercomputer. We provide
the script used for the calculations on the Compute Canada
clusters in the repository [27]. The total CPU usage for the

(a)
(b)

(c) (d)

FIG. 1. Classes of spin foam diagrams with two vertices and
two boundary edges.
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computations described in this paper consisted in ∼200
CPU hours.

IV. RESULTS

We focus on uniform boundary configurations to sim-
plify the numerical calculation and optimize the computa-
tional resources at our disposal. We take all the boundary
spins jb to be the same, fixing them to the lowest possible
nontrivial value jb ¼ 1

2
. We look at the amplitudes with

equal boundary intertwiners and with different Immirzi
parameters to minimize the dependence on the boundary
data choices we have to make. We compute the amplitudes
using a cutoff ranging from K ¼ 0 to 10 in half-integer
steps and a truncation Δl ¼ 10. We approximate the
amplitudes using (5).

A. Spin foam diagrams with 6 bulk faces

We start by briefly discussing the two diagrams with the
most unbounded bulk faces. We show in Fig. 2 the wiring
diagrams highlighting the combinatorics of their inter-
nal faces.
Studying the divergence of the melonic spin foam dia-

gram 6F(A) required tremendous numerical effort, for a
detailed presentation of the results see [17,18]. Similarly, we
expect that the numerical analysis of the spin foam diagram
6F(B) will also require optimization and significant com-
putational time, and for this reason we leave a detailed study
for future work. Nonetheless, it is useful to point out a few
key points concerning these diagrams before moving on to
other diagrams with fewer internal faces.
The EPRL amplitude associated with the diagram

6F(A) is

A6FðAÞðjb; ib;KÞ ¼
XK
jf¼0

X
ie

Afðjf1ÞAfðjf2ÞAfðjf3ÞAfðjf4ÞAfðjf5ÞAfðjf6ÞAeði1ÞAeði2ÞAeði3ÞAeði4Þ

× Avðjb; jb; jb; jb; jf1 ; jf2 ; jf3 ; jf4 ; jf5 ; jf6 ; ib; i1; i2; i3; i4Þ
× Avðjb; jb; jb; jb; jf1 ; jf2 ; jf3 ; jf4 ; jf5 ; jf6 ; ib; i4; i3; i2; i1Þ: ð6Þ

In [17], it is shown that the amplitude (6) with boundary
intertwiners ib ¼ 0, boundary spins jb ¼ 1

2
and Immirzi

parameter γ ¼ 0.1 diverges linearly in the cutoff K.2 This
result is obtained by fitting the amplitude as a function of the

homogeneous cutoff up to K ¼ 10with truncation Δl ¼ 20

and using a convergence acceleration technique like (5).
Crucially, one of the observations of [17] is that the value of
the amplitude estimated using (5) with truncation Δl ¼ 20

and Δl ¼ 10 are essentially identical. This justifies our
choice of using a truncation Δl ¼ 10 for the other diagrams
to calculate the amplitude accurately while limiting the need
for time-intensive computational resources.
Next, the EPRL amplitude associated with the diagram

6F(B) is

(a)

(b)

FIG. 2. 6F. Wiring of the spin foam diagrams with 6 bulk faces. We highlight the internal faces in different colors.

2It is worth mentioning that the result looks slightly different
for larger values of γ. However, there are solid arguments to
explain why it is a numerical artifact, and that the divergence of
the melonic self-energy diagram is linear in the cutoff.
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A6FðBÞðjb; ib;KÞ ¼
XK
jf¼0

X
ie

Afðjf1ÞAfðjf2ÞAfðjf3ÞAfðjf4ÞAfðjf5ÞAfðjf6ÞAeði1ÞAeði2ÞAeði3ÞAeði4Þ

× Avðjb; jf1 ; jf1 ; jb; jb; jb; jb; jf2 ; jb; jb; i1; ib; i2; i2; ibÞ
× Avðjb; jf1 ; jf1 ; jb; jf3 ; jf4 ; jf5 ; jf6 ; jf4 ; jf3 ; i1; i3; i4; i4; i3Þ: ð7Þ

The number of terms of the amplitude 6F(B) for increasing
values of the cutoff K grows approximately as ∼30 · K4.
Although this trend is slower than it is for the melonic self-
energy diagram [17], there is an important difference that
makes the computation of amplitude 6F(B) far more
resource-demanding. In the melonic self-energy diagram
6F(A), there is a boundary face on each edge, and triangular
inequalities constrain the growth of the spin of the bulk faces
at each of the two vertices. Note that this does not happen in
the diagram 6F(B), and as a result we expect that the
calculation of the vertices requires considerable computa-
tional resources. AsK increases, eight spins out of ten in one
vertex of 6F(B) are of the order of K, compared to the six in
the diagram 6F(A). For the same reason, the computation
time as a function of the truncation parameter Δl is also
considerably higher. As a rough estimate, the calculation of
the amplitude 6F(B) up to K ¼ 10 and Δl ¼ 2, distributed

on 32 CPUs, took about 16 hours. The calculation with
Δl ¼ 10 could take weeks. The calculation of the amplitude
6F(B) with sufficient precision requires an enormous invest-
ment of time and computational resources that we do not
currently have access to, and therefore we leave a detailed
study of this diagram for future work.

B. Spin foam diagrams with 4 bulk faces

There are five diagrams (satisfying the four conditions
given above) with four unbounded bulk faces. Their wiring
diagrams are given in Fig. 3, showing the combinatorics of
the internal faces.
We illustrate the numerical analysis in detail for one

diagram; the others are very similar, and we simply report
the results for the other diagrams. The EPRL amplitude
associated with the spin foam diagram 4F(A) is

(a) (b)

(c)
(d)

(e)

FIG. 3. 4F. Wiring of the spin foam diagrams with 4 bulk faces. We highlight the internal faces in different colors.
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A4FðAÞðjb; ib;KÞ ¼
XK
jf¼0

X
ie

Afðjf1ÞAfðjf2ÞAfðjf3ÞAfðjf4ÞAeði1ÞAeði2ÞAeði3ÞAeði4Þ

× Avðjb; jb; jb; jb; jf1 ; jf2 ; jf2 ; jb; jb; jf3 ; ib; i4; i3; i1; i1Þ
× Avðjb; jb; jb; jb; jf4 ; jb; jf2 ; jb; jf2 ; jf1 ; ib; i2; i2; i3; i4Þ: ð8Þ

We start by looking at the amplitude with both boundary
intertwiners ib ¼ 0. We report the numerical values of the
amplitude for different cutoffs K in Fig. 4.
In topological BF theory, the amplitude of this diagram

diverges less rapidly than the melonic self-energy diagram
(see Appendix B), and it seems reasonable to expect that
the same will be true for the EPRL spin foam model. Since
there is strong numerical evidence that the EPRL melonic
self-energy diagram is linearly divergent in the cutoff, we
expect the diagram 4F(A) will have a degree of divergence
that is at most logK.
We make a baseline fit with a four-parameter function

using the NonlinearModelFit routine inMathematica,
with the result

Aprelim
4FðAÞ

�
1

2
; 0;K

�
¼ −4.11 × 10−9 logK þ 2.93 × 10−7

− 8.61 × 10−8K−1 − 1.77 × 10−8K−2:

ð9Þ

The coefficient of logK is orders of magnitude smaller than
the others, indicating that the amplitude may be convergent.
In general, it is difficult to numerically distinguish between a
logarithmic and a convergent behavior at these scales,
since K is at most 10 in the numerical results. Increasing
the cutoff by a factor 2 results in a logð2Þ ≈ 0.69 increase of
the logarithmic term but costs several more hours of

computational time. The amount of resources needed for
the calculation does not scale linearly in the cutoff (a rough
estimate of the computational time would be K to the power
of the number of unbounded summations). As a result,
increasing the cutoff is not a good strategy to answer this
question.
There is a more efficient way to verify the convergence

of the diagram. We amplify the divergence of the diagram
by replacing the face amplitude in (3)

AfðjfÞ ¼ 2jf þ 1 → Aamp
f ðjfÞ ¼ ð2jf þ 1Þ2: ð10Þ

We can verify that of the four unbounded sums in (8), only
three are really unbounded since SUð2Þ triangular inequal-
ities limit the spin on one of the internal faces (specifically,
the yellow internal face which shares an edge with three
fixed boundary faces). Therefore, the degree of divergence
of the amplified amplitude increases byK3. We evaluate the
amplified amplitude numerically using the same parameters
and boundary data as the original one. We fit the amplified
amplitude with a cubic polynomial in the cutoff and find
that the coefficient of K3 is negligible by two orders of
magnitude with respect to the others.3 The amplified
amplitude diverges quadratically as K2 in the cutoff,
confirming that the original amplitude had a negative
degree of divergence. To avoid any doubt, we also repeat
the calculation with an amplified face amplitude
Aamp
f ðjfÞ ¼ ð2jf þ 1Þ3, with the expected result that the

amplitude is again amplified by a factor of K3, now
diverging as the fifth power K5 of the cutoff, confirming
that the original amplitude (8) is convergent.4

Given the strong indications that the leading order
dependence on the cutoff scales as K−1, we fit the initial
amplitude again, omitting the logK term, and find with a
95% confidence interval

FIG. 4. Plot of the numerical values of the EPRL amplitude of
the spin foam (1B) with boundary spins jb ¼ 1

2
, boundary

intertwiners ib ¼ 0, and Immirzi parameter γ ¼ 0.1. We plot
with a blue band the fit (11).

3Fitting with a cubic polynomial, we find a ratio between the
coefficients of K3 and K2 of 0.01, indicating that the coefficient
of K3 is irrelevant.

4Fitting with a degree six polynomial, we find a ratio of 0.05
between the coefficients of K6 and K5, suggesting that the
coefficient of K6 is irrelevant.
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A4FðAÞ

�
1

2
; 0;K

�
¼ ð2.799; 2.806Þ × 10−7

− ð5.387; 4.790Þ × 10−8K−1

− ð5.552; 4.501Þ × 10−8K−2: ð11Þ

To remove the cutoff, it is easy to take the limit K → ∞
with the result A4FðAÞ ¼ ð2.799; 2.806Þ × 10−7.
The result concerning the degree of divergence of this

diagram seems to be robust. We also studied the amplitude
for different boundary intertwiners ib ¼ 1 and found a
similar outcome. We fit the amplitude and see with a
95% confidence interval

