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The causal structure is a quintessential element of continuum spacetime physics and needs to be properly
encoded in a theory of Lorentzian quantum gravity. Established spin foam [and tensorial group field theory
(TGFT)] models mostly work with relatively special classes of Lorentzian triangulations (e.g., built from
spacelike tetrahedra only) obscuring the explicit implementation of the local causal structure at the
microscopic level. We overcome this limitation and construct a full-fledged model for Lorentzian quantum
geometry the building blocks of which include spacelike, lightlike, and timelike tetrahedra. We realize this
within the context of the Barrett-Crane TGFT model. Following an explicit characterization of the
amplitudes via methods of integral geometry and the ensuing clear identification of local causal structure,
we analyze the model’s amplitudes with respect to its (space)time-orientation properties and provide also a
more detailed comparison with the framework of causal dynamical triangulations.
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I. INTRODUCTION

Among the most important conceptual and physical
insights of special and general relativity is that space
and time do not have an independent existence but are
instead part of a single entity, spacetime. Spacetime carries
a Lorentzian signature and therefore bears a causal struc-
ture. In fact, most of the geometric information of space-
time is encoded in the causal relations between events in
spacetime. This is proven by Malament’s theorem [1],
which states that a spacetime metric is obtained by causal
relations up to a conformal factor. To make precise what we
mean by causal structure, we introduce the terms of bare
causality and time orientation following the arguments of
[2,3] and disentangle these two notions. In a continuum
spacetime setting, bare causality refers to the possibility of
dividing the tangent space at each spacetime point into
three classes being timelike, lightlike, or spacelike.
Extending this property globally, bare causality allows
us to determine whether two spacetime points have a
timelike, lightlike, or spacelike separation. Time orienta-
tion, on the other hand, means that at every spacetime point,
timelike vectors are distinguished to be either future
pointing or past pointing, where future and past are defined
by singling out an arbitrary timelike vector.1 Globally

(when a global extension can be defined), this property
amounts to the possibility of arbitrarily determining an
arrow of time. Bare causality and time orientation together
make up what is usually referred to as causal structure or
causality.
Taking the significance of causality in classical con-

tinuum gravity seriously, one naturally expects from a
theory of quantum gravity that it addresses the role of
causality, either by encoding it directly into the quantum
theory or by providing good reasons why and how the
causal structure should arise only in an appropriate classical
and/or continuum limit. Among background-independent
quantum gravity approaches, causal dynamical triangula-
tions (CDTs) [5,6] and causal set theory [7] explicitly
include causal structure in their microscopic configura-
tions2 and make it a key ingredient of the quantum theory.
Tensorial group field theories (TGFTs) [8–11] and spin
foam models [12], the framework we choose to work with
in this article, and closely related formalisms such as loop
quantum gravity (LQG) [13,14], mostly focus on geo-
metrical aspects of spacetime encoded via holonomies
and tetrads/fluxes. The main objective of this article is
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1By continuity, this notion can be extended to lightlike

vectors [4].

2With respect to the above designation, CDT considers bare
causality by including timelike and spacelike edges and time
orientation by distinguishing the (4,1)- and (3,2)-simplices from
the “time-reversed” (1,4)- and (2,3)-simplices, respectively. In
causal set theory, the starting point of quantization is a causal set
(i.e., a poset with ordering relations interpreted as causal
relations), which takes both aspects, i.e., bare causality and time
orientation, directly into account [7].
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to develop a TGFT and spin foam model that transparently
encodes all of the bare causal structure in the microscopic
quantum degrees of freedom.
Tensorial group field theories [8–10] are combinatorially

nonlocal quantum and statistical field theories defined on a
group manifold.3 From a combinatorial perspective, they
can be seen as the generalization of matrix models for two-
dimensional quantum gravity [15] to higher dimensions, in
the same way as tensor models [16]. The group theoretic
structure, on the other hand, enriches these with quantum
geometric degrees of freedom and turns them into proper
field theories. Combining these two aspects in one formal-
ism, TGFTs provide a link between several quantum
gravity approaches, specifically LQG, spin foam models,
and simplicial gravity path integrals [17–20]. As we show
in the following, further connections with CDT and causal
set theory can be envisaged and potentially exploited.
A specific GFT model (we indicate as “GFT” models

those TGFT models with a quantum geometric interpreta-
tion inspired also by the other related quantum gravity
formalisms) is characterized by a choice of group, an action,
and model-dependent constraints on the group field. The
Feynman amplitudes of such quantum geometric models
will take the form of spin foam models. The Barrett-Crane
(BC) model [21–24] and the Engle-Pereira-Rovelli-Livine
(EPRL) model [25] are the most prominent GFT (and spin
foam) models realizing a constrained BF quantization of
first-order Palatini and first-order Palatini-Holst gravity,
respectively. Although imposing the simplicity constraint
differently, in their most studied formulation the twomodels
have in common that their elementary building blocks are
spacelike tetrahedra only, implying that in perturbative
expansion, only Lorentzian triangulations consisting of
spacelike components are generated. Despite working with
the local symmetry group of Lorentzian gravity SLð2;CÞ,
the causal aspects of discrete and continuum geometry, in
particular, bare causality, are obscured by such a restriction.
This is because timelike and lightlike geometric objects need
to be reconstructed from spacelike configurations. The other
ensuing restriction is that the boundary states of the theory
are necessarily spacelike. This is sufficient to describe
important sectors of gravitational dynamics, for example,
the cosmological evolution of spacelike hypersurfaces [24–
26], but it leaves out equally interesting ones, e.g., anti–de
Sitter (AdS) space and much of black hole physics, since
these spacetimes contain timelike and lightlike boundaries,
respectively. Taking yet another perspective, the inclusion of
additional configurations corresponding to timelike and
lightlike tetrahedra leads to an extension of the TGFT
models to new kinetic and interaction terms (and respective

edge and vertex amplitudes). A possible consequence could
be that the resulting model lies in a different universality
class than that containing only the spacelike tetrahedra,
therefore showing a different macroscopic continuum
behavior. As an example, CDTand its Euclidean counterpart
of dynamical triangulations (DTs) [27,28] show a different
phase diagrambecause the twomodels are based ondifferent
building blocks, and a similar behavior can be determined
for single- and multimatrix models [29–32].
In the existing literature, several extensions of the

aforementioned models have been proposed to include
also timelike or lightlike tetrahedra. Already, Barrett and
Crane anticipated in [21] that there are in principle more
building blocks that can be included than just spacelike
tetrahedra. Shortly after, Perez and Rovelli extended the
analysis to a GFT model which describes timelike tetra-
hedra only, thus including spacelike as well as timelike
faces [33]. However this model is still rather restrictive in
that it only includes timelike boundaries. From the per-
spective of canonical LQG, only little attention has been
paid to the inclusion of other than spacelike boundaries,
due to the standard limitations of the canonical analysis.
Timelike tetrahedra and faces are instead studied in [34] in
the formalism of so-called “covariant LQG” [35] employ-
ing projected spin networks [36]. Lightlike configurations
have been even less explored in LQG and related
approaches; see [37,38]. In spin foam models, important
progress to enlarge the set of causal configurations is
represented by the Conrady-Hnybida (CH) extension
[39,40] of the EPRL model (see [41–43] for its asymptotic
analysis). This extension includes spacelike and timelike
but not lightlike tetrahedra.
Going beyond the implementation of bare causal struc-

tures, work addressing the time-orientation aspect of
causality in GFTs and spin foam models has been put
forward in [2] for the Barrett-Crane model which only
incorporates spacelike tetrahedra. An analysis of the
kernels which define the vertex amplitude revealed that
the model does not encode any time orientation, and it
possesses amplitudes that are invariant under time reversal
[2]. To turn the model into a time-oriented form, an explicit
breaking of the time-reversal invariance at the level of spin
foam amplitudes was suggested therein. For the EPRL spin
foammodel, a related analysis has been performed in recent
work [3] with the same conclusions. This symmetry of the
amplitudes may be a necessary feature from a canonical
quantization point of view. A proper interpretation comes
also from a covariant path integral perspective [2,44–46],
even though the role of a time-oriented version of the same
quantum dynamics may well play an important role in
quantum gravity and deserves to be studied with more
attention. Moreover, such a time-reversal symmetry may
not produce any decisive consequence for what concerns
the macroscopic arrow of time, which may well have a
statistical, thermodynamic, or otherwise collective and

3This group manifold is not interpreted as a spacetime on
which physical fields are defined, but plays a different, auxiliary
role of configuration space for the fundamental degrees of
freedom building up spacetime.
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emergent origin in quantum gravity. For that reason, we
focus in this work on the implementation of bare causality
in GFT and postpone an extension aiming at time orient-
ability to future research.
In order to have a complete and manifest implementation

of bare causality in spin foam (TGFT) dynamics, we look for
a model that properly includes all types of building blocks
and their possible combinations. In the following, we show
that the Barrett-Crane GFT model in its extended formu-
lation can be formulated in a straightforward generalization
to include timelike, lightlike, and spacelike tetrahedra.
Before proceeding with our analysis, let us digress

briefly. The Barrett-Crane model, in both its GFT and spin
foam formulation, is a rather straightforward constrained
BF quantization of first-order Palatini gravity. Several
criticisms have been raised, however, against it, based
on the appearance of degenerate geometries (in the sense
of vanishing 4-volume) in the asymptotics [47,48], the
“wrong” boundary states [49], missing secondary con-
straints [23,50], imposing simplicity constraints “too
strongly” [51], and the noncovariant imposition of geo-
metricity constraints [23]. While these criticisms are
serious and have to be looked at carefully, we consider
them inconclusive and the Barrett-Crane model still a
potentially viable formulation of quantum gravity in the
spin foam and TGFT context. The asymptotic analysis
(e.g., in [47,48]) is mostly restricted to a single 4-simplex
and has not been extended to larger simplicial complexes,
and thus its true implications are unclear. The findings of
[49] (and similar works) simply reflect the mismatch
between LQG states and the boundary states of the BC
model. Since these boundary states result from a quantiza-
tion of Palatini-Host gravity versus a quantization of
Palatini gravity without additional topological contribution
(and thus, no Barbero-Immirzi parameter), respectively, the
mismatch should not be surprising or upsetting, and has no
bearing, per se, on the validity of the BC model. Next, the
analysis of [52] in the context of “effective spin foams”
[53–55] suggests that explicit secondary constraints may
not be needed, in a spin foam context, to obtain the correct
semiclassical and continuum behavior. Last, the Barrett-
Crane model arises when imposing the simplicity con-
straints strongly (via a projector), as it should be, given that,
in absence of the Barbero-Immirzi parameter, they are first
class and covariant as shown in [23]. We conclude that the
Barrett-Crane model is still a viable quantum gravity
model, worthy of further attention, especially concerning
its effective continuum gravitational description. The
analysis of [24] supports this viewpoint: The key results
of GFT condensate cosmology [24,25,56–60], such as an
emergent Friedmann dynamics and a quantum bounce, can
be recovered in the BC GFT model as well. In fact, this
model offers an advantage that is particularly important for
the inclusion of all bare causal configurations: Since the
constraints of the Barrett-Crane GFT model in a suitably

extended formulation that includes explicitly normal vec-
tors to the tetrahedra [23,24] are covariantly imposed via a
projector, the model is unique (at least from this point of
view, in contrast with other existing models, in particular,
those including the Barbero-Immirzi parameter). Crucially,
this extended formalism is also convenient for implement-
ing full bare causality at the microscopic quantum level,
and therefore, we adopt it also in this article.
We pursue the following objectives. The main goal is the

implementation of all possible bare causal configurations in
the Barrett-Crane GFT model via a generalization to all
possible normal vector signatures. Having obtained the
corresponding complete model, the next objective is to
study a selected number of properties of the model. First,
we seek a clear quantum geometric interpretation of the
configurations that enter its amplitudes. Second, we scru-
tinize the issue of time orientation and clarify why the
model is in fact orientation symmetric. Last, we offer a
detailed comparison to the CDT approach, which is made
possible by the enlarged configuration space of the model.
We begin the main body of this article by setting up the

model in Sec. II A and give a geometric interpretation
thereafter in Sec. II B. Important for most explicit GFT
computations, we derive the spin representation of the
complete BC model in Sec. II C, which allows us to present
the spin foam formulation in Sec. II D. As a last point of
Sec. II, we provide a colored version of the model
necessary to generate topologically nonsingular simplicial
complexes and, more generally, to control the topology of
the same complexes. In Secs. III A and III B, we explicitly
compute the kernels that enter the vertex in the spin
representation, using methods of integral geometry intro-
duced in [61]. These are subsequently analyzed with regard
to space, time, and spacetime orientation in Sec. III C.
Section IV provides a comparison between the model
constructed here and other GFT models as well as the
construction of a CDT-like GFT model understood as a
causal tensor model. We close in Sec. V with a discussion
of the obtained results and outline future research directions
that we consider as promising. Appendices A and B
introduce the key notions of SLð2;CÞ representation theory
and integral geometry crucial for the computations of
Secs. II C and III. Appendix C contains a derivation of
the classical results that enter Table II in Sec. II B.

II. EXTENDED BARRETT-CRANE
GROUP FIELD THEORY MODEL

An extended formulation of the Lorentzian Barrett-
Crane GFT model based on the Euclidean theory developed
in [23] has been defined in [24]. The extension consisted
of adding an additional variable in the upper sheet of the
3-hyperboloid H3þ interpreted as a timelike normal vector of
tetrahedra. This served as an auxiliary variable (it drops
from the dynamical amplitudes, but not from boundary
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states) allowing for a covariant and commuting imposition
of simplicity and closure constraints.
The Feynman diagrams of this model are dual to

simplicial complexes made only of spacelike tetrahedra.
A natural way to remove this restriction is to consider addi-
tional normal vectors with lightlike and spacelike signa-
ture,4 respectively. This is indicated in Table I, where H1;2 is
the one-sheeted hyperboloid and Cþ is the upper light
cone.5 These distinguished hypersurfaces in Minkowski
space are depicted in Fig. 1. As detailed in Sec. II B, the
normal vectors are understood as vectors in Minkowski
space orthogonal to the associated tetrahedra, and they are
realized as elements in quotient spaces of SLð2;CÞ with
respect to different subgroups. Let α ∈ fþ; 0;−g and
denote by UðαÞ the SLð2;CÞ subgroup that stabilizes the
normal vectors

Xþ¼ð1;0;0;0Þ; X0¼
1ffiffiffi
2

p ð1;0;0;1Þ; X−¼ð0;0;0;1Þ:

ð2:1Þ

For the timelike and spacelike case, we clearly have
the isomorphisms UðþÞ ≅ SUð2Þ and Uð−Þ ≅ SUð1; 1Þ.
As shown, e.g., in [62], the stabilizer subgroup of
1ffiffi
2

p ð1; 0; 0; 1Þ is isomorphic to ISO(2), the group of iso-

metries acting on the Euclidean plane.
The two conditions imposed on the GFT field—

extended closure (or covariance) and simplicity—are also
naturally extended to general normal vectors. They are
summarized by the following two equations:

φðgv;XαÞ ¼ φðgvh−1;h · XαÞ; ∀ h ∈ SLð2;CÞ; ð2:2Þ

φðgv;XαÞ¼φðgvuv;XαÞ; ∀ u1;…; u4∈UXα
; ð2:3Þ

where the transitive action of SLð2;CÞ on quotient spaces
SLð2;CÞ=UðαÞ as well as the stabilizer subgroups UXα

are
defined in Appendix A 1. Using the normal vectors, the

conditions Eqs. (2.2) and (2.3) are imposed in a covariant
and commuting fashion, and can be joined in a single
“geometricity projector.” As a consequence, one has a
unique definition of the model, solving ambiguities of
earlier BC GFT formulations [22,33,63].

A. Definition of the complete model

Given the above properties of φðgv;XαÞ, the action of the
complete Barrett-Crane model is given by the sum of a
kinetic and interaction part

S½φ; φ̄� ¼ K½φ; φ̄� þ V½φ; φ̄�; ð2:4Þ
which we specify in the following two subsections. We
leave as understood a straightforward regularization of
divergent volume factors volðSLð2;CÞÞ, volðUð0ÞÞ, and
volðUð−ÞÞ coming from trivial redundancies in the action,
not carrying physical information; see also [24] for an
exemplary discussion of this matter.

