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In the preceding paper of this series of articles we constructed the twisted geometry coherent states in all
dimensional loop quantum gravity and established their peakedness properties. In this paper we establish
the “Ehrenfest property” of these coherent states which are labeled by the twisted geometry parameters.
By this we mean that the expectation values of the polynomials of the elementary operators as well as the
operators which are not polynomial functions of the elementary operators, reproduce, to zeroth order in 7,
the values of the corresponding classical functions at the twisted geometry space point where the coherent

state is peaked.
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I. INTRODUCTION

In our companion paper [1], we constructed a new family
of coherent state in all dimensional loop quantum gravity
(LQG) and studied its basic properties. This new family of
coherent state, whose analog in (1 4 3)-dimensional SU(2)
LQG is proposed and studied in [2—6], is called the twisted
geometry coherent state since it is labeled by the twisted
geometry variables which parametrize the SO(D + 1)
holonomy-flux phase space of all dimensional LQG. As
we explained in [1], we consider the twisted geometry
coherent state in all dimensional LQG instead of the heat-
kernel coherent state which is frequently used in (1 + 3)-
dimensional SU(2) LQG [7-15], because the specific
studies of the heat-kernel coherent state in all dimensional
LQG are confronted with some technical problems.
Nevertheless, the twisted geometry coherent state in all
dimensional LQG takes a much simpler formulation than
the heat-kernel one [16], which ensures that its related
calculations only involve the familiar Gaussian summation
and the SO(D + 1) coherent intertwiner which has been
fully studied in [17,18]. Thus, if one can verify that the
twisted geometry coherent state in all dimensional LQG
possesses a well-behaved peakedness property and
“Ehrenfest property” in the SO(D + 1) holonomy-flux
phase space, then the twisted geometry coherent state
can be used to study many issues involving the semi-
classicality in all dimensional LQG, e.g., the effective
dynamics based on coherent state. In our companion paper
[1], we have shown that the twisted geometry coherent
states in all dimensional LQG provide an overcompleteness

*Corresponding author.
201731140005 @mail.bnu.edu.cn

2470-0010/2022/106(6)/066021(33)

066021-1

basis of the kinematic Hilbert space in which the edge-
simplicity constraint is solved, and the expectation values
of holonomy and flux operators with respect to the twisted
geometry coherent states coincide with the corresponding
classical values given by the labels of the coherent states,
up to some gauge degrees of freedom. Besides, the peaked-
ness of the wave functions of the twisted geometry coherent
state in holonomy, momentum, and phase space represen-
tations is studied and it is well controlled by a semiclassical
parameter which is proportional to 7.

The main result of the present article is that the Ehrenfest
property, to zeroth order, indeed holds for the twisted
geometry coherent states in all dimensional LQG. In other
words, the expectation values of polynomials of the
elementary operators as well as the operators which are
not polynomial functions of the elementary operators,
reproduce, to zeroth order in 7, the values of the corre-
sponding classical functions at the twisted geometry space
point where the coherent state is peaked. To achieve this
goal, we consider the monomials of the holonomy and flux
operators. By using the completeness relation of the twisted
geometry coherent state, the calculation of the monomials
of the holonomy and flux operators is converted into the
calculation of the matrix elements of the holonomy and flux
operators in the twisted geometry coherent state basis.
Then, the matrix elements of the holonomy and flux
operators in the twisted geometry coherent state basis
can be calculated by using the techniques developed in
the calculation of the overlap function of the twisted
geometry coherent state [1]. To complete this calculation,
the properties of the Clebsch-Gordan coefficients related to
the Perelomov type coherent state of SO(D + 1), as well
as the derivative of the overlap functions of the Perelomov
type coherent state of SO(D + 1), are studied as the key
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points. Besides, similar to that of the heat-kernel coherent
state in SU(2) LQG [11], the expectation values of non-
polynomial operators with respect to the twisted geometry
coherent state in all dimensional LQG will be studied by
reformulating it as the Hamburger moment problem.

This paper is organized as follows. In Sec. II, we will
review the kinematic structures of all dimensional LQG
and some basic properties of the twisted geometry coherent
state which are necessary for the studies in this article.
Beginning with the structure of classical phase spaces,
including the connection phase space and the holonomy-
flux phase space of all dimensional LQG, the twisted
geometry parametrization and the analysis of gauge degrees
of freedom with respect to the simplicity constraint will be
reviewed. Then, the quantum Hilbert space with its coher-
ent-intertwiner-spin-network basis and the elementary
operators in all dimensional LQG will be pointed out.
Besides, as key ingredients to construct the Ehrenfest
property of the twisted geometry coherent state, the
completeness relation of twisted geometry coherent states
and the overlap functions of both Perelomov type coherent
state and twisted geometry coherent state in all dimensional
LQG will be introduced explicitly. Based on this founda-
tion, we will construct the Ehrenfest property of the twisted
geometry coherent state explicitly in Sec. III. We will first
construct the Ehrenfest property for operator monomials by
proving that the matrix elements of the elementary oper-
ators with respect to the twisted geometry coherent state are
well evaluated by their corresponding expectation values,
and then construct it for nonpolynomial operators by using
the Hamburger theorem. Finally, a short conclusion will be
given in Sec. IV.

II. KINEMATIC STRUCTURE OF ALL
DIMENSIONAL LOOP QUANTUM GRAVITY

A. Classical phase space of all dimensional
loop quantum gravity

The (1 + D)-dimensional Lorentzian LQG is constructed
by canonically quantizing general relativity (GR) based on
the Yang-Mills phase space coordinatized by the conjugate
pair (A,;;, z°%) with the nonvanishing Poisson bracket
[19-21]

{Aars (). "5 (y)} = 26p5;5656%) (x = ), (1)

where the connection A,;; and its canonical conjugate
momentum 7°%L are so(D +1) valued fields on a
D-dimensional spatial manifold X. x and f represent the
gravitational constant and Babero-Immirze parameter
respectively. Here we use 7, J, K, ... for the internal vector
index in the definition representation space of SO(D + 1)
and a, b, c, ... for the spatial index. The dynamics of this
Hamiltonian system is governed by the Gaussian, simplic-
ity, vector, and scalar constraints, which read

g]] = aaﬂull + ZALIKEQ‘K‘J] ~ O, (2)
SablIIKL] — gallJ 7[bIKL] () (3)
C,~0, and C=0 “)

respectively. Based on the Poisson structure (1) of the
connection phase space, one can check that these con-
straints obey a first class constraint algebra. Furthermore,
one can also check that the Gauss constraint generates the
SO(D + 1) gauge transformation of this Yang-Mills gauge
theory, while the simplicity constraint restricts the degrees
of freedom of 7% to that of a D-frame E%/ which describes
the spatial geometry and generates some other gauge
transformations. In other words, one can solve the sim-
plicity constraint and get the solution 7%/ = 2nl! El*/] with
n'E§ =0, n'n; = 1 and E*/ being the densitized D-frame
which gives the spatial metric ¢, by g¢*> = E“ E}, where
q is the determinant of ¢, [19]. Besides, one can
reconstruct the densitized extrinsic curvature K,, =

qp. K, of the spatial manifold X by
- 1
K"~ Ky = 7 (Aary = Tary)z™ (5)

on the Gaussian and simplicity constraint surface, where
[, is purely constructed from z% and it is the spin
connection of E* exactly on the simplicity constraint
surface [19]. To clarify the gauge degrees of freedom
corresponding to simplicity, let us decompose K,;; :=

5(Aay = Tary) as
Kay = 20l K7+ Ky, (6)

where K% := ik il KX with 7] :== 5] —nyn’ and K%/n; = 0.
Based on Egs. (1) and (3), one can check that the
component 2nl K and 7%V Poisson commutes with
the simplicity constraint while K/ does not. Hence, the
simplicity constraint fixes both K,? and ¢, and it exactly
introduce extra gauge degrees of freedom represented by
K. The details of these discussions can be found in the
Ref. [19] and it is shown that, the standard symplectic
reduction procedures with respect to Gaussian and sim-
plicity constraint in the SO(D + 1) connection phase space
leads to the Arnowitt-Deser-Misner (ADM) [22] phase
space of (1 4+ D)-dimensional GR, with the coordinates
K" and g, of the ADM phase space are Dirac observables
with respect to Gaussian and simplicity constraints. It
should be emphasized that K%/ are pure gauge components
with respect to the simplicity constraint, which only
contributes gauge degrees of freedom in this SO(D + 1)
Yang-Mills theory. As we will show, the counterpart of K%/
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in the discrete phase of all dimensional LQG is a critical
point of the results of this paper.

Apart from the different gauge group which however is
compact and the additional simplicity constraint, the
SO(D + 1) connection formulation of (1 + D)-dimensional
GR is precisely the same as SU(2) connection formulation
of (1 + 3)-dimensional GR, and the quantization of the
SO(D + 1) connection formulation is therefore in complete
analogy with (1 4 3)-dimensional SU(2) LQG [23-27]. By
following any standard text on LQG such as [24,25], the
loop quantization of the SO(D + 1) connection formulation
of (1 + D)-dimensional GR leads to a kinematical Hilbert
space H [21], which can be regarded as a union of the Hilbert

spaces H, = L*((SO(D + 1))IE®)l du aI') on all possible
finite graphs y embedded in X, where E(y) denotes the set

composed by the independent edges of y and dﬂ‘lfa(ayr) | denotes

the product of the Haar measure on SO(D + 1). In this
sense, on each given y there is a discrete phase space
|

(T*SO(D + 1))IEW)I, which is coordinatized by the elemen-
tary discrete variables—holonomies and fluxes. The hol-
onomy of A,;; along an edge e € y is defined by

h,[A] :=Pexp (l A)
-1 +§;Al dt, AI" dzn_l.../)tz dnA(t).. Alt,),
(7)

where A1) = ¢ is the tangent vector field of e,
(71)dst. J]
K

7 is a basis of so(D + 1) given by 7= 25[](5L in
definition representation space of SO(D + 1), and P denot-
ing the path-ordered product. The flux FZ/ of 7!/ through
the (D-1)-dimensional face dual to edge e is defined by

2 e AaIJT

S U Gl R O P P OR) Q

where e* is the (D-1)-face traversed by e in the dual lattice of y,

p*(0):]0,1] = X is a path connecting the source point

s, € e to ¢ € S, such that p}():[0,3] — e and pi(c):[3. 1] — S,. Similarly, we can define the dimensionless flux X%/ as

’2

1
X == ot (# [ oo M @)a @ruhiio) ) ©
l
where a is an arbitrary but fixed constant with the — gI/KL — X[UXKL] ~0, Ve ey, s(e) = s(e') = v.
dimension of length. Since SO(D + 1) x so(D + 1) = v
T*SO(D + 1), this new discrete phase space (12)

X,e,(SO(D 4 1) x so(D + 1)),, called the phase space
of SO(D + 1) loop quantum gravity on the fixed graph 7, is
a direct product of SO(D + 1) cotangent bundles. Finally,
the complete phase space of the theory is given by taking
the union over the phase spaces of all possible graphs. In
the discrete phase space associated to y, the constraints are
expressed by the smeared variables. The discretized Gauss
constraint is given by

=) Xe— > hi'Xoho ~0. (10)
b(e)=v t(e)=v

The discretized simplicity constraints are separated as two
sets. The first one is the edge-simplicity constraint SY/K% ~
0 which takes the form [21,28]

SUKL = xUxKL 0, Veey (11)

and the second one is the vertex-simplicity constraint
SI/KL ~ 0 which is given by [21,28]

The symplectic structure of the discrete phase space can be
expressed by the Poisson algebra between the elementary
variables (h,, X%), which reads

Kk d
{heho} =0, {he. X/} = 8005 1dt( )|y
{XéJ,XKL}_(Seg = 1(5]KX£L +5JLX£K
—§IEXIK — 57K XIE). (13)

Then, by using this Poisson algebra, it is easy to verify that
G,~0 and S, %0 form a first class constraint system as

{Se.Se} o S..
{G,. S} S,

{Se, Sy} x S,
{G,.5,} x8,.

{G,,G,} xG,,
b(e) =v, (14)
where the algebras among G, ~0 are isomorphic to

the so(D + 1) algebra, and the ones involving S, ~0
weakly vanish. Especially, the algebras among the
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vertex-simplicity constraint are the problematic ones, with
the open anomalous brackets [29]

{Sy.ees Syeer} x anomaly terms (15)

where the “anomaly terms” are not proportional to any of
the existing constraints in the phase space.

In fact, a similar simplicity constraint is widely studied in
the 4-dimensional spin-foam theory [18,30-34]. In all
dimensional LQG, the treatment of this anomalous vertex
simplicity constraint in both quantum theory and classical
discrete theory is a critical problem. It has been shown that
the strong imposition of vertex simplicity constraint elim-
inates the physical degrees of freedom erroneously [35,36].
Thus, one needs to construct a new treatment of the
anomalous simplicity constraint and explain its geometric
meaning to ensure the correctness. The generalized twisted
geometric parametrization of the discrete phase space of
all dimensional LQG is such a scheme, which leads us to
solve the anomalous simplicity constraint and ensure the
physical degrees of freedom and gauge degrees of freedom
are separated correctly. As shown in Ref. [37], with the
Gaussian constraint, simplicity constraint, and the (D — 1)-
faces’ shape matching condition being imposed appropri-
ately, the generalized twisted geometric parameters
reproduce the Regge geometries on the D-dimensional
spatial manifold X correctly. Let us review the generalized
twisted geometric parametrization of the discrete phase
space in all dimensional LQG briefly as follows. Recall that
the discrete phase space associated to a given graph y is
denoted by x,e,T*SO(D + 1),. In this phase space, one
can first solve the edge-simplicity constraint equation and it
leads to the constraint surface defined by

Xeey T:SO(D+ l)e
= {(eo) (he, X,), ...) € Xoe, T*SO(D+1) | X4 x5 = 0},
(16)

To simplify the statements, one can first consider the edge-
simplicity constraint surface T SO(D + 1) for one copy of
the edge only. Then, the generalized twisted geometry
variables (V, V,E & ) can be introduced to reparametrize
the edge-simplicity constraint surface 7; SO(D + 1). These
generalized twisted geometry variables (V, V, &%, 7, &) and
their space

P=Qp xQp xT*S'xSOD-1) (17)

are constructed as follows. The bivector V or V with
fixed norm constitutes the space Qp_; :=SO(D + 1)/
(SO(2) x SO(D — 1)), where SO(2) x SO(D —1) is the
maximum subgroup of SO(D + 1) which preserves the

bivector 7, := 26[115;]. The real number # combining with

& € [—r, m) constitutes the space T*S'. Besides, ST = inis
an element of SO(D — 1) which preserves the bivector z,,,
with 7, being abasis of so(D — 1) andye{l,...,%}.
In order to capture the intrinsic curvature by these param-
eters, it is necessary to specify one pair of the SO(D + 1)
valued Hopf sections u(V) and it(V), which satisfy V =
u(V)z,u(V)™" and V = —ii(V)z,it(V)~'. Then, the gener-
alized twisted geometry parametrization for one copy of the
edge can be established by the map

_ . 1 1
P> (V.V.&n &) (h,X)€T:SOD+1): X ==-nV =—nu(V)r,u(V)™",

It is easy to check that, the two points (V, V, &, 5, &) and
(=V, -V, =&, -, .f”) in P are mapped to the same point
(h,X) € T:SO(D + 1) by the map (18), where % =
=213 657271 and 7,3 = 6./ 55. Thus, the map (18) gives
a two-to-one double covering of the image. A more detailed
study shows that [37] a bijection map can be constructed in
the region |X| # 0 by selecting either branch among the
two-to-one double covering (18). Moreover, the new
parameters also simplify the Poisson structures of the
discrete phase space. For instance, the nonvanishing
Poisson bracket between £° and # can be given by

2
{&"ny = 5. (19)

2 2
h=u(V)ed e (V). (18)

|

with £° and 7 representing a portion of the degrees of
freedom of extrinsic and intrinsic geometry respectively.
Now we can get back to the discrete phase space of all
dimensional LQG on the whole graph y, which is just the
Cartesian product of the discrete phase space on each single
edge of y. Then, the twisted geometry parametrization of
the discrete phase space on one copy of the edge can be
generalized to that of the whole graph y directly. Further-
more, the twisted geometry parameters (V,V, &, n) take
the interpretation of the discrete geometry describing the
dual lattice of y, which can be explained explicitly as
follows. We first note that 11V, and 15,V, represent the
area-weighted outward normal bivectors of the (D — 1)-
face dual to e in the perspective of source and target points
of e respectively, with %ne being the dimensionless area of
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the (D — 1)-face dual to e. Then, the holonomy 4, =
u,(V,)eTnesm g (V,) takes the interpretation that it
rotates the inward normal —%ne V, of the (D-1)-face dual
to e in the perspective of the target point of e, into the
outward normal %ne V, of the (D-1)-face dual to e in the
perspective of the source point of e, wherein u,(V,) and
it,(V,) capture the contribution of intrinsic curvature, and
%% captures the contribution of extrinsic curvature to this

rotation. Moreover, oS represents some redundant de-
grees of freedom for reconstructing the discrete geometry.
Finally, with the Gaussian and vertex simplicity constraint
being imposed at the vertices of y, one can get the closed
twisted geometry which describes the D-polytopes and
their gluing method in the dual lattice of y [6,37,38].

The discrete geometric interpretation of the twisted
geometry parametrization points out a proper treatment
of the anomalous vertex simplicity constraint in the discrete
phase space of all dimensional LQG. It has been shown
that, by considering some kinds of the continuum limit, one
can establish the relation between the constraint surface
defined by both of the edge simplicity and anomalous
vertex simplicity constraints (CSEVSC) in the discrete
phase space and the constraint surface defined by the
nonanomalous simplicity constraint (CSNASC) in the
connection phase space. Especially, on these two constraint
surfaces, the gauge transformation induced by the edge
simplicity constraint corresponds to that induced by the
nonanomalous simplicity constraint exactly in the con-
tinuum limit, which can be illustrated as

- continuum limit -
§g|CSEVSC — Ku[J|CSNASC (20)

where & and K, capture the pure gauge degrees of
freedom with respect to the simplicity constraint in hol-
onomy /4, and connection A,;; respectively. In summary,
the implementation of the Gaussian and anomalous sim-
plicity constraints in discrete phase space contains two
steps: (i) execute the symplectic reduction with respect to
edge simplicity constraint and Gaussian constraint;
(i1) solve the vertex simplicity constraint equation to get
the constraint surface. As we mentioned before, the
resulting space is parametrized by the so-called constrained
twisted geometry space, which covers the degrees of
freedom of internal and external Regge geometry on the
D-dimensional spatial manifold X, with the twisted geom-
etry parameters being endowed with certain geometric
interpretations in Regge geometry [37].

B. Spin network basis of the kinematic Hilbert space
in all dimensional loop quantum gravity

The Hilbert space H of all dimensional LQG is given by
the completion of the space of cylindrical functions on the
quantum configuration space, which can be decomposed
into the sectors—the Hilbert spaces constructed on graphs.

For a given graph y with |E(y)| edges, the related Hilbert
space is given by M, = L*((SO(D + 1) EOL gulEh),
This Hilbert space associates to the classical phase space
X,e,T*SO(D + 1), aforementioned. A basis of this space is
given by the spin-network functions which are labeled
by (i) an SO(D + 1) representation A assigned to each
edge, and (ii) an intertwiner i, assigned to each vertex v.

Each basis state ¥ z:(h.), as a wave function on
X,e,80(D + 1),, is then given by

¥ (h(A) = @i, > @ma (h(4)),  (21)

vey ecy
where h(A) = (..., h,(A)....), A=(....A,....), e€7,
7::(...,1’0,...), v €y, mp (h,) denotes the matrix of
holonomy £, associated to edge e in the representation
labeled by A,, and > denotes the contraction of the
representation matrixes of holonomies with the inter-

twiners. Hence, the wave function ¥ 7 :(h(A)) is simply

the product of the functions given by specified components
of the holonomy matrices, selected by the intertwiners at
the vertices. The action of the elementary operators—
holonomy operator and flux operator—on the spin-network
functions can be given as

he(A) o ¥, 5 :(h(A)) = ho(A)¥, 5 :(h(A)),

FJ oW ;+(h(A)) = —ihcpRYY, ;:(h(A)),  (22)
with RY := tr(("/h,)" 5-) being the right invariant vector
fields on SO(D + 1) associated to the edge e, and T
denoting the transposition of the matrix. Then, the other
operators in all dimensional LQG, such as spatial geometric
operators and Hamiltonian operator, can be constructed
based on these elementary operators [39-41].

In order to obtain the kinematic physical Hilbert space,
one needs to solve the kinematic constraints, including
Gaussian constraint, edge-simplicity constraint, and vertex
simplicity constraint in . Following the results given in
Sec. I A, the Gaussian constraint and edge-simplicity
constraint are imposed strongly. The resulting space is
spanned by the edge-simple and gauge invariant spin-
network states, whose edges are labeled by the simple
representations of SO(D + 1) and vertices are labeled by
the gauge invariant intertwiners. Besides, the anomalous
vertex simplicity constraints are imposed weakly and the
corresponding weak solutions are given by the spin-
network states whose vertices are labeled by the simple
coherent intertwiners [42]. A typical spin-network state
whose vertices are labeled by the gauge invariant simple
coherent intertwiners can be given as

¥ 5z (h(A) = tr(@ce, 7y, (h(A)) ®ue, T3)  (23)
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where 7y (h,(A)) denotes the representation matrix of
h.(A) with N, a non-negative integer labeling a simple
representation of SO(D + 1), and 7 s.c. 1s defined by 7 o IS
(..., %%, ...) with Z3° being the so-called gauge invariant
simple coherent intertwiner labeling the vertex v € y.

C. Perelomov type coherent state of SO(D +1)
and coherent intertwiner

In order to give the details of the construction of simple
coherent intertwiners, we must first introduce some con-
cepts of the simple representation of SO(D + 1) and the
homogeneous harmonic functions on the D-sphere. The
homogeneous harmonic functions with degree N on the
D-sphere (SP) compose a space $, ; with dimensionality

dim($}.,) = dim(zy)

(D+N-2)I{2N+D—1)
- (D—1)IN! - (24

and H 1 1s arealization of the simple representation space
of SO(D + 1) labeled by N. Introduce a subgroup series
SO(D+1)>SO0(D)>80(D—1)>...2>850(2)s with
172
SO(2) 41, being the one-parameter subgroup of SO(D + 1)
172

generated by 7, := 25[1159. Then, an orthogonal and nor-
malized basis of the space £ 41 can be given as

Egiv{(x”M :=MlaM2a -'-’MD—ls
NZM] ZMZ > ... > |MD_1|,x (S SD}
(25)

or equivalently, in Dirac bracket notation can be denoted
by |N,M>, where M := MI’M25 ""MD—I WlthN Z Ml Z
M2 > ... > |MD—1|3 and N,M], "'MD—Z S N, MD—I eZ.

The labels N, M of the function EDivf (x) is interpreted

such that Egiv{(x) belongs to the series of subspaces

9y c . cHy CHY,
irreducible simple representation spaces labeled by
Mp_q1,....My,M;,N of the series of subgroups
SO(z)é[llgé] CcSO33)c...cSO(D)c SO(D + 1) respec-

tively [43]. With this convention, the orthogonal and
normalized property of this basis can be expressed as

which are the

VMV M) = [ aEEEN @) = v (26

with 6y = 1 if M = M’ and zero otherwise, where dx is
the normalized invariant measure on S”. An element
g€ SO(D+1) acts on a spherical harmonic function
f(x) on D-sphere as

go flx)=flg"ox), (27)

where g o x denotes the action of g € SO(D + 1) on the

point x € S? by its definition. Correspondingly, the basis
{1} of so(D + 1), defined by (z;,)% = 26/55 in the
definition representation space of SO(D + 1), are operators

in HY 1 and they act on the spherical harmonic function as

d
tyo fl) = L o) (28)
This action also gives a representation of the Lie algebra

[Tu, TKL] = 01175k + 0ykTiL — O1kTir — OyLTik- (29)

The general scheme of the construction of Perelomov type
coherent state for compact Lie algebra is introduced in
Ref. [44]. For the case of SO(D + 1) involved in this article,
letus consider the state [N, N) € $7Y ; which corresponds to
the highest weight vector with N = M|, _ ), _. Then,
the Perelomov type coherent states in £ 41 can be defined
by [17]

IN.V) := u(V)|N,N). (30)

Equivalently, the Perelomov type coherent state |N, V) can
also be defined by

IN.V) = u(=V)|N.N), (31)

wherein the state |[N, N) € 55% .1 corresponds to the lowest
weight vector with N=M|y, _ _, _ny __y. It has
been proved that the Perelomov type coherent state |N, V)
of SO(D + 1) processes well-peakedness properties for
the operators 7;; [17], i.e. minimizes the uncertainty of
the expectation value (N, V|r;;|N,V)=1iNV,; and the
Heisenberg uncertainty relation of the operators 7;;: the
inequality

|<[TIJsTKL]>|2 (32)

Bl —

(A<TIJ>)2(A<TKL>)2 >

is saturated for the Perelomov type coherent state [N, V),
where we used the shorthand () = (N, V|6|N,V) and

A A

A(0) = \/(0%) — (0)>. The family of Perelomov type
coherent states {|N, V)} also composes an over-complete
basis of $7 ., which reads

dim($Y,,) /Q dVIN.VYN.V|=Tgy . (33)

where fQD—l dV =1 with dV being the invariant measure
on Qp_; induced by the Haar measure on SO(D + 1).
One can also check the nonorthogonal property of this type
of coherent state, that is, the coherent states |N, V) and
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|N, V') with V # V' are not mutually orthogonal unless
(Vz,,, V&7 ] = 0. This means that we have

0<|(N.VIN. V)| <1 (34)

with (N,V|N,V') =1 if V=V, (N,VIN,V') =0 if
[VUz,, VK7 ] =0 and V # V'. Moreover, it is worth
introducing is the matrix element (N, V|z;;|N, V') of the
operator 7;; in the Perelomov type coherent state basis.

Let us take VAL = 25155 without loss of generality, then

we have
(N, V|r5|N, V'Y =iN(N,VIN, V'), (35)
(N, V|t ;IN, V') =0, forl,J#1,2, (36)
(N, V]t |N, V') = N{1, V|t |1, V)(N = 1,VIN = 1, V'),

for I € {1,2} and J # 1,2, (37)

where (1, V|z;,|1,V') =0 if V=V’ with I € {1,2} and
J#1, 2. We are interested in the derivatives of
(1, ) with 7 € {1,2} and J # 1, 2, which can
be evaluated by

0 < {1, "N <1, forK,Le{l,...D+1},
Ie{l,2} and J # 1,2.
(38)

Thus, we can conclude that (1, V|z;,;|1, V') with I € {1,2}
and J # 1, 2 as functions of V on Qp_; vanish at V =V’
and the growth of their modules are restricted by their
derivatives evaluated by Eq. (38) as V being transformed
by e'xt € SO(D + 1).

Now let us introduce the details of the coherent intertwiner
constructed by the Perelomov type coherent state of
SO(D + 1) at a vertex v € y. Without loss of generality,
we reorient the edges linked to v to be outgoing at v iny. With
this setting, the gauge fixed coherent intertwiners, as ele-

ments of the tensor product space HYe = Qp(e)=p OVPT,
are defined as fi(ﬁ \7) = ®e:p(e)=(Nes Vels
HNeP+1 s the dual space of homogeneous harmonic
functions with degree N, on the D-sphere and |N,, V,) =
u(V,)|N,,N,) with u(V,) being a specific SO(D + 1)
valued function of V, satisfying V, = u(V,)z,u(V,)™".
Then, the gauge invariant coherent intertwiners Z¢ can be
defined as the group averaging of 7%, which means
I%(N, V) = [so(p11) 49 ®e:p(e)=v (Ne» Velg. Specifically,

the so-called simple coherent 1ntenwiners 75 (or Z8% in

where

gauge invariant case) are defined by requiring VLI ! f,L] =0
withb(e) = b(e’) = vintheir definitions. It has been proved

that the expectation value of the vertex simplicity constraint
operator vanishes with respect to the simple coherent
intertwiners, hence they weakly solve the vertex simplicity
constraint [42]. Besides, it has been shown that the gauge
invariant simple coherent intertwiners can be regarded as
quantum D-polytopes in all dimensional LQG [40], hence it
is reasonable to weakly solve the anomalous vertex simplic-
ity constraint.

D. Generalized twisted geometry coherent states
in all dimensional loop quantum gravity

1. Construction of the coherent states

As mentioned before, the generalized twisted geometry
coherent state is considered in all dimensional LQG,
instead of the heat-kernel coherent state which is frequently
used in (1 4 3)-dimensional SU(2) LQG, since the specific
studies of heat-kernel coherent state in all dimensional
LQG are confronted with some technical problems. Indeed,
the construction of generalized twisted geometry coherent
states in all dimensional loop quantum gravity is inspired
by the analysis of the heat-kernel coherent state of
SO(D+1). The heat-kernel coherent state of SO(D + 1)
is obtained by the analytic continuation of the solution of
the heat equation on SO(D + 1), which reads

2 (hHY),  (39)

= Z dim(zy)e™
A

where ¢ is the time in the heat equation, 2 € SO(D + 1),
HeSO(D+1)c=T*SO(D+1) with SO(D + 1) being
the complexification SO(D + 1), and y™ (hH™') is the
trace of hH~! in the representation z,. The heat-kernel
coherent states in the Hilbert space H, of all dimensional
LQG are given as the product of heat-kernel coherent states
associated to each edge e € y, with the heat-kernel time
t= D r. Since the appearance of the simplicity constraint
in all dimensional LQG, to simplify the analysis of the
properties of the heat-kernel coherent state, one can restrict
the representations of holonomies to be the simple ones to
vanish the edge simplicity constraint, and the labeling H of
heat-kernel coherent states can be restricted to be H°
which takes values in the edge-simple constraint surface
SO(D+ 1)g 2 T;SO(D + 1). This procedures give the
simple heat-kernel coherent states of SO(D + 1) as

Z dim(x

where 7y denotes the simple representation of SO(D + 1)
labeled by the non-negative integer N.