A4FðAÞ

�
1

2
; 1;K

�
¼ ð5.969; 5.983Þ × 10−8

− ð2.123; 2.006Þ × 10−8K−1

− ð0.910; 1.117Þ × 10−8K−2: ð12Þ

Likewise, we study the amplitude with boundary inter-
twiners ib ¼ 0 and a larger Immirzi parameter γ ¼ 1.
Again, we find that the amplitude is convergent,

A4FðAÞ

�
1

2
; 0;K

�
γ¼1

¼ ð1.080; 1.084Þ × 10−12

− ð1.680; 1.640Þ × 10−12K−1

− ð1.146; 1.229Þ × 10−12K−2: ð13Þ

We summarize these results in Fig. 5.
We perform a similar analysis to calculate the amplitudes

of the other diagrams with four internal faces in Fig. 3. In
this case, we report the data, fits, and plots only for γ ¼ 0.1
and boundary intertwiners ib ¼ 0, to keep the presentation
concise, but we repeated the calculation for γ ¼ 1 and ib ¼
1 finding qualitatively similar results. The amplitude of the
spin foam diagram 4F(B) is

A4FðBÞðjb; ib;KÞ ¼
XK
jf¼0

X
ie

Afðjf1ÞAfðjf2ÞAfðjf3ÞAfðjf4ÞAeði1ÞAeði2ÞAeði3ÞAeði4Þ

× Avðjb; jb; jb; jb; jb; jf1 ; jb; jf2 ; jf3 ; jf2 ; ib; i4; i1; i3; i1Þ
× Avðjb; jb; jb; jb; jf2 ; jf4 ; jb; jf2 ; jf1 ; jb; ib; i2; i3; i2; i4Þ; ð14Þ

and it appears to be convergent. The numerical results are shown in Fig. 6, together with the best fit curve with a
95% confidence interval given by

A4FðBÞ

�
1

2
; 0;K

�
¼ ð1.147; 1.150Þ × 10−7 − ð2.933; 2.696Þ × 10−8K−1 − ð7.095; 2.929Þ × 10−9K−2: ð15Þ

FIG. 5. Plot of the numerical values of the EPRL amplitude of the spin foam diagram 4F(A) with boundary spins jb ¼ 1
2
(orange dots)

and the corresponding fit (blue band) (12) and (13). Left panel: boundary intertwiners ib ¼ 1 and Immirzi parameter γ ¼ 0.1. Right
panel: boundary intertwiners ib ¼ 0 and Immirzi parameter γ ¼ 1. The strange behavior of the amplitude with ib ¼ 1 and K ¼ 1

2
is a

numerical artifact of this diagram, due to the cutoff value being smaller then the intertwiners.
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The amplitude of the spin foam diagram 4F(C) is

A4FðCÞðjb; ib;KÞ ¼
XK
jf¼0

X
ie

Afðjf1ÞAfðjf2ÞAfðjf3ÞAfðjf4ÞAeði1ÞAeði2ÞAeði3ÞAeði4Þ

× Avðjf1 ; jb; jb; jf2 ; jb; jb; jf3 ; jb; jb; jb; i1; i4; ib; ib; i3Þ
× Avðjf2 ; jb; jb; jf1 ; jb; jb; jf3 ; jf4 ; jb; jb; i1; i3; i2; i2; i4Þ; ð16Þ

and again we find a clear indication that this amplitude is convergent. We perform a fit and find with a 95% confidence
interval

A4FðCÞ

�
1

2
; 0;K

�
¼ ð1.0269; 1.0273Þ × 10−7 − ð7.595; 7.566Þ × 10−8K−1 þ ð1.199; 1.250Þ × 10−8K−2: ð17Þ

The data and the fit are represented in Fig. 6.
Finally, we look at the amplitudes 4F(D) and 4F(E). The amplitudes associated with these diagrams are

A4FðDÞðjb; ib;KÞ ¼
XK
jf¼0

X
ie

ð−1ÞχDAfðjf1ÞAfðjf2ÞAfðjf3ÞAfðjf4ÞAeði1ÞAeði2ÞAeði3ÞAeði4Þ

× Avðjb; jf1 ; jf1 ; jb; jb; jb; jb; jf2 ; jb; jb; i1; ib; i2; i2; ibÞ
× Avðjb; jf1 ; jf1 ; jb; jb; jf3 ; jf1 ; jb; jf4 ; jb; i1; i3; i4; i3; i4Þ; ð18Þ

and
A4FðEÞðjb; ib;KÞ ¼

XK
jf¼0

X
ie

ð−1ÞχEAfðjf1ÞAfðjf2ÞAfðjf3ÞAfðjf4ÞAeði1ÞAeði2ÞAeði3ÞAeði4Þ

× Avðjb; jf1 ; jf1 ; jb; jb; jb; jb; jf2 ; jb; jb; i1; ib; i2; i2; ibÞ
× Avðjb; jf1 ; jf1 ; jb; jf3 ; jf1 ; jf1 ; jb; jf1 ; j4; i1; i3; i3; i4; i4Þ; ð19Þ

where χD ¼ 2jf3 and χE ¼ 2jb þ 2jf1 þ jf3 þ jf4 are phases coming from the decomposition of the amplitude. Once again
the numerical evaluation of the amplitudes (18) suggests the amplitudes are convergent. We perform a fit with a
95% confidence interval and find