1. Kinetic term

As a straightforward generalization of the one in [24], the
kinetic term is defined as

K½φ;φ̄�¼
X
α

Z
SLð2;CÞ4

½dg�4
Z

SLð2;CÞ=UðαÞ

dXαφ̄ðgv;XαÞφðgv;XαÞ;

ð2:5Þ
thus being a sum of contributions for each normal sig-
nature. A pictorial representation is presented in the left
panel of Fig. 2.
Note that one could also introduce a more general kinetic

kernel with the same structure as Eq. (2.5) but with a
different mass coupling for each signature. Suggested by
renormalization group analyses of related TGFT models,
another possibility is that the kinetic kernel contains a
differential (e.g., Laplacian) operator acting on the group
domain [64].6 Moreover, for the later construction of a
CDT-like GFT model in Sec. IV B, a generalization of the
kinetic kernel is desirable as it facilitates the implementa-
tion of the “dual weighting” discussed therein. In its most
general form, the kinetic term is given by

K½φ; φ̄� ¼
X
α;β

Z
½dg�8

Z
dXαdXβφ̄ðgv;XαÞ

×Kαβðgv; gw;Xα; XβÞφðgw;XβÞ: ð2:6Þ

Respecting the two conditions given in Eqs. (2.2) and (2.3),
the general kinetic term reduces to

TABLE I. Extension of the GFT field to normal vectors Xþ; X0,
and X− carrying the three different possible signatures in
Minkowski space.

Timelike normal φðgvÞ → φðgv;XþÞ Xþ ∈ H3
�

Lightlike normal φðgvÞ → φðgv;X0Þ X0 ∈ C�
Spacelike normal φðgvÞ → φðgv;X−Þ X− ∈ H1;2

4We use the signature convention ðþ;−;−;−Þ so that the
square of timelike, lightlike, and spacelike Minkowski vectors is
positive, zero, and negative, respectively.

5As we are going to discuss in Secs. II B and III C, the choice
between the upper or lower parts of H3

� and C� is irrelevant for
the construction of the model. We restrict our attention to timelike
normal vectors lying in the upper 3-hyperboloid and to lightlike
vectors lying in the upper light cone.

6This kind of term is crucial for the renormalization flow of
TGFT models, and it plays also an important role to drive
configurations in GFT condensate cosmology toward “dynamical
isotropization” [24,25,60,65–67].
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K½φ;φ̄�¼
X
α

Z
½dg�4

Z
dXαφ̄ðgv;XαÞKαðgv;XαÞφðgv;XαÞ;

ð2:7Þ

where Kαðgv;XαÞ can be any well-behaved function on the
constrained domain.

2. Vertex term

For the vertex term V½φ; φ̄�, we pose a priori no
conditions on the gluing of tetrahedra to form space-
time 4-simplices. In particular, we do not require that
the signatures of normal vectors match inside a single
4-simplex. In order to include all combinations of space-
time building blocks, we begin with the vertex term

V½φ; φ̄� ¼
Z

½dg�10
X
α1…α5

Z
dXα1…

Z
dXα5φ1234ðXα1Þφ4567ðXα2Þ

× φ7389ðXα3Þφ962ð10ÞðXα4Þφð10Þ851ðXα5Þ þ c:c: ð2:8Þ

FIG. 2. Left panel: A pictorial representation of the kinetic kernel, which accounts for the gluing of two tetrahedra by identifying
their normal vectors, where we suppressed the signature of the normal vector. Right panel: The combinatorial structure of a 4-simplex
formed by gluing five tetrahedra with normal vectors X1;…; X5 along ten faces. Again, we suppressed the signature of the five normal
vectors.

FIG. 1. Distinguished hypersurfaces in Minkowski space from the perspective of a chosen observer at O. From left to right: The two-
sheeted hyperboloid (defined via yμyμ ¼ 1, with y ∈ R1;3), the lightcone (defined via yμyμ ¼ 0), and the one-sheeted hyperboloid
(defined via yμyμ ¼ −1). Note that the z axis is suppressed to give three-dimensional pictures and that the so-called skirt radius of the
hyperboloids is set to unity in this work.
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summing up to 35 ¼ 243 different terms, where we
introduced the shorthand notation φ1234ðXαÞ≡ φðg1; g2;
g3; g4;XαÞ. Out of this large number of interactions, we end
up with only 21 physically distinct terms since we can
reorder group labels so that only the number of timelike,
lightlike, and spacelike normal fields ðnþ; n0; n−Þ is deci-
sive. Consequently, we write the full vertex term as a sum

V½φ; φ̄� ¼
X

nþ ;n0 ;n−≥0
nþþn0þn−¼5

λðnþ;n0;n−Þ

5
Vðnþ; n0; n−Þ; ð2:9Þ

where for a specific combination of ðnþ; n0; n−Þ, we have

Vðnþ; n0; n−Þ ¼
Z

½dg�10
Z

½dXα�5φ1234ðXα1Þφ4567ðXα2Þ

× φ7389ðXα3Þφ962ð10ÞðXα4Þφð10Þ851ðXα5Þ
þ c:c: ð2:10Þ

A pictorial representation of the vertex term is given in the
right panel of Fig. 2, which shows the combinatorial pattern
encoding the gluing of five tetrahedra to form a spacetime
4-simplex. Two remarks are in order: First, each of the 21
distinct terms is a priori introduced by an independent
coupling constant λðnþ;n0;n−Þ. Second, we observe that the
normal vectors are integrated over separately, since we do
not expect them to carry geometric information but merely
serve as auxiliary variables which allow for a covariant and
commutative imposition of constraints.
From the action defined by Eqs. (2.5) and (2.9), the

equations of motion can be derived via a variation with
respect to the fields φ̄ðg1; g2; g3; g4;XαÞ7 by applying

δφ̄ðg1; g2; g3; g4;XαÞ
δφ̄ðh1; h2; h3; h4;YβÞ

¼
Y4
i¼1

δðgih−1i ÞδαβδðXα; YβÞ; ð2:11Þ

which clarifies the variational principle. Notice that varying
with respect to a GFT field with given normal vector picks
out a particular signature encoded in the Kronecker delta
δαβ. If the signatures match, i.e., α ¼ β, then δðXα; YαÞ
denotes the δ function on the space SLð2;CÞ=UðαÞ, which is
defined in Appendix B for all values of α.
Summarizing, the full action of the complete Barrett-

Crane model is given by the sum of Eqs. (2.5) and (2.9),
taking into account every possible combination of five
tetrahedra forming a spacetime 4-simplex.A clear geometric

understanding of the variables that enter the above defined
theory, together with conclusions that can already be drawn
on the classical level, are given in the following.

B. Bivector variables and geometric interpretation

In this subsection, we perform a change of GFT variables
to bivectors (i.e., Lie algebra variables), where the geo-
metric interpretation is more transparent. Thereupon, we
present and interpret classical conditions on these bivectors
arising from the simplicity constraint with respect to
normal vectors of different signatures. These conditions
will later serve as a comparison for restrictions on the
quantum level which are derived by representation theoretic
computations in Sec. III.
Utilizing the noncommutative Fourier transform on Lie

groups [50,68], which has been explicitly formulated for
SLð2;CÞ in Ref. [69], we change from group variables gi ∈
SLð2;CÞ to Lie algebra variables Bi ∈ slð2;CÞ,

φXα
ðB1;B2;B3;B4Þ¼

Z
½dg�4φðg1;g2;g3;g4;XαÞ

Y4
i¼1

egiðBiÞ;

ð2:12Þ
where egiðBiÞ are the noncommutative generalization of
plane waves. Because of the vector space isomorphism
slð2;CÞ ≅vs R1;3 ∧ R1;3 realized by relating the generators
of SLð2;CÞ denoted as La and Ka with bivector compo-
nents BAB,

La ≔
1

2
εabcBbc; Ka ≔ B0a; ð2:13Þ

the Lie algebra variables are interpreted as bivectors
associated with triangles of a tetrahedron. The areas of
triangles are determined as

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jB · Bj

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
jBABBABj

r
: ð2:14Þ

In the following, we discuss the translation of the two
constraints in Eqs. (2.2) and (2.3) into constraints of the
bivector variables, with particular attention paid to the
simplicity constraint which encodes the embedding of
tetrahedra into the plane orthogonal to Xα and ensures
the geometric interpretation of the same variables.
Upon integration over the normal vector Xα, the

extended closure/covariance condition Eq. (2.2) corre-
sponds to closing bivectors

X4
i¼1

Bi ¼ 0; ð2:15Þ

which implies the closing of the associated triangles to
form a tetrahedron. This condition does not depend on the
signature of Xα, as it can be seen from Eq. (2.2).

7Although considered as auxiliary variables, the normal
vectors enter the GFT fields as arguments and are therefore
present in the equations of motion. If needed, the dependence on
the normal vector can be eliminated after variation by (gauge)
fixing it to a certain value X0 (using the closure/covariance
condition) or by integrating over it, similar to what is done in the
interaction term in Eq. (2.10).
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Simplicity with respect to Xα, as defined by Eq. (2.3),
imposes the linear simplicity constraint on bivectors

XA
αð�BÞAB ¼ 0; ð2:16Þ

as shown in [23] for Euclidean signature.8 The proof can be
straightforwardly extended to the Lorentzian case by
utilizing the properties of the noncommutative Fourier
transform on SLð2;CÞ.
Independent of the signature α, solutions of Eq. (2.16)

are given by simple bivectors, i.e., by bivectors of the
form B ¼ E1 ∧ E2, for some E1; E2 ∈ R1;3. In contrast,
the signature of bivectors, and thus, the signature of the
associated triangles, is sensitive to the signature of the
normal vector. We call a triangle timelike, lightlike, or
spacelike if B · B is positive, zero, or negative, respectively.
Table II shows the resulting form of the bivectors, and their
signature if simplicity is imposed with respect to the normal
vectors of Eq. (2.1), a derivation of which is presented in
Appendix C. We extract from Table II that triangles
forming a spacelike tetrahedron are exclusively spacelike.
We also observe that lightlike tetrahedra contain triangles
which are either lightlike or spacelike. As pointed out in
[37], the case of a lightlike bivector with a lightlike normal
is degenerate, since the associated edge vectors would be
parallel and therefore cannot span a triangle. Also, for a
spacelike normal vector, the signature of bivectors is not
constrained, and hence, the associated triangles can either
be timelike, spacelike, or lightlike, where the latter case is
not degenerate in the above sense. Finally, we note that the
simplicity constraints are by construction insensitive to the
orientation of the normal vector, meaning that the choice of
the upper or lower parts of the 3-hyperboloid and the light
cone is irrelevant, a point we will discuss further in
Sec. III C.
Notice that for lightlike and timelike tetrahedra, the

signature of faces does not uniquely determine the sig-
nature of the contained edges. A mismatch of edge
signatures for glued triangles, however, is excluded by
the fact that bivectors of triangles are identified via (non-
commutative) δ functions in the Lie algebra representation
of the action in Eqs. (2.5) and (2.9).

In the following Secs. II C and III, we derive the spin
representation of the GFT field with all three different
signatures, expanding it in terms of SLð2;CÞ representa-
tions ðρ; νÞ ∈ R × Z=2. This allows for a comparison with
the classical bivector considerations that are summarized in
Table II. In Sec. III, we will comment on the case of
bivectors satisfying B · B ¼ 0 in the quantum theory.

C. Spin representation of the GFT field and action

To derive the spin representation of the GFT action, we
first expand the GFT fields in terms of representation
labels, taking into account closure and simplicity condi-
tions (2.2) and (2.3). That is, we generalize the derivation in
the Appendix of [24] to the case of the normal vector being
either timelike, lightlike, or spacelike.
Let us define a (pseudo-)projector Pðρ;νÞ

α from the
SLð2;CÞ representation spaceDðρ;νÞ onto the UðαÞ-invariant
subspace as

Pðρ;νÞ
α ≔

Z
UðαÞ

duDðρ;νÞðuÞ; ð2:17Þ

where Dðρ;νÞðgÞ is an SLð2;CÞ Wigner matrix. Defining
jI ðρ;νÞ;αi as a UðαÞ-invariant vector in Dðρ;νÞ,

Dðρ;νÞðuÞjI ðρ;νÞ;αi ¼ jI ðρ;νÞ;αi; ∀ u ∈ UðαÞ; ð2:18Þ

the projector is conveniently rewritten as

Pðρ;νÞ
α ¼ jI ðρ;νÞ;αihI ðρ;νÞ;αj; ð2:19Þ

with matrix coefficients in the canonical basis are
given by9,10

TABLE II. An overview of the bivector components and their
signature after imposing simplicity with respect to different
normal vectors.

X ð�1; 0; 0; 0Þ 1ffiffi
2

p ð�1; 0; 0; 1Þ (0, 0, 0, 1)

L (0, 0, 0) ð∓ B02;�B01; 0Þ ðB23; B31; 0Þ
K ðB01; B02; B03Þ ðB01; B02; B03Þ ð0; 0; B03Þ
B · B <0 ≤0 Indefinite

8� denotes the Hodge star operator acting on the space of
Minkowskian bivectors.

9The symbols I ðρ;νÞ;α
jm are equal to the W symbols of Ref. [33]

for the case of α ¼ þ;−, and they represent an extension of the
work done in [33] since also lightlike normal vectors are taken
into account for α ¼ 0.

10In this article, we work in the canonical basis of SLð2;CÞ
representations which are denoted in bracket notation as
jðρ; νÞ; jmi. The Wigner matrices are best under control in this
case, e.g., with respect to the orthogonality relation (A12) or the
behavior under complex conjugation in Eq. (A13). Furthermore,
the interaction term of mixed type will contain the convolution of
Wigner matrices arising from different normal vectors. In differ-
ent bases, for instance, in the pseudo-basis for functions with
α ¼ −, the coefficients for basis change would be required
explicitly, and they are not available. The price we pay for using
the canonical basis is that the evaluation of the SUð1; 1Þ and
ISO(2) elements on the Wigner matrices does not yield an
immediate simplification as it does for the SU(2) case, where
Dðρ;νÞ

jmlnðuÞ ¼ δjlDj
mnðuÞ holds.
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hðρ; νÞ; jmjPðρ;νÞ
α jðρ; νÞ; lni ¼ Pðρ;νÞ;α

jmln ¼ Ī ðρ;νÞ;α
jm I ðρ;νÞ;α

ln :

ð2:20Þ

Anticipating some of the results of Sec. III A, the
invariant coefficients indeed project onto simple represen-
tations. Without further specification at this point, we write

Pðρ;νÞ;þ
jmln ¼ δν;0P

ρ;þ
jmln; ð2:21Þ

Pðρ;νÞ;0
jmln ¼ δν;0P

ρ;0
jmln; ð2:22Þ

Pðρ;νÞ;−
jmln ¼ δν;0P

ρ;−
jmln þ δðρÞδν∈2NþPν;−

jmln; ð2:23Þ

where we refer to Sec. III A for a derivation and to
Appendix B for the mathematical basis given by integral
geometry. As we detail in Sec. III, Eqs. (2.21) and (2.22)
imply that spacelike and lightlike tetrahedra only contain
spacelike faces labeled by ρ ∈ R. Timelike tetrahedra
contain a mixture of spacelike and timelike faces, as
Eq. (2.23) shows, where the latter are labeled by
ν ∈ 2Nþ. Notice that, since SUð1; 1Þ and ISO(2) are
noncompact, the self-contractions of I ðρ;νÞ;0 and I ðρ;νÞ;−
lead to divergent volume factors which we regularize if
appearing in our computations.
Following the definition of the invariant coefficients

I ðρ;νÞ;α
jm , together with the results in [24], we find a basis for

the functions on SLð2;CÞ4 × SLð2;CÞ=UðαÞ, which satisfy
extended closure and simplicity given by

Ψρ1ν1ρ2ν2ρ3ν3ρ4ν4;α
j1m1j2m2j3m3j4m4

ðg1; g2; g3; g4;XαÞ

¼
Y4
i¼1

X
lini

Dðρi;νiÞ
jimilini

ðgigXα
ÞĪ ðρi;νiÞ;α

lini
; ð2:24Þ

where gXα
∈ SLð2;CÞ is a representative of the equiva-

lence class of Xα ¼ ½gX�α ∈ SLð2;CÞ=UðαÞ making use
of the quotient structure. It is easily checked that the
proposed basis functions satisfy the three properties that
we seek, i.e., closure, simplicity, and invariance under
change of representative gXα

→ gXα
u. Consequently, a

function φ ∈ L2ðSLð2;CÞ4 × SLð2;CÞ=UðαÞ=∼Þ, where
∼ encodes the quotient structure due to geometricity, is
expanded in terms of SLð2;CÞ representation labels as

φðgv;XαÞ ¼
�Y4
i¼1

X
νi

Z
dρi4ðρ2i þ ν2i Þ

X
jimilini

�

× φρiνi;α
jimi

Y
i

Dðρi;νiÞ
jimilini

ðgigXα
ÞĪ ðρi;νiÞ;α

lini
; ð2:25Þ

where the factor 4ðρ2i þ ν2i Þ stems from the Plancherel
measure of the functions on SLð2;CÞ. If in addition, the
normal vector is integrated over, as in the case of the vertex
term (2.10), the GFT field expansion is given by

Z
dXα φðgv;XαÞ ¼

�Y4
i¼1

X
νi

Z
dρi 4ðρ2i þ ν2i Þ

X
jimilini

�

× φρiνi;α
jimi

Bρiνi;α
lini

Y
i

Dðρi;νiÞ
jimilini

ðgiÞ; ð2:26Þ

where we defined the generalized Barrett-Crane inter-
twiners via

Bρiνi;α
jimi

≔
Z

SLð2;CÞ=UðαÞ

dXα

Y4
i¼1

X
lini

Dðρi;νiÞ
jimilini

ðgXα
ÞĪ ðρi;νiÞ;α

lini
:

ð2:27Þ

1. Spin representation of the kinetic term

The spin representation of the action given in Sec. II A is
derived by inserting the GFT field expansion (2.25) using
the orthogonality relation of SLð2;CÞ Wigner matrices in
the canonical basis which are given in Eq. (A12). We obtain

K½φ; φ̄� ¼
X
α

�Y4
i¼1

X
νi

Z
dρi 4ðρ2i þ ν2i Þ

X
jimi

�
φ̄ρiνi;α
jimi

φρiνi;α
jimi

:

ð2:28Þ

If we choose to work with a more general kinetic kernel
as discussed in Sec. II A, the spin representation of the
kinetic term is given by

K½φ; φ̄� ¼
X
α

�Y4
i¼1

X
νi

Z
dρi 4ðρ2i þ ν2i Þ

X
jimi

�

× φ̄ρiνi;α
jimi

Kρiνi;α
jimi

φρiνi;α
jimi

; ð2:29Þ

thus leading to different edge amplitudes depending on the
precise choice of kinetic term. A graphical representation of
the kinetic kernel is given in the left panel of Fig. 2.