The analysis of this simple heat-kernel coherent state
follows a decomposition of the element H° € T;SO(D+1).
Following the polar decomposition of SO(D + 1)¢, an
element H° € SO(D + 1){. can be rewritten as

h Ho N(N+D—- 1>Z (hHo_l), (40)
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H’ = gexp (in7,)7", (41)

where 7 is a positive real number, g and § are two
independent SO(D + 1) group elements. Further, let us
choose and fix two Hopf sections u(V):V > u(V) e
SO(D+1) and @(V):V+ (V) € SO(D + 1). Then,
an arbitrary element g € SO(D+1) or g€ SO(D + 1)
can be uniquely decomposed as

g=u(V)ery or g=u(V)erj (42)

with an angle ¢ or ¢, an element § or § of SO(D-1)
preserving 7, and an unit bivector V. € Q,_; or V € Qp_,
satisfying V = u(V)r,u™' (V) or V= —a(V)r, i " (V).
Based on these expressions, H? is finally decomposed as

H® = u(V)e?™gexp (inz,)e %5~ u! (V)

= u(V)gg " exp (zz,)i" (V), (43)

where z=(¢—¢)+in=£"+in, g.jeSO(D-1),
u(V), (V) € Qp_,. It is easy to see that this decomposi-
tion recovers the twisted geometry parametrization of
T:SO(D +1) by (1,V,V, &, &) introduced in Sec. II,
with §g~! = e¢%. Making use of this decomposition, one
can consider the large 7, limit of the SO(D + 1) heat-
kernel coherent state K,(h,, H?) constructed for a given
edge e € y. Let us focus on the curious cases with 77, > 1.
In this case, by choosing a proper basis, the matrix of
exp (—z,7,) appearing in the decomposition of H¢~! can be
simplified as

<Nev Ml exXp <_Ze70)|Nev M/>

= 5%, e_iZeMU—]

= Oyp exp (eN,) (Om, e 7N + O(e7)),  (44)

where N, =M|,, _ _y, _y. Hence,

. we get the
approximation

D INe, M)(N,, M| exp (—z.7,)|N, M) (N, M|
MM
s elleNe g=iEN,

N N (N, N, (45)

Now let us insert Eq. (45) into H9~!. Notice that §,; ' fixes
IN..N,) as 3,3.'|N,,N,) = |[N,,N,). Then we have

largen, 3

K(he, HY) "=" Py (h,)
_ Z dim(ﬂN)e—tNg(Ng-&-D—l)
Nc

x eTEN(N , Nug' h,ite|N,, N),  (46)

where we define H? := (n,,&2,V,,V,). In fact, the state
‘i’Hg (h,) is just the superposition type coherent state on an
edge e in all dimensional LQG [16]. It has been shown that
the superposition type coherent state ‘i’%[ﬁ]o on the graph y in

all dimensional LQG provides a resolution of identity of the
space H, if the range of labeling 7, is extended to be R,
with H; being the space spanned by the spin-network
functions constructed on y and labeled by simple repre-
sentations on their edges. Additionally, the peakedness
property of this coherent state is studied based on the
simplest one loop graph [16]. However, one finds that only
a fraction of the superposition type coherent states in the
overcomplete basis of H; have well-behaved peakedness
property, which leads that this type of coherent states is not
applied in many specific calculations. Hence, an improve-
ment on the construction of the coherent state based on
twisted geometry parametrization is desired.

In fact, the superposition type coherent state is given by
selecting the terms corresponding to the highest weight
vector of representation of SO(D + 1) in the simple heat-
kernel coherent state. These terms give the superpositions
over quantum numbers and holonomy matrix element
selected by the Perelomov type coherent state of
SO(D + 1). Inspired by the twisted geometric coherent
state in the (1 + 3)-dimensional SU(2) LQG [5], we
propose the generalized twisted geometry coherent states
in all dimensional LQG, which contains the terms corre-
sponding to both the highest and lowest weight vector of
representation of SO(D + 1) in the simple heat-kernel
coherent state. This generalized twisted geometry coherent
state in all dimensional LQG was introduced in our
companion paper [1] first, which is given by

lpyﬁf (Ee) = H(PIH]’; (he) (47)

with
Wy (h,) = (dim(zy ))*/2e~NeWNetD=1)
Ne
x (e E)NATY (N, N|uz'h,ii,|N,, N)
+ A WNAP (N Nz h, i, |N,, N)).
(48)

This coherent state associated to edge e can also be
reformulated as
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o ne)2+12(D-1)2 e 2
By (h,) = Y (dim(zy, ) 2e™ 5 (exp(—t(Zt—dNe> ) e (N, NJug hiie|N o, N)

N?
2 ) —_ -
+ exp <—t (% + dNe) >elifeng <Nev N|u;1heﬁe|Ne» N>> (49)
|
where dy = (N, +27), H? = (V,, V,.£2,n,) are the  identity in H;. Nevertheless, the terms corresponding to

twisted geometry parameters Ne represents the module of
the dimensionless flux X ,, and t = ,, r. It is easy to see that
the first term in the right-hand s1de of Eq. (48) is identical
with the right-hand side of Eq. (46) up to some prefactors,
and the second term in the right-hand side of Eq. (48)
vanishes in the large 7, limit; see more details in [1].

2. Resolution of the identity

The system of the twisted geometry coherent state spans
an overcomplete basis of the solution space of the edge
simplicity constraint. Denoted by H;, the space is composed
by the spin-network functions constructed on y and labeled
by simple representations on their edges. Then, the system
of the generalized twisted geometry coherent state provides
a resolution of the identity in 7, which reads

Ty = / , dH? o o) (¥, el (50)

wherein P, := (R, x §' x Qp_; x Qp_;), is the space of

the twisted geometry parameters H?, and the measure dH°
is defined by

Hdu dueH ‘50, (51)

Ho H dr]e e
eey Vv Zﬂt ecy ecy
where dpn, is the Lebesgue measure on R, d&9 is the
measure on S', and du, or dit, is the measure on Qp,_;. We
are also interested in the Hilbert space H} spanned by the
spin-network functions constructed on a single edge e and
labeled by simple representations. The twisted geometry
coherent state associated to edge e also provides an

overcomplete basis of H{, which reads
i = [ b (. (52)

wherein the measure dH? is defined by

dn, mz( 12 _ degs
dHY = e =z du,di,—. 53
2nt ‘2 (53)

Though the terms corresponding to lowest weights in the
twisted geometry coherent states (47) are exponentially
suppressed, they still play a key role in the resolution of the

lowest weights in the twisted geometry coherent states (47)
will be neglected in the following analysis of this paper,
since they always contribute exponentially suppressed
small terms to the results in our discussion.

3. The overlap function of the coherent states
Notice that the twisted geometry coherent state ¥ , e On
v is the product of the twisted geometry coherent state
‘PH(; (h,) on each edge e € y. Thus the overlap function for

‘I’%[;ﬂg can be given by

. L (P, o, )
i'((r. HY). (v, HY)) =
II‘I‘yHoII2 II‘PyHmII2
_Hl |]_|]() H/U (54)
eEgy
with
| (B[P0 2

i (2, 2) =

R W (55)
[P 1P 17

being the overlap function for the coherent state ‘i‘Hg (h,) on
an edge e, where

v

2
¥, )

¥, oI = (P, (56)
and

”li,[l-ﬂﬁ 2

= ‘(‘i,ﬂ-ﬂi |lil[H]’§> 2

(57)

are the module squares of ‘i’y’ﬂ:’ﬂo and ‘i‘Hg (h,), respectively.
In the following calculations and analysis, we will only
consider i(H?, H?) without loss of generality to simplify
our expressions.

We first find that

o largen, T

£y
x (1 + o<e—%) + o(ﬂi» (58)

with P(N) = dim(zy) is a polynomial of N. Notice that

(N,,V'IN,,V,) =0 or (N,,=V,|N,,=V.) =0 leads to

e

066021-9



GAOPING LONG PHYS. REV. D 106, 066021 (2022)

(‘i‘Hg ‘i‘wg> = 0. Hence, we only consider the case of  (N,,V.LIN,,V,) = exp (=N,O(u,,u,))eNeoliec) (60)
(N,,VLIN,,V,) #0 and (N,,—V,IN,,—=V.)#0 in the
following part of this paper. Then, we have (N,, =V, IN,,=V.) = exp (=N ,0O(ii,, it,)) eiNe#lie k)
2401, )2 +2:2(D-1)2
<liIIH](J \VPH_I]/U> _w (61)
_ 6‘ 2 Brl(ge—- 5/(’)Z(dim(ﬂNe))2 where @(uw u/e) = _w >0, @(a I:'t/) =
Ne - = e
e > 2 — MW= RNeVell > 0 with ©(u,. 1) = 0, O(7,. i) = 0
X €Xp (_t<5_dNe> - (2__dN ) ) for V,=V.,, V,=V, respectlvely, and eiNeo(uete) =
P <N€~V£'|vave> iNEIﬂ(ITtL,.IZ(,). <N V |N >
VG829l 05 ) exp(—N,B),) -+ o) [WHYdr e o) ith @ (ite o) =0,
TVt o(it,. i) =0 for V, = V,, V, = V', respectively. In order
(59) to study Eq. (59), the cases of ®, <1, +17, and ©, ~ 11, + 1,
~ or®, >, +1, are considered respectively.
for large #,, where @O, = O(u,, u,) + O(it,, it,) and we (i) For the case of ®, < 5, + 1, the overlap function is
used the invention expressed as
|
lUP 0 ‘i’ u4d 2
(b, brg) o= Lo L
¥ |12 |
p AR - 0 0 ~
(fPoly(nT % /7)) e‘2’<”e ey +4I(Z_i_z_§_%)ze_2(g__%> . exp( (5 z.::,e + ¢e)2>
(P(3))*(B(%))? 42

(1o

for large 77, and ©, < 5, + 1, where fpoly(” e S

S~
|~
N

+ (’)(e_?)> (62)

I@’
@x

< which satisfies

e e O _ (w(m e .\ !
fP01y< e t)_<P<4z+4t_4t)> <1+O<’7/e>> (63)

for large 7, and ®, < 17, + 7,. Then one can conclude the peakedness property of the overlap function in the case of
©, < 1, + 1. For the overlap function i'(HZ, H'¢) given by Eq. (62), one first finds that it is sharply peaked at
©, = 0 by the factor ¢~25-"798: Notice that #., = 0if ®, = 0 by their definition, one can further conclude that the
overlap function i(H?,H'9) is sharply peaked at £ = &9 and 5, =17, by the factors exp(— W) and
e Gty ety respectively.
(ii) For the case of ®, ~#, + 7, or ®, > 1, + 1., the overlap function is expressed as

<) is a polynomial of the three variables '77 e S

o o 5
it(ﬂ_ﬂ() H/()) = ‘<‘{’H$ lPH“e’>
ertle oI, |12
(¥ 117y |

9 i ! t(le _ne g\ 2
(ﬁ(f’“" PG 4 f(nesn) e ) 4 (P + 3;))26—7%—2»26—[@1@”)

S P(1e\)2 (P (1e))2 (64)
(P(3))*(P(3)
|
for large n,, where f(n,,n.) = [n./4t] exp(—t(% - exponentially by the factors e HEPHE?) o)
T — %)2)@( 1¢))2. Note that we considered ©, ~ and ¢~ in Eq. (64).
Ne + 1. or ©, > n, + 1, here; it is obviously that Finally, let us combine the analysis of the overlap

the overlap function i(Hg,H,?) is suppressed  function i'(H2, H[) given by Egs. (62) and (64); one
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can conclude the peakedness property that the overlap
function i'(H9, HY) is sharply peaked at &% = £, n, = 1.,
and V, =V, V, =V, for large 1.

III. EHRENFEST PROPERTY OF TWISTED
GEOMETRY COHERENT STATE

To establish the “Ehrenfest property” of the twisted
geometry coherent states, one needs to consider the expect-
ation value of all elementary quantum operators in all
dimensional LQG. In fact, for a given graph y and
corresponding Hilbert space H;, every polynomial of the
elementary operators {ize, X }eey can be reduced to sums
of monomials of the form

0, =1]o.. (65)

ecy

where the operator O, defined on H; is a certain poly-
nomial of the elementary operators fze, X on the edge e.
The expectation value of Oy with respect to the twisted
geometry coherent states (47) is given by

(¥, 10,1, )

o -1l

egy

<li'Hg | Oe |‘i’H3>
([P 12

s

As discussed in [11], it is shown that in order to establish
the Ehrenfest property it will be completely sufficient to
consider this problem for one copy of the edge only. In the
following part of this paper, we will concentrate on the
issues on a single edge e.

A. Expectation values of operator monomials

To establish the Ehrenfest property of the twisted
geometry coherent state for operator monomials, one needs
to calculate the expectation values of operator monomials
with respect to the twisted geometry coherent state. In this
subsection we will reduce the computation of expectation
values of operator monomials to the computation of matrix
elements of elementary operators between the twisted
geometry coherent states. Recall the completeness relation
(52), which reads

i = [ bz (. (67

Let us consider an operator monomial Oe = Oe.l...ém
where each of the (’\)e,k, k=1,...,
the elementary operators fze, X! Then, by using (52), we
can write the expectation value of Oe as

n < oo represents one of

<‘i’Hg | Oe |‘i’n-ug>
[[Wheo |2

1
[Py 2/13, o P

R | (L 2y

k=1

- [ e [ e, ([T, 2)

(P |0 |‘PHg_k>>

X (H e k—1
P, Yo,

where we have set H7 , = HZ , = HZ. Notice that the quantity

(68)

<‘iJHg
[Re™

iy )

1t [H]D’[H]/D = =
JH(Hg, H'E) [P0

(69)

is exponentially small in the sense of a Gaussian needle of
width /7 unless H? = H!° (where it equals unity). Thus, it
is conceivable that

<‘IUIU_|](I
(3o

ek—1

<‘PH?/{ Oe,k|lp[|-|]‘g"k> .t(l]'l]o He )
v v J J—15 e i)
||‘Pu-ngk Hq’u-u;k ‘ “

‘Oe,k|lpﬂ-l]‘e"k> -
1%,

(70)

By substituting Eq. (70) into Eq. (68), we would have
indeed shown that

<‘ijﬂ-ﬂ‘e’ Oe|‘vP[H]‘;> ~
[Py 2

. <li‘ﬂ-[lg‘ Oe,k|lij|]-ﬂ;’>
o el

(71)

Thus, in order to prove the desired result (71) it is sufficient
to prove (70) together with the precise meaning of “x”. In
the following parts of this section, we will calculate and
discuss the matrix elements of the elementary holonomy
and flux operators in the twisted geometry coherent state
basis, to gives a reliable proof of (70).

B. Matrix elements of the elementary operators

Since the expectation values of holonomy and flux
operators with respect to twisted geometry coherent states
are well evaluated by their corresponding classical values
up to O(¢) [1], we can prove (70) by showing that

lvPoOelvP/o ‘i‘oli’/v
g O ¥os) _ ey ool
[[Pr |1 Wsae [[Pr [ ¥sae
o [Py
IR Kk ™)
||\P[H]/0 lPIH]()

with O, representing holonomy operator or flux operator
here, O,(H) being the corresponding classical values of
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0, given by H”, and f o, (HZ,HY) being a function whose
(Wi [y0)

Frgo 11|

exponentially

as [, — .|, ©, and |&2 — &°| going large.

We first note that Eq. (72) gives the expectation values of
O, with respect to the twisted geometry coherent state if
H? = HY. Thus, |fo (HZ, HY)| is small at HZ = H}’ to
ensure that O, (H.°) gives the expectation values of Oe up to
O(t). Then, the proof of Eq. (72) follows three steps of
calculations. In the first step, we will consider the actions

of O, on the state |‘i’Hr€a>, which involve the actions of
holonomy and flux operator on the matrix element func-
tions of &, selected by Perelomov type coherent state of
SO(D +1). In the second step, we will construct the
identity

<TH§|06|TH’§> = EOE(H/3)<‘PH3|‘PH’3> (73)
with E, being a function of H;’. In the construction of
this identity, we take advantage of the property of the
Gaussian superposition, and utilize the properties of the
crucial factor (N,,V.,|t"|N,,V,) and the Clebsh-Gordan
coefficients related to the Perelomov type coherent states
of SO(D + 1). Then, in the third step, we will prove that
Ey (HY) is well evaluated by O,(H;’) up to an error
controlled by ¢. In the following parts of this subsection and
Appendixes C and D, we will show the details and results of
the proof of Eq. (72) for holonomy and flux operators
respectively.

1. Matrix elements of the flux operator

We consider the matrix elements of the flux operator in
the twisted geometry coherent state basis, which are

(Fuo |X | ¥y

denoted by T o The numerator can be calculated
H 0 [H]"

as follows:

)2+, 2 +2:% (D-1)2

(P |5(£J|li’u-n’g>e_(w i
=—ipty _(dim(my,))?
Ne

Me 2 (. 2
(%) (-0, ))

celdv E=EO(N, V| N,V ) (N, =V N, .- V.)+pV1
/2

-O(e” 3 ). (74)

It is easy to see that the calculation of Eq. (74) is similar to
that of Eq. (59), except the appearance of the factor
(N,,V,|z"IN,,V,). Thus, this calculation can be pro-
ceeded with the property of (N,,V.|t!/|N,,V,) being
clarified; see more details in Appendix C. The result of

the calculation of Eq. (74) gives the first main result of
this paper.

(i) The matrix elements of the flux operators with
respect to the twisted geometry coherent states
can be estimated by

(W |X£J|Tn-u’g> _ ﬂ_'e (o [Paro)

1HJ

||‘i'[H|’g P 2 [[Piro |‘i'|H]g

large 17, ‘P o[ Wogo

e \ i) | )
[P ][ P

where fx(H?,H'?) is a function of HZ2, H'9 whose

\PW\\?H,U)
growth is always suppressed by ‘”

| eX-
Byyo [P |

ponentially as |5, — 1./, ©, and |£9 —

for large 7.

£°| going large

2. Matrix elements of the holonomy operator

The matrix elements of the holonomy operator in the
twisted geometry coherent basis will be considered for the
cases that (D + 1) is even or odd separately. In the case of
(D + 1) being even, notice that each one of the matrix
element of the classical holonomy in the definition repre-
sentation space of SO(D + 1) corresponds to a holonomy
operator which acts on the twisted geometry coherent
state by multiplying. In order to give a specific holon-
omy operator, one needs to consider an orthonormal
@) €{(1,2),(2,1),(3,4),
(4,3),...,(D,D+1),(D+1,D)}} of the definition rep-
resentation space of SO(D + 1), where V, are the elements
in a set of bivectors {V,, = 25l[16ﬂ|(1,]) e {(1,2),(2,1),
(3,4),(4,3),....,(D,D+1),(D+1,D)}} in RP*!, and
the interpretation of these notations of this basis are
explained in Appendix A explicitly. Then, the matrix
elements of the classical holonomy /4, in the basis
;) of the definition representation space of
SO(D + 1) can be promoted as holonomy operators as

<]’Vlj|h€‘1’vl/j> (h )ljl/ (76)

For a given twisted geometry coherent state ‘i’yﬂg, the label
H? assigns classical labels u, = u(V,) and i1, = it(V,) to
each edge e. Then, in order to adapt the holonomy
operators to the state ‘I‘ e let us consider two orthonormal
and complete basis {ue|1 V,)} and {u,1,V,)} of the
definition representation space of SO(D + 1). These two
orthonormal and complete bases select the matrix elements
(uz'heity),, pp = (1. V,|uz"heit,|1, V) of the classical
holomomy #,, which can be promoted as the holonomy
operator
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(u7 " heii,)

gy = < |ue 1']'> (77)
and it acts on the coherent state ‘i’yﬁg by multiplying. In the

case of (D + 1) being odd, we still have the holonomy

operators (u;l/iz\it )iy With (z,7) and (7, ') € {(3,4),

4,3),...,(D-1,D), (D D —1)}. Besides, there are extra
holonomy operators (u, h i), (p+1)and (uz h i) (D))
with (1,7) €{(1,2),(2,1),(3,4),....,(D-1,D),(D,D—1)}
in this case, which are defined by

—

(ue_l heﬁe)z/,(D+1) = <1’ Vulue_lheﬁe‘ 1, 5D+1> (78)

and

—

(uzlheﬁe)(DJrl),l] = <1’ 5D+l ‘ue_lheﬁe

y) (79)

respectively, where ) is defined in Appendix A.
We show the details of the action of these holonomy

operators on the adapting states in Appendix A. Then, one

can proceed the calculation of the matrix elements

(gl bt | Fyyo)
1%y 111 ||
geometry coherent state basis; see more details in
Appendix D. The results of this calculation give the second

main result of this paper as follows.
(i) The matrix elements of the holonomy operators with
respect to the twisted geometry coherent states can
be estimated by

of the holonomy operators in the twisted

<li’u-ug|’4/e_lheﬁ’e|li’u-ug’>_ =1 prs 1 <'i’n-ug|‘i’u-ng'>
|[Peo || ‘ Ny [P |
large 7, ‘I’ .| P
<t (M2 W) ‘ el Vi) (80)
[Py 1] Py

where f;,(H2,H?) is a function whose growth is
(P [Py
always suppressed by I

o |11 ¥seg |
I, =1L, ©, and &2 — £°| going large for large 1,
and u;“h’ 5it, is defined by H?. The matrix elements
of u"' Wi/, in the definition representation space of
SO(D + 1) can be given for the cases that (D + 1) is
even or odd separately. In the case of (D + 1) being

even, one has

exponentially as

("‘/_lh?ﬁ/e)lz,u = el¢, (uy lh/w/)zl =€ i,

(W RSy ) 1501 = (U hETt,) 5y 10 =0 (81)

and

( ’ lh/es /6)121] ( ¢ lhls />211] ’

for (1,7) #(1,2) or (2,1),
(u/e_lhgaé’)l].n - ( . lh/\~/ )l] 21 — 0’

for (1,7) #(1,2) or (2,1),
(uothg,), =0, for (1,) # (1,2) or (2,1),

(82)

with (u "'h’“’)lﬂj = (1,V,J|u’e“hg“ﬁe|1,v//>. In
the case of (D + 1) being even, one still has the
components given by Egs. (81) and (82). Besides,
there are some extra components

(u h2 ), oy = (L Vy lu W, |1, 6p4) = 0,
( /- lhlsﬁt/)(D-q-l) <1 5D+l|u’ l/’l/s~e|1 V > 0
(83)

with  (1,7) € {(1,2),(2,1),(3,4),....(D
(D,D—-1)}.

Here we would like to emphasize that the matrix elements
of the holonomy operators /, with respect to the twisted
geometry coherent states are not estimated by the corre-
sponding classical holonomies /), = u,ef e % /!, but
by the corresponding simplicity resolved holonomies A/

-1,D),

which are independent with the gauge component 5T,

C. Expectation values of nonpolynomial operators

Let us consider the construction of the Ehrenfest prop-
erty of the twisted geometry coherent state for nonpoly-
nomial operators in this subsection. Similar to that of the
heat-kernel coherent state in SU(2) LQG [11], the expect-
ation values of nonpolynomial operators with respect to
the twisted geometry coherent state in all dimensional
LQG can be studied by reformulating it as the Hamburger
moment problem.

Theorem (Hamburger).—Given a sequence of real num-
bers a, € R, n=0,1,2,... a sufficient and necessary
condition for the existence of a positive, finite measure
dp(x) on R such that the a, are its moments, that is,

ar= [ doyv (84)

is that for arbitrary natural number 0 < M < oo and
arbitrary complex numbers z;, i =0, ..., M it holds that

M
Z ZiZjdH.j > 0. (85)
ij=0

The measure is faithful if equality in (85) occurs only for
z; = 0. Moreover, the measure p is unique if there exist
constants a, # > 0 such that |a,| < af"(n!) for all n.
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The proof of this theorem can be found in Refs. [11,45].
In this section, we consider the operators whose arbitrary
powers are densely defined on a common domain. Then, by
using the Hamburger theorem, we can extend the Theorem
3.6, Corollary 3.1, and Theorem 3.7 in the Ref. [11], which
consider the heat-kernel coherent state in SU(2) LQG, to
the case of the twisted geometry coherent state in all
dimensional LQG. The result of this extension leads to the
following four corollaries which can be used to evaluate the
expectation values of nonpolynomial operators on H; with
respect to the twisted geometry coherent state.

Corollary (i).—Consider a self-adjoint operator O =
O((XY . h,),e ,) on H; which is constructed from
{(XY h,)e ey} Let O=0((XY h,),,) be its real
valued classical counterpart. Define its real valued
and simplicity resolved classical counterpart 0“([|7[|0) =
O((X¢/ (1¢). hy (M) ,e,) of O by replacing (X', h,)
with  (XY/(H2), h$(H?)) in the expression of O =
O((XY, ) ey, where XY (H2) = Ly, V¥ and h3(H2) is
given by Eqgs. (81), (82), and (83). Suppose that for every
neN

= (0 (H"))", (86)
ANE | Al S 0 . 0

where <0>y’ﬂ:"o = <¢y’ﬂ:ﬂ0|o|¢%ﬂ:ﬂo> with H? := {...,HZ, ... } e,

t =\ T

and d)yﬂ" =Y |le,|ng’

lation of ‘i‘y.ﬂjﬂn
function f on R such that (f(O)*f(O)};ﬂ{, < oo we have

hm<0">

t—0

y_[;ﬂ,,/ being the normalized formu-

. Then for arbitrary Borel measurable

lim(£(0))! 4, = f(0"(H")). (87)

t—0
Proof.—This corollary is a direct generalization of the
Theorem 3.6 in Ref. [11] which considers the heat-kernel
coherent state in SU(2) LQG. Let us give the main idea of
this proof as follows. Denoted by E(x), x € R the spectral
projection of O. Then, by assumption and the spectral
theorem we have

lim | d(¢! (Os(H°))".  (88)

t—0 R

B ) =

Define a, := (O°(H"))"; it obviously satisfies all the
criteria of the Hamburger theorem and we conclude that
there exists a measure dpg.(x) on R satisfying

/R dpgo (x)x" =

It is obvious that the Dirac measure dp.(x) =
Sr(x, 0% (H°))dx satisfies (89) and it satisfies the uniqueness
part of the criterion by choosing a = 1, 8 = |0°(H")| in the
Hamburger theorem. Hence we can conclude that the

(05 (H"))". (89)

Dirac measure is the unique solution of this moment problem
and it follows that the spectral measure dpl,(x):=

A
limit ¢ — 0. Now, for arbitrary Borel measurable function f
on R such that (f(0)"f(O )) 70 < oo, the spectral theorem

(x)|¢; 7o) approaches the Dirac measure in the

applies and one can get
(O o = [ doly (01 (). (90)
and then

lim(£(0))’ 5, = lim [ dpf, (0)7(x)

=0 =0 Jp
- / g (x, 0° () (x)
= f(0*(#")). (1)
This finishes the proof. n

Corollary (ii).—Consider the self-adjoint, not neces-
sarily commuting, operators

A

0= 01((X£J7 ile)eey)’ L Om - Onz((Xéjv ile)eey) (92)

on H, which is constructed from {(X% h,)le € r}.
Let O}(H”) = O,((X¢ (1), ke (H2))ey)s -on On(H°) =
0, (XY (H2), hi(H?)),e,) be their real valued and sim-
plicity resolved classical counterpart. Suppose that for
every n; €N

m 1 m
. N o s /Mn0\n
rgr&<||0k> =TT o) (93)
k=1 7.H k=1

Then for arbitrary Borel measurable function f on R” such

that <f({0k}km=1)?f({ok}kmzr»;ﬂjﬂo

< oo we have

m(F ({0 4 = FHOUAND ). (94)

Proof.—Similar to the proof of Corollary (i), this
corollary can be proven directly by using the spectral
theorem

: m t

][1_1;1(} Rd <¢y.[|:|]”|El (.X]) YHD Hx
m —
=[] o5 ()™ (95)
k=1

and the uniqueness part of Hamburger theorem. [

Corollary (iii).—Consider the self—adj(A)int,Anot neces-
sarily commuting, operators O, = O, ((X/ she)ee,) and
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0, = 0,((XY, fze)eey) on ‘H; which is constructed from
{(X¢ ho)le €7} Let 0, = 0,((X¢. he),,) and O, =
O,((XY, h,),e,) be their real valued classical counterpart,
and O3 (') = O,((X¢/ (HY). k. (HP)),e,) and O3(H') =
O, (XY (HY), h(H2)),e,) be their real valued and sim-
plicity resolved classical counterpart. Suppose that O, O,

satisfy the assumption (93) of Corollary (ii), O, is positive
semidefinite and

: <[01’ 02]>Jt/”:ho 1J (1q0 s 4
%I_%IT = 0{1,2}((Xe (He)7 he(He))ee;/) (96)
with Oy ) (XY (H2), ki (H?)),e,) being given by replacing
(XY, h,) with (X¥ (H9), h$(H2)) in the result of the Poisson
bracket 0{1,2}((X£j7 he>96y>7 where 0{1.2} ((Xé‘]’ he)eey) =
{0,((X¥, he)oe,)s O2((XY  Re) e,) } is the Poisson bracket
between O, (X, h,),e,) and O5((XYh,),e,). Then for
arbitrary rational number r = m/n with m, n integers and
n > 0, we have

A A

{[(01)", 0a]), &

lim m = Oy (XY (H2), he(H2)) eey)
(97)
with Oy 2y (XY (H?), hE(H2)),e,) being given by replac-

ing (XY, h,) with (X (H2), h$(H?)) in the result of the
Poisson bracket Oy )2} (X!, h,),e,), Where

0{1 2}<(Xe ’h )eey)
= {(01((X¢ 1) eey)) Oa((XE ) o))t (98)

is the Poisson bracket between (O;((X%.h,),c,))" and

02((X£Jv he)eEy)'

Proof.—Following the proof of Theorem 3.7 in
Ref. [11], this corollary can be proven similarly by using
the completeness relation of the twisted geometry coherent
states and applying the Corollary (ii). [

Corollary (iv).—Consider the self-adjoint, not neces-

sarily commuting, operator O; = O, ((X%, fze)eey) on H;
h,)|e ey} Let O =
0,((XY, h,),e,) be its real valued classical counterpart,
and O3 (H°) = 0, (XY (H?). hi(H2)),e,) be its real valued
and simplicity resolved classical counterpart. Suppose that

Ol is positive semidefinite, and it satisfies the assumption
(93) of Corollary (ii) and

which is constructed from {(X%/,

. <[01’he]i/\le_]>;7ﬂjﬁo 1
lim—————"== ({01 he 1) (xpr 1, —(x2 aeg) h ea))-

1t—0 17
(99)

Then for arbitrary rational number r = m/n with m, n
integers and n > 0, we have

[0 R 5,

lim -
t—0 17
= ({(01)" s he YhT) | (xr gy =x ) pe ey - (100)
Proof.—We have the identity
[OF heJhe' Z’”: O17'[0y, ho]OT*i!
ir & ir
n Ark=1)Ar £ 1AM—k) 7 -1
(0] 01, h,)O h,
— 1 [ 1 - ] 1 . (101)

Notice that 07 ;' = ;'O + O(r) and O} Al
h7' 07" 4 O(1) hold, thus we have

hm[oqn’i/\%‘],\(jl_hm & I](_l [Ol’hé’]i/\lfjloqn_k
t—0 17 —0 — 17
n rtk=1) 1 Ar 1 17—1 Ar(n—=k)
OO
:lrl_l;I(f)l 1 [ 1 it] 1 (102)
k=1

Now for any measurable function f, by assumption and
Corollary (ii), we know that

<f(01)>:,’[|fuu’|]fﬂ/v = <¢ I]-ﬂ" ( )|¢t /U> (103)
is concentrated at H’, H"® a
! t
11_{1(}<f<01)> e fre 11_{13<f(01)> ,I]-H <¢yﬂ]" ¢y’[|:'|]/n> (104)
We therefore find
< Ol’ilE]I:l;l>t o
m—1 y,H
m%l_r)r(}(O >7,Iﬁlo it
([O7 hJRC")! -,
_ An(n=1)\; ¢ Ty
= I’l%l_f)l(’)l(Ol >y.[|7|]” ” (105)

for the expectation value of Eq. (102) by using the
completeness relation. Using the assumptions of this
corollary we thus find

A[O1 RS
lim _ r
t—0 17
m m_|
= ;((01) {01, he YR (x )= (7 b s (1))
= ({(0y)", h }hg! Mt hy)=(xt (12 s (42) (106)
as claimed. This finish the proof. [
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By combining these corollaries we reach the main result
of this section, that is, at zero order of #, the expectation
values of a nonpolynomial operator on H; with respect to
twisted geometry coherent state in all dimensional LQG, is
given by its classical correspondence on the reduced phase
space with respect to the edge-simplicity constraint. To
explain this result, let us consider two examples of the
nonpolynomial operator. The first example is the elemen-
tary D-volume operator \7,/. at v which takes the formulation

N o1/ A
Vo= "\1Qul.
N

wherein (0, is a polynomial of the flux operator X,.
Following the results of Sec. III B 1, we have

(107)

hm<(Q1)n>;ﬂjua = (Qv)n’ (108)

t—0

where Q, is given by replacing X%/ with X%/ (H?) in 0,.
Then, by using the Corollary (i), we can immediately give
the expectation value of V, as

lim(V,)! o= V10l

t—0

(109)

The second example of the nonpolynomial operator is
the dedensitized dual momentum operator, which is given
as [39]

b(e) = v. (110)

This operator contains the quantum commutator and it
appears in the length operator and scalar constraint operator
in all dimensional LQG. The expectation value of the
dedensitized dual momentum operator with respect to the
twisted geometry coherent state can be evaluated by using
the above Corollary (iv), which reads

3 jad t
ltl—r>l<}<ge>%ﬂ7ﬂ”

_ _(Dﬂ;l)({ Vo hiE)|

XU ) =(XE (). (442))
(111)

IV. CONCLUSION AND DISCUSSION

The coherent state in all dimensional LQG is a necessary
tool in the study of the semiclassical limit of this theory.
Since the heat-kernel coherent state for SO(D + 1) gauge
theory is too complicated to proceed the explicit calcu-
lations, we construct a new type of coherent state based on
the twisted geometry parametrization of the SO(D + 1)
holonomy-flux phase in all dimensional LQG. The twisted
geometry coherent state is given by selecting the terms

corresponding to the highest and lowest weight vectors of
representation of SO(D + 1) in the simple heat-kernel
coherent state, and these terms give the superpositions
over quantum numbers and holonomy matrix element
selected by the Perelomov type coherent state of
SO(D + 1). With the “Peakedness property” of the twisted
geometry coherent state having been studied in our
companion paper [1], we show that the Ehrenfest property
holds for the twisted geometry coherent state in this paper.
In other words, the expectation values of polynomials of the
elementary operators as well as the operators which are not
polynomial functions of the elementary operators, repro-

duce, to zeroth order in f:= %, the values of the corre-

sponding classical functions at the twisted geometry space
point where the coherent state is peaked. More explicitly,
based on the completeness relation and the peakedness
property of the twisted geometry coherent state, it is shown
that in order to establish Ehrenfest property for polynomials
of elementary operators, it is completely sufficient to prove
that the matrix elements of holonomy and flux operators in
the twisted geometry coherent state basis are estimated by
their corresponding classical values up to first order of z.
Then, with the Clebsh-Gordan coefficients related to the
states in the simple representation space of SO(D + 1)
being given, we complete this proof by using the properties
of the Perelomov type coherent states of SO(D + 1) and
the Gaussian functions. Besides, it is shown that the
expectation values of nonpolynomial operators with respect
to twisted geometry coherent state in all dimensional LQG
can be reformulated as the Hamburger moment problem.
By extending the similar researches for the heat-kernel
coherent state in SU(2) LQG, we show that the Ehrenfest
property for nonpolynomial operators can be established at
zeroth order of .

It is necessary to have a discussion on the quantum
simplicity constraint. The twisted geometry coherent states
vanish the edge-simplicity constraint operator and provide
an overcomplete basis of the solution space @, H, of the
edge-simplicity constraint. Besides, following the results
of the twisted geometry parametrization of SO(D + 1)
holonomy-flux space, we still need to solve the vertex
simplicity constraint weakly. Notice that the vertex sim-
plicity constraint operator )A(L”)A(f,’“] with b(e) = b(e) = v
is a monomial of flux operators; its matrix elements in the
twisted geometry coherent state basis, at zeroth order of #,
is evaluated by its classical counterpart X [eIJXf,L]

proportion to V[e” f,L]. Thus, we claim that the weak

solution space of the vertex simplicity constraint can be

which is

composed by the twisted geometry coherent states ‘ijy_ﬁ]g

whose labels H? satisfy V[EIJVf,L] =0 with b(e)=b(e')=v.

With the Ehrenfest property being constructed, we can
have an outlook on the application of twisted geometry
coherent state in the study of the dynamics of all
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dimensional LQG. First, one may consider the expectation
value of the Hamiltonian constraint operator based on the
cosmology model in higher dimensional LQG [41] to study
higher dimensional loop quantum cosmology from the
perspective of the effective dynamics of full theory.
Moreover, one can also explore the effective dynamics
of all dimensional LQG based on the coherent state path
integral [12,13] to give the effective action and equation of
motion with the twisted geometry variables. Therefore, the
twisted geometry coherent state provides us a reliable
candidate for the study of the effective dynamics of all
dimensional LQG.
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APPENDIX A: THE MATRIX ELEMENTS
OF HOLONOMY OPERATOR
IN SPIN-NETWORK BASIS

As we mentioned in Sec. III B, the action of the
holonomy operator on the twisted geometry coherent state
is the first step in the calculation of the matrix element of
the holonomy operator. Since the twisted geometry coher-
ent states are some kinds of superpositions of the spin-
network states, it is necessary to study the matrix elements
of the holonomy operator in the spin-network basis in all
dimensional LQG. To calculate the matrix elements of the
holonomy operator in the spin-network basis, one first
needs to consider the Clebsh-Gordan coefficients related to
the states in the simple representation space of SO(D + 1).
Recall that the space £ 1 of the sphere harmonic function
on SP with degree N is the simple representation space of
SO(D + 1) labeled by N, and it has the orthonormal basis
{E¥M(x)} (or {|IN,M)} in Dirac bracket formulation).
Then, the Clebsh-Gordan coefficient can be given by

<N/, M’ N", M”|N, M><

—dim(ny) [ gD (D0 (9D (9):
SO(D+1)

,0; N, 0)

(A1)
where dim(zy) = % IN', M'; N", M") :=
N, M) @ |N", M") and

Diji0)(9) = (N, M[g|N, 0) (A2)

is the matrix element function on SO(D + 1) selected by
|N,M) and |N, 0). Based on Eq. (A1), it is easy to see that

(

L0)]?

—dim(my,) [ gD @Dy (9Dl ()
SO(D+1)
(A3)
Moreover, let us note that [43]
(D—-2)IN! a1
D%,()) (g) = D%,O) (0) = mc‘]\/2 (COS 9),
CTT(cos 0) = (D —1)cos8, (A4)
and
Dol 2N+ D -1 Dol
CN2+11(C0S 0) = 1\—;_——1—1005 HC,\%I(COS 0)
N-+D-2 pi
- A
Nl Cy_,(cos0). (AS)
Then, we can calculate
D+N-1
1 1 2=-_ - A
(N +1,0[N,0;1,0)| INTD_T’ (A6)
and similarly we have
N
N-1,0/N,0;1,0 e — A7
(N = LONO: L0 = = (A7)

Furthermore, the relation between the function D?’M.O) (9)
and EV'M(x) can be found in Ref. [43] and it leads to

(N'.M/; N", M"|N, M)(N.0|N", 0; N 0)

dim(zy) dim(zy) Jso+1)

x EN/*M// (x)ENN'MU (x)'

(A8)

Now let us turn to considering the functions which are
involved in the main part of this article. The normalized
harmonic function cy(x, + ix,) can be denoted by |N, V)
with 1,)=1,....D+1, x=(x1,....xps1) €SP, V,,:=25/'5),
and cy being the normalization factor. A harmonic function
basis of the definition representation space of SO(D + 1)
can be given by

(x; +ix,), (x

(xD - ixD+1)

()C3 + i.X'4), ey (.XD + ixD+]),

(A9)

l_ix2)’

for D 4 1 being even, and
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(x) +ixy), (x3+ix4),.... (xp_y +ixp),

(A10)

(x)—ixy),
(xp_1—ixp), xppy
for D + 1 being odd. These functions can be expressed as

the following normalized states by using Dirac bracket
notation, which reads

{1V}

(1,7))€{(1,2),(2,1),(3,4),(4,3),....(D,D+1),(D+1,D)}
(A11)

for D + 1 being even, and

{ l’Vlj>’ 1’5D+1>}?

(1,7))€{(1,2),(2,1),(3,4),(4,3),....,(D-1,D),(D,D-1)}
(A12)

for D + 1 being odd. First, one can check that

LVig;N, Vi) =|1,V5) @ [N, Vi)

Then, one can further calculate some of the other Clebsh-

Gordan coefficients. Following Egs. (A8) and (A13), let us

consider

(N.Vio; V[N + 1,V ) (N + 1,0
= (N+1,0|N,0;1,0)

N.0:1,0)

_ dim(ml) / dxEV V1 ()
(D +1) - dim(zy) Jsom+1)

X EN‘V12 (x)El.V12 (X),

(A14)
and

<N+ 1,V]2;1,V21|N, V12><N,0|N+ 1,0,1,0)

_ d]m(ﬂ'N) / de:N,V12 (X)
(D +1)-dim(zy1) Jsopr1)

x ENFTLVe () BN Va1 (x).

(A15)

By substituting (A6) into (A14) we get

N,0;1’0>\/(D+1)-dim(ﬂN)

CNC

=(N+1,0

CN+1 dim(7y. )

(N+1)(D+1)
2N+D+1

—ia

(A16)

Notice that Z'21 (x) = EV2(x), and then Egs. (A14) and
(A15) give

dim(zy) (N+1,0|N,0;1,0)
N,V N 17v ;17V = 1 ’
(N.VIN+1.Vip:1.Vy) dim(zy.1) (N +1,0;1,0|N,0)

(A17)

Let us denote

LVy ;N Vi) =|1,Va) @ [N, Vi)
=a(N)I[N=1,Vip) +a(N)|N+1,...)
(A18)

+ a3(N)|not simple),

where [N +1,...) is a state in the simple representation
space 33%1} and |not simple) is a state not belonging to any

simple representation. By using Eq. (A17), one can get

(V)] = dim(zy_,) (N.O|N — 1,0; 1,02
! dim(zy) (N.0;1,0|N —1,0)
N(2N + D - 3)

" (D+N-2)2N+D-1) (A19)

and |ay(N)[? < 1= ey (N)]>.

We are also interested in the special Clebsh-Gordan
coefficient (1, V,;N, VN, V') with (1,7) € {(3.4),
(4,3), ...}, which can be given by

(I,V,;N, V5N, V')(N',0]1,0; N, 0)

l];

_ dlm(ﬂN/) / deN’,V’ (x)
(D + 1) - dim(zy) Json+1)

x BV (x) BNV (x).

(A20)

Notice that we have the relation

1
LV, ()EN-Vi (g) = — SNE I 2\ ENH Vi (x),
) e) = = N (el 2 )
for 1<, and 1,7 # 1,2, (A21)
cnC 1
By (x)EN-Ve (x) = _CZ :N = (71" — 2)EN+1Vi (x),
+

fori1 >y, and 1,7 # 1,2. (A22)

Then, by using the above equations and substituting (A6)
and (A16) into Eq. (A20), we can check that

(LLV,;N. V5N, V')

1
=~ WV VIE )N 1 V),

fori <y, and 1,5 # 1,2,

s

(A23)

and
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(LV, N, V[N, V') (Lopyis N, Vip[N', V')

_ 1 <N/ V/|(T11_T2])|N+] V4 > \/§ 1 Y1 1.D+1

- (N+1) ) s V12/s :—m<N,V|T’ ‘N+1,V12> (A27)
fori:>j, and 1, #1,2. (A24)

Now, we can consider the holonomy operator h
Similarly, we can also consider acting on the matrix element function Ell_lﬁ(h) =
(N,V5|u="hit|N, V,). For the case of D + 1 being even,
(1,6p, 13N, Vio|N', V')(N',0]|1,0; N, 0) the action of the holonomy operator corresponding to the

holonomy component (1, V, |u~"hit[1,V,,) is given by

(D +1) -dim(zy) Jsom+1)

(1,V,|u""hit

L, Vl/]/> ° E‘Lv—l‘,j{(h)

x Bl (x)ENVe (x), (A25)
= (L V,lu ha|l, V) - B, (h)
where E!90+1(x) = /D + 1xp. Note that = (L, V,|u" hit|1,V, ) - (N, Vip|u " hit|]N, V)
= <N, V12;1,V,]|u_1hft|N, V12;1,Vlfj/> (A28)
T Lop (v VBNV () — _ V2eiey 1 1D+1gN+1V ),
2 (1) V() = = YL P i),
+

with (1,7),(/,)) €{(1,2),(2,1),...}. Based on this
(A26) action, the matrix elements of the operator

(1,V,|u="hit|1,V,,) in the basis spanned by the states
with ¢; = /25 Then, we have IN,u™!, @t) corresponding to EY, .(h) can be given by

(N =V i@ |(1,V,y|u~"hii

1LV, )N, uc!, i)

= / dh<N/, Vlz\u/_lhfﬂN/, V12> . <1, Vlj|l/l_lhljt 1, Vl/j’> . <N, V12|M_1hfl|N, V12>
SO(D+1)

1

S

N, Vi |u W |N', Vi) - (N, Vi~

LV, ;N,Vis), (A29)

U; J

W Then, by using Egs. (A13), (A18), (A23), (A24), (A27), and (A29) can be further
calculated and the results are obvious. For instance, we have

where dim(zy) =

] ~f—]~ .
Eq. (A29) :m<N+ LVplu W [N, Vi (N, Vi |[@ = aIN + 1, Vi), if (1,7) = (1,2),(/,))) = (1,2),  (A30)
+
Eq. (A29) = Wﬂ)lal (N)P(N =1, Vi lu W [N, Vi ) (N Vi [ T G| N = 1, V)
N-1
1 ]~
sz(N)P(N + 1, ...|M_1M/|N/, V12><N/, Vlz‘u/ 1M|N+ 1, >,
+
if (1.7)=(2.1),(/.)) =(2.1), (A31)
and
1 1 ! N ~—] ~
Eq (A29) = _dim(ﬂN 1) <N+ 1)2 <Nl, V12|M/_1M(Tll :ETZJ)|N+ 1, V12><N+ 1, V12|(Tll :lZTZ] )I/t 1u'|N’, V12>,
+
if,7,0,),# 1,2, (A32)

where 7! + 7% takes 7' + 7% if 1 < J, and 7" — 7% if 1 > J.
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For the case of D+ 1 being odd,

discussion of the operator (1, |u‘/1;ﬁ|1 V) with
(t,7), (7. )) e{(1,2),(2,1),...} st111 holds. Bemdes we

have the extra holonomy operator (1, 5p.|u~ 'hu|1, Vi)
and (1, V,|u'hi|l, 6pyy).  Let  us
(1,8p41|u~"hit|1,V,,) as an example, whose action on

EN, .(h) is given by

the previous

consider

(N, /=Y @ (1, 8pyy|u~ it 1, V)N w7

(1, "> BN, .(h)
= (1, 5D+1|” vy) BN L (h)
= (L.6pi|u"h z’/) (N, Via|u™ hit|N, V1y)

= <N, V12; 1, 5D+1|M_1h17t|N, V12; 1, V,f]/>

with (1, ), (7,)) €{(1,2),(2,1),...
Eq. (A29), we have

(A33)

}. Then, similar to

= / dh(N', Vo |u' " Rt [N', Vo) - (1, 8p i [u™ had[ 1, V) - (N, Vig|u™ hit| N, V)
SO(D+1)

~ dim(zy)

— 1 \/§
dim(zy 1) (N +1)

Sy vt (N + 1, Vi |u'~ uz

By using Egs. (A13), (A18), (A23), (A24), and (A34) can
be further calculated and it will be used in the calculation of
the matrix elements of holonomy operator in the twisted
geometry coherent basis.

APPENDIX B: POISSON SUMMATION
FORMULA AND RELEVANT CALCULATIONS

As we mentioned in Sec. III B, the second step of the
calculation of the matrix elements of holonomy and flux
operators involves the property of the Gaussian super-
positions. Usually, the property of Gaussian superpositions
can be analyzed by using the Poisson summation formula.
Let us introduce it and show three cases of its application
scenarios in this section. Let f be a function in L (R, dx)
such that the series

= i f(y+ns)

n=—oo

(B1)

is absolutely and uniformly convergent for y € [0, s], s > 0.
Then

- 2 =~ (270
=— —_— B2
> =23 F(E) )
where f(k) := [ 2 ¢~ f(x) is the Fourier transform of f.

The proof of this theorem can be found in [46]. In this
paper, the application of the Poisson summation formula is
involved in the calculation of the expression

<175D+1;N’ V12|M_1M/|NI, V12> <N, V12|

! 9N7 V12>

LDAUN 41, Vo) - N + L, V@~ a1,V N, V). (A34)
|
> F(N)ei¥ exp(—2t(a, — N)?). (B3)
N=0

where we defined a, := ¢+ ¢, > 0, where ¢y and ¢, are
constants satisfying | > 0 and |c,| < ¢; L. Now let us
consider three cases of F(x) separately.

Case I: F(x) = x” is a polynomial with # € N. Consider
the following calculations:

i F(N)eiNé exp(=2t(N — a,)?)
N=0

— elwé Z

¢ exp(—2tk?*)elk

k=-a,
i0: N ([ + )\
= (an)fe " Z (1 +T
[k]:[_arl] n
x exp(=2t([k] + r)?)el K+ (B4)
where k := N — a,, r = —a, — [~a,] and [k] represents the

maximal integer no greater than k. Note that we have

Z (m + r)f’e(—Zt(m+r)2)ei(m+r)§

m=—0oo

o0
= Z eZHimr\/;P(Zﬂm —f)e_(zmgf_g)z,
it 2t

here we defined P(x) := (l)f'(jﬂ, o

ting [k] = m in Eq. (B4), we have

£ eN; (BS)

)e . Then by set-
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Z F(N)exp(~ _ N)z)eiM The proof of this lemma can be find in [47].

Now let us set x = N in P(x) so that 7 = (( >>

. E by using the results of case I, we can give
ldrie”\/;(an) P <1 +0(n> +0(e—z—f)>. (B6)

2 ! i @2 —ia
Case II: F(x) = (P(x))"/*, where P(x) is a polynomial \/;ZZK exp(=2t(a, = N)?)eiNeeireiont
of x with P(x) > 0 if x > 0. Let us focus on the case of N=0
. o p ]
a, > 0,x > 0 involved in this pa%per. We can reformulate large o) <_> +O( 6_2_3) for £/ € N,. (B9)
F(x)as F(x) = (P(a,))"/*f(z) with f(z) == (1 + 2)"/* and 1

7= ;:((a >) — 1> —1. Then by Taylor’s theorem, we have
I

Further by using the above lemma, we get

(4
Z) =1+ ", ©
; < "> %ZF(N)exp(—Zt(aﬂ—N)z)eiNé

(Z) - q(l—CI)..;l(!n—l-FCI) (B7) laréen;vpz ) Vielant % (HO(’?) +@(6—é)), (B10)

with ¢ = 1/4 here. To proceed the next step of the

calculation, we introduce a lemma as follows. L4 /P .
. _ /4 (P2(x)\ L

Lemma.—Foreach [ > 0 there exist 0 < f3; < oo such that Case Il: F(x) = (P1(x)) (P,:(X)) » mEN,, where

P(x) is a polynomial of x with degree larger than 4

Fari1(2) = B2 < £(2) < fara(2), (B8)  and it satisfies P, (x) 20, 4 (P,(x)) > 0 for x >0, Py(x)

and P (x) are both polynomials of x which satisfy P3(x) >

where f,(z) =1+ 3! (9)z", (%) denotes the partial Taylor ~ P(x) > 0 forx > 0, fx(

(1+z

series of f(z) = )4, 0 < q < 1/4, up to order z*. | of P5(x) larger than that of P> (x). We can evaluate that

< \/%i F(N)exp(=2t(a, — N)?)

< l((Pl(%))1/4%:“13(—2;(%-1\7)2” f: (PI(N)>1/4%“;exp(—zt<an-N>2)>
(

i Vo W2 Py +1
S % [%} - 1>(P1(a,7))1/4 exp(—%t(a”f) + Py (ay)V/* (%)#O + o(%) n o(e—é)>
(o ()
for large .

As we will see in the next two subsections, the three cases discussed above will be used in the calculations of the matrix
elements of the flux and holonomy operators in the twisted geometry coherent state basis.

APPENDIX C: MATRIX ELEMENTS OF THE FLUX OPERATOR

We consider the matrix elements of the flux operator in the twisted geometry coherent state basis, which are denoted by
<~?H3 XY [P0 )

—<———_ The numerator can be calculated as follows:
¥y [P |l
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ey e+, 2422 (0-1)? . . n 2 n 2
(B2 e = i (aim(, ) enp (-1 (= . ) = (5

12
Ll EEDN, VLI N, V) (N, =V, N Vi) + Vi O(e ). (C1)

Without loss of generality, we set V/, = 26[1165] to simplify the expressions. Then, the components of X%/ can be decomposed
as three sets and we can discuss them separately.

1. Set I: Matrix elements of X2

Similar to the calculation of the overlap function of the twisted geometry coherent state, we defined ©, = O(u,, u.,) +
O(i,, it,) and used the invention

(Ne, VilNe, V) = exp (=N, O, ) eiNeotert, (€2)
(Nes =V [ Ne, =V0) = exp (=N, i, 7))e¥eolict), (C3)
with O(u,. 1) i= RN > 0, O 7,) = —W > 0, MNerltett) = (RepHRerel, and ool o=

NV N, =)
|<Ne’_ve|Nea_Vé>|

(1e)>+(r, +2r2D 1)2 Ne 2 77/e 2
<'Pn-uv|X |lPu-u'"> = ﬁIZN (dim(zy, ))? exp <_t<2_t - dNe> — t(z_t —dy,
2
: eidNK(gg_f/g)<Nev Vle|Ne7 Ve><Nea _VelNev _‘7/e> +ﬂ\/; : 0(€_§)
sD-1(g0_zio . N, 2 A 2
= fret T (& §e>NZNe(dlm(ﬂNe))2 exp(—t(i - ng> - <Z_ dy ) )

~ 11;2
- AN (E-E o) +0(001) exn (=N, B,) + pT - O(e=5) (C4)

are variables independent with N,. Then, we have

for large .., where &, = @(u,, u,) + ¢(ii,, it,) and ©, = O(u,, u.) + O(it,, it,). The calculation of Eq. (C4) follows the
similar procedures of the calculation of (‘i’HZ " ) in [1]. Let us consider the cases of 0, <, +1n,and O, =1y, + 1, or
0, > 1, + 1, separately.

a. Case O, <1, +1],
For the case O, < 77, + 1., Eq. (C4) reads

Ao _(ne)? )2 +22(D-1)2 D_l(zo_s0 . n 2 e 2
(Pro Xlz|‘I’Hr3)e — = fre T« é‘e)NZNe (dim(zy,))* exp <—t<2—et - dNF> - t<2—et —dy,

NGt +00) exp(~N,B,) + fv/7 - O(e—)

D i) AR:) . _1, T 6, )L~
:ﬂ[elDT@g_g/g)e =5 +2(f——35) pl =P 3530 (E0-¢0+d)

-GXP< (——L>® )ZP (exp(—20R2) eike(&=€240.)) 4 p/1- O(e7¥)

t

y 1, AR . 1, . W, p-
e —20) o1 2550 i (B 5 (-2 2+0.) (52510,

S
N|v

- B (& - &+ ) exp (_ (2mm — (&2 - &2 + aoe))z)

8t

X eiZJm mod (k,,1) <1 4 O(L/)) _'_ﬂ\/Z . (’)(e_%) (CS)

e
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) with [k,] being the maximum integer less than or equal to

for large 77, where k, = =dy, - e -+ % = [k,] + mod (k,, 1
(k,) is a polynomial of k, defined by P(k,) = N, (dim(zy, ))>.

4

k
k, and mod (k,, 1) being the corresponding remainder, and P

Besides, P(x) is also a polynomial which is given by

" d" x2 ar! x? x2 x2
P = 1)"a, — - i "—1 C _ I
(x) <(1) a, dxneXP< 8t> ()" oe p( St> + +aoeXp< 8t>>e><p<8t) (C6)

with a,,, a,_,, ..., ay given by the expanding P(k,)=a, k! +a,_ k"' +---+a,, wherein ao—(”f+”” Q) (P(Zj+4t 4t))2,

%~ (%)™, 0 < m < n for large 7, by the definition of P(k,). In addition, we used the Poisson summation formula in the

third step of Eq. (C7), which converts a slowly converging series into a rapidly converging series which in our case almost
only the term with n = 0 need be relevant. Following this analysis, we can further give

@Hg

~ v T . (1¢)>+0,)>+2:(D=1)? 10, ) . 1,
R yy.) = pr YT gitsler-) RO otk 8 -0 S et
e
t

/ ® ! ® 0 10 ~\2
leeong, (e Me O\ (pfMe  Me O\ (_(Ee—-&C+Pe) 1
¢ (4z+4z 4z> <P(4z+4z a)) P 81 1Ho(y) ot
! e\iJH,,,>< +0<’1 > + O(e” )) (C7)

for large 7. Notice that the classical evaluation of operator Xis given by X'2(H??) = % Hence one can estimate the matrix

elements of X, with respect to the twisted geometry coherent states by

<‘i‘n-ug |)A( 12 |li'n-n';'> '7e <\i’u-u" |‘i’u-n’0>

Do 1Pl 2 [P ][ P |
large 77, Me ”/e é ) (773 ®e> < ( t) _1 )) <‘il[H]" l\IJJD-I]’”>
= — = +——— O— ) +0(e — el C8
<<4 474 4744 . (e™) 1o ][ P (C8)

Recall the overlap function i(H2, H/) is sharply peaked at 57, = 7, and ©, = 0, and it decays exponentially for 7, # 7., or
0, # 0. Hence we can conclude that the right-hand side of Eq. (C8) is bounded by a correction term which tends to zero in
the limit r — O for large 7..

b. Case ©, ~1, +1, or ©, > 1, +1],

For the case ©, ~ 7, + 1, or ®, > 1, + 1., similar to the analysis of the overlap function in [1], we have

(1¢)%+(,)?+2/% (D=1)?

X2 Whp)e “
2 2
— tiﬂ(:z—s’z)E :N di 2 (e _y4 Y
pre'> ” o( lm(”Ne» exp 2 N, 2 N,

~ "z

- eNelGe=Eitolucue)+o(ieie)) exp(—N,8,) + py/t - O(e™)

. D+ 1)\2 . D+1
<ﬂt[n;/4t]exp(_z("_e_7+) (ﬂ_"__ +>

<lilﬂ-[l’;

: 2
prY Nl t =
N=[gl+1

ne D+1\2_ (n, n. D+1)\?2

~ Btn, /4t —p(de TN T e

ptin./ ]eXp( <4t 5 ) T

+ 1y [ &+77_/e P @+ﬂ_/e ze‘%(qz_f—%)zexp _
2t\4tr 4t 4t 4t
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for 7, being large, wherein the sign “<” means that the module of its left side is less than that of its right side. Then, in this
case the matrix element of X, is estimated by

Y A v — — D7 A Te_ney2 el

(P [ ) \f Af (., )8 e 4 (s 1 ) (Bl + 1) 245 0,
<|—=* = 7 (C10)

REANREA P(%)P(%)
for large 1, where f (' ,'7;) = [, /A1) exp(—1(% — Z—% - %)2)(2—;)(15(%))2 Notice that ©, ~#, + 1, or ©, > 5, + 1, in
(Wyo W0
this case, hence we can conclude that |W is always suppressed exponentially by the factors e () and
[H]/u HO

o _ne

o454 180 in Eq. (C10). i i i
Now we are ready to combine the results in the cases for ®, < 7, + 7, and ©, ~ 5, + 1, or ®, > 5, + 7,. In general, the
matrix elements of X, with respect to the twisted geometry coherent state is estimated by

<lijﬂ-[|3 XiZWHg”) M <li'[H13
[ Wae [P 2 ([P

lvPHi‘a > large ’70
W

lP[H]n
TH/()

‘P[H]/O
i

(C11)

o (HE 1) \”

where f,(H2, H/) is a function that grows no faster than the exponentials as |5, — 7.|, ©, and |£2 — £2| going large for
large 7,.

2. Set II: Matrix elements of X%/ with I.J € {3,....D+1}
Notice that (N,, V.| |N,,V,) = 0 with V), = 26[1159 and I,J € {3,...,D + 1}; it is straightforward to get that

<\i’Hg

X)) =0, forI,J €{3,....D+1}. (C12)

3. Set III: Matrix elements of X2/ and X* with J € {3,....D+1}
Let us consider the rest of the components (P, [X} [Py ) and (P | X%/ [Py with J € {3,..., D + 1}. We first have

<Nevv/e|TIJ|Ne’Ve> :Ne<1’V2‘TIJ|1’Ve><(Ne - 1)7V2|(Ne - 1)’Ve>’ for J € {37’D+ 1} (C13)

Here we note that (1, V) |zy,|1,V,) with J # 1, 2 as functions of V, vanish at V, = V/, and the growth of their modules are
restricted by their derivatives evaluated by Eq. (38) as V, being transformed by e’z € SO(D + 1). Then, by checking how
O(u,, u,) =—-In|(1,V,|1,V,)| grows as V, being transformed by e"*2 € SO(D + 1), we can conclude that
(1, V.|t 1;|1,V,) with J # 1, 2 grows no faster than the exponentials as O(u,,u,) = —In|(1,V,|1,V,)| going large.
Then, for large 7, we can give

)2+0r,)2+2:(D-1)2

(P Xy@u—u’g)e_(% i
) n > (. ’
= —ipi(l, )Y N (di —t({=-d —t{=2-d
i SN (din(rs, ) exp(—r(%—an, ) —o(% Ne) )
C el EE (N = 1), VAN = 1), VN, =V [N, =V2) + By/1O(e= 1)/ (80)
0 /o 1, Vlg T 1’ Ve . ’78 2 l’]e 2

= —ifrelT 6k %;Ne(mm(ﬂm))zexp <—t(z— ng) - t(Z —dy ) )

- @WNe(E €0 el Tl 1) exp(—N,@, ) + fy/1O(e~ 1)/ B0, (C14)

where we only consider the case of (1, V,|1,V,) # 0 since one have (1, V,|z;|1,V,) =0 and (‘i’ﬂ_ﬂg )A(;]|‘T’H/eo) =0 if

(1,V,|1,V,) = 0. By comparing Eq. (C17) with Eq. (C4), one has

(m +(01,,) +2r~ D-1)2

(L Velry[1. V)

!
XUN’H’") large 17, _
B (LVelL,ve)

(P X2 W) + PVIO(em LV 81) (Cl15)

(W
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and further

(L Velry|LLV,)
(1,V’|1 V)

+ BtO(e~ i’/ 61),

(Pyo | X2 [Py
[Py

large 1,

‘ (Poe | X2 W)
|| [P

(C16)

ue

wherein one should note that |(1, V,|1,V, )\ = ),
0<|1,V, ol <1 with (1,V) V>_0 at
V,=V,, and (1,V,|ry|1,V,) with J#1, 2 grows
no faster than the exponentials as O(u,,u,)
—In|(1,V, )| going large. Then let us recall

0 li} o
Eq. (C4) and notice that i) H?

L is unity at H?? =
%30 111 e I ¢

and decays exponentially fast to 0 as |5, — 7|, ©, and

|9 — £¢| going large for large 7/, and we can conclude that
‘i’ 0 ‘{J ua large e u lP /o
‘<E-u e||]-ﬂ> '7|f”( ,(,‘ u—u>’
IRl 2 IRl 2
for J € {3,...,D + 1}, (C17)

where f, J(I]-I]Z, H.) is a function of HY, H/’ which vanishes
for O(u,, u,) = 0 and whose growth is always suppressed

\P[H] ‘\P[H]"’ ‘o
T | exponentially as |, —177,|, — &2

by | 1%y [l Weeo
going large for large 7). A similar discussion can be given
for (Wyye|X2/|Wy.) and we reach that

(1¢)>+(,) > +2:% (D=1)

4t

(”/e_lheﬁ,e)lz,12|li’wg’>€_

TS dim(ny, ) dim(ay,

NF

<lil[H]2

el E~EN(N, + 1, VLN, + 1, V,)(N,

) @ N, Vin) = |
the first case, we consider ©, > 5, + 1., or ©,

(1) 2+(r,)2+2:2(D—1)2

(Pyo | (U gitl) 110 Phe ) e~ g
= &N (di 3/2(di 12 ¢ e _
oY (e, )i o)) oo (-1 (5
e G (N, + 1, VN, + 1LV ) (N, + 1,V

/

< (/41 + 1) exp <_t<m_

+o0

1

P (fe_ne_D
2t 4t

2

06602

Me 2
))'/* exp <—f(z - dNe+1> - f(z —-d

(@im(a, )i, 1)) (exp (<1 (22

(¥ £y

|f2J([H|U’
Rl ’

B W)
H/U | ’ ||lP
H/O

[y |||
for J € {3,...,D+ 1},

(C18)

where f,;(H2, H) is a function of HZ, H? which vanishes

for ©(u,, u,) = 0 and whose growth is always suppressed
(W0 [P0 ~
by ‘M exponentially as |7, —1.|, ©, and | — &£°|
¥y [111W4

going large for large 7.
Finally, collecting Egs. (C11), (C12), (C17), and (C18),
we arrive at the main result of Sec. III B 1.

APPENDIX D: MATRIX ELEMENTS
OF THE HOLONOMY OPERATOR

Let us consider the matrix elements of the holonomy
operator in the twisted geometry coherent state basis. Also,
the cases of (D + 1) being even and odd are considered
separately.

1. D+1 even
In the case of (D + 1) being even, we need to calculate

o | ),

(1% 111 ||

o)

all of the components of . We first

consider the simplest component (u,'h,it,),, of the
holonomy operator, whose matrix elements in twisted
geometry coherent basis is given by

- - 1 (
+1,=V, N, +1,=V,) +—0O(e” D1
| ) 7oL (D1)

IN, + 1,Vy,). To calculate Eq. (D1), let us consider two cases separately. In
~7, +n,. Similar to the analysis of Egs. (C9) and (C10), we have

2 /
Me

1 (
—Ofe
-l-\/; (e

2 / 1/2 / 3/2
5 (e = (e
Pl——+1 P{—

2 n 2 i
~dva) =i(5man) ) ) ¢

N, +1,-V.)

D-1
2

/
11;2

L. o)

2t Vi
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7, D+ 1)\2 e M, D—=1\2\ (/1. 120\ \ 3/2
~ ([n./4t] + 1 -t = - —t=-=- Pl=+1 Pl ==
(bre /4] + )eXp< <4z 2 > % 4 2 Tl 41
T (g(me M\ (& V2 ety e 2
Z(p(teypte P 1 (525 —|2e — : D2
* 2z< <4t+4t>> 4t+4t+ e exp( |17 © +\f O(e™) (b2)

for 7, being large, where “<” represents that the module of its left-hand side is less than the module of its right-hand side.

Then, in this case the matrix elements of (u;'h,ii,),, are estimated by

<‘ (o | (U ,it}) 15 12 [ Phae) <

87, (1 ) Gt o (B + —’;>>/<f>< e roee
el el |7 1)

for large 7., where fl(T‘,Te) = ([n,/41] + l)exp(—t(%—%—DT_/l_)\z)(P(4 + ))1/2(P(4—f))3/2. Notice ©, ~#, +1, or

(‘PHZ’ [(ue! heﬁg)lz,nrywﬁ
[¥ygo 11

0, > 5, + 1, in this case, hence we can conclude that is always suppressed exponentially by

the factors e~"G=>" and e‘i(;_‘r‘% e Lu]@f in Eq. (D3). In the second case, we consider 0, <n, +1.,

= T - v _('Ie)er(n'(, )2+212(D—1)2
(Whao | (s hit)) 1512 Who D e #
large 1., igo 3/2( 4 12 e 2 ’,]e 2
=" eZ(dlm( )) (dlm(ﬂNeH)) exp| —t Z_dNeJrl — Z_dN
N,

e

'/e )2

N NN, + L VN + L VN + 1, =V N, +1,=Vi) + \/0< ")
1570 D+l( /n) . 3/2 . 1/2 7’]6 2 r/g 2
= eloe el 7 ee™6e ;(dlm(ﬂl\/e)) (dlm(ﬂNg_H)) exXp -1 Z —-1- dNe -1 Z - ng

ei(NﬂLl)(ég_ L’o+‘ﬂ(”e-“2)+(P(ﬁe~'7’é))e_®e exp(_Neé)e) + L 0(3_%)

Vi

seo s o Ho\ (g0 glo w0, . 1, o tlo
80 IBEUEI-E0) i(E 80 +p,) gt (et 1 P4 2e(le ke B2 il ) DRI e Se oo o i)

/)2

/
-0, Me D—T\x BT \\1/4 T2\ ik, (E9-E9+p, 1 ~le)
e % exp <— <2_t - T) ®e>Z(P(k6)) /4 (exp(=2tk2)etkeEe=6'+0e)) 4 \7(’)(6 ). (D4)

Here we defined &, := =dy, 4j 4l % = [k,] + mod (k,, 1) with [k,] being the maximum integer less than or equal
to k, and mod (k,,1) being the corresponding remainder, and P(k,) is a polynomial of k, defined by

(P(k, ))'/4 (dim(zy ))*/*(dim(zy ,,))"/?. By applying the result of case II discussed in Appendix B, we can
immediately get

2 ()2 +22 (D-1)2

— . )
(”/e_lhe”/e)u 12|lP[H];”>e ) 4

. - ) — y
Rrge 1 ige IL(E0—0) A (E0-E0 ) gt (5t 4292 o b Lr S0 (2 +0)

expl-0)exp(-(2-221)8, ) b0y e = (14 0( 1) + o)

1 _
+W0(6 s) (D5)

<li’Hg

and then
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<liJ[H]§,’ (“'e_lheﬁ'e)lz,12|"i'wg'>
W [11[Wrae |
arge e Jigle ,~8,/2 p=1/2 i2EL E2—EL) %(63—52”+¢e)e(ne/2—n2/2)M (1 + @<i/> + @(e—l/t)) (D6)
[P 1P| e
Combining the results (D3) and (D6) of these two cases, we reach
<‘ilﬂ-ﬂ§ (u;_lheﬁé)12,12|lilﬂ'ﬂ£”> _ eié,ﬁ() <\VP[H]3 li,ﬂ'ﬂ;o> large ﬂ;t|‘712([|_[| | ‘ M ‘PH’0> (D7)
I[P [Pz |[ oo [P H\P[H]’” |‘I'[H1g
(W0 [P,y0 ~
where f 12(H2, H?) is a function whose growth is always suppressed by ‘H%HT;H?H exponentially as |17, — 7|, ©, and

|£9 — &°] going large for large 7, .
Similarly, the matrix elements of (u,'h,i,),; ,; in the twisted geometry coherent basis is given by

(W (U il ), 51 [ Wy ) " FRHS of Eq. (D8) + SRHS of Eq. (D8) + TRHS of Eq. (DS)
1 w622 o-1)? (A
+—e 7 Oe ), D8
= (%) (08)

where we defined

02402422 (0-12 ) ) . 2 /e 2
FRHS of Eq. (D§) = ¢ 5 ¢ 'Y " (dim(zy,))**(dim(zy, ;)" exp( @‘d%-‘) ”(n_de) )

NB

celdvet &SN, = 1, VLN, = 1,V )(N, = 1,=V,|N, = 1,-V.) (D9)

e 1o/ o 2 2
SRHS of Eq. (D8) = —¢™ 5= Y " (dim(xy,))**(dim(my, 1)) /2 exp( @;“Wl) ”(ne_d”f) >

N,

e

- el S (1 — Jay (N )N, = L VeIN, = 1LV ) (N = 1, =V [N, = 1,= V%) (D10)
and

(1)>+0i,)>+2:(D-1)

2 2 / 2
TRHS of Eq. (D8) = ¢ 5> (dim(zy, )2 (dim(zy, 1)) /2 exp (‘f%—%l) ) t<&_d1ve) )

< 2

. et 11(8=E)

(N PN, + 1w u N, + 1L V) (Ne + L Vilig '@ N, +1,...), (D11

wherein
|17 V21> ® |Ne’ V12> = al(Ne)|Ne - 19 V12> + aZ(Ne)|Ne + 1’ > + a3(Ne)|n0t simple), (Dlz)
with |a; (N)]> = % |, (N)|? < 1 —|a;(N)|?; see more details in Appendix A. The three terms in the right-

hand side (rhs) of “=" in Eq. (D8) can be calculated separately. (i). The first term in the rhs (Frhs) of “=" in Eq. (D8) is
given as

)+ 2 421 1o . . e 2 e 2
FRHS of Eq. (D§) = e~ 5" ¢-ic Z(dlm(”Ne))S/z(dlm(”Ne—l))1/2eXp<_t<’2]t_dNe'l) _’<H‘dm> >
N,

el &S (N, — 1, VLN, = 1, V)N, = 1,=V, N, = 1,=V.). (D13)

By following a similar analysis of Egs. (D2) and (D4), we can immediately give
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FRHS of Eq. (D8)
[P ][] P

arge e i ,6,/2 p=1/2 GILEHE~EY) p= (éz—fé"w,,)e—(m/z—né/Z)M (1 +@<i/> +O(e“/’)> (D14)
[ Wae | | e

for large ©, < 7, + 1, and

/ _tflle_ney2 _flei
< FRHS Of Eq (D8 (%—F%— 1))]/26 2<21 Zr) e [41]65

[P ][] P

(D15)

N

n(,__ 9 / 9
s 1 /2T ) (B + )P
)

for ©, =1, + 11, or O, > n, + ), where f{ (% 1) == ([, /41] + 1) exp(—(L — 1 — E3)2) (B(% — 1))/ (B(%))*2. Also,

FRHS of Eq. (D8))
o ¥ |
factors e~'(#%"’ and e~3%) ¢~#19 based on Eq. (D15). (ii). The second term in the right-hand side (SRHS) of “=" in
Eq. (D8) reads

for the case ®, ~ 1, + 1, or ®, > 1, + 1., we can conclude that ‘ is always suppressed exponentially by the

e+ > 22 (-1, i 372/ 40 1/2 e 2 ., 2
SRHS of Eq. (D8) = —¢ W ey "(dim(my, ) )*/?(dim(zy, 1)) /> exp( —t S —dn ) —t(5—dy,

- 2

el e (5D (1= |y (NN, = LV [ul u, [N, = 1,V ) (N, = 1,V | i, [N, - 1.V)5).  (D16)

It is easy to see

(ne) >+ (1) >+22 (D=1)2

|SRHS of Eq. (D8)| < e a Z(dim(ﬂzve))3/2(dim(”1ve—1))1/2
N,
Ne 2 Ie 2 N8(2N6+D_3)

. —t 2 —dy _ —tl=-d 1-

e”( (m “1) (m “))( (D+N,-2)(2N, + D~ 1)

Ne 24 11'(, 2422(D- e Ne ~ ~ P ]’ée '
= M 1S B ()4 2 xp( i) (o17)

[]}e] PS(ke)

for large 7n; here k, is defined by k,:=dy —%—" 1=k,
(P, (k,))V* = (dim(zy, ))**(dim(my, _,))"/?, and g(( )) is defined by ,5((2
result of case III discussed in Appendix B, we have

1— N,(2N,+D-3)
(D+N,-2)(2N ,+D-1Y)

+mod (k,,1), (Py(k,))"/* is defined by
; Then by using the

g . e HEH1 (B (0) 4 O(e™) + OL)

N

’SRHS of Eq. (D8) (D18)

[P

SRHS of Eq. (D8)

Thus we can conclude that ) - -
[y W30 [

0,2
} is always suppressed by the factor (”\7’7 O(e™7) + O(;r)) for n, ~ ), and by

the factor e 6% )* for |7, — .| being large in the case of large #,. (iii). The third term in the right-hand side (TRHS) of
“="1in Eq. (D8) is given as

(1e)>+00,)>+22(D-1)% . . 3/2/ 1: 1/2 Ne 2 7/]8 2
TRHS of Eq. (D8) = e~ — & el% Z(dlm(ﬂ]\;g))‘/ (dim(zy, 1)) exp( —t 2 dy 1] —t 5 —dy,

N(’

(N, Peldvert C=ENN, + 1, u U, [N, + 1L V)N, + L Vgl |N, +1,...),  (D19)
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N,(2N,+D-3) -
NP <1- (DTN.—2)(2N,1D=T): BY using

the result of the case III discussed in Appendix B,

Eq. (D19) can be estimated following a similar procedure
of Eq. (D16), which gives

wherein 0 < | (

TRHS of Eq. (D8)
[P ][] P

1(Me_te | 1)2 /53 / /5
e o, e S5 (B(0)) V(L2 O(e ™) + O(L)
< e

PP()

(D20)

Here we defined k, := dy, —4—‘[ —% 41 and (P(k,)'/* =
(dim(rcm))3/2(dim(ﬂNeH))1/2. Then we can conclude that

TRHS of Eq. (D8)

< J is always suppressed by the factor
H‘*’HIUIIH‘PHoH

(m+m O(e™ 8,)_|_(’)( )) for n,~#n, and by the factor
|

(ule_lheﬁ,e)llﬂ |li’H’:>

large rf, (e 4022 (D-1)2
= e

<‘i'[H]g

2 /
P g Y i) aimGe, oo (<1 (B =y ) =T

N,

e

el Gy (N ) (N + L VLN, + LV (N, + 1,

large 1, (y,)2+(),)2+22(D-1)2
< e =

e

where a,(N,) satisfies 0 < |ay(N,)| < /1= |a;(N,)|*.
Similar to the calculation of Eq. (D17), the result of the
case IIT discussed in Appendix B is applicable for (D22)
and we get

<liJ[H];‘ (u/e_lhea,e)l2,2l|li}Hﬁ!‘>

[P [P

”e_’ie =~ ! _ﬁ
s 5 (B0 (00 + O( 7))

b P(%)P(%)
(D23)

Here k, is defined by k,:=dy, ———%—f—% and
(P(k,))V* == (dim(ny,))**(dim(zry ,,))"/>. Then, we

—

(‘PH’E’ [(ue ety ) 101 |\i’w’;’>
[¥ypo [11IW¥seg I

pressed by the factor ("ﬁ‘;’“ O(e™%) + (’)(\/”Z,)) forn, ~1,

can conclude that

is always sup-

and by the factor e 1 for |, — 17| being large in the

‘NZ(dimm))ﬂZ(dim(%l))‘/2exp<—r(’;;—de)z (Zj—dw)z) L= o (N

’76 Ie

e~3@=5+ 1)’ for |5, —1l| being large in the case of large

17,. Finally, by combining the results of Egs. (D14), (D15),
(D18), and (D20) we get

(P (e Pt )1 0 [Pe) r (Poae [P )
[ 1 [ [
large n, 0 lUPH/en>

S tlfar (HE, HY) -

| ’ (D21)
[P [1]]Prac |

where f,,(H?, H/) is a function whose growth is always

oWy -
suppressed by ’W”ﬂi”ﬂ) —1.|, O,

e e |
and |&9 — &£¢°| going large for large 7.
For the off-diagonal component (u}'h,ii.,),,; of hol-

onomy operators, we have

exponentially as |y,

VN, +1,..)+

(D22)

case of large 7,. Based on Eq. (D23), we can evaluate
Eq. (D22) by

|(Paag | (e P l) 12,01 | Pae)
| ||| Peg
large ”1‘ ~ li‘ 0 lVP ug
<"y L el gy
[ Woae |1 |
where f'(H2,H/) is a function whose growth is always
\i, o \IVJ ua

suppressed by 0¥ug M) exponentially as |17, —1,|,

[¥syo 1 W3go 1

O(u,,u,), and |£9 — £°| going large for large #,,. Following
similar calculations we can also give

|<‘i'Hg (u/e_lheﬁ/e)21,12|‘ilH’;’>
[Py |[||Prag
large 77, _ P [Py
e ey WPl s
[P ||| Ppae
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~ o0 \P
where f”(H2, H.) is a function whose growth is always suppressed by 7pr - \l\H‘P >|H exponentially as |, —
[H]/" HO

(ue’ u/e) and

|9 — £°| going large for large 77,,.

Let us further consider the components (i) “Th, oity), s, of the holonomy operator with (z,7),(,)) €
{(3, 4) (4,3),....,(D,D+1),(D + 1,D)}. Similar to the calculations of Egs. (D1), (D8), and (D22), the matrix elements
of (4 h, i

¢).,.0, in the twisted geometry coherent state basis can be evaluated as

- ()20 242 (D-1)?
(u/e_lh )Ijlj |lPH/°> E

oo . . fe 2 (. 2
= e 57 ((dim(a, )2 (i) exp (<12 =) = o=, ))

N(’

<‘i'[H]g

1

celdvm(E-E) _ —
(N, +1)?

(Ne+ 1 Vilugtuy (z £ 7)|Ne + 1, Vo)

1 ()%

—O Y]
0

3 £lo . 3 2 . 1 2 ’73 2 ’1/6 2
= —e' EN ((dlm(”m)) /2(dim(zy, 1))/ exp <_t<2_t_ dNe+l) - t<2_t_ dNe> >

celvent CENT (el W7 ) (N, + 1 Vi |ug '[N, + 1, Vi) (N, + 1LV |i# i N, + 1, V12>>

(N + L V| (2" £ /)i Vit N, + 1, vlz>) *

n 1 o _<n;>2)
— (e =
Vi
1 i, )?
— FRHS of Eq. (D26) +—O(e~%) (D26)

Vit
for large 7, and (), (7,)) € {(3.4),(4,3),....,(D,D+ 1), (D + 1,D)}, where we used Eq. (A32) and defined

FRHS of Eq. (D26)
~§m . 3/2 . 1/2 77e 2 ’7; 2
= —elbe ;((dlm(nm)) (dlm(ﬂNe+1>) eXp<—t(2—t— deH) - t(2_t_dNe> )

: eidN”‘(ég_fga)Tiu,iz’/(”El”/e, W', ) (N, + LV lug"ul [N, + 1, Vi) (N, + 1 Vi it N, + 1, V12>> (D27)

with
1Y% ~/—1~ 1/ + 2 1,V 1,V Lo 227y,,71
Tj::/,i//(”e?l”/e’ﬁ/;lﬁe> — < 12|u e u‘l(ih T )‘ 12>< 12|<T : )/ e >
(L, Vil i, |1, Vi) (1, Vialug u, |1, V)
= e®eei{7)e/jdilj.il’]’(ue_lu£:7 ﬁ/;lﬁe)’ (D28)
and
Ty (g e, W3 01) 1= (1, V| 7t (21 + 2|1, Vi) (1, Vi (21 £ 22 )ug il |1, V1), (D29)

where we used the notation that 7! + 7%/ takes "' + 7% if 1 < j,and "' — 7% if 1 > j. Note that 74, o, (u; "}, it';'@i,) and

“171,) satisfy

Tiz/il’]’(u lue’u
Ty (gl 0 ,) = 0, ’Zii,j,i,r (u;'ul,, 'i,) =0, if ®, =0 (D30)

and
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|Tiu.iz’/(”e_1 M/e’ Lth] ﬁe)| < 46(:)(/’
|7~r:tlj,j:l/]l(u€_1u/e’ ﬂe_lﬁe” < 4’ (D31)

for (1,7),(7,))€{(3.4),(4,3),....,(D,D+1),(D+1,D)}.
Moreover, by recalling Eq. (38), we also have that
T sy 0 715, with (). (1)) € {(3.4),
(4,3),....,(D,D+1),(D+1,D)} grows no faster than
the exponentials as ©(u,,u,) or O(i,,it,) going large.
Then, similar to the analysis for Egs. (D9), (D10), and
(DI11), we have

IFRHS of Eq. (D26)]

large s, _ 1)+ 2422 (0-1)2
= €

4t |<lilH2 \VP[H]/QO>
. |T:tlj,i1’j/<u;1u/e, ﬁ;‘lﬁeﬂ(l + O(l‘) + (f)(e—l/t»‘
(D32)

Finally, let us combine Egs. (D30), (D31), and (D32), and
(li’wg‘li}H’;’)
1@y 111 ||
exponentially fast to 0 for H? # H9, we get

notice that is unity at H? = H9 and decaying

<\\Il"ﬂ-[|§ ‘ (”/e_lheﬁ/e)u,t’/ ‘IIVJH;0>
[P | |1]Pree
large i, _ lvP 0 li} 2
< g,y | ST | s
[P [P

with (1,7),(7,))€{(3,4),(4,3),....(D,D+1),(D+1,D)},
where f”(H2,H/) is a function whose growth is always
(Prg [P0
R
O(u,,u,) and |£9 — £°| going large for large 7,.

suppressed by exponentially as |, —1,],

v — v (ne)?+(n)>+22 (D=1)2
<LPIHI2|(ué_lhea/e)D+1,//|lPH;”>e_,] — 4:r2, >

S ((dim(ﬂN(,))3/2(dim(”Ng+l))l/2 exp <_t (% -

NC

. el 1(8-82) L
(Ne+1)

for large #,. Note that the key factor (N, + 1,
Viluz'ul,e"PHN, +1,V,) in Bq. (D36) is similar to
that in Eq. (D26), thus Eq. (D36) can be calculated
following the similar procedures of the calculation of

The rest of the components of the holonomy operators
are (uy'h,ity),,, and (ug "' h,it})y;,, and their transposi-

tions (u/e_lheﬁ/e)lj,u and (u/e_lheﬁi’)ull with (l’.]) € {(3’4)’
(4,3),...,(D,D+1),(D+1,D)}. By using the similar tech-
niques utilized in the calculations of Egs. (D22) and (D26),
the matrix elements of these components of the holonomy
operators in twisted geometry coherent state basis can be
evaluated, and the results combining with Egs. (D7), (D21),
(D24), and (D33) give the main result in Sec. III B 2 in the
case of (D + 1) being even.

2. D+1 odd
Now let us turn to the case of (D + 1) being odd. The

(Faao |4 B 1), 01| Pigo)
AR
and (/,))€{(3,4),4,3),....(D-1,D),(D,D-1)}
are identical with those in the case of (D + 1) being
even. Besides, there are extra holonomy operators

results of the components with (1, 1)

(ue_lheﬁe)tj,(D-H) and (ue_lheﬁe)(D-&-l),tj with (l’]) S
{(1,2),(2,1),(3,4),....(D-1,D),(D,D—1)} in the case
of (D + 1) being odd, which are defined by

—

(ue_]heﬁE)lj.(D+1) = <17 V11|ue_1he’7le|1’ 6D+l> (D34)
and
(ue_lheﬁe)(D+1),zj = <1v5D+1|u;1heae L, Vz]> (D35)

respectively, where

1,6p41) is defined in Appendix A.

—

Let us analyze (u;lheﬁe)w +1),, as an example. Notice
Eq. (A34) in Appendix A, and we have

2 ﬂle 2
) (s

1
(Ne+ LVip|ug uge PN, + 1, Vi) (N + 1, Vs |ag i |1, Vi s N, V12>> +—70(e7w

(,)?

)
(D36)

Vi

Eq. (D26). Also, the operator (u;lheﬁe)u_,(DH) can be
evaluated similarly. Finally, by combining all of the results
we reach the main result in Sec. IIIB 2 in the case of
(D + 1) being odd.
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