FIG. 6. Plot of the numerical values of the EPRL amplitudes with boundary spins jb ¼ 1
2
, boundary intertwiners ib ¼ 0, and Immirzi

parameter γ ¼ 0.1. We plot with a blue band the corresponding fits. Left panel: spin foam diagram 4F(B) and fit (15). Right panel: spin
foam diagram 4F(C) and fit (17).
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A4FðDÞ

�
1

2
; 0;K

�
¼ −ð1.778; 1.776Þ × 10−7

þ ð5.097; 6.681Þ × 10−9K−1

− ð2.999; 2.720Þ × 10−8K−2; ð20Þ

A4FðEÞ

�
1

2
; 0;K

�
¼ ð3.586; 3.592Þ × 10−7

þ ð8.172; 13.486Þ × 10−9K−1

− ð4.360; 3.425Þ × 10−8K−2: ð21Þ

We report these fits and compare them with the data points
in Fig. 7.
It is somewhat surprising that the degree of divergence of

these last two diagrams is at most the same as for the first
three diagrams with four internal faces (and possibly even
with a smaller degree of divergence given byK−2). Naïvely,
one might expect the degree of divergence to be directly
related to the number of unbounded summations. If one
looks carefully, diagrams 4F(D) and 4F(E) are the only

ones among the diagrams in Fig. 3 with four unbounded
internal faces—the other three diagrams always have one
face bounded by triangular inequalities (specifically, the
yellow internal face in each diagram). (On the other hand,
all of the diagrams in Fig. 3 in the SUð2Þ BF theory have
the same degree of divergence.) This counterintuitive result
indicates that the degree of divergence depends in a
complicated way on the components of the diagram.

C. Spin foam diagrams with two bulk faces

There are only two diagrams satisfying the four con-
ditions listed above that have two unbounded bulk faces,
these are shown in Fig. 8 where we highlight the combina-
torics of the internal faces. Note that there exist other
diagrams with two internal faces satisfying the four con-
ditions, but in all other such diagrams, the spin of the
internal faces is bounded due to SUð2Þ triangular inequal-
ities. Also in this case, we report only the calculation with
γ ¼ 0.1 and boundary intertwiners ib ¼ 0.
The amplitudes of the diagram 2F(A) and 2F(B) are

FIG. 7. Plot of the numerical values of the EPRL amplitudes with boundary spins jb ¼ 1
2
, boundary intertwiners ib ¼ 0, and Immirzi

parameter γ ¼ 0.1. We plot with a blue band the corresponding fits. Left panel: Spin foam diagram 4F(D) and fit (20). Right panel: Spin
foam diagram 4F(E) and fit (21).

(a) (b)

FIG. 8. 2F. Wiring of the spin foam diagrams with 2 bulk faces. We highlight the internal faces in different colors.
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A2FðAÞðjb; ib;KÞ ¼
XK
jf¼0

X
ie

Afðjf1ÞAfðjf2ÞAeði1ÞAeði2ÞAeði3ÞAeði4Þ

× Avðjb; jb; jb; jb; jf1 ; jb; jf2 ; jf1 ; jb; jf1 ; ib; i1; i2; i3; i4Þ
× Avðjb; jb; jb; jb; jf1 ; jb; jf2 ; jf1 ; jb; jf1 ; ib; i4; i2; i3; i1Þ; ð22Þ

and

A2FðBÞðjb; ib;KÞ ¼
XK
jf¼0

X
ie

Afðjf1ÞAfðjf2ÞAeði1ÞAeði2ÞAeði3ÞAeði4Þ

× Avðjb; jb; jb; jb; jb; jf1 ; jf1 ; jf2 ; jf1 ; jb; ib; i1; i2; i3; i4Þ
× Avðjb; jb; jb; jb; jb; jf1 ; jf1 ; jf2 ; jf1 ; jb; ib; i1; i3; i2; i4Þ: ð23Þ

Both amplitudes are convergent. With a fit with a 95% con-
fidence interval we find

A2FðAÞ

�
1

2
; 0;K

�
¼ ð3.481; 3.482Þ × 10−8

þ ð1.643; 2.689Þ × 10−10K−1

− ð6.924; 5.082Þ × 10−10K−2; ð24Þ
and

A2FðBÞ

�
1

2
; 0;K

�
¼ ð7.5237; 7.5243Þ × 10−8

þ ð7.584; 12.386Þ × 10−11K−1

− ð3.245; 2.400Þ × 10−10K−2; ð25Þ
and we compare them with the numerical values of the
amplitudes in Fig. 9.
Since these diagrams contain fewer faces than diagrams

in Fig. 3, we expect them to converge more rapidly, and the

plots showing the numerical results indeed suggest that this
is the case. In an attempt to quantify the rate of convergence
of these amplitudes, we amplify the divergence of the
amplitudes by replacing the face amplitude in (3) as

AfðjfÞ ¼ 2jf þ 1 → Aamp
f ðjfÞ ¼ ð2jf þ 1Þ4: ð26Þ

With this amplification, we find a linearly divergent
amplitude, suggesting that the original amplitude has a
degree of divergence of −5.

V. CONCLUSIONS

In the absence of a cosmological constant, spin foam
models are affected by infrared divergences. They are
associated with large volume divergences and originate
from the unbounded sums over the spin foam’s bulk
degrees of freedom.
Calculating the radiative corrections to the Lorentzian

EPRL spin foam propagator is necessary to study the
theory’s renormalization and explore the continuum limit.

FIG. 9. Plot of the numerical values of the EPRL amplitudes with boundary spins jb ¼ 1
2
, boundary intertwiners ib ¼ 0, and Immirzi

parameter γ ¼ 0.1. We plot with a blue band the corresponding fits. Left panel: spin foam diagram 2F(A) and fit (24). Right panel: spin
foam diagram 2F(B) and fit (25).
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Two-vertex diagrams provide the first contributions in a
vertex expansion. Previous studies focused on the “mel-
onic” self-energy diagram 6F(A), with numerical evidence
suggesting it diverges linearly with respect to the spin
cutoff [17,18], but there exist other diagrams with two
vertices that also need to be computed to include all
contributions at this order in the vertex expansion.
In this paper, we studied two-vertex diagrams with two

boundary edges, four boundary faces containing both
boundary edges, and whose propagators preserve the order
of the faces. We find eight additional diagrams that we
classify based on the number of internal faces.
We focus on the diagrams with four and two bulk faces

(see Figs. 3 and 8). These diagrams are expected to be
subdominant because they have fewer internal faces with
respect to the diagram 6F(A), and we find numerical
evidence that, in fact, the diagrams with four or two
internal faces appear to be convergent. We also point out
the existence of a second diagram with six internal faces 6F
(B), but leave the numerical calculation of this diagram for
future work since it requires computational resources we
currently do not have access to.
For simplicity, in the numerical calculations we fix the

boundary spins to 1
2
, the first nontrivial option. We consider

both possible boundary intertwiners (0 or 1) and we repeat
the calculations setting the Immirzi parameter to γ ¼ 0.1
and also γ ¼ 1 to minimize the dependence of our
calculation on the specific choice of boundary data. We
introduce a homogenous cutoff K on the summations over
the spins of the bulk faces, and we compute the EPRL
spin foam amplitudes using the sl2cfoam-next
framework as a function of K. For the diagrams with four
or two internal faces, all amplitudes are found to have a
degree of divergence (in K) smaller than the melonic self-
energy diagram, confirming expectations. Somewhat sur-
prisingly, these diagrams all appear to be convergent, with
numerics suggesting a degree of divergence of K−1 for
diagrams with four internal faces, and an even faster
convergence for diagrams with two internal faces. If this
is the case then within the class of diagrams we consider,
seven of the nine diagrams are finite (and of the two
remaining diagrams, both have six internal faces, and one is
known to diverge while the other has not been com-
puted yet).
This result may have some important ramifications for

renormalization. While we have only considered a certain
class of diagrams, the fact that many are finite provides
some encouragement in that the theory might be renorma-
lizable. On the other hand, there seems to be a rapid growth
in the number of diagrams, especially as the number of
vertices is increased. Whether the spin foam model is
renormalizable or not may hinge on which of these two
effects dominates—of course, it will be necessary to
consider diagrams with more vertices in order to answer
this question and we leave this task for future work.

Related to this point is the question of which spin foam
diagrams should be considered in a given calculation.
In this paper, we imposed some conditions that reduced
the number of diagrams that we considered, although it
may be necessary to relax these conditions (for more on this
point, see Appendix C). This question is closely related to
the symmetries of the spin foam model: what exactly are
the symmetries that should be imposed on a spin foam
model, and do they force certain contributions to vanish?
It may be fruitful to consider the questions of renorm-

alization and symmetries from the perspective of group
field theory, whose partition function can be expanded in
the usual way with the result giving a spin foam model
[28,29]. It may be easier to impose symmetries directly in
the group field theory action, and in turn this can be used to
determine exactly which diagrams will contribute, simply
by seeing whether they appear when calculating the
Feynman expansion for the partition function. A further
advantage is that this approach can also be used to calculate
symmetry factors for different spin foam diagrams, some-
thing which may not be quite as easy to determine from the
spin foam model on its own.
Finally, an important goal for future research would be to

find a simple formula giving the degree of divergence of
any diagram given its number of vertices, number of bulk
edges, and number of bulk faces (and perhaps other
relevant topological or combinatorial information); this
could be useful for example to determine which interaction
terms (in a group field theory language) are relevant/
irrelevant. Our work suggests a clear dependence of the
degree of divergence on the number of bulk faces, with
more internal faces producing a greater degree of diver-
gence. The melonic self-energy diagram appears to diverge
linearly and has six bulk faces, while diagrams with four
internal faces seem to have a degree of divergence K−1,
and diagrams with two internal faces converge even faster
still. Nevertheless, it is clearly important to compute a
wider range of diagrams to infer a general formula for the
EPRL degree of divergence; we leave this for future work.
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APPENDIX A: DETAILS OF THE LORENTZIAN EPRL VERTEX AMPLITUDE

We report here the detailed definition of the Lorentzian EPRL vertex amplitude.

Avðj1;j2;j3;j4;j5;j6;j7;j8;j9;j10;i1;i2;i3;i4;i5Þ¼
X∞
lf¼jf

X
ke

8>><
>>:
i1 j3 k4 j6 k2
j4 j10 j8 j5 j1
j7 k5 j9 k3 j2

9>>=
>>;
ð2k2þ1Þð2k3þ1Þð2k4þ1Þð2k5þ1Þ

×Bγ
4ðj5;j6;j7;j1;l5;l6;l7;j1;i2;k2ÞBγ

4ðj8;j9;j2;j5;l8;l9;j2;l5;i3;k3Þ
×Bγ

4ðj10;j3;j6;j8;l10;j3;l6;l8;i4;k4ÞBγ
4ðj4;j7;j9;j10;j4;l7;l9;l10;i5;k5Þ:

ðA1Þ
The SUð2Þ invariant is a f15jg symbol of the first kind and can be written in terms of Wigner’s f6jg symbols.

8>><
>>:

j1 j2 j3 j4 j5
l1 l2 l3 l4 l5
k1 k2 k3 k4 k5

9>>=
>>;

¼ ð−1Þ
P

5

i¼1
jiþliþki

X
x

ð2xþ 1Þ
�
j1 k1 x

k2 j2 l1

��
j2 k2 x

k3 j3 l2

�

×

�
j3 k3 x

k4 j4 l3

��
j4 k4 x

k5 j5 l4

��
j5 k5 x

j1 k1 l5

�
: ðA2Þ

The booster functions are a one dimensional integral over the rapidity r of the reduce matrix elements in the γ-simple unitary
representation of SLð2;CÞ.

Bγ
4ðj1; j2; j3; j4; l1; l2; l3; l4; i; kÞ ¼

X
pf

�
l1 l2 l3 l4
p1 p2 p3 p4

�ðkÞ�Z ∞

0

dr
1

4π
sinh2r ⊗

4

f¼1
d
γjf;jf
lfjfpf

ðrÞ
��

j1 j2 j3 j4
p1 p2 p3 p4

�ðiÞ
:

ðA3Þ
The expression for dγj;jjlmðrÞ was given in [25,31]

dðγj;jÞjlp ðrÞ¼ð−1Þj−l2 Γðjþ iγjþ1Þ
jΓðjþ iγjþ1Þj

Γðl− iγjþ1Þ
jΓðl− iγjþ1Þj

ffiffiffiffiffiffiffiffiffiffiffiffi
2jþ1

p ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1

p

ðjþ lþ1Þ!
�
ð2jÞ!ðlþjÞ!ðl−jÞ! ðlþpÞ!ðl−pÞ!

ðjþpÞ!ðj−pÞ!
�
1=2

e−ðj−iγjþpþ1Þr

×
X
s

ð−1Þse−2sr
s!ðl−j−sÞ!2F1½lþ1− iγj;jþpþ1þs;jþ lþ2;1−e−2r�: ðA4Þ

where 2F1 is the Gauss hypergeometric function.

APPENDIX B: TOPOLOGICAL BF SU(2) SPIN
FOAM THEORY

Calculations with the topological BF SU(2) spin foam
theory are straightforward analytically and numerically.
Therefore they provide a convenient test for the techniques
we use and the choice of parameters we make with the
EPRL theory.
The analytical calculation reduces to the integration of

group valued delta functions and the numerical calculations
can be comfortably done on a standard laptop using
optimized libraries to compute Wigner symbols [32,33].
The boundary data, the face, and the edge amplitudes

of this theory are the same as the EPRL spin foam
theory (3). The vertex amplitude is simpler and consists

of a SUð2Þ invariant Avðjf; ieÞ ¼ f15jg (A2). The theory
is affected by large spin divergences, and the renormaliza-
tion is well studied [13,34] and is related to residual
diffeomorphism gauge symmetry. We can rewrite the
amplitude (3) in a way that is more suitable for analytical
calculations. The amplitude can be cast in terms of
integrals (with the invariant measure) over a copy of
SUð2Þ for each edge of SUð2Þ irreducible representations
of spin jf for each face. Boundary edges are contracted
with 4-valent intertwiners. Bulk (closed) faces the SUð2Þ
character TrDðjfÞ of the product of all the group elements of
the edges composing the face gf. The sum over the
spin associated with the face jf can be performed
exactly
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X
jf

AfðjfÞTrDðjfÞðgfÞ ¼
X
jf

ð2jf þ 1ÞTrDðjfÞðgfÞ ¼ δðgfÞ;

ðB1Þ

in terms of the delta function over the group. The
group elements are usually interpreted as the SUð2Þ
holonomy providing the parallel transport between
reference frames associated to the spin foam edges. The
delta function on spin foam faces is forcing holonomy
around each bulk face to be trivial, as expected from a
topological theory. In this form, the calculation of the
amplitude reduces to integrating out delta functions.
Divergences of the amplitudes manifest as delta functions

evaluated at the identity. We regularize them with a
cutoff K.

δð1Þ ≈
XK
jf¼0

ð2jf þ 1ÞTrDðjfÞð1Þ ¼
XK
jf¼0

ð2jf þ 1Þ2

¼ 8

3
k3 þ 6k2 þ 13

3
kþ 1 ¼ OðK3Þ: ðB2Þ

We compute the degree of divergence analytically of four
diagrams in this paper 6F(A), 4F(A), 4F(C), and 4F(E).
The BF amplitude of the melonic self-energy diagram

6F(A) is

AðBFÞ
6FðAÞðjb; ib;KÞ ¼

X
m1m2m3m4

�
jb jb jb jb
m1 m2 m3 m4

�ib
�
jb jb jb jb
n1 n2 n3 n4

�ib

×
Z Y6

e¼1

dgeD
j1
m1n1ðg1g2g6ÞDj2

m2n2ðg1g3g6ÞDj3
m3n3ðg1g4g6ÞDj4

m4n4ðg1g5g6Þ

× δðg2g−13 Þδðg2g−14 Þδðg2g−15 Þδðg3g−14 Þδðg3g−15 Þδðg4g−15 Þ: ðB3Þ
Performing all the integrals one by one, and using the invariance of the intertwiners we get

AðBFÞ
6FðAÞðjb; ib;KÞ ¼ 1

2ib þ 1
δð1Þ3 ¼ OðK9Þ: ðB4Þ

The degree of divergence of the melonic self-energy diagram is 9.
Similarly we can look at the BF amplitude of the diagram 4F(A),

AðBFÞ
4FðAÞðjb; ib;KÞ ¼

X
m1m2m3m4

�
jb jb jb jb
m1 m2 m3 m4

�ib
�
jb jb jb jb
n1 n2 n3 n4

�ib

×
Z Y6

e¼1

dgeD
jb
m1n1ðg1g2g3g4g6ÞDjb

m2n2ðg1g2g3g4g6ÞDjb
m3n3ðg1g2g3g4g6ÞDjb

m4n4ðg1g2g3g4g6Þ

× δðg2Þδðg4Þδðg3g−15 Þδðg2g5g4g−15 Þ: ðB5Þ
The result of the integrals is

AðBFÞ
4FðAÞðjb; ib;KÞ ¼ 1

2ib þ 1
δð1Þ ¼ OðK3Þ: ðB6Þ

The degree of divergence of the diagram 4F(A) is 3. Notice that the divergence of this diagram is subdominant to the
melonic self-energy one.
In total analogy the BF amplitude of the diagram 4F(C) is

AðBFÞ
4FðCÞðjb; ib;KÞ ¼

X
m1m2m3m4

�
jb jb jb jb
m1 m2 m3 m4

�ib
�
jb jb jb jb
n1 n2 n3 n4

�ib

×
Z Y6

e¼1

dgeD
jb
m1n1ðg1g6ÞDjb

m2n2ðg1g3g5g−13 g6ÞDjb
m2n2ðg1g2g5g−14 g6ÞDjb

m2n2ðg1g2g−15 g−14 g6Þ

× δðg2g−13 Þδðg2g−14 Þδðg3g−14 Þδðg5Þ: ðB7Þ

The result of the integrals is
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AðBFÞ
4FðCÞðjb; ib;KÞ ¼ 1

2ib þ 1
δð1Þ ¼ OðK3Þ; ðB8Þ

so the degree of divergence of the diagram 4F(C) is 3.
Finally the BF amplitude of the diagram 4F(E) is

AðBFÞ
4FðDÞðjb; ib;KÞ ¼

X
m1m2m3m4

�
jb jb jb jb
m1 m2 m3 m4

�ib
�
jb jb jb jb
n1 n2 n3 n4

�ib

×
Z Y6

e¼1

dge

Z
Djb

m1n1ðg1g6ÞDjb
m2n2ðg1g2g6ÞDjb

m3n3ðg1g−12 g6ÞDjb
m4n4ðg1g3g4g5g−13 g6Þ

× δðg2Þδðg4Þδðg5Þδðg2g3g4g5g−14 g−15 g−13 Þ: ðB9Þ

The result of the integrals is

AðBFÞ
4FðDÞðjb; ib;KÞ ¼ 1

2ib þ 1
δð1Þ ¼ OðK3Þ: ðB10Þ

Giving once again a degree of divergence of 3 for the
diagram 4F(E).
We compare the analytic calculation of the degree of

divergence of the diagrams 4F(A), 4F(C), and 4F(E) with
the numerical estimation done using the same technique we

FIG. 10. Plot of the numerical values of the BF amplitude of the spin foam diagram 4F(A), 4F(C), and 4F(E) (left to right) with
boundary spins jb ¼ 1

2
(orange dots) and the corresponding fits (blue band). The leading order of the fits are

A4FðAÞð12 ; 0;KÞ ≈ ð2.657; 2.667Þk3, A4FðCÞð12 ; 0;KÞ ≈ ð2.666; 2.667Þk3, A4FðDÞð12 ; 0;KÞ ≈ ð2.666; 2.667Þk3. For all cases, it is compat-
ible with the analytical value of 8=3k3 of (B2).
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employ for the EPRL model. The computation is straight-
forward and can be done in seconds using the BF vertex of
sl2cfoam-next. We fix the homogeneous cutoff toK ⪅
10 as a prototype for the EPRL calculation. In all three
cases, we can fit the amplitudes with a cubic polynomial
(see Fig. 10), finding a perfect agreement with the analytic
calculations. Furthermore, it suggests that using a cutoff of
order 10 is not a limiting factor in our analysis.

APPENDIX C: OTHER DIAGRAMS WITH TWO
VERTICES

Here we present some diagrams with two vertices and
two boundary edges, but that are ruled out by (at least) one
of the other two conditions that (i) there are exactly four
boundary faces, and each boundary face contains both
boundary edges, and (ii) the propagators are trivial and
preserve the order of the faces. The examples we give here
are not exhaustive (there are many more diagrams besides
the ones we discuss here), and are only meant as a survey
of other possible contributions to the self-energy calcu-
lation. Whether these diagrams (and others) should be
included or not depends on the symmetries of the spin
foam model. We note that we imposed these conditions as
a simplifying assumption in order to reduce the number of
diagrams we consider as a first step. To calculate the full
self-energy of the propagator (to two vertices) it may be
necessary to include the diagrams that do not satisfy these
conditions.
These two conditions are quite different. The first

condition tracks the boundary faces through the spin foam

and requires that each boundary face traverse the diagram
and exit on the outgoing edge. Another way to understand
this condition is that it requires all boundary faces to
connect the initial and final boundary edges in the spin
foam. This condition is not guaranteed to be satisfied
because the boundary face could turn around and exit on
the ingoing edge. A diagram with this property (a face that
enters and leaves the diagram on the same edge) is only
possible if two faces of the edge have the same spin, for
example j1 ¼ j2. For this reason, this type of diagram can
only contribute to the self-energy calculation for specific
types of edge propagators, namely those with faces that
have at least one repeated spin. On the other hand, for an
edge whose four faces all have different spins, these
diagrams cannot contribute. Although it may seem unusual
to have diagrams that contribute for some choices of
boundary spins but not others (given the same boundary
graph), if all possible paths are to be summed over there
appear to be more paths possible in the presence of
symmetries in the spin labels of the propagator.
In Fig. 11, the diagrams (A) and (B) are two examples of

spin foams that violate condition (i). These two diagrams
fall into two subcategories: diagram (A) is disconnected,
while diagram (B) is connected. In diagram (A), the spin
foam is completely disconnected, and it could contribute to
the self-energy only for propagators where the four faces
can be paired up, in this case j1 ¼ j4 and j2 ¼ j3. In
contrast, diagram (B) is connected, and for this spin foam
only two of the faces of the propagator need to be paired up,
in this case j2 ¼ j3 (we highlight them in dark red and blue
in the picture).

(a)

(b)

(c) (d) (e)

FIG. 11. Some examples of spin foam diagrams we did not consider.
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As an aside, note that (either) half of diagram (A) may
be relevant for no-boundary calculations in cosmology,
where one wishes to calculate the transition from the “no-
geometry vacuum” state (with no quanta of geometry) to an
excited state corresponding to a cosmological space-time.
The second condition that the order of the faces in the

propagator is preserved ensures that there are no “twists” in
the internal propagators. We imposed this condition for
simplicity because it drastically reduces the number of
diagrams to consider. Taking the geometric perspective that
the propagator represents a quantum tetrahedron, a cyclic
permutation of three faces can be seen as a rotation, while
the interchange of two faces is a reflection (or a parity
transformation). Since there is no preferred background, it
may seem natural that rotations should be a symmetry of
the theory [35], although there exist arguments that parity
transformations should not be allowed [36,37]. Note that
any number of interchanges in the order of the faces
corresponds to either a rotation or a parity transformation:
an even number of interchanges of faces gives a rotation,
while an odd number is a parity transformation (perhaps
composed with a rotation).
Examples of these two possibilities are given in Fig. 11,

where diagram (C) contains one interchange of faces
corresponding to a parity transformation, while there is a
cyclic permutation of three faces in diagram (D) corre-
sponding to a rotation. Note that twisted diagrams will
often have fewer internal faces than similar spin foams
without any twists in the internal propagators. As a
technical aside, note that the edge’s intertwiner refers to
a specific recoupling choice, so under a rotation or parity
transformation it is important to track how the recoupling
scheme transforms.
Also, note that a propagator that completely reverses the

order of the faces from ðj1; j2; j3; j4Þ to ðj4; j3; j2; j1Þ can
obtained through rotations and simply corresponds to a
change in whether the propagator is being viewed from

“above” or from “below”; an example is given in diagram
(E) in Fig. 11. It may seem appropriate that this trans-
formation be allowed for propagators in spin foams, even if
other rotations and reflections are not.
Clearly, the spin foam diagrams that must be included in

the calculation depend on the symmetries of the spin foam
model. For example, the spin foam model derived from
colored group field theory has a very rigid combinatorics
(thereby ensuring a one-to-one correspondence between
any given spin foam diagram and the dual simplicial
complex) that does not allow any permutations in the faces
of the propagator [38]. As a result, the number of spin
foams that need to be computed (with a given number of
vertices) for any given boundary state will be much smaller
for colored group field theories, thereby significantly
simplifying the calculation. On the other hand, a model
that allows permutations of the faces in the propagators will
have many more diagrams contribute when calculating the
self-energy, and presumably also when calculating other
amplitudes as well.
To summarize, in this paper we imposed some conditions

on the self-energy diagrams we considered in order to
reduce the number of spin foams we need to calculate, as
otherwise there is a large number of diagrams that need to
be computed. We stress that these conditions are used only
to simplify the task for a first exploration of self-energy
diagrams beyond the melonic diagram shown in Fig. 6F(A)
(that has already been studied in some detail [16–19]).
Although determining the correct conditions to be imposed
on the self-energy diagrams will ultimately depend on the
symmetries of the theory (these symmetries could be
defined directly at the level of the spin foam model, or
instead in a group field theory from which one can derive
the spin foam expansion), it is possible that the conditions
imposed here may be too strict, in which case it would be
necessary to relax these conditions, depending on the
symmetries of the spin foam model.
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