2. Spin representation of the vertex term

Since the normal vectors entering the vertex term (2.10)
are integrated over separately, we apply the expansion of
GFT fields after normal integration given in Eq. (2.26),
which makes use of the generalized BC intertwiners
defined in Eq. (2.27). We obtain
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Vðnþ; n0; n−Þ ¼
�Y10
a¼1

X
νa

Z
dρa 4ðρ2a þ ν2aÞ

X
jamalana

ð−1Þ−ja−ma

�
φρ1ν1ρ2ν2ρ3ν3ρ4ν4
j1m1j2m2j3m3j4m4

φρ4ν4ρ5ν5ρ6ν6ρ7ν7
j4−m4j5m5j6m6j7m7

φρ7ν7ρ3ν3ρ8ν8ρ9ν9
j7−m7j3−m3j8m8j9m9

× φρ9ν9ρ6ν6ρ2ν2ρ10ν10
j9−m9j6−m6j2−m2j10m10

φρ10ν10ρ8ν8ρ5ν5ρ1ν1
j10−m10j8−m8j5−m5j1−m1

f10ðρ; νÞgðα1;…;α5Þ; ð2:30Þ

where f10ðρ; νÞgðα1;…;α5Þ is the generalized Barrett-Crane f10ρg symbol defined in terms of contractions of generalized BC
intertwiners by

f10ðρ; νÞgðα1;…;α5Þ ≔
�Y10

a¼1

X
lana

ð−1Þlaþna

�
Bρ1ν1ρ2ν2ρ3ν3ρ4ν4;α1
l1n1l2n2l3n3l4n4

Bρ4ν4ρ5ν5ρ6ν6ρ7ν7;α2
l4−n4l5n5l6n6l7n7 Bρ7ν7ρ3ν3ρ8ν8ρ9ν9;α3

l7−n7l3−n3l8n8l9n9

× Bρ9ν9ρ6ν6ρ2ν2ρ10ν10;α4
l9−n9l6−n6l2−n2l10n10B

ρ10ν10ρ8ν8ρ5ν5ρ1ν1;α5
l10−n10l8−n8l5−n5l1−n1 : ð2:31Þ

A pictorial interpretation of the generalized f10ðρ; νÞg
symbol is given in the right panel of Fig. 2, visualizing
that it describes the gluing of five tetrahedra to form a
spacetime 4-simplex.
Despite its formal clarity, Eq. (2.31) is computationally

hard to handle. For actual computations of the vertex
amplitude as well as the interpretation thereof, the kernel
representation of Eq. (2.31), which we derive in the
following, is important. To that end, we define SLð2;CÞ
Wigner matrices which are contracted from both sides with
invariant vectors I ðρ;νÞ;α,

Dðρ;νÞ
α1α2 ðg−1X1

gX2
Þ≔

X
jmln

I ðρ;νÞ;α1
jm Dðρ;νÞ

jmlnðg−1X1
gX2

ÞĪ ðρ;νÞ;α2
ln : ð2:32Þ

Because of the contraction with the I ðρ;νÞ;α, these functions
effectively depend on normal vectors Xi ∈ SLð2;CÞ=UðαiÞ
only, for which the gX1

and gX2
are representatives.

Physically, we interpret Eq. (2.32) as encoding the gluing
of two tetrahedra with normal vectors Xi ∈ SLð2;CÞ=UðαiÞ
along a common face. The effective dependence on normal
vectors motivates a notation similar to that of Refs. [21,33]
defining the kernels

Kðρ;νÞ
α1α2 ðX1; X2Þ ≔ Dðρ;νÞ

α1α2 ðg−1X1
gX2

Þ: ð2:33Þ

Notice that Eqs. (2.32) and (2.33) constitute a natural

generalization of the Dðρ;0Þ
0000ðg−1X gYÞ characters used in the

Barrett-Crane model with timelike normals, which can be
equivalently represented as δν;0Kþ

ρ ðX; YÞ in the notation
of [22].
An integral form of Eq. (2.31) can straightforwardly be

obtained by writing the generalized BC intertwiners as
integrals over normal vectors via Eq. (2.27). Carrying out
the contraction of the indices ðliniÞ and making use of
Eqs. (2.32) and (2.33), we obtain

f10ðρ;νÞgðα1;…;α5Þ ¼
Z

½dXα�5
Y
a<b

Kðρab;νabÞ
αaαb ðXa;XbÞ: ð2:34Þ

As suggested in [21], the regularization of the f10ðρ; νÞg
symbol is simply achieved by fixing the vector X1 and
dropping its integration.
Finally, we remark that the form of the f10ðρ; νÞg

symbol given in Eq. (2.34) is most convenient, as it allows
for the application of integral geometry methods
developed in Appendix B. Since the generalized BC
intertwiners still carry uncontracted magnetic indices, a
clear relation to the D functions of Eq. (2.32) is obscured.
This is also the reason why the generalized BC inter-
twiners are defined in an implicit way here, while the D
functions take an explicit form, as the computations in
Sec. III show.

D. Spin foam model formulation

With the spin representation results of the previous
section, we can give the spin foam expression for the
amplitudes of the complete model. These are associated
with oriented 2-complexes dual to the Feynman diagrams
of the GFT model and denoted as Δ�, where the orientation
is obtained by giving the edges e a direction. Δ� is taken to
be the 2-skeleton dual to a triangulation Δ of an oriented
Lorentzian manifold. Links, triangles, tetrahedra, and
4-simplices in Δ are denoted by l, t, τ, and σ, respectively,
while f, e, and v denote, respectively, the faces, edges, and
vertices of Δ�.
Encoding the bare causal structure, tetrahedra (dual

edges) carry the signature of the associated normal vector,
and triangles (dual faces) are either spacelike or timelike
[39]. As the results of Sec. III and Appendix B show,
triangles contained in spacelike and lightlike tetrahedra are
labeled by representations ðρ; 0Þ, while by contrast, tri-
angles inside timelike tetrahedra are either labeled by
representations ðρ; 0Þ or ð0; νÞ, depending on whether they
are spacelike or timelike, respectively. Thus, the signatures
of faces f pick out either the representation ðρf; 0Þ
or ð0; νfÞ.
Finally, the spin foam amplitude for a Lorentzian

2-complex Δ� is defined by

COMPLETE BARRETT-CRANE MODEL AND ITS CAUSAL … PHYS. REV. D 106, 066019 (2022)

066019-9



AðΔ�Þ ¼
Y
f

X
νf

Z
dρf Afðρf; νfÞ

Y
e

Aαe
e ðρie ; νieÞ

×
Y
v

Aα1;…;α5
v ðρva ; νvaÞ; ð2:35Þ

where the face amplitude Af is given by the Plancherel
measure

Afðρf; νfÞ ¼ 4ðρ2f þ ν2fÞ: ð2:36Þ

Based on the kinetic and vertex actions in Eqs. (2.28) and
(2.30), the edge and vertex amplitudes are, respectively,
given by

Aαe
e ðρie ; νieÞ ¼ 1 ð2:37Þ

and

Aα1;…;α5
v ðρva ; νvaÞ ¼ f10ðρva ; νvaÞgðα1;…;α5Þ: ð2:38Þ

The boundary states of the complete BC model are given
by so-called simple spin networks treated in [21,70,71] for
spacelike hypersurfaces and in [34] for timelike hyper-
surfaces. In the generalized setting we introduced here, a
basis for spin networks sðρe;νeÞðge; XvÞ, where e are the
edges and v the vertices, is obtained by a product of the
kernels defined in Eq. (2.33) [72]

sðρe;νeÞðge; XvÞ ¼
Y
e

Kðρe;νeÞ
αsðeÞαtðeÞ ðXsðeÞ; ge · XtðeÞÞ; ð2:39Þ

where sðeÞ and tðeÞ are the starting and terminal vertices of
the edge e, respectively.
The 2-complex that the amplitudes are associated with

can be introduced “by hand” in a spin foam context, and
thus simply chosen to be topologically nondegenerate and
oriented. However, when derived within a GFT model
(which provides an unambiguous prescription for all its
elements), arbitrary gluings of simplicial building blocks
are generated by the GFT perturbative expansion, many of
which are topologically singular. This issue has been
tackled and solved in the context of generic TGFTs (see,
for example, [16]) using a colored extension of the models.
To ensure that the 2-complex is dual to a simplicial
complex and orientable, we introduce a colored version
of the complete BC model in the following section.

E. Colored Lorentzian Barrett-Crane model

It is shown in [73] that TGFTs of rank larger than two
generate Feynman diagrams which define singular topo-
logical spaces not even corresponding to triangulations of
pseudo-manifolds. Coloring TGFTs resolves this issue, and
the generated colored Feynman diagrams are always dual to
topological pseudo-manifolds.11

Our colored model is obtained by attaching labels c ∈
f0; 1; 2; 3; 4g to the GFT fields

φðgv;XαÞ → φcðgv;XαÞ: ð2:40Þ

The generalized kinetic term of Eq. (2.7) is thus modified to

Kcol½φ; φ̄� ¼
X4
c¼0

X
α

Z
SLð2;CÞ4

½dg�4
Z

SLð2;CÞ=UðαÞ

dXα φ̄
cðgv;XαÞKαðgv;XαÞφcðgv;XαÞ; ð2:41Þ

which implies topologically that only tetrahedra of the same color are identified. The colored vertex term is

Vcolðnþ; n0; n−Þ ¼
Z

½dg�10
Z

½dXα�5
X
σ

φσð0Þ
1234ðXα1Þφσð1Þ

4567ðXα2Þφσð2Þ
7389ðXα3Þφσð3Þ

962ð10ÞðXα4Þφσð4Þ
ð10Þ851ðXα5Þ þ c:c:; ð2:42Þ

where the sum is over all cyclic permutations of colors. We
neglect factors that arise from redundancies of the sum over
colors, such as, for instance, a factor 5 in front of
interactions with five normals of the same type.
Notice that by using complex fields φc∶SLð2;CÞ4 → C,

the colored Feynman diagrams are bipartite, and as a
consequence, the associated 2-complexes are orientable [80].

The orientability of the underlying simplicial complexes is a
purely topological property that does not imply any specific
property at the level of quantumamplitudes. In fact, except for
the models introduced in [2,3], all of the known spin foam
models are insensitive to the bulk time orientation.We further
elaborate on this issue in Sec. III C.
The signature of tetrahedra and faces poses restrictions

on possible gluings. First, the kinetic term (2.5) only
identifies tetrahedra of the same signature, and second,
faces are only glued if their signatures match. Notice that,
since there are three types of normal vector signatures and

11As pointed out in [74], coloring also allows for a 1=N
expansion of TGFTs, in turn, a key ingredient for renormalization
[74–79].

JERCHER, ORITI, and PITHIS PHYS. REV. D 106, 066019 (2022)

066019-10



two types of face signatures, as the results of Sec. III show,
these causal distinctions cannot be used themselves as a
form of coloring of GFT fields. Moreover, clearly the
signatures do not follow the same combinatorial patterns as
colors. For instance, there are interaction terms where every
GFT field has a timelike normal vector, while there are no
interactions where every field carries the same color.

III. EXPLICIT EXPRESSIONS FOR THE KERNELS
OF THE VERTEX AMPLITUDES

As shown in Sec. II C, the spin representation of the
vertex term leads to contractions of five generalized Barrett-
Crane intertwiners yielding the f10ðρ; νÞgðα1;…;α5Þ symbol
in the form of Eq. (2.31). One can bring this symbol to the
more convenient form of Eq. (2.34) by making use of the
kernels defined in Eq. (2.33). In this section, we derive
explicit expressions for these kernels.
First, notice that due to the inclusion of all normal

signatures, there are in total six independent types of
kernels corresponding to Kþþ; K−−; K00; Kþ0; Kþ−, and
K−0, where, for instance, Kþþ denotes the spacelike kernel
that has two timelike normal vectors as arguments. The
remaining three kernelsK0þ; K−þ, andK0− are obtained by
the symmetry relation

Kα1α2ðX1; X2Þ ¼ Kα2α1ðX2; X1Þ: ð3:1Þ

A second important property of the kernels is that they are
invariant under simultaneous action of SLð2;CÞ,

Kðρ;νÞ
α1α2 ðX1; X2Þ ¼ Kðρ;νÞ

α1α2 ðh · X1; h · X2Þ; ∀ h ∈ SLð2;CÞ;
ð3:2Þ

which is apparent from their definition (2.33).
As a consequence of this invariance, the Kα1α2ðX1; X2Þ
effectively depend on the Minkowski product of X1

and X2, for which one can therefore choose a convenient
parametrization.
Out of the six kernels, Ref. [33] presented an explicit

computation for Kþþ and K−− using integral geometry
tools developed in [61]. After restating these results from
[33], we extend the computations to include a purely
lightlike kernel K00 in Sec. III A and then present all of
the mixed cases in Sec. III B.

A. Kernels of nonmixed type

Since all of the nonmixed-type kernels are computed in a
similar fashion, namely, by comparing them with the δ
function on the respective homogeneous space, it is
instructive to consider first the representation expansion
of the δ function on SLð2;CÞ,

δðg−11 g2Þ ¼
X
ν

Z
dρ 4ðρ2 þ ν2Þ

X
jm

Dðρ;νÞ
jmjmðg−11 g2Þ; ð3:3Þ

where we emphasize that the Wigner matrix appears as
complex conjugated so that the δ function acts correctly on
functions on SLð2;CÞ. Imposing simplicity with respect to
the group UðαÞ on the δ function effectively yields the δ
function on the homogeneous space SLð2;CÞ=UðαÞ ∋ X; Y,

δðX; YÞ ¼
X
ν

Z
dρ 4ðρ2 þ ν2ÞDðρ;νÞ

αα ðg−1X gYÞ

¼
X
ν

Z
dρ4ðρ2 þ ν2ÞKðρ;νÞ

αα ðX; YÞ; ð3:4Þ

where Dαα and Kαα are defined in Eqs. (2.32) and (2.33),
respectively. With the expansions of the δ functions on
SLð2;CÞ=UðαÞ given in Appendix B and derived in [61], we
can relate the kernels Kαα with integral geometric expres-
sions that can be explicitly computed.

1. Timelike kernel

Choosing α ¼ þ in Eq. (3.4) and comparing with
Eq. (B5), we obtain the expression

Kðρ;νÞ
þþ ðX; YÞ ¼ δν;0

2

Z
dΩ ðXμξμÞiρ−1ðYμξμÞ−iρ−1: ð3:5Þ

The factor of 1
2
appears as a consequence of change of

integration range ρ ∈ ð−∞;∞Þ → ρ ∈ ½0;∞Þ using the
unitary equivalence of representations. As a consequence
of Eq. (3.2) and the fact that X · Y only depends on the
hyperbolic distance η between X; Y ∈ H3þ, we can choose
the parametrization

X¼ð1;0;0;0Þ; Y¼ðcoshðηÞ;0;0;sinhðηÞÞ; η∈R;

ð3:6Þ

with which Eq. (3.5) is evaluated to

Kρ
þþðηÞ ¼

Z
dΩ ðcoshðηÞ − sinhðηÞ cosðθÞÞ−iρ−1; ð3:7Þ

where we have defined Kðρ;νÞ
þþ ≡ δν;0

2
Kρ

þþ. Carrying out the
integration explicitly, we obtain [33]

Kρ
þþðηÞ ¼

sinðρηÞ
ρ sinhðηÞ ð3:8Þ

agreeing with the results obtained in [21,22]. Notice that
Eq. (3.8) defines a regular function in ρ and η.
We interpret the result of ν ¼ 0 as reflecting the

simplicity condition, which imposes a vanishing of the
second SLð2;CÞ Casimir defined in Eq. (A16). At the same

COMPLETE BARRETT-CRANE MODEL AND ITS CAUSAL … PHYS. REV. D 106, 066019 (2022)

066019-11



time, simplicity affects the area operator of triangles which
is given by the first SLð2;CÞ Casimir operator defined in
Eq. (A15) and has eigenvalues given by

A2 ∼ −ρ2 þ ν2 − 1: ð3:9Þ

On the quantum level, triangles are considered as timelike,
lightlike, or spacelike if A2 is positive, zero, or negative,
respectively. By setting ν ¼ 0, the triangles of a spacelike

tetrahedron clearly have a strictly negative area spectrum
−ρ2 − 1< 0 and are therefore spacelike. This is in agree-
ment with the classical results of Sec. II B.

2. Spacelike kernel

If both of the normal vectors entering the kernels are
spacelike, we set α ¼ − in Eq. (3.4). Comparing this
expression with Eq. (B9) yields

Kðρ;νÞ
−− ðX; YÞ ¼ δν;0

2

Z
dΩjXμξμjiρ−1jYμξμj−iρ−1 þ δðρÞδν∈2Nþ

128π

jνj
Z

dΩ ei2νΘðX;YÞδðYμξμÞδðXμξμÞ

≡ δν;0
2

Kρ
−−ðX; YÞ þ δðρÞδν∈2NþKν

−−ðX; YÞ; ð3:10Þ

where cosðΘÞ ¼ jX · Yj. Notice that the formula for Kν
−−

contains the absolute value of ν, guaranteeing unitary
equivalence of the kernel. In the following, we treat the
kernels Kρ

−− and Kν
−− separately and refer to them as

continuous and discrete parts, respectively.
Focusing first on the continuous part, we choose a

convenient parametrization for X and Y,

X ¼ ð0; 0; 0; 1Þ; Y ¼ ðsinhðηÞ; coshðηÞr̂Þ;
η ∈ R; r̂ ∈ S2 ð3:11Þ

permitted by the symmetry of Eq. (3.2), in whichKρ
−− takes

the integral form [33]

Kρ
−−ðη; r̂zÞ ¼

1

4π

Z
dϕ

Z
1

−1
dt j sinhðηÞ− coshðηÞ

× ð
ffiffiffiffiffiffiffiffiffiffiffi
1− t2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1− r̂2z

q
sinðϕÞ þ tr̂zÞj−iρ−1jtjiρ−1:

ð3:12Þ

Equation (3.12) has no closed expression for general r̂.
However, in the special cases where r̂ ¼ �êz, the integral
readily simplifies [33]

Kρ
−−ðη;�1Þ ¼ sinðρηÞ

ρ sinhðηÞ ; ð3:13Þ

therefore agreeing with the timelike case given in Eq. (3.8).
In the same parametrization as Eq. (3.11), the discrete

part of Eq. (3.10) evaluates to [33]

Kν
−−ðη; r̂zÞ ¼

32e2iνΘðη;r̂zÞ

jνj
Z

dϕ δðsinhðηÞ − coshðηÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2z

q
sinðϕÞÞ; ð3:14Þ

which can be further simplified to [33]

Kν
−−ðη; r̂zÞ ¼

(
32ei2νΘðη;r̂zÞ
jνj sinðΘÞ for 0 ≤ Θ ≤ π

2
;

0 else;
ð3:15Þ

where cosðΘðη; rzÞÞ ¼ jcoshðηÞrzj. As noted in [33], the
real part of Kν

−− diverges for η ¼ 0 and r̂z ¼ �1, which
corresponds to the special case where X and Y are equal,
and is regular otherwise.
Equation (3.10) shows that for a spacelike normal, the

kernels split into a sum of a continuous and a discrete part
representing a linear combination of solutions of the
simplicity constraint being ρ ¼ 0 and ν ¼ 0. While the
continuous part Kρ

−− is associated with spacelike triangles,
the spectrum of the area operator in Eq. (3.9) shows that the
discrete kernel Kν

−− dictates a discrete scaling and, in
addition, restricts the values of ν to be positive even
integers, ν ∈ 2Nþ. As a result, the corresponding triangles
have a discrete and strictly positive area spectrum ∼ν2 −
1 > 0 and are therefore interpreted as timelike.12

Consequently, we obtain a qualitatively different scaling
of areas, continuous versus discrete. Moreover, faces which
are labeled by ðρ; νÞ ¼ ð0;�1Þ are excluded. We further
comment on this matter and give a tentative interpretation
of these configurations below.

3. Lightlike kernel

The computation of a lightlike kernel K00 is novel, but
we follow exactly the same lines as for the purely timelike
and spacelike case above.

12The interpretation of ðρ; νÞ ¼ ðρ; 0Þ and ðρ; νÞ ¼ ð0; νÞ;
ν ∈ 2Nþ corresponding to spacelike, respectively, timelike faces
stems from the way the L2 spaces on the spaces SLð2;CÞ=UðαÞ
decompose into simple irreducible SLð2;CÞ representations. For
a more intuitive explanation relating bivectors of different
signatures to different kinds of planes and geodesics in
Minkowski space, we refer the reader to the detailed discussion
in [21].
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Since the δ function on the light cone introduced in detail
in Appendix B 3 is most conveniently written in a linear
parametrization, we write lightlike vectors X ∈ Cþ as

X ¼ λξ; ξ ¼ ð1; cosðϕÞ sinðθÞ; sinðϕÞ sinðθÞ; cosðθÞÞ;
θ ∈ ½0; πÞ;ϕ ∈ ½0; 2πÞ: ð3:16Þ

Topologically, the light cone is given as S2 × ½0;∞Þ, with
the sphere at the origin S2 × f0g identified to a point. On
this space, λ ∈ Rþ linearly parametrizes the noncompact
direction of the cone, while the spatial part of ξ para-
metrizes the sphere at a given λ.
For the purely lightlike kernel, we again consider

Eq. (3.4) for which we set α ¼ 0, and compare the
expression with Eq. (B17), yielding

Kðρ;νÞ
00 ðλ0ξ0; λξÞ ¼ δν;0

δðθ0 − θÞδðϕ0 − ϕÞ
sinðθÞ ðλ0Þ−iρ−1λiρ−1:

ð3:17Þ

The term δðθ−θ0Þδðϕ−ϕ0Þ
sinðθÞ is interpreted as a δ function on the

two-sphere, which acts regularly upon integration. In
particular, sinðθÞ in the denominator is canceled when
the measure dΩ on S2 is considered. Since the Minkowski
product of two lightlike vectors is parametrized by λ ∈ Rþ
and θ ∈ ½0; 2πÞ, we fix the first argument of Eq. (3.17) as

λ0ξ0 ¼ ð1; 0; 0; 1Þ ð3:18Þ

so that the lightlike kernel is simplified to

Kρ
00ðλ; θÞ ¼

δðθÞ
sinðθÞ λ

iρ−1; ð3:19Þ

where we introduced Kðρ;νÞ
00 ≡ δν;0K

ρ
00. Although appearing

to be irregular at θ ¼ 0, the kernel acts regularly upon
integration on the sphere, as noted above.
The computations of this paragraph based on the tools

developed in Appendix B 3 reveal that the discrete
SLð2;CÞ representation label vanishes if simplicity is
imposed with respect to a lightlike normal vector.
Consequently, triangles inside lightlike tetrahedra have a
continuous and strictly negative area spectrum and are
therefore spacelike.

4. Remark on lightlike faces

For the three kernels of nonmixed type Kρ
þþ; K

ρ
00, and

Kρ
−− associated with spacelike faces, we remind that the

spectrum of the area operator ∼ − ρ2 − 1 is nonzero, since
ρ ∈ R is part of the principal series. Likewise, the compu-
tation of the discrete kernel Kν

−− revealed that the area of
timelike faces scales like ν2 − 1, which is nonzero since
ν ∈ 2Nþ. Taking the perspective that lightlike faces

correspond to a vanishing first Casimir operator, which
upon simplicity occurs for ðρ; νÞ ¼ ð�i; 0Þ or ðρ; νÞ ¼
ð0;�1Þ, these results can be tentatively interpreted to
exclude such faces. In this picture, the particular case
of lightlike faces inside lightlike tetrahedra is ruled
out, which, as mentioned above, is degenerate [37].
Remarkably, this restriction is a purely integral geometric
result which is absent at the classical level presented in
Table II. However, it is yet to be clarified if faces labeled by
ð�i; 0Þ and ð0;�1Þ (and which project onto unity) are
indeed lightlike or should rather be interpreted as degen-
erate. Importantly, work on the phase structure of models
only built with spacelike tetrahedra via Landau-Ginzburg
mean-field theory [81] suggests that representations with
ð�i; 0Þ defined in the sense of hyperfunctions [62] play a
crucial role in understanding their critical behavior. It can
be expected that these results will be mirrored by models
built from timelike tetrahedra and mixed ones. Moreover,
we conjecture that such configurations should play a
quintessential role to better understand the propagation
of lightlike excitations, e.g., photons and gravitons, on the
lattice generated by the model. Interestingly, null triangles
reached as limits of spacelike and timelike ones have
recently also attracted some attention in the context of
effective spin foam models for Lorentzian quantum gravity;
see [55]. Given this motivation, we leave it to future
investigations to better understand the physical nature of
configurations labeled by the representations (limiting on)
ð�i; 0Þ and ð0;�1Þ.

B. Kernels of mixed type

If at least two types of normal vectors enter the vertex
amplitude in Eq. (2.34), the integral will necessarily contain
kernels of mixed type Kα1α2 with α1 ≠ α2. In these cases,
the methods of Sec. III A are not applicable, since the
kernels do not define δ functions on the homogeneous
spaces SLð2;CÞ=UðαÞ. However, a detailed observation
shows that mixed kernels act in a fashion similar to δ
functions. To see this, consider g1; g2 ∈ SLð2;CÞ being
representatives of normal vectors Xαi ∈ SLð2;CÞ=UðαiÞ.
Then, the following relation holds:

fðg1Þ ¼
X
ν

Z
dρ 4ðρ2 þ ν2Þ

Z
dg2D

ðρ;νÞ
α1α2 ðg−11 g2Þfðg2Þ:

ð3:20Þ

Hence, the general strategy to obtain the kernels Kα1α2
is to start with a function on the homogeneous
space SLð2;CÞ=Uðα1Þ and expand it in terms of the
Gel’fand transform F, which is given in Appendix B
for all signatures. As a next step, one inserts for the
function F the inverse expression of SLð2;CÞ=Uðα2Þ. The
integrand of the resulting SLð2;CÞ=Uðα2Þ integration is then
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identified with the complex conjugate of the kernel

Kðρ;νÞ
α1α2 ðXα1 ; Xα2Þ.

1. Timelike-spacelike kernel

Denoting Xþ ∈ H3þ and Y− ∈ H1;2, we apply the
Gel’fand expansion given in Eq. (B2) to a function f
on H3þ,

fðXþÞ ¼
Z

dρ 4ρ2
Z

dΩFðξ; ρÞðXμ
þξμÞ−iρ−1: ð3:21Þ

Next, we want to insert the Gel’fand transform on OH,
which has, however, two components given by Eqs. (B7)
and (B8). These correspond to the spacelike and to the
timelike part, respectively. Guided by the physical intuition
that only faces of the same signature can be identified, we
neglect the discrete part and only insert Eq. (B7) into the
above to obtain

fðXþÞ ¼
Z

dρ 4ρ2
Z

dY−

Z
dΩ ðXμ

þξμÞ−iρ−1

× jYν
−ξνjiρ−1fðY−Þ: ð3:22Þ

From that, we extract the mixed kernel for a timelike and
spacelike normal vector

Kðρ;νÞ
þ− ðXþ;Y−Þ¼

δν;0
2

Z
dΩðXμ

þξμÞiρ−1jYμ
−ξμj−iρ−1: ð3:23Þ

Choosing an explicit parametrization

Xþ ¼ ð1; 0; 0; 0Þ; Y− ¼ ðsinhðηÞ; coshðηÞr̂Þ;
η ∈ R; r̂ ∈ S2; ð3:24Þ

the Kþ−-kernel takes a more explicit form

Kρ
þ−ðη; r̂zÞ ¼

1

4π

Z
dt dϕ0

����� sinhðηÞ − coshðηÞ

×

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2z

q
sinðϕ0Þ þ trz

������
−iρ−1

;

ð3:25Þ

where we have introduced the notation Kðρ;νÞ
þ− ≡ δν;0

2
Kρ

þ−.
Similar to the case of Kρ

−−, we can gain some further
intuition of the integral above by considering rz ¼ �1,
which is of course a restriction of the general case where
rz ∈ ½−1; 1�, and then yield

Kρ
þ−ðη;�1Þ ¼ i cosðρηÞ

ρ coshðηÞ : ð3:26Þ

This expression appears to be of a structure similar to
Kρ

þþðηÞ andKρ
−−ðη;�1Þ. Notice that althoughKþ− appears

to be irregular as a function at ρ ¼ 0, it is regular if
considered under an integral of ρ due to a factor of 4ρ2

arising from the Plancherel measure.
Importantly, projecting out the timelike part represented

by Eq. (B8) reflects a gluing condition of triangles on
the level of quantum amplitudes. As we have shown in
Secs. II B and III A, the faces of a spacelike tetrahedron
are spacelike. If we now attach a timelike tetrahedron to
that, then the connecting face is necessarily spacelike. On
the quantum geometric level, this condition picks out the
continuous part of the Gel’fand transform on H1;2 labeled
by ρ, setting ν ¼ 0.

2. Timelike-lightlike kernel

Proceeding similarly for the mixed case of a timelike and
a lightlike normal vector X ∈ H3þ; Y0 ∈ Cþ, we write down
the inverse Gel’fand transform of a function on H3þ
according to Eq. (B6) and insert for Fðξ; ρÞ the Gel’fand
transform for functions on the cone Cþ given in Eq. (B10),
leading to

fðXþÞ ¼
Z

dρ 4ρ2
Z

dΩ ðXμ
þξμÞ−iρ−1

Z
dλ λ−iρfðλξÞ;

ð3:27Þ

where we used a linear parametrization of Y0 ¼ λξ. With
the induced measure on the light cone defined in Eq. (B16),
we can rewrite the above in the form

fðXþÞ ¼
Z

dρ 4ρ2
Z
Cþ

dY0ðXμ
þY0μÞ−iρ−1; ð3:28Þ

from which we extract the kernel Kþ0,

Kðρ;νÞ
þ0 ðXþ; Y0Þ ¼ δν;0ðXμ

þY0μÞiρ−1: ð3:29Þ

Equation (3.29) can be given an even more explicit
form by choosing Xþ ¼ ð1; 0; 0; 0Þ and using Y0 ¼ λξ,
leading to

Kρ
þ0ðλÞ ¼ λiρ−1; ð3:30Þ

where we used the notation Kðρ;νÞ
þ0 ≡ δν;0K

ρ
þ0. Clearly, this

kernel is regular for all values of λ ∈ Rþ and ρ ∈ R.
In comparison to the mixed þ− case above, tetrahedra

with timelike and lightlike normal vectors both allow for
spacelike faces only, and so there is no discrete part which
is projected out.

3. Spacelike-lightlike kernel

In analogy to the timelike-spacelike kernel Kþ−, we start
the derivation of the mixed kernel K0− by considering the
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Gel’fand expansion of a function f on the light cone given
in Eq. (B11). For the Gel’fand transform Fðξ; ρÞ entering
this expansion, we insert the continuous component of the
Gel’fand transform on H1;2 defined in Eq. (B7), therefore
projecting out the discrete part depending on ν. For
X0 ¼ λξ ∈ Cþ and Y− ∈ H1;2, this procedure yields

fðλξÞ ¼
Z

dρ 4ρ2
Z

dY−jYμ
−ξμj−iρ−1λ−iρ−1fðY−Þ; ð3:31Þ

from which we extract the mixed kernel for a spacelike and
a lightlike normal vector

Kρ
0−ðX0; Y−Þ ¼ jXμYμjiρ−1; ð3:32Þ

where we used again the simplified notation Kðρ;νÞ
0− ≡

δν;0K
ρ
0−.

Choosing the parametrization

X0 ¼ λξ; Y− ¼ ð0; 0; 0; 1Þ; ð3:33Þ

Eq. (3.32) further simplifies to

Kρ
0−ðλ; θÞ ¼ jλ cosðθÞjiρ−1; ð3:34Þ

which is a regular function for all λ ∈ Rþ, θ ∈ ½0; 2πÞ,
and ρ ∈ R.
Similar to the þ− case, the discrete part of the Gel’fand

transform on H1;2 is projected out, leaving only terms with
ν ¼ 0. Since the faces of lightlike tetrahedra are spacelike,
this again represents a gluing condition at the level of
quantum amplitudes. Remarkably, in light of all six kernels
computed above, we observe that most timelike informa-
tion is projected out. We suspect that the surplus of
spacelike information at the microscopic level percolates
to the asymmetry between spacelike and timelike directions
at large scales and leave it to future research to investigate
this point.
As a concluding remark concerning all kernels,

we observe the connection between the reality of the
kernels, the invariance under the exchange of arguments,
and unitary equivalence of SLð2;CÞ representations
ðρ; νÞ≡ ð−ρ;−νÞ. Following Eq. (3.1), exchanging the
arguments of any kernel leads to complex conjugation.
In addition, we observe that complex conjugation of the
kernels yields the kernel evaluated on the negative repre-
sentation labels, i.e.,

Kðρ;νÞ
α1α2 ðX; YÞ ¼ Kð−ρ;−νÞ

α1α2 ðX; YÞ: ð3:35Þ

Hence, under integration over the representation labels, we
can perform a change of variables ð−ρ;−νÞ → ðρ; νÞ,
effectively turning the kernels real and thus symmetric
under exchange of arguments.

With the computations of all the kernels Kα1α2
achieved, each of the 21 possible vertex amplitudes
can be computed as a convolution of kernels according
to Eq. (2.34). The next task tackled in the following
section is to discuss the notion of spacetime orientation,
first in general terms and then for the complete model we
introduced.

C. Spacetime orientation

The work presented so far focused on the completion
of the Barrett-Crane model by including all bare
causal configurations. Following the discussion of the
Introduction in Sec. I and that of Refs. [2,3], bare causality
does not cover all aspects of causality but needs to be
supplemented with a notion of time orientation, which
implies an ordering between causally connected events.13

Since, in contrast to [2,3], we work with normal vectors of
all signatures, we extend the discussion to space and
spacetime orientation.
At the level of transition amplitudes between physical

states, formally realized as the continuum quantum gravity
path integral in the Hamiltonian formulation, we observe
the absence of time orientation caused by an integration of
the lapse function N over both positive and negative values
[2]. In the asymptotic analysis of spin foams (see [47,48]
for the BC model and [82–84] for the EPRL model), this
symmetrization leads to a vertex amplitude of the form
Av ∼ eiSR þ e−iSR ∼ cosðSRÞ, commonly referred to as the
“cosine problem” (see [63] for a discussion), where SR is
the Regge action. As clarified in [2], this is not a problem
but simply a feature of the inner product of physical states
(tentatively) realized via a simplicial path integral (or,
equivalently, a spin foam) construction. In the continuum,
a straightforward way to break this symmetrization over
time orientations is to restrict the lapse integration to either
Rþ or R−, which entails a causal ordering of the boundary
states [2,44,46]. As a consequence of the restricted lapse
integration, the causal transition amplitude is no longer a
solution of the Hamiltonian constraint, but a Green’s
function for it (analogous to the Feynman propagator for
a relativistic particle). Adapting these ideas to the discrete
setting, we first recall the construction of [2] for the BC
model with only timelike normals in the following.
Thereafter, we carry the analysis over to the complete
BC model.
The kernels Kρ

þþ given in Eq. (3.8) are acausal, which
can be seen by the invariance of Eq. (3.8) under the

13Simply put, bare causality corresponds to the information
that two events in spacetime have a timelike, lightlike, or
spacelike separation, while time orientation introduces a dis-
tinction of future and past for causally separated events in
spacetime, and which is, of course, only Lorentz invariant for
timelike separated events.
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transformation η → −η. This can be rephrased as a time-
reversal symmetry14 of the two arguments

Kρ
þþðT · X; T · YÞ ¼ Kρ

þþðX; YÞ; ð3:36Þ

where T is defined as

T ≔ diagð−1; 1; 1; 1Þ: ð3:37Þ

Making the lack of time orientation even more apparent,
one can expand the kernel Kρ

þþ [2]

Kρ
þþðX; YÞ ¼ Kρ

þþðηðX; YÞÞ ¼
eiρη

2iρ sinhðηÞ þ
e−iρη

2iρ sinhð−ηÞ

¼
X
ϵ¼�

eiρϵη

2i sinhðϵηÞ ; ð3:38Þ

where ηðX; YÞ ≔ cosh−1ðX · YÞ is the hyperbolic distance
between X and Y, and the parameter ϵ ¼ � is interpreted as
the orientation of the corresponding triangle. In this form,
Kρ

þþ is clearly an average over orientations, and as such,
it is insensitive to the orientation of the underlying
2-complex.
The arguments of [2] can be generalized in two ways.

First, one can consider, in addition, the actions of space
reversal S (parity transformation) defined as

S ≔ diagð1;−1;−1;−1Þ; ð3:39Þ

and spacetime reversal defined as

ST ≔ S∘T ¼ diagð−1;−1;−1;−1Þ: ð3:40Þ

Second, one can analyze all other kernels Kα1α2 with regard
to their transformation behavior under S, T and ST.
Performing both steps simultaneously, a detailed look at
Eq. (3.2) reveals that the kernels exhibit a larger symmetry
group given by that of the whole Lorentz group Oð1; 3Þ
understood as the semidirect product of the proper ortho-
chronous Lorentz group SOð1; 3Þþ and the Klein group
f1; S; T; STg [85] or one of its double covers Pinð1; 3Þ,15,16

Kðρ;νÞ
α1α2 ðX1; X2Þ ¼ Kðρ;νÞ

α1α2 ðh · X1; h · X2Þ; ∀ h ∈ Pinð1; 3Þ:
ð3:41Þ

It is important not to confuse the extended symmetry under
Pinð1; 3Þ with the fact that we are using a double cover
instead of the Lorentz group Oð1; 3Þ, since the latter is
simply a consequence of the symmetry g → −g of the D
functions defined in Eq. (2.32).
In summary, the complete model defined by the kernels

Kα1α2 neither incorporates causality in the sense of time
orientability nor is sensitive to space and spacetime
orientation.
Taking another perspective, namely, that of the BC

model seen as a constrained BF theory, the absence of
orientability and in particular of causality is not surprising
but rather already implied by BF theory17 and the linear
simplicity constraint in Eq (2.16). More precisely, the
amplitudes of BF theory do not depend on the 2-complex
Δ�, therefore being in particular blind to the orientation of
Δ� [2,3] (see also [87,88] for earlier and later related results
in the 3D case). In addition, the linear simplicity constraint
in Eq. (2.16) is formulated as a Lorentz vector equation and
therefore transforms covariantly under the whole of
Oð1; 3Þ. Consequently, the intrinsic geometry of tetrahedra
is independent of the spacetime orientation which is also
reflected in the results of Table II.
Modifying the amplitudes to enforce some time orienta-

tion has been done for the spin foam formulation of the
timelike normal vector BC model and the EPRL model in
[2,3], respectively. The same general kind of construction,
but differing in details, has been studied in [89,90]. The
basic idea is to explicitly break the Z2 symmetry of the
amplitudes generated by T. The timelike kernel Kþþ
decomposed in Eq. (3.38) amounts to choosing a particular
value of ϵ for every triangle rather than summing over both
orientations. Although solving the problem of acausality at
the level of spin foam amplitudes, this approach has the
drawback that the restrictions on the amplitudes is intro-
duced by hand. We thus conclude that developing a GFT
for Lorentzian quantum gravity based on representations of
the group Pinð1; 3Þ chosen in such a way as to produce
automatically orientation-dependent amplitudes constitutes
a compelling direction of future research (as suggested
already in [91]). We comment again about this issue in the
Conclusions in Sec. V.18

14Since the time-reversal operation maps H3þ to H3
− and vice

versa, one needs to apply the Gel’fand transform on the upper or
lower sheets accordingly, discussed in Appendix B 1. The final
result will not depend on which sheet is chosen. This applies as
well to the kernels with lightlike normal vectors. For details, we
refer the reader to Appendix B 3.

15Unlike the proper orthochronous Lorentz group, Oð1; 3Þ
does not have a unique universal cover. It is shown in [86] that out
of the eight distinct double covers, only two are physically
admissible.

16Notice that the action of Pinð1; 3Þ on normal vectors is
defined as a straightforward generalization of the action of
SLð2;CÞ on homogeneous spaces SLð2;CÞ=UðαÞ presented in
Appendix A 1.

17If a simplicial complex with boundary is considered, it is
shown in [3] that BF theory is in fact sensitive only to the
orientation of the boundary.

18For a discussion on these discrete symmetries in the context
of the EPRL spin foammodel, we refer the reader to Refs. [92,93],
in particular with regard to the aspect of parity violation therein as
inherited from the Palatini-Holst action [94–96].
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IV. PUTTING THE COMPLETE BC MODEL IN
THE CONTEXT OF OTHER MODELS

Sections II and III contained a detailed construction of a
Lorentzian GFT model which encodes bare causality at a
discrete and quantum geometric level. In order to properly
put this model in the context of the existing models and
theories, we first compare it to other established GFTs in
Sec. IVA, followed by a tentative approach to mimic CDT
in GFT in Sec. IV B, which turns out to be equal to a causal
tensor model.

A. Relation to other GFT and spin foam models

We constructed the complete BC model by extending the
existing formulations of the BC model: one which includes
timelike normal vectors only [21,22] and the other one
which exclusively considers spacelike normal vectors [33].
We first clarify how these two models arise as a restriction
of the complete model. Thereafter, we briefly compare the
complete BC model to the Conrady-Hnybida extension of
the EPRL model, which includes spacelike and timelike
tetrahedra.

1. Barrett-Crane model with timelike normal vectors

In order to retrieve the Barrett-Crane model with timelike
normal vectors, we consider the restriction of the action in
Eqs. (2.5) and (2.9) to the case where α ¼ þ everywhere.
As a consequence, there is only one possible vertex term
which describes the gluing of five spacelike tetrahedra
defined through a single type of kernel Kρ

þþ given in
Eq. (3.8). In this restricted setting, the only relevant

invariant coefficients are I ðρ;νÞ;þ
jm which can be evaluated

explicitly in the canonical basis

I ðρ;νÞ;þ
jm ¼ δν;0δj;0δm;0: ð4:1Þ

This restricted model in the specific formulation in [22] has
been shown in [97] to be perturbatively finite: All of the
amplitudes are finite for well-defined simplicial complexes.
Since the geometricity constraints are not imposed by a
projector in the original formulation, the model is not
uniquely defined as reflected in the ambiguity of edge
amplitudes, somewhat limiting the significance of the
results obtained in [97]. Revisiting these studies in the
less ambiguous formulation presented here (using normal
vectors) would place those results on a more solid ground.

2. Barrett-Crane model with spacelike normal vectors

The BC GFT model based on spacelike normal vectors
proposed in [33] is realized in the complete model by
restricting α ¼ − in the kinetic and vertex terms (2.5) and
(2.9), respectively. This yields a single vertex term, which is
determined by the symbol f10ðρ; νÞgð−;−;−;−;−Þ. Although
we did not attempt to evaluate the projector coefficients

Pðρ;νÞ;−
jmln explicitly in the canonical basis, the results of

Sec. III A show that, formally, they can be expanded as

Pðρ;νÞ;−
jmln ¼ δν;0P

ρ;−
jmln þ δðρÞδν∈2NþPν;−

jmln: ð4:2Þ

As a consequence, the GFT field φðgv;X−Þ with spacelike
normal vector X− ∈ H1;2 decomposes in the spin repre-
sentation into five components, which we denote by

φ−
ρ1ρ2ρ3ρ4 þφ−

ρ1ρ2ρ3ν4 þφ−
ρ1ρ2ν3ν4 þφ−

ρ1ν2ν3ν4 þφ−
ν1ν2ν3ν4 ; ð4:3Þ

where ρi and νi denote the representation labels of space-
like and timelike faces, respectively, and where we sup-
pressed the four pairs of magnetic indices ðjimiÞ for
notational clarity. While the vertex term is defined through
a single term, the decomposition of the GFT field according
to the equation above induces a large number of inter-
actions with definite face signatures. To be more precise,
there are 30 distinct possibilities to glue five fields together
so that the signature of identified faces matches.

3. Relation to the Conrady-Hnybida extension
of the EPRL model

Among the viable GFT and spin foam models, the EPRL
model [98] (see [11,19,99,100] for its GFT formulation) is
especially interesting for its closer relation to canonical
LQG in its formulation with spacelike tetrahedra. CH
formulated an extension in [39,40] that includes tetrahedra
with spacelike normal vectors, therefore introducing also
timelike faces.19 The EPRL CH model differs from the
complete Barrett-Crane in several aspects, the most impor-
tant ones of which we briefly discuss hereafter.
Most evident, the two models are quantizations of

different classical theories, independent of which causal
building blocks are taken into account. While the Barrett-
Crane model constitutes a constrained BF quantization of
first-order Palatini gravity [101,102], the EPRL model is
based on the first-order Palatini-Holst formulation of
gravity [63], where the Holst term introduces a coupling
γ, which is known as the “Barbero-Immirzi parameter.”
This is required to make contact with canonical LQG based
on the same classical formulation of gravity. As a conse-
quence, the simplicity constraints are imposed differently.
More precisely, in contrast to Eq. (2.16), the EPRL CH
simplicity constraint is given by

XA

�
ð�BÞAB þ 1

γ
BAB

�
¼ 0; ð4:4Þ

where X can either be timelike, i.e., X ∈ H3þ, or spacelike,
that is, X ∈ H1;2.

19For an asymptotic analysis of the EPRL CH model, we refer
the interested reader to Refs. [41–43].
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In the presence of γ, Eq. (4.4) is a second-class constraint
that has to be imposed weakly in the EPRL CH spin foam
model [98]. As a result of simplicity, SU(2) and SUð1; 1Þ
are embedded into SLð2;CÞ, but one does not have a
straightforward projection onto simple SLð2;CÞ represen-
tations; rather, one can decompose states associated with
spacelike hypersurfaces into SU(2)-based ones, as in
canonical LQG. See [103] for details on this decomposi-
tion. In the end, for a timelike normal, faces are spacelike
and labeled by the discrete SU(2) label j ∈ N=2 matching
the kinematical boundary states of LQG. Given a spacelike
normal vector, faces are either spacelike or timelike and
labeled by the discrete and continuous series of SUð1; 1Þ
representations, respectively. Consequently, the EPRL CH
and the complete BC model make exactly the opposite
prediction for the continuity of the area spectrum of
spacelike and timelike faces. Notice that the EPRL CH
model does not have a unique formulation due to ambigu-
ous edge amplitudes, but, as shown in [19], this issue
cannot be resolved by going to an extended formalism with
normal vectors, in contrast to the BC model, because even
the covariant geometricity operator imposing both simplic-
ity and closure fails to be a projector due to the nature of the
simplicity imposition. As a last remark, we observe that the
EPRL CH model does not treat configurations with light-
like normal vectors, since X in Eq. (4.4) is either timelike or
spacelike.

B. CDT and the complete BC model
as a causal tensor model

The variety of causal configurations entering the com-
plete Barrett-Crane model opens up the possibility of
comparing it with other models of quantum gravity which
emphasize the causal aspects of spacetime. In particular, we
can give a more detailed comparison to the CDT framework
[6], the building blocks of which contain a mixture of
spacelike and timelike faces.
To make the connection explicit, we provide a tentative

formulation of a CDT-like GFT with an analog of the
foliation constraint implemented. Upon transfer to the spin
representation, this results in a “causal” tensor model,
whose perturbative expansion generates triangulations that
form a subset of those appearing in CDT. The basic idea is
that the introduction of additional tensors facilitates the
differentiation between timelike and spacelike edges in the
dual triangulation and thus allows us to map a part of
the bare causal structure at the microscopic level. That
multifield models can encode causality efficiently in lower
dimensions is already well known from multimatrix models
[29–31]. It is here realized by using GFT fields which are
extended by normal vectors of distinct signatures. Of
course, to advance the discussion we need to disregard
some conceptual differences between the approaches of
CDT and GFT. We give a brief overview of some of those

differences here, before continuing with the development of
the CDT-like GFT model thereafter.
First, CDT is regarded as a quantization of Einstein-

Hilbert gravity in second-order formalism using metric
variables, while the (complete) Barrett-Crane model is a
quantization of first-order Palatini gravity based on tetrads
and the connection. Second, the dynamical variable in CDT
is the combinatorics of the simplicial complexes, while the
lengths of timelike (þ) and spacelike (−) edges are kept
fixed

l2þ ¼ αa2; l2− ¼ −a2; ð4:5Þ

where α > 0 is an interpolation parameter20 and a ∈ R [6].
The continuum limit of the theory is then assumed to be
obtained through a second-order phase transition in the
limit a → 0 [5] reflecting a conceptually different view on
the lattice compared to GFT, as we are going to discuss
again below. In contrast to CDT, the Barrett-Crane GFT
model treats both geometric data (area labels, holonomies,
or fluxes) and the combinatorics of the simplicial com-
plexes as dynamical variables. Consequently, the GFT
partition function contains a sum over all possible gluings
of simplices as well as a sum over geometries for a given
gluing expressed, e.g., as a sum over representation labels.
As we are going to discuss below, this has important
consequences for the construction of the CDT-like GFT
model. Another difference is given by the interpretation of
the discretization. In CDT and also dynamical triangu-
lations and (conventional) tensor models, the lattice is
considered as a regulator which ultimately has to be
removed without leaving any remnant signature at the
continuum level. In GFT, on the other hand, the elements
of the kinematical Hilbert space as well as their histories
are usually endowed with the physical interpretation of
being fundamental building blocks of a quantum space-
time (this is more in line with the interpretation of
quantum states and histories in loop quantum gravity
and spin foam models). From this viewpoint, continuum
physics is obtained by the collective quantum dynamics of
these quantum discrete degrees of freedom, but there is no
requirement that they leave no signature of their existence
in the continuum dynamics. On the contrary, such a
signature would be interpreted, at least tentatively, as
indicating potential physical quantum gravity effects. As a
last important difference, we note that from the very
outset, topological singularities are excluded in CDT since
the rigid condition of the foliation constraint is imposed
on the partition function. This not only restricts the types
of building blocks entering the theory, but also prevents
the appearance of so-called branching points [104], which

20A crucial step in the CDT analysis is to perform an analytic
continuation to negative values of α, which yields Euclideanized
CDT [6].
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represent causal irregularities. Different from that, GFT
does not contain such a strict condition at the outset.
Although the GFT Feynman expansion produces also
foliable simplicial complexes, these do not single out any
preferred foliation, and in general, there are many other
terms being generated, even in the colored case.
Moreover, the CDT building blocks are endowed with
a time direction, and causal gluing conditions are imposed
between them to enforce causal ordering. To obtain
similar causal amplitudes in the context of the complete
BC model, we would then need a time-oriented formu-
lation of our model.
The following construction will be guided in particular

by the restricted set of building blocks in CDT, being the
(4,1)- and the (3,2)-simplices depicted in Fig. 3.
Reconstructing these in GFT, we observe that the (4,1)-
simplex contains one spacelike and four timelike tetrahe-
dra, while the (3,2)-simplex is made up of five timelike
tetrahedra. Consequently, we need to employ the vertex
amplitudes f10ðρ; νÞgðþ;−;−;−;−Þ and f10ðρ; νÞgð−;−;−;−;−Þ,
which are generally defined in Eq. (2.34). In addition, all of
the triangles inside the 4-simplices have a definite space-
time signature. For triangles inside timelike tetrahedra, this
amounts to a choice between the continuous label ρ ∈ R or
the discrete label ν corresponding to spacelike and timelike
triangles, respectively. Let us first inspect the (4,1)-simplex.
While the four triangles of the spacelike tetrahedron, say, 0,
are labeled by ρ0b, b ∈ f1; 2; 3; 4g, one quickly observes
that the remaining triangles are timelike and therefore
labeled by νab, 0< a < b. For the (3,2)-simplex, the
triangle (12) is spacelike, and hence labeled by ρ01, while
the other ones are timelike and labeled by νab, ðabÞ ≠ ð01Þ.
Consequently, there are three types of tetrahedra, a

spacelike one represented by φρ1ρ2ρ3ρ4;c;þ and two timelike
ones represented by φρ1ν2ν3ν4;c;− and φν1ν2ν3ν4;c;−, where we
suppressed magnetic indices ðjmÞ. Following these choices
and employing a coloring of the model so that only
nonsingular simplicial complexes are generated, the cor-
responding action in spin representation is given by

S½φ;φ�¼
X4
c¼0

��Y4
i¼1

Z
dρi4ρ2i

X
jimilini

�
φ̄ρ1ρ2ρ3ρ4;c;þ
jimi

ðC−1Þρ1ρ2ρ3ρ4jimilini
φρ1ρ2ρ3ρ4;c;þ
lini

þ
�Z

dρ1 4ρ21
X
j1m1

Y4
i¼2

X
νi

4ν2i
X
jimi

�
φ̄ρ1ν2ν3ν4;c;−
jimi

φρ1ν2ν3ν4;c;−
jimi

þ
�Y4
i¼1

X
νi

4ν2i
X
jimi

�
φ̄ν1ν2ν3ν4;c;−
jimi

φν1ν2ν3ν4;c;−
jimi

	

þ
X
σ

��Y4
b¼1

Z
dρ0b4ρ20b

Y
0<a<b

X
νab

4ν2ab

�
Að4;1Þðρ0b;νabÞφρ01ρ02ρ03ρ04;σð0Þ;þ·

·φρ04ν14ν24ν34;σð4Þ;− ·φν34ρ03ν13ν23;σð3Þ;− ·φν23ν24ρ02ν12;σð2Þ;− ·φν12ν13ν14ρ01;σð1Þ;−

þ
�Z

dρ01 4ρ201
Y

ðabÞ≠ð01Þ

X
νab

4ν2ab

�
Að3;2Þðρ01;νabÞφρ01ν02ν03ν04;σð0Þ;−·

·φν04ν14ν24ν34;σð4Þ;− ·φν34ν03ν13ν23;σð3Þ;− ·φν23ν24ν02ν12;σð2Þ;− ·φν12ν13ν14ρ01;σð1Þ;−þc:c:

	
; ð4:6Þ

FIG. 3. In CDT, a triangulation is composed of 4D triangulated
layers which are built from two fundamental building blocks, i.e.,
(4,1)-simplices (left) and (3,2)-simplices (right). These interpo-
late between two consecutive spatial hypersurfaces at integer
times t and tþ 1. The numbers in brackets indicate the number of
vertices in the triangulations of the respective constant-time
slices. In this sense, the tetrahedron which forms the base of
the (4,1)-simplex lies entirely in the t hypersurface and thus is
spacelike, indicated by blue edges. Timelike edges are colored in
red. Consequently, the other tetrahedra in both 4D building
blocks are timelike. See also [5,6] for further details.
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where vertex kernels Að4;1Þ and Að3;2Þ are defined below in
Eqs. (4.7) and (4.8). The details of this action are explained
subsequently.
To gain a better understanding of the above formula,

consider the following remarks. First, for better readability
of the action, we have suppressed the SLð2;CÞ magnetic
indices ðjmÞ and the according factors of ð−1Þ−j−m in the
interaction, where the explicit contraction pattern is
encoded in the “·” which can be extracted from
Eq. (2.30). Like in the general formula for the colored
vertex action in Eq. (2.42), the sum over σ is understood as
a sum over all cyclic permutations, assuring that the colors
are distributed evenly among the fields. Another point to
mention is that the kinetic kernel for φþ is contaminated by
the operator C, which, as we discuss in more detail below,
will be used to realize a dual weighting. In summary,
Eq. (4.6) is a restriction of the full colored action given in
Eqs. (2.41) and (2.42) in a twofold way. First, only
spacelike and timelike tetrahedra and only two interactions
among them are included in the theory. Second, two out of
five possible timelike tetrahedra are picked out, which have
either one or no spacelike face. Further explanations follow
momentarily.
The last ingredients of the action in Eq. (4.6) that need

further explanation are the vertex amplitudes Að4;1Þ

and Að3;2Þ. Using the integral form of Eq. (2.34), these
are given by

Að4;1Þ ¼
Z

½dX�5
Y4
b¼1

δν0b;0K
ρ0bþ−ðXþ

0 ; X
−
b Þ

×
Y

0<a<b

δðρabÞδνab∈2NþKνab−−ðX−
a ; X−

b Þ ð4:7Þ

and

Að3;2Þ ¼
Z

½dX�5δν01;0Kρ01þ−ðXþ
0 ; X

−
1 Þ

×
Y

0<a<b

δðρabÞδνab∈2NþKνab−−ðX−
a ; X−

b Þ ð4:8Þ

understood as restrictions of the two symbols
f10ðρ; νÞgðþ;−;−;−;−Þ and f10ðρ; νÞgð−;−;−;−;−Þ, respectively.
As a next step, we impose yet another restriction on the

model, which aims to mimic the fixed lengths of timelike
and spacelike edges in CDT summarized in Eq. (4.5). Since
we do not control the edge lengths in GFT but rather the
areas in terms of bivectors, we relate the areas of timelike
(þ) and spacelike (−) triangles by

jAþj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α

p

4
a2; jA−j ¼

ffiffiffi
3

p

4
a2; ð4:9Þ

similar to the Eq. (4.5). Translating this condition into the
spectra of area operators, Eq. (4.9) induces a connection
between discrete and continuous representation labels

ρ2 ¼ 3
1 − ν2

1þ 4α
− 1 ð4:10Þ

depending on α.21 In addition to relating representation
labels, Eq. (4.9) implies a fixing of areas which, at the level
of SLð2;CÞ representations, is realized by

ðρab; νabÞ ¼ ðρ�; ν�Þ; ∀ 0 ≤ a < b ≤ 4: ð4:11Þ

As a result of all these restrictions, the action in Eq. (4.6)
effectively defines a causal tensor model in the SLð2;CÞ
magnetic indices ðjmÞ with three types of tensors

φρ�ρ�ρ�ρ�;c;þ
j1m1j2m3j3m3j4m4

; φρ�ν�ν�ν�;c;−
j1m1j2m3j3m3j4m4

; φν�ν�ν�ν�;c;−
j1m1j2m3j3m3j4m4

;

ð4:12Þ

and with two interactions encoded by Að4;1Þðρ�; ν�Þ and
Að3;2Þðρ�; ν�Þ. A visual interpretation of the interactions is
presented in Fig. 4. Since the unitary SLð2;CÞ representa-
tions are infinite dimensional reflected by the index j being
unbounded from above, we introduce a cutoff M in j to
ensure the index is set to be finite to meet the precise
definition of a tensor model [16]. Consequently, the trace
over the identity in the two simple representations ðρ�; 0Þ
and ð0; ν�Þ is, respectively, given by

Nρ� ¼
XM
j¼0

ð2jþ 1Þ; Nν� ¼
XM
j¼jν�j

ð2jþ 1Þ: ð4:13Þ

While in CDT the types of triangulations and the
topology thereof are part of the input and hence chosen
to be well behaved at the outset, the partition function of the
CDT-like GFT model with a standard kinetic term would
generate simplicial complexes with spatial topology change
of the trouser-geometry type. In order to take care of this
issue, we introduce a generalized kinetic kernel guided by
the arguments of [31] where a dually weighted two-matrix
model is presented which is capable of generating causal
dynamical triangulations in 1þ 1 dimensions. In order to
locally prevent spatial topology change where the causal
structure would degenerate, one uses the key observation in
CDT in 1þ 1 dimensions that any vertex in the triangu-
lation is only coordinated by two spacelike edges; see
Fig. 5 for an exemplary triangulation. At the global level,
this corresponds to the assumption that there exists a global
time foliation [6]. To map spacelike and timelike edges, one
simply uses two different matrices while the foliation

21In the context of GFT condensate cosmology [24–26,60],
restricting to fixed representation labels reflects the isotropy of
spacelike tetrahedra at the quantum level. It has been shown that
in this context, equal representation labels arise dynamically
during relational evolution [24,66,67].
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constraint is enforced by a dual weighting via a specific
external matrix. In 2þ 1 dimensions, this foliation con-
straint simply translates into the requirement that a space-
like edge is only coordinated by two spacelike triangles,
while in 3þ 1 dimensions one demands that any spacelike

triangle is only coordinated by two spacelike tetrahedra [6].
Crucially, in all cases these requirements translate at the
level of the dual graph into the fact that spacetime faces are
allowed to have two timelike edges only; see, for instance,
Fig. 5 in 1þ 1 dimensions. Bringing this together with the
above, to generate causal dynamical triangulations in 3þ 1
dimensions via a causal tensor model, one needs three types
of tensors, where the propagator for the spacelike tensors
φρ�ρ�ρ�ρ�;c;þ is modified by a dual weighting specified
hereafter, such that the foliation constraint of CDT is
satisfied. The colorization of such a model guarantees that
no singular topologies are generated upon perturbative
expansion.22

Thus, the idea is to introduce now a dual weighting of the
field φc;þ encoded by the operator C−1 entering Eq. (4.6),
which enforces spacetime faces in the dual ribbon graph to
only have two timelike dual edges. In order to simplify the
contraction pattern of the C tensor according to a spacetime
face, we consider the following product ansatz:

Cρ�
j1m1…j4m4l1n1…l4n4

¼ cρ
�

j1m1l1n1
…cρ

�
j4m4l4n4

; ð4:14Þ

where the c’s are symmetric matrices. This ansatz allows us
to control properties of individual faces in the dual ribbon
graph. Then, the condition of spacetime faces having only
two timelike dual edges is reflected in the conditions

Tr ððcρ� Þmab
st Þ ¼ Nρ�δmab

st ;2
; mab

st ≥ 1; ð4:15Þ

FIG. 5. Snippet of an exemplary triangulation in 1þ 1 dimen-
sions with time slices at integer time steps t − 1, t, and tþ 1 with
superimposed dual ribbon graph. In the triangulation, the vertices
are indicated by black bullets, blue edges are spacelike while red
ones are timelike. In contrast, in the dual graph, the vertices are
indicated by circles, black strands are spacelike while green ones
are timelike. For an easier comparison with the present model, the
triangulation is colored so that strands of the ribbon graph are
bicolored with the property that for the double color index ij ¼ ji
holds. A face in the dual graph clearly has two timelike edges,
and we call these facetime faces here. In 2þ 1 and 3þ 1
dimensions, an additional type of face occurs in the dual graph
which, however, only consists of spacelike edges.

FIG. 4. Combinatorics of the two simplicial interaction terms via stranded diagrams. The left panel shows the interaction term
corresponding to the (4,1)-simplex of CDT, while the right panel depicts the respective (3,2)-simplex. Each diagram corresponds to one
representative from the sum over cyclic permutations over the color degrees of freedom. Faces in the corresponding tetrahedra are
labeled with their respective representation labels ρ or ν fixed to ρ� and ν� and corresponding signature s for spacelike or t for timelike.
Since the model is colored, strands are bicolored as indicated by their respective representation labels which come with a double index
with the property that ρij ¼ ρji and νij ¼ νji. Analog explanations apply to the complex conjugated versions of these vertices.

22Notice that the dual weighting for matrix models was
introduced in [105] and transferred to colored tensor models
in [106].
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wherein Nρ� is defined in Eq. (4.13), and mab
st denotes the

number of internal timelike lines of a spacetime face ðabÞ
of colors ðabÞ in the dual ribbon graph.23

As a consequence, the amplitudes are not changed, but
rather, a restriction on the possible gluings of the building
blocks is imposed. Although we do not prove this here, we
assume that the arguments of [31] can be translated into the
(3þ 1)-dimensional case, so that the dual weighting of the
field φþ does in fact prevent spatial topology change.
Finally, the partition function expanded in terms of

Feynman diagrams is given by

Z ¼
X
Γ

1

symðΓÞ ð4ρ
�2Nρ� ÞFsð4ν�2Nν� ÞFt

× ðλð4;1ÞAð4;1ÞÞVð4;1Þ ðλð3;2ÞAð3;2ÞÞVð3;2Þ ; ð4:16Þ

where Γ is Feynman graphs dual to simplicial complexes
restricted to topologically nonsingular complexes without
spatial topology change ensured by coloring and the dual
weighting, respectively. Vð4;1Þ and Vð3;2Þ are accordingly
the number of (4,1)- and (3,2)-vertices, and λð4;1Þ; λð3;2Þ are
the corresponding couplings. Arising from the SLð2;CÞ
Plancherel measure, we obtain factors of the fixed param-
eters 4ðρ�Þ2 and 4ðν�Þ2, where Ft;s denotes the number of
timelike and spacelike faces, respectively. Rewriting
the above as the sum over an exponential, we can bring
the GFT partition function to a form that is similar to that
of CDT

Z ¼
X
Γ

1

symðΓÞ e
−SeffðΓÞ; ð4:17Þ

where the effective action SðΓÞ is given by

SeffðΓÞ ¼ −FsðΓÞ lnð4ρ�2Nρ� Þ − FtðΓÞ lnð4ν�2Nν� Þ
þ −Vð4;1ÞðΓÞ lnðλð4;1ÞAð4;1ÞÞ
− Vð3;2ÞðΓÞ lnðλð3;2ÞAð3;2ÞÞ: ð4:18Þ

This expression can be compared with the form of the
Lorentzian CDT action [6]

SCDTðΓÞ¼f1ðα;a;GN;ΛÞFsþf2ðα;a;GN;ΛÞFt

þf3ðα;a;GN;ΛÞVð4;1Þ þf4ðα;a;GN;ΛÞVð3;2Þ;

ð4:19Þ

where the fi are functions of Newton’s constant GN,
the bare cosmological constant Λ, the fixed edge length
a, and the parameter α is explicitly given in [6]. In
principle, comparing the coefficients in Eqs. (4.18) and
(4.19) yields a tentative interpretation of the parameters
ρ�; λð4;1Þ; λð3;2Þ; Nρ� , and Nν� in terms of the ones entering
the CDT action.
Despite the numerous restrictions we imposed on the

complete BC model, there are still various technical
differences between the CDT-like GFT model and actual
CDT. We notice in particular that the number of configu-
rations which is generated by CDT is generically smaller
than the one produced by our causal tensor model. This is
due to the fact that the latter also creates disconnected
subgraphs through multitrace terms also dubbed as touch-
ing interactions. We refer to [29,30] for an exhaustive
discussion of this matter in lower dimensions in the case of
matrix models where such configurations correspond to
branched trees of spherical bubbles forbidden by construc-
tion by CDT [6]. Finally, the set of configurations in the
present restricted GFT model could be extended by
lightlike tetrahedra. In contrast, lightlike configura-
tions are usually not considered in CDT.24

We close this survey by suggesting a different way of
implementing the ideas of CDT in the TGFT formalism in a
less restrictive fashion. First notice that the introduction of a
global time foliation is undesirable since it singles out a
preferred Lorentzian reference frame. This issue can be
alleviated by lifting the foliation constraint in the spirit of
locally causal DT [107–109] where consequently many
more interactions than just the (4,1)- and (3,2)-simplex are
then allowed. More specifically, ignoring for the moment
lightlike tetrahedra, one has a priori 49 possibilities to glue
five group fields of the types

φc;þ
ρ1ρ2ρ3ρ4 ; φc;−

ρ1ρ2ρ3ρ4 ; φc;−
ρ1ρ2ρ3ν4 ;

φc;−
ρ1ρ2ν3ν4 ; φc;−

ρ1ν2ν3ν4 ; φc;−
ν1ν2ν3ν4 : ð4:20Þ

Similar to locally causal DT in 2þ 1 dimensions [107], we
notice that there are many simplices which do not have the
correct signature if the areas and their signature are fixed,
including, for instance, the simplex built out of spacelike
triangles only. In addition to causality conditions at the
level of single 4-simplices, the gluing of the remaining
spacetime simplices should be restricted by an analog of the
so-called “vertex causality” [107]. This condition requires
that at every vertex of the simplicial complex, there is
exactly one upper and one lower light cone and in this way
suppresses the light cone degeneracies characteristic of
topology change [109]. A possible implementation could
be realized by constraints on bubbles of the colored graphs

23Note that it is, in principle, sufficient to work with the
abstract definition of the matrix c in terms of the dual weighting
condition (4.15). In the context of the causal matrix model for
causal dynamical triangulations in 1þ 1 dimensions [31], an
explicit algorithm is developed in Ref. [32] yielding a represen-
tation of this operator which can then be used for concrete
computations. These considerations could be readily applied in
the present context.

24As mentioned in [6], CDT could include spacelike and null
edges by setting α ¼ 0, which would, however, spoil the
subsequent analysis based on a Wick rotation in α.
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and may potentially be achieved through a different kind of
dual weighting than the one given above. We also expect
that the class of local causality conditions for piecewise flat
manifolds discussed in the context of discrete Lorentzian
Regge gravity in recent work [110] will probably be very
useful to further clarify and refine the aspects of causality in
our model going beyond the mere differentiation between
spacelike, timelike, and lightlike building blocks imple-
mented so far therein.

1. Remark on closed timelike curves

Closed timelike curves (CTCs) [111] and spatial
topology change are excluded in CDT and the CDT-like
GFT model through the foliation constraint or the dual
weighting, respectively. In contrast, CTCs occur generi-
cally if these constraints are lifted; see, for instance, [109]
for the case of locally causal DT. As investigated in [112],
spatial topology change, CTCs and degenerate geometries
are interrelated phenomena. Following this work, it was
shown in a theorem by Geroch [113] that independent of
any field equations, a topology-changing spacetime must
either have CTCs or singularities. If one embraces the idea
of topology change [114,115] while excluding pathologies
like CTCs, this theorem implies that configurations with
degenerate metrics at finite, isolated spacetime points
should be included. Such configurations are naturally
included in the first-order form of general relativity, and
it was shown in [112] that for this formulation, there exist
smooth solutions allowing for topology change. If one
permits degenerate metrics also in the second-order for-
mulation, then these arguments can be easily carried over.
Though topology change thus seems inevitable in general
relativity according to these theoretical considerations, it is
unclear if quantum or other effects lead to its suppression
and why it is not observable.

V. DISCUSSION AND CONCLUSION

First formulated for Euclidean [116] and then for
Lorentzian signature [21], the Barrett-Crane model is a
popular spin foam and GFT model for quantum gravity
based on the constrained BF-quantization scheme. Still, the
usual formulations of the model only generate a special
class of discretizations with exclusively spacelike or time-
like tetrahedra; see [22,33], respectively. This motivated us
to develop, in this article, a completion of the BC TGFT
(and spin foam) model including normal vectors of all
signatures and hence, spacelike, lightlike, and timelike
tetrahedra. To this aim, we first generalized the simplicity
constraint in Eq. (2.16) to all types of normal vectors and
second set up a TGFT action, the interaction term of which
incorporates all possible gluings of tetrahedra to form
4-simplices with an arbitrary mixture of normal signatures.
The resulting model defined through the action given in
Eqs. (2.5) and (2.9) includes all bare causal configurations

and all of their possible interactions. Setting up the model,
deriving the spin foam amplitudes thereof, and explicitly
computing the corresponding kernels constitutes the first
main result of this article.
Studying a selected number of properties of the complete

BC was the second objective of the present work. First, we
provided a quantum geometric interpretation of the kernels
in Sec. III, showing that spacelike and lightlike tetrahedra
contain spacelike faces only, while timelike tetrahedra
contain a mixture of spacelike and timelike faces labeled
by ρ ∈ R and ν ∈ 2Nþ, respectively. Faces which lie in the
intersection of a timelike and a spacelike or lightlike
tetrahedron are spacelike, which, at the level of amplitudes,
is reflected by the fact that the discrete part of the mixed
kernels K−þ and K−0 is projected out.25 Addressing the
time-orientation aspect of causality, we analyzed how the
kernels behave under space, time, and spacetime reversal,
with the result that all kernels are unoriented and in fact
possess a larger symmetry group given by the group
Pinð1; 3Þ. We discuss the physical implications of this
symmetry and possible developments concerning it in more
detail below. As a last result, we constructed a CDT-like
TGFT model by coloring the complete BC model and
restricting it to the configurations that appear also in CDT.
This involved the exclusion of lightlike tetrahedra as well
as only considering two possible interactions terms. Fixing
areas, and therefore, the representation labels, the CDT-like
GFT turned into a causal tensor model for which we
introduced a dual weighting to realize the foliation con-
straint of CDT.
In the following, we outline possible further develop-

ments from our results. Studying the perturbative properties
of the complete BC model would lead to a better under-
standing of the amplitudes, and in particular, of what kind
of causal configurations would be dominant in different
limits. As an example, one could extend the analysis of the
asymptotic behavior and of the perturbative finiteness for
the BC model with timelike normal given, respectively, in
Refs. [47,119] and [97,120] to the complete model.
Another interesting point to be investigated is the large
N behavior of the new model. This would necessitate us to
study the scaling behavior of Feynman amplitudes with
respect to a cutoff in the representation labels. Developed
for colored tensor models and colored TGFTs on a compact
domain without simplicity constraint imposed [74–76],
such an expansion has never been performed for viable
Lorentzian quantum gravity TGFT models, where the
domain is noncompact and the degrees of freedom are
subject to simplicity conditions. These studies could reveal
if there are preferred vertex interaction terms corresponding

25Following the discussion of [34], an analogy of continuous
space and discrete time can be found in the ’t Hooft model of a
point particle in (2þ 1)-dimensional quantum gravity [117,118].
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to specific choices of four-dimensional causal building
blocks.
Going beyond perturbative aspects, a Landau-Ginzburg

mean-field analysis along the lines of [121–123] as well as
a full-fledged FRG analysis building on results of simpler
models [124–133] would shed light on the phase diagram
and continuum behavior of the complete model, making
explicit use of the field theoretic setting of GFTs (such
a full-fledged FRG analysis appears, however, quite chal-
lenging at present). A crucial step in this direction is
provided by the application of Landau-Ginzburg theory to
models with simplicial and tensor-invariant interactions
where the group fields are those used here restricted to the
case of a timelike normal vector [81]. A particularly
interesting question is whether the enlarged number of
configurations and interactions would lead to a different
phase structure than the one obtained from the BC model
with timelike normal only. Also, in such a continuum limit
and starting from the most democratic action which
includes all possible interactions, it may turn out that only
specific kinds of interactions are relevant, while others are
dynamically suppressed. Such analyses should at any rate
be complemented by scrutinizing the local causal structure
present in the array of 4-simplices proposed here in the
spirit of, e.g., [107,110], which might lead to an exclusion
of certain of these and thus to a refinement of the model
proposed here.
As a first example of physical applications of the

complete model, we suspect that in order to properly
couple matter to quantum gravity, it is necessary to
incorporate at least all spacelike and timelike configura-
tions. Work addressing the coupling of matter in GFTs and
spin foams is presented, for example, in [134] for mini-
mally coupled scalar fields and in [135] for fermions and
Yang-Mills fields (for earlier work, see [136–139]). In both
cases, the underlying simplicial complex consists of space-
like tetrahedra only. Since the derivative entering the matter
action is discretized on dual links, the restriction to
spacelike tetrahedra implies that all the derivatives are in
timelike direction. We expect that including spacelike and
lightlike dual links, and therefore, timelike and lightlike
tetrahedra, alters the coupling of fermions [135], since the
latter depends on the signature of the chosen normal vector.
For minimally coupled scalar fields, the full bare causal
structure may have also another type of physical implica-
tion, as these fields are commonly used as physical
reference frames in the form of rods and clocks
[26,140]. The causal structure may influence, in fact,
how clocks are distinguished from rods, in terms of the
respective gradients. A construction of proper Lorentzian
material reference frames via the complete model could
have far-reaching consequences for the cosmological
behavior of TGFT condensates too. In particular, it is
possible that the mismatch of cosmological perturbations
in TGFT [141] with those of general relativity for

intermediate and small wavelengths could be naturally
resolved (if it needs to be resolved at all) along these lines.26

In light of the numerous results in TGFT condensate
cosmology, such as the emergence of Friedmann-like
dynamics exhibiting a quantum bounce [24,25], dynamical
isotropization [24,66], or early- and late-time phase of
accelerated expansion [142,143], it is interesting to ask
what kinds of consequences the inclusion of other than
spacelike building blocks would have on the cosmological
evolution. Since cosmology is characterized by the evolu-
tion of homogeneous spatial hypersurfaces, the spacelike
building blocks entering the EPRL-like and BC TGFT
condensate cosmology models [24,25] appear sufficient.
However, including more than only spacelike tetrahedra
would still allow for computing the transition between
spatial hypersurfaces, with the additional causal degrees of
freedom contributing to the bulk dynamics. A priori, one
would expect that the resulting dynamics will differ from
what has been obtained already. A precise characterization
of these differences, however, would require looking
at observables other than the spatial 3-volume like the
4-volume.
The complete model allows us to consider lightlike as

well as timelike boundaries. The most prominent example
of a spacetime admitting timelike boundaries, and thus now
amenable to analysis in the complete model, is AdS space
[144], which is of enormous theoretical and physical (if not
observational) interest. Also highly interesting would be
the study of lightlike boundaries, which are quintessential
to describe cosmological and black hole horizons. On
general grounds, a possible classical starting point for such
an analysis is the development of Plebanski gravity with
lightlike boundary terms and a TGFT quantization thereof.
Attacking the problem from the quantum perspective, a
convenient context to model quantum geometric horizons
of spherical symmetry could be that of [145] using so-
called “shell condensate states” (first introduced in [146]),
which realize a foliation of spatial hypersurfaces into
surfaces of spherical topology. In the enlarged setting of
the complete model, it would be possible to revisit the
observations of [145] in terms of lightlike hypersurfaces
foliated into spheres. Studies in this direction could
strengthen the area law results of [145] and offer a way
to enforce more detailed horizon conditions, with the
horizon being understood as a lightlike boundary.
Another possibility to model a black hole in the TGFT
framework could be to consider the whole spacetime as a
two-component quantum fluid of spacelike and timelike
building blocks in a separated phase, where the interface
represents the horizon. This would realize the idea that the

26In passing, we remark that for the coupling of lightlike
excitations like photons and gravitons, the incorporation of light-
like geometric configurations into the model (to identify lightlike
paths) seems necessary; see also the discussion on lightlike faces
in the main text.
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role of space and time are interchanged by passing through
the horizon.
Another potential research direction is the construction

of a spacetime-oriented version of the complete model, in
the spirit of [2]. Following the discussion of Sec. III C, the
current formulation of the complete BC model is insensi-
tive to space, time, and spacetime orientation. We take the
viewpoint that the larger symmetry stems from the very
definition of the discrete quantum gravity path integral as
realizing the physical inner product of boundary states.
With this interpretation, the construction of oriented
amplitudes is given by explicitly breaking the invariance
under the action of the Klein group f1; S; T; STg. This
possibility has been studied in [2] for the BC model with
only timelike normal, at the level of spin foam amplitudes
only. A causal TGFT model that exclusively generates
oriented amplitudes would indeed be very interesting. We
suspect that such an extension necessitates the construction
of a GFT model based on the group Pinð1; 3Þ, which in turn
requires further attention to the representation theory of
Pinð1; 3Þ, only scarcely analyzed in the literature (see, for
instance, [147]). As one of the consequences, we expect
that, in such an oriented model, the unitary equivalence of
representations ðρ; νÞ≡ ð−ρ;−νÞ dissolves, leading to
complex-valued kernels which are then no longer invariant
under exchange of arguments.
An oriented formulation of the complete model could

become relevant to answer questions about the super-
position of causally ordered elements, with connections
with quantum information theory, e.g., quantum causal
histories, and quantum causality (see, for example, [148]).
From a more structural perspective, a desirable feature of an
oriented model is the possibility to define the transition
amplitudes between kinematical states as corresponding to
a locally unitary evolution, in the sense of quantum causal
histories [149–151].27 In general, constructing an oriented
model would facilitate a bridge between the complete BC
model, and thus TGFTand spin foam models, and quantum
causal sets and quantum causal histories [149–151], an
example of which is given in [2]. In addition, a fully causal
(oriented) model could be important when consideri ng
4-simplices formed out of lightlike tetrahedra only, to be
used as discrete building blocks of causal diamonds,
considered in causal set theory [152], holography [153],
and cosmology [154]. Finally, such a model would allow us
to compute retarded and advanced propagators, and an
important physical application could then be the charac-
terization of quantum gravitational radiation phenomena
using them.

ACKNOWLEDGMENTS

The authors thank Luca Marchetti for helpful comments
on the manuscript. The authors are also grateful to the Jena
group and in particular José Diogo Simão and Sebastian
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APPENDIX A: ASPECTS OF SLð2;CÞ AND ITS
REPRESENTATION THEORY

In this appendix, we provide a short summary of the
necessary formulas for computations involving SLð2;CÞ
representation theory. For detailed studies of SLð2;CÞ and
its representation theory, we refer the reader to Refs. [62,155].
Among the many subgroups of SLð2;CÞ, a comprehen-

sive list of which is given in [155], there are three
subgroups of particular interest to us given by SU(2),
ISO(2), and SUð1; 1Þ and denoted as UðþÞ;Uð0Þ, and Uð−Þ,
respectively. Explicitly, these are defined as [62]

SUð2Þ ≔ fg ∈ SLð2;CÞjgg† ¼ eg; ðA1Þ

ISOð2Þ ≔ fg ∈ SLð2;CÞjgðeþ σ3Þg† ¼ eþ σ3g; ðA2Þ

SUð1; 1Þ ≔ fg ∈ SLð2;CÞjgσ3g† ¼ σ3g: ðA3Þ

Forming the quotient space SLð2;CÞ=UðαÞ with respect to
these groups yields homogeneous spaces which can be
understood as embedded manifolds in R1;3. A summary of
the quotient spaces and the stabilized normal vectors is
given in Table III, and a graphical representation of these
distinguished hypersurfaces in Minkowski space is given in
the main body of this article in Fig. 1.

1. Action of SLð2;CÞ on homogeneous spaces

The action of SLð2;CÞ on homogeneous spaces can be
defined in various ways, two of which we present now. In
the main text, we choose freely between different presen-
tations, depending on the considered problem.
Since the homogeneous spaces SLð2;CÞ=UðαÞ arise as

quotient spaces, the respective elements are given in terms
of equivalence classes. So, for a ∈ SLð2;CÞ,

TABLE III. Homogeneous spaces as quotients with respect to
the three-dimensional subgroups UðαÞ.

α SLð2;CÞ=UðαÞ Stabilized normal

þ Two-sheeted hyperboloid H3
� ð�1; 0; 0; 0Þ

0 Upper and lower light cone C� 1ffiffi
2

p ð�1; 0; 0; 1Þ
− One-sheeted hyperboloid H1;2 (0,0,0,1)

27The evolution may still fail to be globally unitary, and a
globally unitary evolution is tricky in a quantum gravity context,
in general, due to the absence of any preferred temporal direction.
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½a�α ∈ SLð2;CÞ=UðαÞ ðA4Þ

denotes an equivalence class, which satisfies

½a�α ¼ ½au�α; ∀ u ∈ UðαÞ: ðA5Þ

On SLð2;CÞ=UðαÞ, SLð2;CÞ acts in a canonical way
defined by

g · ½a�α ≔ ½ga�α; ðA6Þ

from which it follows clearly that the stabilizer subgroup
U½a�α of ½a�α is given by

U½a�α ≔ faua−1ju ∈ UðαÞg ¼ aUðαÞa−1: ðA7Þ

Since conjugation is a group isomorphism, the stabilizer
subgroup U½a�α is isomorphic to UðαÞ.
A different way of defining the SLð2;CÞ action on

homogeneous spaces is by exploiting the isomorphism of
Minkowski space R1;3 and the space of 2 × 2 Hermitian
matrices

Φ∶R1;3⟶
≅

H2ðCÞ; ðA8Þ

X⟼ΦðXÞ ðA9Þ

given in explicit form in Ref. [155]. If the Minkowski inner
product of X is either þ1, 0, or −1, then X can be
represented as an equivalence class in the respective
SLð2;CÞ quotient space. In this representation, the equiv-
alence of SLð2;CÞ quotient spaces and submanifolds of
Minkowski space, as shown in Table III, is made trans-
parent with the cost of the action defined by

g · X ≔ Φ−1ðgΦðXÞg†Þ ðA10Þ

being less straightforward compared to Eq. (A6).

2. Representation theory of SLð2;CÞ
The unitary irreducible representation spaces of SLð2;CÞ

in the principal series denoted byDðρ;νÞ are labeled by pairs
ðρ; νÞ ∈ R × Z=2 realized on the space of homogeneous
functions on C2 with degree ðiρþ ν − 1; iρ − ν − 1Þ.
In the canonical basis, the Wigner matrices for

SLð2;CÞ are denoted by Dðρ;νÞ with matrix elements

Dðρ;νÞ
jmln, where

j; l ∈ fjνj; jνj þ 1;…g; m ∈ f−j;…; jg;
n ∈ f−l;…; lg: ðA11Þ

Most important for the computation of the spin represen-
tation of the action in Eq. (2.5) is the orthogonality
relation [155]

Z
SLð2;CÞ

dhDðρ1;ν1Þ
j1m1l1n1

ðhÞDðρ2;ν2Þ
j2m2l2n2

ðhÞ

¼ δðρ1 − ρ2Þδν1;ν2δj1;j2δl1;l2δm1;m2
δn1;n2

4ðρ21 þ ν21Þ
; ðA12Þ

as well as the complex conjugation property [156]

Dðρ;νÞ
jmlnðgÞ ¼ ð−1Þj−lþm−nDðρ;νÞ

j−ml−nðgÞ: ðA13Þ

Appearing as the area operator for triangles and playing
an important role for the simplicity constraint, the two
Casimir operators of SLð2;CÞ are given by

Cas1 ¼ jLj2 − jKj2;
Cas2 ¼ K · L ðA14Þ

in terms the SLð2;CÞ generators K and L introduced in
Eq. (2.13). On states in the canonical basis
jðρ; νÞ; jmi ∈ Dðρ;νÞ, the Casimir operators act by

Cas1jðρ; νÞ; jmi ¼ −ρ2 þ ν2 − 1jðρ; νÞ; jmi; ðA15Þ

Cas2jðρ; νÞ; jmi ¼ ρνjðρ; νÞ; jmi: ðA16Þ

Equation (A16) clearly shows that the imposition of
simplicity leads to either ρ or ν vanishing. In Sec. III, this
fact is confirmed by the integral geometric computations
which show that for a timelike and a lightlike normal, ν is
set to zero, while a spacelike normal leads to a linear
combination of ρ ¼ 0 and ν ¼ 0.

APPENDIX B: INTEGRAL GEOMETRY

In this appendix, we introduce the key notions of integral
geometry as developed by the authors of Ref. [61], which
turn out to be crucial for the computation of the kernels in
Sec. III.

1. Functions on the upper sheet of the 3-hyperboloid

The evaluation of Kþþ kernels appearing in Eq. (2.34)
requires the decomposition of defined functions onf H3

�
into irreducible SLð2;CÞ representations of the principal
series. Following [61], the Gel’fand transform of f ∈
L2ðH3

�Þ is given by

Fðξ; ρÞ ¼
Z
H3

�

dX fðXÞð�XμξμÞiρ−1; ðB1Þ

with the inverse defined as
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fðXÞ ¼
Z∞
0

dρ 4ρ2
Z
S2

dΩFðξ; ρÞð�XμξμÞ−iρ−1; ðB2Þ

where we absorbed the prefactor of ð4πÞ3 appearing in [61]
into the measure. Here, the null vector ξ ∈ Cþ is para-
metrized as

ξ ¼ ð1; ξ̂ðϕ; θÞÞ; ðB3Þ

where ξ̂ðϕ; θÞ ∈ S2, ϕ, and θ are the angles on the sphere.
The normalized measure on the sphere is

dΩ ¼ 1

4π
sinðθÞdϕdθ ðB4Þ

repeatedly used in the remainder of this appendix.
Inserting Eq. (B1) into Eq. (B2) and imposing that this

reproduces the original function fðXÞ, we conclude that the
δ function on H3

� is written as

δðX; YÞ ¼
Z

dρ 4ρ2
Z

dΩ ðYμξμÞiρ−1ðXμξμÞ−iρ−1: ðB5Þ

Notice that this definition holds for H3þ and H3
− as the �

cancels.

2. Functions on the one-sheeted hyperboloid

Similar to the previous appendix, a decomposition of
functions on imaginary Lobachevskian space H1;2=Z2 has
been derived in [61]. Importantly, this space differs from
the one-sheeted hyperboloid H1;2 by the fact that opposite
points are identified X ¼ −X. The expansion of functions
on H1;2=Z2 contains components with both discrete and
continuous labels ρ and ν. Explicitly, for f ∈ L2ðH1;2Þ, it is
given by [33,61]

fðXÞ ¼
Z∞
0

dρ 4ρ2
Z

dΩFðξ; ρÞjXμξμj−iρ−1

þ 128π
X∞
k¼1

4k2
Z

dΩFðξ; X; 2kÞδðXμξμÞ; ðB6Þ

with inverses given by [61]

Fðξ; ρÞ ¼
Z
H1;2

dX fðXÞjXμξμjiρ−1; ðB7Þ

Fðξ; X; 2kÞ ¼ 1

k

Z
H1;2

dY fðYÞe−i2kΘðX;YÞδðYμξμÞ; ðB8Þ

where k ∈ Nþ and cosðΘÞ ≔ jX · Yj. It is important to
notice that for the Gel’fand transform of Eq. (B8), the
discrete representation parameter ν ∈ Z=2 is restricted to

positive and even integers ν ∈ 2Nþ, which plays an
important role for the spacelike kernel in Sec. III A.
Similar to the previous section, we insert Eqs. (B7) and

(B8) into Eq. (B6) and impose that this gives back
the original function yielding the form of the δ function
on H1;2,

δðX;YÞ¼
Z∞
0

dρ 4ρ2
Z

dΩjYμξμjiρ−1jXμξμj−iρ−1

þ128π
X∞
k¼1

4k2
Z

dΩ
1

k
e−i2kΘðX;YÞδðYμξμÞδðXμξμÞ:

ðB9Þ

Notice the symmetry of the δ distribution under
ðX; YÞ → ð−X;−YÞ, which assures that it is effectively
defined on H1;2=Z2.

3. Functions on the light cone

Following [61], the Gel’fand transform of f ∈ L2ðC�Þ
and its inverse are given by [61]

FðX; ρÞ ¼
Z

∞

0

dt fðtXÞt−iρ; ðB10Þ

fðXÞ ¼
Z
R

dρ 4ρ2FðX; ρÞ; ðB11Þ

where, in comparison to [61], we absorbed a factor of
4ρ2=4π into the measure for convenience. Physically, the
fact that ν ¼ 0 in the expansion reflects the classical result
shown in Appendix C, stating that tetrahedra with a
lightlike normal vector cannot have timelike faces.
Remarkably, the condition of ν ¼ 0 further implies that
the faces need to be spacelike, since the first Casimir
operator in Eq. (A15) is strictly negative. For a discussion
on the absence of representation ðρ; νÞ ¼ ð�i; 0Þ tenta-
tively interpreted as lightlike faces, we refer the reader to
the end of Sec. III A.
It turns out useful to introduce a parametrization of

vectors X ∈ C�,

X ¼ λξ; ðB12Þ

where ξ is as defined in Eq. (B3). λ ∈ R�, on the other
hand, parametrizes the distance along the lightlike direction
and can therefore be interpreted as the radius of the sphere
S2 which is encoded in ξ. Following [61], the measure on
the cone is induced from the measure on R1;3,

dX0 ∧ dX1 ∧ dX2 ∧ dX3 ðB13Þ

by differentiating the relation
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X2
0 − X2

1 − X2
2 − X2

3 ¼ 0 ðB14Þ

yielding [61]

dX ¼ dX1 ∧ dX2 ∧ dX3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
1 þ X2

2 þ X2
3

p : ðB15Þ

As a consequence, for the parametrization given in
Eq. (B12), which is similar to a change to spherical
coordinates, the induced measure is

dX ¼ λdλdΩ: ðB16Þ

Next, we insert Eq. (B10) into Eq. (B11) and impose that
we get back the original function yielding an expression for
the δ function on C�,

δðλξ;λ0ξ0Þ¼δðθ−θ0Þδðϕ−ϕ0Þ
sinðθÞ

Z
dρλiρ−1ðλ0Þ−iρ−1; ðB17Þ

where ðθ;ϕÞ and ðθ0;ϕ0Þ are the angles parametrizing ξ and
ξ0, respectively.

APPENDIX C: CLASSICAL SIMPLICITY
CONSTRAINTS AND BIVECTOR SIGNATURES

In this appendix, we derive a convenient form of the
linear simplicity constraints for a general normal vector XA

α

given in Eq. (2.16) in order to determine the effect of the
signature of XA

α on the signature of the respective bivectors.
The conclusions we draw are summarized in Table II and
allow for a comparison with the representation theoretic
results that we derive in Sec. III.
Starting with the SLð2;CÞ generators La and Ka defined

in Eq. (2.13), the timelike and spatial components of
Eq. (2.16) yield a scalar and vector equation, respectively,

Xα · L ¼ 0; ðC1Þ

Xα × K ¼ X0
αL; ðC2Þ

out of which only three equations are independent. The
simplest choices for a timelike, lightlike, and spacelike
normal vector are given in Eqs. (2.1).
For Xþ ¼ ð1; 0; 0; 0Þ, Eq. (C2) clearly implies that

L ¼ 0, while there is no condition imposed on K. As a
consequence, the signature of the face with bivector B is
given by

B · B ≔
1

2
BABBAB ¼ jLj2 − jKj2 ¼ −jKj2 < 0; ðC3Þ

which is clearly negative for nonzero K. Notice that
choosing instead for Xþ the vector ð−1; 0; 0; 0Þ, which
lies in the lower sheet of H3, the simplicity constraint does

not change, and the gauge-invariant data given by the two
scalars B · B and B · �B remain the same.
Let the lightlike vector X0 ∈ Cþ be given by the simplest

choice X0 ¼ 1ffiffi
2

p ð1; 0; 0; 1Þ. Then, Eqs. (C1) and (C2) imply

the following relations:

L3 ¼ 0; L1 ¼ −K2; L2 ¼ K1; ðC4Þ
which can be rephrased in terms of the translation
generators [37]

P1þ ≔ L1 þ K2; P2þ ≔ L2 − K1 ðC5Þ

as the conditions

L3 ¼ 0; P1þ ¼ 0; P2þ ¼ 0: ðC6Þ

As a result, for a lightlike normal vector, B · B is given by

B · B ¼ −ðK3Þ2 ≤ 0; ðC7Þ

which is either zero or negative. As discussed in Sec. II B,
faces of zero signature with a null normal vector are
degenerate by the arguments of [37]. For a quantum
treatment of this issue in the context of the complete BC
model, we refer the reader to the end of Sec. III A.
If we choose the simplest lightlike vector in the lower

light cone instead, given by 1ffiffi
2

p ð−1; 0; 0; 1Þ, then the
simplicity condition changes to

L3 ¼ 0; L1 ¼ K2; L2 ¼ −K1; ðC8Þ

which, written in terms of the translation generators

P1
− ≔ L1 − K2; P2

− ≔ L2 þ K1 ðC9Þ

is given by

L3 ¼ 0; P1
− ¼ 0; P2

− ¼ 0: ðC10Þ

Although the simplicity condition on the vectors L and K
changes slightly, the gauge-invariant data given by the two
Casimirs stay the same. Hence, there is no invariant
difference if a lightlike vector is chosen to lie in the lower
light cone instead of the upper light cone.
Given the spacelike vector X− as above, the linear

simplicity constraints yield that K1, K2, and L3 vanish,
while K3, L1, and L2 are free variables. Hence, B · B is in
the spacelike case given by

B · B ¼ ðL1Þ2 þ ðL2Þ2 − ðK3Þ2; ðC11Þ

which can either be negative, zero, or positive, therefore
allowing for all signatures of bivectors, which we denoted
as “indefinite” in Table II.
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From their very definition, the Casimir operators
expressed in terms of SLð2;CÞ generators as B · B and
B · �B, respectively, exhibit not only an SLð2;CÞ invari-
ance but in addition an invariance under space, time, and
spacetime reversal fS; T; STg. As a consequence of time-
reversal symmetry, imposition of simplicity with respect to
a timelike or lightlike normal vector does not depend on the
choice of the upper or lower part of the two-sheeted

hyperboloid or light cone, respectively. Therefore, we
choose to work with H3þ and Cþ without restricting the
geometric configurations that are generated in the TGFT
partition function. Similarly, invariance under spacetime-
reversal ST justifies working with Lobachevskian space
H1;2=Z2 in the case of a spacelike normal vector, for which
the integral geometric methods of [61] have been
developed.
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