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One of the most striking evidences of the information loss paradox is that, according to the Hawking’s
calculation, the correlation functions of a test scalar field exponentially decay in time. In this paper, I argue
that a judicious use of the steepest descent expansion on the classical saddle point (the black hole
background) is enough to change this early time decay into a late time growth in agreement with
information retrieval. I will explicitly show this in the Jackiw-Teitelboim gravity. There, the so-called
“ramp” in the bulk tow-point function is analytically obtained without the need of any other subdominant
configurations of the gravity path integral.
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I. INTRODUCTION

Black holes evaporate [1]. According to the standard
Hawking calculation, they do by releasing a thermal black
body spectrum that is only parametrized by the black hole’s
mass,1 thus carrying negligible information about the
quantum state of the black hole. Trusting the Hawking
result until full evaporation would then lead to an infor-
mation paradox [2], namely that quantum systems do not
conserve information.
One might think that all this information is stored inside

the event horizon and for this reason, inaccessible.
However, Page [3] has shown that trace of information
should start to emerge already when the black hole is
roughly evaporated half of its mass (Page time). The
intriguing fact is that, at the Page time, a large black hole
is still large, and the Hawking calculation, based on
semiclassical gravity, should be correct.
It is then clear that the Hawking calculation must contain

an approximation that breaks down well before the black
hole’s curvature becomes large, i.e., that full quantum
gravity effects become dominant.
The situation is perhaps clearer by looking at correlation

functions on a Black Hole spacetime. Let us consider a

scalar field. The two point function is formally defined with
the following path integral2

hϕðt0; x0Þϕðt; xÞi ¼ N
Z

DϕDgμνϕðt0; x0Þϕðt; xÞeiS½ϕ;g�;

where S is the action of the scalar-gravity system, andN the
normalization.3 In the approximation of a test scalar field
and low curvatures, we can consider the saddle point of
the sole gravitational action, i.e., the point in which
δSgravity ¼ 0. This defines the semiclassical approximation.
Then, we would naively expect (this is the core of
Hawking’s calculation)

hϕðt0; x0Þϕðt; xÞi ≃ N̄
Z

Dϕϕðt0; x0Þϕðt; xÞeiSscalar½ϕ;ḡ�; ð1Þ

where Sscalar is the scalar field Lagrangian evaluated in the
saddle point metric ḡμν, and N̄ is its related normalization.
To make the point, I will consider a massless scalar field

and calculate the correlation function (1) in the vicinity
of a spherically symmetric black hole horizon with metric
ds2 ¼ −ḡðrÞdt2 þ dr2

ḡðrÞ þ r2dΩ2
2. Here, the horizon is the

sphere r ¼ r0 in which ḡðr0Þ ¼ 0. Expanding around that,
we get the Rindler metric ds2 ≃ −ð2πβ Þ2x2dt2 þ dx2 þ dl2

2,

where x2 ¼ 4
ḡ0ðr0Þ ðr − r0Þ and β≡ 4π

ḡ0ðr0Þ is the inverse

Bekenstein-Hawking temperature. Finally dl2
2 ¼ r20dΩ2.

To simplify the calculation, I follow [4]. We can consider
the optical metric g̃μν ¼ gμν

gtt
, the rescaled scalar ϕ̃ ¼ x−2ϕ,

*germani@icc.ub.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1For simplicity, we will only discuss uncharged and not
rotating black holes.

2We use ℏ ¼ 1 units.
3N ¼ ðR DϕDgμνeiS½ϕ;g�Þ−1.
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and make use of the Euclidean time t → i β
2π τ. In this

setup, we can Fourier-Bessel expand ϕ̃ as ϕ̃ðx; τÞ ¼
x
P

n;ω cn;ωψωðxÞe−i2πnτ, where

ψωðx⃗Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω sinh πω

p

ð2πÞ3=2π e−ipili KiωðpxÞ;

and K is the Bessel function of second kind.
Thus, around the horizon, iS → −SE with SE ¼P
n;ω SEðn;ωÞ, where

SEðn;ωÞ ¼ 4π2ðn2 þ ω2Þc2n;ω:

The path integral at coincident spacial points is now
Gaussian, and it can be easily evaluated [5]. At large
Lorentzian times (t0 − t ≫ β) [6], one gets

hϕðt0; xÞϕðt; xÞi⟶
ðt0−tÞ→∞

∼ e−
2π
β ðt0−tÞ;

which means the correlation function decays exponentially
to zero. The same can be checked for higher correlators.
This clearly shows that, after a long time, correlations

functions as calculated above do not longer carry informa-
tion. What went wrong?
In [7], Maldacena proposed that after a long time, other

saddle points of the Euclideanized gravitational action
should dominate. However, none has been found that
would recover the right information so far. Lately instead
[8], it has been conjectured that other configurations of the
Euclidean gravitational action maximizing the entangle-
ment entropy (the so-called islands) should dominate the
very long time behavior of correlators. While this seems to
work in two dimensions [8], it’s doubtful that it would in
higher [9]. Here, I will propose a more conservative way
out to the exponential decay. Before, it is useful to remind
the reader about some basis of the steepest descent method.

II. STEEPEST DESCENT

Suppose we would like to evaluate the following integral

IðgÞ ¼
Z

x2

x1

dxfðxÞe− 1

g2
hðxÞ

in the limit of small g and in the case in which hðxÞ has a
minimum in a point x ¼ x0 (the saddle point). By shifting
x ¼ x0 þ gy, we can expand the exponential as

e
−hðxÞ

g2 ¼ e
−hðx0Þ

g2 e−
y2

2
h00ðx0Þ

�
1 − g

y3

6
h000ðx0Þ − y4h0000ðx0Þ − g2

3

72
y6h000ðx0ÞÞ2 þ…

�
:

A similar expansion can be done for the function fðxÞ

fðxÞ ¼ fðx0Þ
�
1þ gy

f0ðx0Þ
fðx0Þ

þ g2y2
f00ðx0Þ
2fðx0Þ

þ…

�
: ð2Þ

In (2), we already see something that will be crucial for the
following. In the limit fðx0Þ → 0, the first dominant term in
the steepest descent approximation is not fðx0Þ but rather
its derivatives, which we assume not to vanish. Note that,
however, in this limit, the saddle point approximation is
still valid.
Combining the above expansions, we get, up to Oðg2Þ,4

IðgÞ ≃ gfðx0Þe−
hðx0Þ
g2

Z
∞

−∞
dy e−y

2h
00ðx0Þ
2 ð1þ g2PðyÞÞ; ð3Þ

where P is a polynomial in y.
Let us think about (3) as a path integral in which h plays

the role of the gravitational action, x of the metric, g
the Newtonian constant, and finally f the matter part. The
semiclassical approximation is immediately recognized.
Whenever fðx0Þ is not small, we can neglect the g2 term

and IðgÞ ∝ fðx0Þ. While, whenever fðx0Þ is exponentially
small, the dominant part of the integral is

IðgÞ ∝ g2
�
f00ðx0Þ
4h00ðx0Þ

−
f0ðx0Þh000ðx0Þ
8h00ðx0Þ2

�
: ð4Þ

I’d like to pause here by stressing once more that the
result (4) has been found by using the saddle point of hðxÞ.
Note, however, that whenever f → 0, the whole function
fðxÞe−h=g does not have a maximum in x ¼ x0 but rather,
for a sufficiently steep exponential, two new maximums
surrounding a valley in x ¼ x0.

5 One might be tempted to
solve the integral by considering these new peaks as new
saddle points. This would be indeed correct if the curve in
between the two maximums is exponentially steep.
My conjecture, which I shall prove in the two dimen-

sional Jackiw-Teitelboim gravity (JT) [10], is that, at least
in the perturbative regime of the evaporation:
The black hole information encoded in the correlations

functions starts to emerge when the leading order in the
steepest descent expansion of the gravitational path integral
becomes of order of the next to leading order. Moreover,

4Odd polynomials of y integrate to 0. 5I thank Roberto Emparan for pointing this out.
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this information can be largely retrieved by the sole use of
the main Lorentzian saddle point (the black hole
background).

III. JT GRAVITY

Two-dimensional gravity has been always the play-
ground to capture certain properties of the significantly
more difficult higher dimensional gravity. For example, one
might define a black hole generated by a conical singularity
where the interior is characterized by a timelike Liouville
theory while the exterior by a spacelike one [11]. There, the
semiclassical correlators in the interior are dominated by
two equally important saddle points; this can be seen either
by direct calculation or via holography [11,12].
In this paper, I will consider instead a different theory,

the JT gravity.6 The reason is that, in this theory, it has been
lately argued that island configurations should be the key
ingredients to recover the information in correlations
functions, although, in this case, one has to introduce an
external topological term to the path integral “weighting”
the different topologies (islands).
Without this extra term, the JT gravity has the following

action (for a full review see Ref. [14])

SJT ¼ 1

16πG

�Z
d2xΦ

ffiffiffiffiffiffi
−g

p ðRþ 2Þ þ 2

Z
bdy

ΦbK

�
;

where Φ is the dilaton and “bdy” stands for boundary. The
last integral is the Gibbons-Hawking term multiplied by
the dilaton boundary value Φ ¼ Φb. Units are such that the
AdS2 length is dimensionless.
The dilaton acts like a Lagrange multiplier fixing (at the

full quantum level) the metric to be locally AdS2.
The connection to the black hole is done by taking the
Rindler patch of AdS2 and fixing appropriate boundary
conditions that make the choice of coordinates physical.7

Explicitly, the metric is ds2 ¼ −4ðρ2 − π2

β2
Þdt̃2 þ dρ2

ρ2−π2

β2

with

Φ2 ¼ 1þ ρ. The horizons of the two copies of the black
hole are in ρ ¼ � π

β. The same metric might also be written
in a conformal form: After rotating to Euclidean time
tE ¼ i 2πβ t, one has [15]

ds2E ¼ 4π2

β2
dt2E þ dz2

sinh2 2π
β z

: ð5Þ

Note that the dilaton diverges at spacial infinity. We will
then fix a boundary at finite distance from the horizon
at ρ ¼ ρb.

The scalar Euclidean correlators calculated in the
Poincarré patch of AdS2, i.e., ds2 ¼ Z−2ðdT2

E þ dZ2Þ,
correspond to the Hartle-Hawking vacuum of the black
hole (5) whenever the periodicity of TE is 2π=β [15]. Thus,
we define, in Poincarré coordinates, the boundary as the
closed curve ðfðτÞ; ζðτÞÞ parametrized by the Euclidean
boundary time τ [16]. This curve has a fixed proper length
square (ϵ−2) defined by the equation f0ðτÞ2 þ ζ0ðτÞ2 ¼
ζðτÞ2
ϵ2

.8 The boundary value for the dilaton is Φb ¼ ΦrðρbÞ
ϵ ,

where Φr (finite for ϵ → 0) is the “renormalized” dilaton.
For ϵ → 0, we recover full AdS2. In the following, we will
only consider the leading order in small ϵ; thus,
ζðτÞ ≃ ϵf0ðτÞ.
At this order, we get [16]

SJT ⟶
ϵ→0

i
2g2

Z
dτ Schðf; τÞ; ð6Þ

where

Schðf; uÞ ¼ −
1

2

f002

f02
þ
�
f00

f0

�0
ð7Þ

is the Schwarzian derivative of f ¼ fðτÞ. In (6), I have
redefined g2 ≡ 4πG

Φ̄r
≪ 1.

Varying this action with respect to f,9 we find the
periodic solution f ¼ tanðτ

2
Þ that corresponds to the black

hole configuration. Indeed, the bulk metric might be

equivalently written as [17] ds2 ¼ _fðuÞ _fðvÞ
ðfðuÞ−fðvÞÞ2 dudv, where

u ¼ i 2πβ ðtþ zÞ and v ¼ i 2πβ ðt − zÞ are now bulk
“Euclidean” coordinates. With the Euclidean saddle solu-
tion f ¼ tan τ

2
, we recover the black hole metric (5). It is

then clear that the gravitational degree of freedom is
completely mapped into a function f of the boundary time.

A. Adding matter

In this section, for simplicity but without loss of general-
ity, I will consider a massless scalar field and calculate its
two-point function. Alternatively, as it is done repeatedly in
the literature, one may calculate its dual correlator living at
the boundary of the theory (from now on, dual correlator).
The full numerical calculation of this exists in the related
one-dimensional Sachdev-Ye-Kitaev theory (SYK) [18]
(see, e.g., Ref. [19]). There, one finds an exponential decay
of the dual correlation function superseded by a linear
growth (the “ramp”), in compatibility with the Page curve.
However, the literature interpretation of this result in the
path integral language (see, e.g., Refs. [17,20]) differs
greatly from what I shall present here. In [17,20], by using6Interestingly, JT gravity and the timelike Liouville theory

behave similarly in a certain corner of their parameter’s
space [13].

7Adding a boundary breaks the gauge invariance.

8 0 ≡ d=dτ.
9We only consider disk topologies.
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analytical methods (see also Ref. [21] for alternative
techniques), the information recovery is attributed to
new nonsaddle gravitational configurations of the
Euclidean action weighted by an external topological term
related to the Euler characteristic of the configuration
chosen. Here instead, I claim that the information retrieving
behavior of the bulk correlators is just the result of a correct
implementation of the steepest descent method around the
Lorentzian saddle point: the classical black hole geometry.
The rest of the paper is about calculating the following

two-point correlation function

hϕðt0; zÞϕðt; zÞi ¼ N
Z

DϕDfϕðt0; zÞϕðt; zÞeiSϕðϕ;fÞeiSJT ;

where Sϕ is the action of the massless scalar ϕ and N the
usual normalization. I will follow the procedure outlined
in [17]. Firstly, we will do the path integral of ϕ for a given
configuration of f. By noticing that different f are related to
different time reparameterizations of AdS2, one can use the
well-known scalar correlators in AdS2 and insert them into
the path integral for f. One finds (see Ref. [17] for details)

hϕðt0; zÞϕðt; zÞi ¼ −
Z

u

v
dτ1

Z
u0

v0
dτ2N

Z
Df

_fðτ1Þ _fðτ2Þ
ðfðτ1Þ − fðτ2ÞÞ2

e
− 1

2g2

R
duSchðf;uÞ

: ð8Þ

The measure Df of this path integral requires some discussion [22]. First of all, the path integral has redundant
configurations due to the invariance of the action with respect to the SLð2;RÞ group. Thus, we need to factor out those
configurations to get a finite result. Defining f ¼ tanðψðuÞ=2Þ, the natural measure on the disk is the Pfaffian one
Df →

Q
u
dψðuÞ
ψ 0ðuÞ . By using a new (Majorana) fermionic variable η ¼ dψ=ψ 0, one finds that the path integral (8) may be recast

into [22]

hϕðt0; zÞϕðt; zÞi ¼ −
Z

u

v
dτ1

Z
u0

v0
dτ2N

Z
DψDη

SLð2;RÞ
_fðτ1Þ _fðτ2Þ

ðfðτ1Þ − fðτ2ÞÞ2
e
−1
2

R
duð ψ 002

g2ψ 02−
ψ 02
g2
þη00η0

ψ 02 −η
0ηÞ
; ð9Þ

where Dψ and Dη are now flat measures [23]. Finally, I
define GðΔt; zÞ≡ Reðhϕðt0; zÞϕðt; zÞiÞ with Δt ¼ t0 − t.

IV. RECOVERING THE “RAMP” IN THE
STEEPEST DESCENT APPROXIMATION

I will now show that the equivalent to the ramp found
numerically in [19] for the boundary correlator precisely
comes from the order g2 in the steepest descent approxi-
mation of the path integral in the bulk correlator.

We can expand ψ ¼ τ þ gγðτÞ in (9) and follow the steps
of Sec. II. At zeroth order in g, it is very easy to get

hϕðt0; zÞϕðt; zÞi⟶
2π
βΔt→∞

�
1 − cosh

4πz
β

�
e−

2π
βΔt;

where Δt≡ ðt0 − tÞ > 0.
The Oðg2Þ is instead more complicated. Expanding (9),

we get

GðΔt; zÞ ¼ hϕðt0; zÞϕðt; zÞijg¼0 −
g2

8

Z
v

u
dτ1

Z
u0

v0
dτ2 csc

�
τ1 − τ2

2

�
4

× ðhγ0ðτ1Þγ0ðτ2Þið1 − cosðτ1 − τ2ÞÞÞ

þ ðhγðτ1Þ2i þ hγðτ2Þ2iÞ
�
1 −

1

2
cosðτ1 − τ2Þ

�
− hγðτ1Þγðτ2Þiðcosðτ1 − τ2Þ þ 2Þ

− sinðτ2 − τ1Þðhγðτ1Þγ0ðτ1Þi þ hγðτ2Þγ0ðτ2Þi þ hγðτ1Þγ0ðτ2Þi − hγðτ2Þγ0ðτ1ÞiÞ þOðγ4ÞÞ: ð10Þ

The correlators of γ can be calculated by expanding
γ ¼ P

n e−inτ kn and imposing the reality conditions. They
will result on Gaussian integrals. See, for example, [24].
Similarly, this happens for the fermionic variable ψ (see,
e.g., Ref. [22]).
Interestingly enough, the higher correlators (which are

still at order g2) sum to zero. The analytical form of G is
rather long and not very illuminating. In Fig. 1, I have
plotted the correlation function G for different values of

g and z. There, it is clear that the two-point correlation
function smoothly joins a linear growth after an exponential
decay. The asymptotic linear growth is

jGðΔt; zÞj ∼ 32π2g2z2Δt: ð11Þ

It is important to stress that this correlator is not the one-
loop correction to the dual operator calculated, for example,
in [16]. Here, I haveworked out the bulk two-point function
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of the massless scalar at order g2, and thus, no input from
the AdS=CFT conjecture has been used. Moreover, while in
the calculation of the dual operators, there is an ambiguity
on defining theWick rotation back to Lorentzian time, here,
as a result of the u and v integration before Wick rotation
back to Lorentizian time, this ambiguity disappears.
Finally, one may ask whether the Oðg4Þ terms, in the

perturbative g ≪ 1 regime, might also be important when-
ever the Oð1Þ term in g becomes subdominant. The latter
happens because of the well-known exponential suppres-
sion in time due to the presence of a horizon, and thus, it is
not parametric in g. On the contrary, because the Oðg2Þ is
polynomially growing in time, the Oðg4Þ is bound to be
parametrically smaller than theOðg2Þ, at least for the initial
part of the ramp. Eventually though, the parametric
suppression might be overtaken by the temporal growing
of the correlation functions. This is where we expect a
plateau behavior [20].

V. CONCLUSIONS AND OUTLOOK

By considering the next to leading order expansion in the
steepest descent approximation, I have shown that, at least
in the two-dimensional JT gravity, the two-point correlation

function in a black hole spacetime changes its exponential
decay into a linear growth. This can be immediately
compared, at least qualitatively, with the numerical findings
in the SYK theory by taking into account that this dual
theory lives at the point z ¼ zb ≃ 1

2ρb
≪ 1 of the JT black

hole geometry.
It is important to stress that the next to leading order

“correction” in steepest descents introduced here is dom-
inant in path integral calculations (gravitational or not)
whenever the correlators exponentially decay to zero at the
leading order in saddle points. Thus, whether this solves the
information paradox or not, it has to be implemented to
higher dimensional gravitational theories in the presence of
black holes, which I postpone for future work.
Coming back to the JT gravity, I have found that at a

finite time Δt, one finds that GðΔt; zbÞ ∝ z2b. Thus, the dip
in the boundary two-point correlation function connecting
the exponential decay with the linear growth is suppressed
by the large dilaton (note that, conversely from, e.g., [20],
here I work with normalized partition functions). Moreover,
while this dip happens numerically at the bulk time of
order Δtdip ∼ β

2π logð πg2Þ, as one would expect from Page

arguments, from the point of view of the boundary

FIG. 1. First line: correlation function and its time derivative for z ¼ 0.1 and g ¼ 0.01. We clearly see the emergence of the ramp after
the exponential decay. Second line, first plot: correlation functions for different values of z, namely: (solid) z ¼ 0.1, (dotted) z ¼ 0.01,
(dashed) z ¼ 0.001 and g ¼ 0.01. Second plot second line, z ¼ 0.1 and: (solid) g ¼ 0.1, (dotted) g ¼ 0.01, (dashed) g ¼ 0.001. We note
that the dependence on z of the dip time is very mild.
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Lorentzian time (τL) on which SYK theory is constructed,

we have τdipL ∼ 4π ð4πGÞ2
ϵg4β Δtdip ∼ 4πG

g2 Φb lnð πg2Þ.
The boundary correlation function calculated in this

paper entirely comes from the Lorentzian saddle point of
the path integral and reproduces, at least qualitatively, the
dual one of [17,20] calculated from the so-called “trumpet”
configurations. This seemly paradoxical fact might have a
simple explanation. As discussed in Sec. II, the saddle point
of the gravitational action, as seen from the full path
integral of matter þ gravity, becomes a valley after the
exponential decay of the matter part. This, in turn, might
well generate two neighbor peaks that, in terms of gravity
configurations, could be related to the trumpets.
Finally, we can expect that the linear growing of the

correlation function should change into something else
whenever the scalar back-reactions becomes important, i.e.,
toward the end of the black hole’s life [25]. Indeed, in the
numerical calculations of [20], the ramp eventually

encounters a plateau. This plateau might still be found
as a Lorentzian saddle point calculation where backreac-
tions are also included. I leave the proof of this statement
for future work.
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