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We study a Jordanian deformation of the AdS5 × S5 superstring that preserves 12 superisometries. It is
an example of homogeneous Yang-Baxter deformations, a class that generalizes TsT deformations to the
non-Abelian case. Many of the attractive features of TsT carry over to this more general class, from the
possibility of generating new supergravity solutions to the preservation of world sheet integrability. In this
paper, we exploit the fact that the deformed σ-model with periodic boundary conditions can be
reformulated as an undeformed one with twisted boundary conditions and discuss the construction of
the classical spectral curve and its semiclassical quantization. First, we find global coordinates for the
deformed background and identify the global time corresponding to the energy that should be computed in
the spectral problem. Using the curve of the twisted model, we obtain the one-loop correction to the energy
of a particular solution, and we find that the charge encoding the twisted boundary conditions does not
receive an anomalous correction. Finally, we give evidence suggesting that the unimodular version of the
deformation (giving rise to a supergravity background) and the nonunimodular one (whose background
does not solve the supergravity equations) have the same spectrum at least to one-loop.
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I. INTRODUCTION

We currently know various examples of deformations of
σ-models that preserve integrability; see [1] for a review.
Important representatives are the λ-deformation [2–4], the
inhomogeneous deformation (also called η-deformation)
[5–8], and the class of homogeneous Yang-Baxter defor-
mations [9,10]. These are being studied with various moti-
vations, for example, to clarify a possible link between
integrability and renormalizability of the σ-models [11–13].
When these deformations are applied to string σ-models,
they lead to deformations of the corresponding target-space
backgrounds. By now, the conditions when they give rise to
backgrounds that solve the supergravity equations are
well understood [14–19]. Interestingly, they were also
reformulated in the language of double field theory (see
e.g., [19–22]), which in turn can be used to identify their
α0-corrections, at least to the first order (i.e., two loops in the

σ-model) in the α0-expansion [23]; see also [24–26] for the
generalization to other solution-generating techniques. One
reason why they have attracted so much attention is that they
can be used to deform a very large class of string back-
grounds, including themaximally symmetric oneswith anti–
de Sitter (AdS) factors, which were paramount in the
development of the AdS=CFT correspondence. The pos-
sibility of deforming such backgrounds (e.g., AdS5 × S5 or
AdS3 × S3 × T4) while preserving the underlying integra-
bility is an exciting direction to identify possible general-
izations of the AdS=CFT correspondence, with new gauge
theories that are potentially exactly solvable (in the same
sense as N ¼ 4 is exactly solvable in the large-N limit).
In this article, we will focus on homogeneous Yang-

Baxter deformations (and for simplicity, we will always
omit the prefix “homogeneous” from now on). This is a
class of integrable deformations that can be understood as a
generalization of TsT deformations (which in the double
field theory language would be called β-shifts) [27]. While
TsT deformations [28–30] can be applied whenever we
have two commuting isometries of the “seed” undeformed
background, Yang-Baxter deformations generalize this
possibility to the non-Abelian case. The central ingredient
in the construction is a constant and antisymmetric
R-matrix that must solve the classical Yang-Baxter equa-
tion on the Lie (super)algebra of isometries. When restrict-
ing to supercosets (for example, the one of AdS5 × S5), this
family of deformations has a rich list of possibilities, and
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everything is known about their supergravity embedding.
In particular, the deformed background (which in general
can have all NSNS and RR fields nontrivially turned on) is
a solution of the type IIB supergravity equations if and
only if the R-matrix solves a very simple and algebraic
“unimodularity” condition [14,31].1

On the other hand, not much has been done to extend the
methods of integrability, that were developed for the
undeformed AdS5 × S5 case, to the Yang-Baxter deformed
models.2 For the very restricted subclass of “diagonal” TsT
deformations (i.e., combinations of TsT deformations that
involve only the Cartan isometries of AdS5 × S5), the
solution to the spectral problem is understood in terms
of a simple deformation of the Bethe equations and
thermodynamic Bethe ansatz [36,37] or quantum spectral
curve [38]. But as soon as one goes beyond this special
subclass, various obstructions do not yet allow for the
application of the integrability techniques. This happens
already for the rather simple class of “nondiagonal” TsT
deformations (i.e., involving at least one non-Cartan
isometry) [39].
A natural strategy to try to extend the methods of

integrability to the full class of Yang-Baxter deformations
is to do what worked in the case of diagonal TsT
deformations, where one replaces the study of the spectral
problem of the deformed σ-model with that of an unde-
formed model which, however, has twisted boundary
conditions on the world sheet. The two σ-models (the
deformed one and the undeformed yet twisted one) are
equivalent on shell; i.e., there is a map that relates solutions
of the σ-model equations of motion on the two sides. In the
case of TsT deformations, the twisted boundary conditions
for the alternative picture are very easy to write down,
essentially because they are linear in terms of the fields
[29,30,40]. For more generic Yang-Baxter deformations,
writing down the equivalent twisted boundary conditions is
more complicated. Previous expressions were written in
terms of a path-ordered exponential, and the nonlocalities
that this introduces were making it impossible to make any
progress [41–43]. This problem was solved in [44], where
the twisted boundary conditions were rewritten in terms of
the convenient degrees of freedom, namely those of the
twisted model itself. While the twisted boundary conditions
can lead to complicated nonlinear relations among the
fields—a fact which is related to the non-Abelian nature of
the deformations—the expressions are local.

Among the methods of integrability that we can apply,
the classical spectral curve has the right balance of
complexity and computational power. The curve is defined
as the N-sheeted Riemann surface obtained from the
eigenvalue-problem of a monodromy matrix of size
N × N [45]. Its power was originally applied in the context
of string theory in AdS5 × S5 by reformulating the con-
struction of classical string solutions as a Riemann-Hilbert
problem [46–50], as all their information is encoded in
terms of cuts and poles on the Riemann surface. It gained
even more traction after it was realized that the classical
curve can also be used to obtain 1-loop information related
to these classical solutions [51–55]. This information is
retrieved by adding microscopic cuts and poles to the
Riemann surface, which will behave as quantum fluctua-
tions around the classical solution. The classical spectral
curve was soon generalized from AdS5 × S5 to other
AdSd backgrounds; see [56] and references therein, as
well as deformed backgrounds, such as the flux-deformed
AdS3 × S3 [57–59] or the Schrödinger background
obtained from TsT [60].
In this article, we will use the equivalence between

deformed models and undeformed yet twisted model to
apply the method of the classical spectral curve and its
semiclassical quantization to a particular example of a
Yang-Baxter deformation of AdS5 × S5 of non-Abelian
type. It belongs to the so-called class of Jordanian defor-
mations, which make use of an slð2;RÞ subalgebra of the
Lie algebra of superisometries [9,10,61,62]. Importantly,
the simplest version of Jordanian deformations [i.e., the one
needing just the slð2;RÞ] is nonunimodular. Therefore, the
deformed background does not lead to a solution of the type
IIB supergravity equations but rather to one of the modified
supergravity equations of [63,64]. It is however possible to
cure this problem by constructing “extended” Jordanian
deformations [65] that exploit a superalgebra of isometries
containing slð2;RÞ. They lead to unimodular R-matrices
and to backgrounds that are solutions of the standard type
IIB supergravity equations. Notice that the unimodular and
nonunimodular versions share the same background metric
and Kalb-Ramond field.3 Interestingly, both cases are
closely related to non-Abelian T-duality [62,66,67]: a
nonvanishing deformation parameter can be rescaled away
in the background by a simple coordinate transformation,
and the solution is equivalent to the background resulting
from doing non-Abelian T-duality on the two-dimensional
Borel subalgebra of slð2;RÞ (or of its supersymmetric
extension if considering the unimodular case).1See [32] for the generic treatment of a Green-Schwarz string

with a semisimple Lie algebra of isometries. Recently, Yang-
Baxter deformations have also been constructed for symmetric
space sigma models with nonsemisimple symmetry algebra [33].

2We stress that in this paper we focus on homogeneous Yang-
Baxter deformations. For the case of the inhomogeneous defor-
mation, the integrability methods have been pushed to the level
of the thermodynamic Bethe ansatz [34] and quantum spectral
curve [35].

3In the unimodular case, these are supplemented by a dilaton
and RR fluxes that solve the type IIB equations. In the
nonunimodular case, the RR fields are replaced by fields that
do not satisfy the standard Bianchi identities, and the background
is supplemented by a nondynamical Killing vector that enters the
modified supergravity equations.
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The article is organised as follows. In Sec. II, we review
the construction of Yang-Baxter deformations of semi-
symmetric space σ-models, and we specify the particular
Jordanian deformation, which we will study. After display-
ing its deformed metric and Kalb-Ramond field, we
identify in Sec. II B the residual bosonic isometries that
survive. In Sec. II C, we then propose a coordinate system
for which we explicitly identify the time coordinate. We
prove that this system provides global coordinates of the
deformed spacetime for every value of the deformation
parameter by analyzing its geodesic completeness. In
Sec. III, we derive a particular pointlike string solution
of the deformed σ-model, which can be interpreted as the
analog of the Berenstein-Maldacena-Nastase (BMN)
solution of AdS5 × S5.
In Sec. IV, we transfer from the deformed Yang-Baxter

picture to the undeformed model with twisted boundary
conditions. We review the results of [44] regarding the on
shell equivalence in Sec. IVA and identify the symmetries
of the twisted model in IV B. In Sec. IV C, we show how
the twist of the Jordanian model can be simplified. The
transformation of our BMN-like solution to the twisted
model is then performed in Sec. IV D, where we pay
particular attention to the gauge ambiguities of the super-
coset. Additionally, in this section, we analyze also
solutions of the twisted model in more generality and
show, under certain assumptions, that they lead to extended
string solutions with profiles involving Airy functions.
We start the program of the classical spectral curve and its

quantization in Sec. V with a review of the construction of
the classical curve in terms of the quasimomenta of the
(general) twisted supercoset model on PSUð2; 2j4Þ. We
show in Sec. VA how the asymptotics of the quasimomenta
give rise to local Cartan charges, involving the energy, of the
symmetry algebra of our Jordanian twisted model. We then
construct the algebraic curve for our BMN-like solution in
Sec. V B. In Sec. VI, we study the semiclassical quantum
corrections to the corresponding BMN-like quasimomenta
by applying the recipe of [51,55] to our twisted case. We
identify the frequencies of all possible excitations whose
resummation, whichwe perform in Sec. VI C, gives the one-
loop correction to the energy of our string solution. In
Sec. VI B, we furthermore show that the charge identifying
the twist of the boundary conditions is protected—it does
not receive any anomalous correction—at one-loop. Finally,
in Sec. VII, we discuss how our results regarding the
classical spectral curve and its semiclassical quantization
are insensitive to whether we consider the unimodular or
nonmodular version of our Jordanian deformation.
We end in Sec. VIII with a conclusion and outlook. In

Appendix A, we show how the global coordinates defined
in Sec. II C are related to the embedding coordinates of
(undeformed) AdS. For completeness, we discuss in
Appendix B why the geodesic incompleteness of the
Poincaré coordinate system persists along the deformation.

In Appendix C, we identify the possible Cartan subalgebras
of the residual isometry algebra of the deformed model. In
Appendix D, we present the details regarding the calcu-
lation of the frequencies of excitations presented in Sec. VI.
We cross-check these results in Appendix E by computing
explicitly, in the picture of the deformed model, the
frequencies of the quadratic bosonic fluctuations around
the classical solution.

II. A JORDANIAN-DEFORMED BACKGROUND

A. The deformed σ-model and the background fields

In order to set up the notation, let us review the
construction of the homogeneous Yang-Baxter deformation
of a string σ-model on a semisymmetric space. The starting
point is a Lie supergroup G with a corresponding Lie
superalgebra g that admits a Z4-graded decomposition; i.e.,
g ¼ ⊕3

i¼0g
ðiÞ such that ½½gðiÞ; gðjÞ�� ⊂ gðiþjmod 4Þ. Here, we

are using ½½·; ·�� to denote the graded bracket on g. The
action of the string σ-model on the supercoset GnGð0Þ can
be written as

S0 ¼ −
ffiffiffi
λ

p

4π

Z
dτdσΠαβ

ð−ÞSTrðJαd̂JβÞ; ð2:1Þ

where J ¼ g−1dg ∈ g is the Maurer-Cartan form con-
structed from the group element gðτ; σÞ ∈ G that depends
on the world sheet coordinates τ, σ. The linear operator
d̂∶ g → g is a linear combination d̂ ¼ 1

2
Pð1Þ þ Pð2Þ − 1

2
Pð3Þ

of projectors PðiÞ, which by definition project onto the
subspace gðiÞ.4 Moreover, STr denotes the supertrace on g,
which we use to obtain an ad-invariant graded-symmetric
nondegenerate bilinear form on g. The world sheet indices
α, β in the action are contracted with the projector
Παβ

ð�Þ ¼ 1
2
ð ffiffiffiffiffiffijhjp

hαβ � ϵαβÞ, where hαβ is the world sheet

metric and ϵτσ ¼ −ϵστ ¼ −1. Finally, we use
ffiffi
λ

p
4π to denote

the string tension.
To construct the homogeneous Yang-Baxter deformation

of the above action, one needs a linear operator R∶ g → g
that is antisymmetric with respect to the supertrace,

STrðRx yÞ ¼ −STrðxRyÞ; ∀ x; y ∈ g; ð2:2Þ

and that solves the classical Yang-Baxter equation (CYBE)
on g,

½½Rx; Ry�� − Rð½½Rx; y�� þ ½½x; Ry��Þ ¼ 0; ∀ x; y ∈ g:

ð2:3Þ

4For algebra elements x ∈ g, we will use the notation
xðiÞ ¼ PðiÞx. When there is no risk of ambiguity, we will always
use a notation such that a linear operator on the Lie algebra acts
on what sits to its right, e.g., d̂J ¼ d̂ðJÞ.
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If we choose a basis TA for g, such that ½½TA;TB�� ¼
fABCTC, then we can think of R as a matrix identified by
RTA ¼ RA

BTB. Moreover, if KAB ¼ STrðTATBÞ is the
metric on g and KAB its inverse, we can define the dual
generators TA ¼ TBKBA that satisfy5 STrðTATBÞ ¼ δBA. We
can then equivalently think of R as r ¼ − 1

2
RABTA ∧

TB ∈ g ∧ g, where we use the graded wedge product
x∧y¼x⊗y−ð−1ÞdegðxÞ�degðyÞy⊗x, and RA

B¼KACRCB,
so that Rx ¼ STr2ðrð1 ⊗ xÞÞ in which STr2 denotes the
supertrace on the second factor of the tensor product.
Naturally, we only consider R-matrices that do not mix
even and odd gradings, meaning that r ¼ − 1

2
RabTa ∧

Tb − 1
2
Rα̂ β̂Tα̂ ∧ Tβ̂, where a, b are indices of even

(bosonic) generators while α̂; β̂ are indices of odd
(fermionic) generators.
Notice that (2.2) implies that Rab is antisymmetric while

Rα̂ β̂ is symmetric. With these ingredients the deformed
action is now given by [8]

Sη ¼ −
ffiffiffi
λ

p

4π

Z
dτdσΠαβ

ð−ÞSTr
�
Jαd̂

1

1 − ηRgd̂
Jβ

�
; ð2:4Þ

where Rg ¼ Ad−1g RAdg (with Adgx ¼ gxg−1) and η is a
deformation parameter. To have a real action, we take
η ∈ R and RAB anti-Hermitian, so that Rab is real while Rα̂ β̂

has imaginary components.
The space defined by the image of the R-matrix,

f ¼ ImðRÞ, will play a central role in our computa-
tions. We can check that it is a subalgebra of g as a
consequence of the CYBE. We will denote its correspond-
ing Lie group by F. Later, we will use indices I, J for
generators TI ∈ f, and indices i, j when restricting to the
bosonic subalgebra. Using the metric on g induced by the
supertrace, we can also define the dual to f, which we
denote by f�. It is a subspace spanned by TI ¼ TAKAI such
that STrðTITJÞ ¼ δJI .
So far we have reviewed the main ingredients—in

particular, Eqs. (2.2) and (2.3)—that make the action
(2.4) an integrable deformation of the seed supercoset
action (2.1) [6–8]. See later for more details. In general,
extra conditions are necessary in order to make sure that the
deformed model can be interpreted also as a consistent
string σ-model. Since we are deforming a σ-model on a
semisymmetric space, the necessary and sufficient con-
dition for the background fields of (2.4) to satisfy the type
IIB supergravity equations, is that R also solves the
unimodularity condition [14],

0 ¼ KAB½½TA; RTB�� ¼ RABfABDTD: ð2:5Þ

When this is not satisfied, the background fields solve the
more general equations of “modified supergravity” [63,64].
In this article, we are interested in deformations of the

superstring on AdS5 × S5 and thus, we will take g ¼
psuð2; 2j4Þ. The original supercoset is then PSUð2; 2j4Þn
ðSOð1; 4Þ × SOð5ÞÞ.6 Furthermore, wewant to study defor-
mations that are not interpretable as simple TsT trans-
formations. This implies that we must deform the AdS
factor of the background. Therefore, it will be sufficient to
state only the commutation relations for the soð2; 4Þ ≅
suð2; 2Þ conformal algebra, which is a subalgebra of g and
corresponds to the isometries of AdS5. Given the Lorentz
indices μ; ν ¼ 0;…; 3 in 3þ 1 dimensions, we will use the
Lorentz generators Mμν, the translations pμ, the special
conformal transformations kμ, and the dilatation d that
close into the following commutation relations:

½Mμν; pρ� ¼ ηνρpμ − ημρpν; ½d; pμ� ¼ þpμ;

½Mμν; kρ� ¼ ηνρkμ − ημρkν; ½d; kμ� ¼ −kμ;

½Mμν; d� ¼ 0; ½pμ; kν� ¼ 2Mμν þ 2ημνd;

½Mμν;Mρσ� ¼ −ημρMνσ þ ηνρMμσ þ ημσMνρ − ηνσMμρ;

ð2:6Þ

with the Minkowski metric ημν ¼ diagð−1; 1; 1; 1Þ.
An interesting and rich class of deformations that deform

AdS are given by Jordanian ones [9,10,61,62]. Here, we
choose to work with7 [65]

r ¼ e ∧ hþ i
2
ζðQ1 ∧ Q1 þQ2 ∧ Q2Þ; ð2:7Þ

where8

h ¼ dþM01

2
; e ¼ p0 þ p1ffiffiffi

2
p ; ð2:8Þ

and they satisfy the commutation relation,

½h; e� ¼ e: ð2:9Þ

The supercharges Q1;Q2 complete the (anti)commutation
relations to an N ¼ 1 super Weyl algebra in one

5Extra care must be taken when the elements are of odd
grading, because in that case STrðxyÞ ¼ −STrðyxÞ.

6We will not need to give the full set of (anti)commutation
relations of this superalgebra, nor provide an explicit matrix
realization of its elements. Conventions for these can be found in
various places in the literature; see, e.g., [68].

7Comparing to [65], one should rescale the deformation
parameter there as η → −η=2.

8If we denote Th ¼ h;Tþ ¼ e as generators of f, then we can
identify the duals Th ¼ 2Th and Tþ ¼ k1−k0

2
ffiffi
2

p ¼ T− as generators
of f�, so that STrðTaTbÞ ¼ δab. Moreover, we can check that they
form an slð2;RÞ algebra, ½Th;T�� ¼ �T� and ½Tþ;T−� ¼ 2Th.
According to our conventions, the R-matrix acts as RðThÞ ¼ Tþ
and RðTþÞ ¼ −Th.
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dimension. In this article, we will not need to specify them
further, and more information can be found in [65]. For our
convenience, we have also introduced the parameter ζ. It is
worth to stress that r solves the CYBE only for ζ ¼ 0 or
ζ ¼ 1. When ζ ¼ 0, the purely bosonic r-matrix is not
unimodular, and it gives rise to background fields that solve
only the modified supergravity equations; when ζ ¼ 1, we
have an additional “fermionic tail” such that r is also
unimodular, and therefore, one can obtain a standard super-
gravity background [14,65]. In this article, we will find it
interesting to consider both cases and compare them.
Let us identify the bosonic part of (2.4) (i.e., when setting

fermions to zero) with Sη ¼ −
ffiffi
λ

p
4π

R
dτdσΠαβ

ð−Þ∂αX
m
∂βXn ×

ðGmn þ BmnÞ. Obviously, the background metric Gmn and
the Kalb-Ramond field Bmn do not depend on ζ. In order to
find an explicit expression, we can parametrize the group
element as g ¼ gags, where ga ∈ SOð2; 4Þ parametrizes the
AdS spacetime in the undeformed limit, and gs ∈ SOð6Þ the
sphere factor. We take

ga ¼ expðθM23Þ expðρp3 þ x0p0 þ x1p1Þ expðlogðzÞdÞ;
ð2:10Þ

which gives9

ds2 ¼ dz2 þ dρ2 þ ρ2dθ2 − 2dxþdx−

z2
−
η2ðz2 þ ρ2Þdx−2

4z6

þ ds2
S5
;

B ¼ 1

2
BmndXm ∧ dXn ¼ η

2

�
ρdρ ∧ dx−

z4
þ dz ∧ dx−

z3

�
;

ð2:11Þ

with x� ¼ ðx0 � x1Þ= ffiffiffi
2

p
and ds2

S5
the metric of the unde-

formed 5-sphere. The background is supported by anF3 RR-
flux, which vanishes for η → 0,10 and by the undeformed F5

RR-flux of AdS5 × S5. Furthermore, the dilaton remains
constant, Φ ¼ Φ0, in contrast to many other known defor-
mations. Let us recall that it is only for ζ ¼ 1 that one can find
this set of Ramond-Ramond fields and dilaton that complete
the background to a standard supergravity one.
Notice that when η ≠ 0, this deformation parameter can

be reabsorbed by a simple coordinate redefinition, which is

however singular in the η → 0 limit. This property is in fact
a consequence of the fact that the Jordanian deformation is
related to a non-Abelian T-duality transformation of the
original background [66,67].

B. Residual (super)isometries

As is well known, the (super)isometries are realized in
the generic σ-model action (2.1) as global transformations
which act as g → gLg with gL constant, in this case, an
element of G ¼ PSUð2; 2j4Þ. The Lie algebra of bosonic
isometries of the undeformed AdS5 × S5 background is
soð2; 4Þ ⊕ soð6Þ ≅ suð2; 2Þ ⊕ suð4Þ, corresponding, res-
pectively, to the AdS5 and S5 factor of the spacetime. The
deformed action (2.4) is invariant only under a subset of
these global transformations, in particular, those which are
preserved by the operator R,

Ad−1gL RAdgL ¼ R: ð2:12Þ

At the level of the algebra, this condition translates to

½½TĀ; RðxÞ�� ¼ R½½TĀ; x��; ∀ x ∈ g; ð2:13Þ

where TĀ denotes a generator of a (super)isometry. The
subset spanðTĀÞ ⊂ g forms a subalgebra by means of
the Jacobi identity. Using the above condition it is easy
to check that the nonunimodular deformation (ζ ¼ 0)
preserves 16 superisometries, while the unimodular defor-
mation (ζ ¼ 1) preserves 12 superisometries. In the non-
unimodular case, since the R-matrix acts trivially on the
sphere, all of the soð6Þ isometries will be preserved by the
deformation, and its Noether currents correspond as usual
to the Maurer-Cartan forms g−1s dgs; see, e.g., [68]. In the
unimodular case, instead, some of the soð6Þ isometries are
broken by the additional fermionic tail of the R-matrix.
This is reflected, for example, at the level of the RR fields,
which are not invariant under soð6Þ. Nevertheless, classical
string configurations are insensitive to this fermionic tale,
and at that level, one can work as if there is soð6Þ
invariance. More generally, in the deformed model, the
Noether currents corresponding to the residual (super)
isometries are given by11

J Ā� ¼ STrðJ �TĀÞ; J � ¼Adg

�
Að2Þ
� ∓ 1

2
ðAð1Þ

� −Að3Þ
� Þ

�
;

ð2:14Þ

where the world sheet one-form A ¼ Aþdσþ þ A−dσ−,
here written in terms of the world sheet light cone
coordinates σ� ¼ 1

2
ðτ � σÞ, is defined as

9In terms of the usual Poincaré coordinates from ga ¼
expðx2p2 þ x3p3 þ x0p0 þ x1p1Þ expðlogðzÞdÞ, we would
get the metric z−2ðdz2 þ ðdx2Þ2 þ ðdx3Þ2 − 2dxþdx−Þ −
η2z−6=4ðz2 þ ðx2Þ2 þ ðx3Þ2Þdx−2 for the deformed AdS factor.
Instead, we choose to use polar coordinates x2 ¼ ρ sin θ and x3 ¼
ρ cos θ in the 2–3 plane, such that a Uð1Þ isometry corresponding
to shifts of θ, which survives the deformation, becomes manifest.
In the next subsection, we will elaborate on the residual
isometries of the deformed model.

10The explicit expression for F3 can be found in [65].

11Because of the factorization of the AdS and sphere algebra, if
we are interested only in the residual AdS isometries, we may
simply substitute g with ga in the formulas above.
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A� ¼ 1

1� ηRgd̂
g−1∂�g: ð2:15Þ

From these Noether currents, one may also define the
Noether charges,

QĀ ¼ 1

2π

Z
2π

0

dσJ Āτ: ð2:16Þ

For a generic σ-model with background metric and Kalb-
Ramond field, the Killing vectors kā associated to bosonic
isometries can then be found from solving (see, e.g., [69])

J ā� ¼ kmā ðGmn ∓ BmnÞ∂�Xn � ωān∂�Xn; ð2:17Þ

where LkāG ¼ 0 and LkāB ¼ dωā, with L the Lie deriva-
tive, and ωā an arbitrary one form. Since the deformation
only acts nontrivially on AdS, we will focus on this
subsector for most of the remainder of this paper.
Solving (2.13) for the R matrix (2.7) in question then

gives five residual isometries of soð2; 4Þ, forming the
subalgebra,12

k ¼ spanðTā; ā ¼ 1;…; 5Þ
¼ spanðd −M01; p0; p1; k0 þ k1;M23Þ: ð2:18Þ

The corresponding Killing vectors in the (polar) Poincaré
coordinates read

km
1̄
∂m ¼ 2x−∂x− þ ρ∂ρ þ z∂z; km

2̄
∂m ¼ ∂xþ þ ∂x−ffiffiffi

2
p ; km

3̄
∂m ¼ ∂xþ − ∂x−ffiffiffi

2
p ;

km
4̄
∂m ¼

ffiffiffi
2

p
ðz2 þ ρ2Þ∂xþ þ

ffiffiffi
2

p
2ðx−Þ2∂x− þ

ffiffiffi
2

p
2x−ρ∂ρ þ

ffiffiffi
2

p
2x−z∂z; km

5̄
∂m ¼ ∂θ; ð2:19Þ

which shows that we have in particular three translation
isometries in xþ, x− and θ.13

C. Global coordinates

In view of the applications of the Jordanian deformation
of AdS5 × S5 in holography, it is important to identify
global coordinates for the background for generic values of
η. As it is well known, the Poincaré coordinates are globally
incomplete already for the undeformed AdS spacetime.
Thus, our first task is to find an appropriate coordinate
transformation. A first obvious attempt is to transform to
the usual global coordinates of AdS and then check if they
remain global coordinates also when η ≠ 0. However, we
find that the deformed metric in these coordinates is
complicated and does not exhibit any of the manifest
residual isometries. We have therefore not pursued this
coordinate system further, as it would not be useful for
practical purposes.
In fact, similar issues were found in [70], which analyzed

the geometry of Schödinger spacetimes Schz. Such geom-
etries possess an anisotropic scale invariance ðt; xiÞ →
ðλzt; λxiÞ characterized by a critical exponent z > 1, where
the case z ¼ 1 corresponds to usual AdS. A global
coordinate system different from the usual global AdS

coordinates was then obtained for z ¼ 2. Conveniently, the
Jordanian deformed background (2.11) is extremely rem-
iniscent of the Sch2 case and, in fact, exhibits the same
anisotropic scale symmetry.14 It is therefore conceivable
that a good candidate for a global coordinate system of our
Jordanian background coincides with that found in [70].
The transformation from polar Poincaré coordinates to the
global ones Xm ¼ ðT; V; P;Θ; ZÞ is obtained from15

xþ ¼ Vþ 1

2
ðZ2þP2Þ tanT; z¼ Z

cosT
; ρ¼ P

cosT
;

θ¼Θ; x− ¼ tanT: ð2:20Þ

We can cover the full spacetime if we take the coor-
dinates in the ranges T; V ∈� −∞;þ∞½, Θ ∈ ½0; 2π½ and
P; Z ∈�0;þ∞½. The only coordinate that we allow to be
periodically identified is Θ, with period 2π. These ranges
have been derived from the relation between these coor-
dinates and the embedding coordinates of AdS, which we
discuss in Appendix A. In the new coordinates, the back-
ground fields (2.11) then read

12From an algebraic perspective, we thus see that indeedM23 is
a residual Uð1Þ isometry that corresponds to shifts in an angular
coordinate.

13One can also derive the one-forms ωā needed to relate the
Noether currents J ā to the Killing vectors kā. In this case, they
are found to be nonvanishing but closed for generic values of η.
The B-field itself is therefore isometric with respect to the
residual isometries.

14In particular, when defining ðx2; x3Þ ¼ ðρ sin θ; ρ cos θÞ, the
Jordanian background is invariant under z → λz, x2 → λx2,
x3 → λx3, x− → λ2x− and xþ → xþ, which translates to
Eq. (2.1) of [70] by identifying ðz; x2; x3; x−; xþÞ with
ðr; x2; x3; t; ξÞ for the critical exponent z ¼ 2. Notice that
the only difference between the Jordanian metric and the
Schrödinger Sch2 metric, given in Eq. (1.1) of [70], is the term
ρ2

4z6
dx−2 ¼ ðx2Þ2þðx3Þ2

4z6
dx−2.

15Strictly speaking, the relation to the global Schrödinger
coordinates of [70] is obtained by transforming ðP; ZÞ to
ðX2; X3Þ ¼ ðP sinΘ; P cosΘÞ.
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ds2 ¼ dZ2 þ dP2 þ P2dΘ2 − 2dTdV
Z2

−
4Z4ðZ2 þ P2Þ þ η2ðZ2 þ P2Þ

4Z6
dT2 þ ds2

S5
;

B ¼ η

2

�
PdP ∧ dT

Z4
þ dZ ∧ dT

Z3

�
: ð2:21Þ

Clearly, this coordinate system will be useful for practical purposes, since it manifestly displays three translational
isometries, namely in T, V, and Θ. Because the Cartan subalgebra of the algebra of residual isometries is three-dimensional
(see Appendix C), this is in fact the maximal number of manifest translational isometries that a coordinate system could
display. Explicitly, the Killing vectors introduced earlier read

km
1̄
∂m ¼ sinð2TÞ∂T − ðP2 þ Z2Þ sinð2TÞ∂V þ cosð2TÞðP∂P þ Z∂ZÞ;

km
2̄
∂m ¼ cos2ðTÞffiffiffi

2
p ