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We study the conformal dimensions of the would be dual operators to the stabilized moduli for two
nonsupersymmetric DeWolfe-Giryavets-Kachru-Taylor (DGKT) vacua. For the first of them, related to the
standard supersymmetry DGKT vacuum by G4 ¼ −GSUSY

4 , we obtain integer conformal dimensions.
For the second of them, which has a nonzero harmonic component in G2, we obtain both integers and
real numbers.
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I. INTRODUCTION

Scale separation and moduli stabilization are two indis-
pensable requirements in any effective field theory con-
structed from string theory that aims to describe our
Universe. As of today, some of the most studied models
featuring both characteristics are the so-called DeWolfe-
Giryavets-Kachru-Taylor (DGKT) vacua [1,2], AdS4 flux
compactifications of massive type IIA in Calabi-Yau (CY)
orientifolds.
Under the approach of the swampland program [3] (for

reviews see [4–7]) these scenarios have received a renewed
interest and are now being scrutinized, specially since it
was conjectured in [8] that (supersymmetric) scale sepa-
rated vacua may lie in the swampland (see [9] for previous
discussion and [10] for a refinement of the conjecture).1 In
this regard, its 10D uplift was addressed in [12–16] whereas
more discussion on scale separation in type IIA can be
found in [17–24]. The study of the holographic description
of these vacua was initiated recently in [22,25–27]. Scale
separation has a clear interpretation in terms of parametric
gaps in the spectrum of masses of the dual theory, and it
may be clarified if DGKT vacua are consistent by looking
at the kind of conformal field theories (CFTs) that they
would correspond to. Surprisingly, it was first noticed in
[26] for the original toroidal example, and then generalized
in [27] for any CYorientifold, that the conformal dimension
for the low-lying scalar primaries in the dual CFTof SUSY
DGKT vacua is always an integer, independently of the

details of the compactification. In the same spirit, [22]
found that this is also true for the toroidal non-SUSY
DGKT models examined there.2

In this paper we will continue in this direction by
examining two of the non-SUSY branches of general
(no specific CY orientifold is assumed) DGKT vacua
derived in [28]. As we will show below, for the non-
SUSY branch related to the SUSY one by changing
Gnon-SUSY

4 ¼ −GSUSY
4 , the conformal dimension of the

scalars dual to the stabilized moduli are integers as well.
Nevertheless, for the so-called branch A2-S1 in that paper,
characterized for having a harmonic component in G2

different from zero, Gharmonic
2 ≠ 0, these same conformal

dimensions are no longer integers.
Before presenting the results, it is worth pointing out that

non-SUSY (anti–de Sitter) AdS vacua of this kind are
conjectured to be unstable [29]. Regarding the status of the
two branches at hand, its perturbative stability was verified
in [28,30]. In addition to this, the nonperturbative stability
of the first one (−GSUSY

4 ) was first studied in [30], where
decays were found to be at best marginal, and then in [31],
where a D8 domain-wall instability was found if spacetime
filling D6s are used to cancel the tadpole.

II. DGKT VACUA IN A NUTSHELL

Consider massive type IIA string theory compactified on
an orientifold of R1;3 ×M6 with M6 a compact Calabi-
Yau threefold. Dimensional reduction leads to aN ¼ 1 4D
supergravity theory whose massless scalar field content is
organized as follows [32]. On the one hand, there are the
complexified Kähler moduli, coming from integrating the
Kähler 2-form J ¼ taωa and the B ¼ baωa field
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1DGKT vacua are compatible with this refinement and also
with the proposal of [11].

2But not for the duals of AdS3 DGKT-type vacua and for the
example studied in [17] where there is no scale separation.
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Ta ¼ ba þ ita; a ∈ f1;…; h1;1− g; ð1Þ

where l−2s ωa are harmonic representatives ofH2
−ðM6; ðZÞÞ

and ls the string length. The metric appearing in the kinetic
terms of these moduli is obtained from the Kälher potential

KK ¼ − log

�
4

3
Kabctatbtc

�
¼ − log

�
4

3
K
�
; ð2Þ

with Kabc ¼ −l−6s
R
ωa ∧ ωb ∧ ωb and K ¼ 6VolM6

. On
the other hand, there are the complex structure moduli,
coming from the complex 3-formΩ, the axiodilaton and the
RR 3-form potential C3. Introducing Ωc ≡ C3 þ iReðCΩÞ
where C ¼ e−ϕe

1
2
ðKcs−KKÞ is a compensator, with Kcs ¼

− log ð−il−6s
R
Ω ∧ Ω̄Þ and ϕ the 10D dilaton, the complex

structure moduli are defined as

Uμ ¼ ξμ þ iuμ ¼ l−3s

Z
Ωc ∧ βμ; μ ∈ f0;…; h2;1g; ð3Þ

where we are taking a symplectic basis βμ ∈ H3
− ðM6;ZÞ.

Finally, the metric appearing in the kinetic terms of this
sector is constructed from the following Kähler potential

KQ ¼ 4 log

�
eϕffiffiffiffiffiffiffiffiffiffiffiffiffi
VolM6

p
�
≡ − logðe−4DÞ: ð4Þ

On top of this background one can add Ramond-Ramond
(RR) and Neveu-Schwarz-Neveu-Schwarz (NSNS) back-
ground fluxes. Following the conventions of [28] their flux
quanta are

lsḠ0 ¼ −m;
1

ls

Z
π̃a
Ḡ2 ¼ ma;

1

l3s

Z
πa

Ḡ4 ¼ −ea;

1

l5s

Z
M6

G̃6 ¼ e0;
1

l2s

Z
Bμ

H̄ ¼ hμ; ð5Þ

with ½πa� ∈ Hþ
4 ðM6;ZÞ Poincaré dual to ½l−2s ωa� and

½π̃a� ∈ H2
−ðM6;ZÞ Poincaré dual to ½l−4s ω̃a�, where

l−6s
R
X6
ωa ∧ ω̃b ¼ δba. Bμ is the 3-cycle de Rham dual to

βμ. In the 4D action the presence of fluxes is encoded
through the superpotential

lsW ¼ e0 þ eaTa þ 1

2
KabcmaTbTc þm

6
KabcTaTbTc

þ hμUμ; ð6Þ

which involves both the Kähler and the complex structure
moduli. As shown in [33], the F-term scalar potential
generated by this superpotential exhibits a remarkable
factorization between the saxionic and the axionic
components. Namely, the potential can be written in full
generality as

V ¼ 1

κ24
ρ⃗tZρ⃗; ð7Þ

where the vector ρ⃗ depends only on the flux quanta and the
axions fb; ξg,

lsρ0 ¼ e0þ eabaþ
1

2
Kabcmabbbcþm

6
Kabcbabbbcþhμξμ;

lsρa ¼ eaþKabcmbbcþm
2
Kabcbbbc;

lsρ̃a ¼maþmba;

lsρ̃¼m;

lsρ̂μ ¼ hμ; ð8Þ

whereas the matrix Z depends only on the saxions ft; ug,

Z ¼ eK

0
BBBBBB@

4

Kab

4
9
K2Kab

1
9
K2 2

3
Kuμ

2
3
Kuμ Kμν

1
CCCCCCA
; ð9Þ

with K¼KKþKQ, Kab¼ 1
4
∂ta∂tbKK and Kμν¼ 1

4
∂uμ∂uνKQ.

This factorization is maintained even when D6-brane
moduli [34] and α0 corrections [35] are included.
Though we will use the ρ⃗ language in this note, it may be

useful to recall how their components are related with the
more familiar gauge invariant field strengths [33]. Using
the democratic formulation and calling C≡ C1 þ C3 þ
C5 þ C7 þ C9 and G≡ dC −H ∧ Cþ Ḡ ∧ eB, where Ḡ
is just the sum of the previously introduced flux quanta,
then

ρ0 ¼
Z
M6

G6; ρa ¼
Z
πa

G4; ρ̃a ¼
Z
π̃a
G2;

ρ̃ ¼ G0; ρ̂μ ¼
Z
Bμ

H3: ð10Þ

III. NON-SUSY VACUA AND CONFORMAL
DIMENSIONS

Writing the potential as a bilinear expression is a very
useful tool in the search for vacua, as it was exploited in
[34,35] and especially in [28], where a systematic search of
extrema for this setup was performed. Among the different
branches of vacua found in that paper we will focus on
two cases:
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(A) Branch non-SUSYG4
, characterized by ρa¼−ρSUSYa .

In this vacuum

ρ̂μ ¼
1

15
ρ̃K∂uμK; ρa ¼ −

3

10
ρ̃Ka;

ρ̃a ¼ 0; ρ0 ¼ 0;

V ¼ −
4eK

75
K2ρ̃2; ð11Þ

(B) Branch non-SUSYG2
, characterized by ρ̃a ≠ 0. In

this vacuum

ρ̂μ ¼
1

12
ρ̃K∂uμK; ρa ¼ −

1

4
ρ̃Ka;

ρ̃a ¼ � 1

2
ρ̃ta; ρ0 ¼ 0;

V ¼ −
eK

18
K2ρ̃2; ð12Þ

with Ka ¼ Kabctbtc. In addition to this, the SUSY branch
was studied recently in [27], agreeing with what we obtain.
We will not discuss it here.

A. Branch non-SUSYG4

All the necessary features of this solution, including the
physical mass of the stabilized moduli, were calculated
in [28], namely in Appendix B. We can limit ourselves to
compute the conformal dimension ΔðΔ − dÞ ¼ m2R2

AdS of
the correspondent fields in the would be CFT3 dual.
Regarding the saxions of the compactification, its con-
formal dimension would be

Δ ¼ 10; Δi ¼ 1 or 2; Δa ¼ 6; ð13Þ

with i ¼ 1;…; h2;1 and a ¼ 1;…; h1;1− taking into account
that some fields acquire the same mass. Notice that, as
expected, these same results were obtained in [27] for
the saxionic spectrum of the supersymmetric case, since the
mass matrix in both cases is block diagonal and shares the
entries of this part. The difference comes from the axions,
whose conformal dimensions in the dual theory would be

Δ ¼ 1 or 2; Δi ¼ 3; Δa ¼ 8; ð14Þ

with again i ¼ 1;…; h2;1 and a ¼ 1;…; h1;1− . The Δi ¼ 3
comes from the fact that only a linear combination of
axions appear in the superpotential, so h2;1 of them remain
massless. These results agree and generalize the work
of [22], who looked at this kind of vacua but only in
toroidal examples.

B. Branch non-SUSYG2

Unlike the previous case, the mass acquired by the
stabilized moduli was not explicitly computed in the

original reference, so some intermediate steps have to be
done. We relegate the diagonalization of the Hessian and all
the details needed to the Appendix. Using again the relation
ΔðΔ − dÞ ¼ m2R2

AdS, the conformal dimension of the dual
operators for this branch should be

Δ ¼ 1

2

�
3þ

ffiffiffiffiffiffiffiffi
393

p �
; Δa ¼

1

2

�
3þ

ffiffiffiffiffiffiffiffi
201

p �
; Δi ¼ 3;

Δ ¼ 1

2

�
3þ

ffiffiffiffiffi
33

p �
; Δa ¼ 6; Δi ¼ 3; ð15Þ

with again i ¼ 1;…; h2;1 and a ¼ 1;…; h1;1− . In this case
there are 2h2;1 fields with conformal dimension Δ ¼ 3,
since the saxionic partners of the usual massless axions do
not acquire a mass.3

IV. CONCLUSIONS

In this work we have computed the conformal dimension
of the low-lying operators of the putative CFT3 dual of two
different nonsupersymmetric DGKT vacua.
In the first place, we focused on what we called the

non-SUSYG4
vacuum, which has the property of being

related to the SUSY one by G4 ¼ −GSUSY
4 . We obtained

that these dimensions are always integers [see (13) for the
saxionic sector and (14) for the axionic sector] and totally
independent of the details of the compactification. With
respect to the saxions this is not new, since this part of the
mass matrix is shared with the SUSY branch and the same
numbers were obtained in [27]. For the axions, this result
extends the work of [22], which only looked at toroidal
models, to any CY orientifold.
In the second place, we studied what we named the

non-SUSYG2
vacuum, called in this way by having

Gharmonic
2 ≠ 0. Unlike the SUSY and the non-SUSYG4

vacua, the conformal dimensions of the operators of the
dual theory would not be only integers, see (15). The result
is again quite simple and does not depend on the details of
the compactification. The 10D uplift of this branch has not
been studied in detail and it could happen that problems
arise when looked at from the 10D point of view. Following
the analysis of [15], there should not be any obstructions in
constructing first, a smearing uplift, and then, expanding
the solution and localizing the source at first order. We have
already checked explicitly that indeed the smearing uplift
exists. These and more details are being studied in an
upcoming work [36].
Nonsupersymmetric vacua of the kind studied here are

conjectured to be unstable [29]. This could imply that it
would not make much sense to study their CFT duals, since
these theories could be sick or ill defined. Indeed in [31] we
showed that for the non-SUSYG4

branch there seems to be
an instability if spacetime filling D6s are used to cancel the

3They develop a quartic potential.
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tadpole. Opposite to this reasoning, studying these non-
supersymmetric vacua from their putative CFT dual could
be useful to show that they are unstable, which makes this
analysis interesting per se.
In fact, constructing the would-be CFT duals of scale

separated AdS vacua could be a way of understanding if
scenarios of this type are consistent or if they lie in the
swampland. In this note, we have shown that not only
integers appear when we study the conformal dimensions
of the low-lying operators of DGKT vacua. But we still do
not understand why they do appear for the SUSY case or
even if the conformal theories we are trying to construct
really exist. We hope that both questions could be answered
in the not too distant future.

ACKNOWLEDGMENTS

We would like to thank M. Sasieta for very helpful
discussions and explanations and F. Marchesano for very
useful discussions and comments on the manuscript. This
work is partially supported by the Spanish Research
Agency (Agencia Estatal de Investigación) through the
Grants IFT Centro de Excelencia Severo Ochoa
No. CEX2020-001007-S and No. PGC2018-095976-B-
C21, funded by MCIN/AEI/10.13039/501100011033 and
by ERDFAway of making Europe. The author is supported
through the Formación de Profesorado Universitario (FPU)
Grant No. FPU17/04293.

APPENDIX: MASS SPECTRUM FOR THE
NON-SUSYG2

VACUA

The Hessian for this branch was obtained explicitly in
Appendix B of [28], see Eq. (B.6). To compute the physical
mass spectrum one has to express the fields on a canonical
basis. As explained there, for this we decompose the Kähler
metrics for the Kähler and complex structure fields as

Kab¼
3

2K

�
3KaKb

2K
−Kab

�

¼3

4

KaKb

K2
þ 3

2K

�
KaKb

K
−Kab

�
¼KNP

ab þKP
ab; ðA1Þ

Kμν ¼
1

16

∂μG∂νG

G2
þ 1

4

�
3

4

∂μG∂νG

G2
−
∂μ∂νG

G

�

¼ KNP
μν þ KP

μν; ðA2Þ

with Kab¼Kabctc, K¼KKþKQ¼− logðGÞ, and ∂μ ≡ ∂uμ .
Here KP and KNP refers to the primitive and nonprimitive
parts of the metric, which act on orthogonal subspaces.
One can then express the fields in the canonically norma-
lized basis

ðξμ ba uμ ta Þ→ ð ξ̂ b̂ ξμ̂ bâ û t̂ uμ̂ tâ Þ; ðA3Þ

where ξ̂ðb̂Þ is the vector along the subspace corresponding
to KNP

μν jvacðKNP
ab jvacÞ, with unit norm, and ξμ̂ðbâÞ correspond

to vectors of unit norm with respect to KP
μνjvacðKP

abjvacÞ.
Analogously, f û t̂ uμ̂ tâ g are defined in the same
way. In this canonically normalized basis the Hessian reads

H¼K2eKρ̃2

0
BBBBBBBBBBBBBBB@

8
9

4

3
ffiffi
3

p 0 0 0 0 0 0

4

3
ffiffi
3

p 14
9

0 0 0 � 8
9

0 0

0 0 0 0 0 0 0 0

0 0 0 14
9

0 0 0 ∓ 4
9

0 0 0 0 8
9

− 4

3
ffiffi
3

p 0 0

0 � 8
9

0 0 − 4

3
ffiffi
3

p 26
9

0 0

0 0 0 0 0 0 0 0

0 0 0 ∓ 4
9

0 0 0 8
9

1
CCCCCCCCCCCCCCCA

;

ðA4Þ

and the physical masses can be obtained straightforwardly
by diagonalizing this matrix and dividing by two.
Expressed in terms of R2

AdS ¼ 3
jΛj ¼ 54

eKK2ρ̃2
they are

m2 ¼ R−2
AdSf96; 6; 48; 18; 0g; ðA5Þ

with multiplicity f1; 1; h1;1− ; h1;1− ; 2h2;1g respectively.
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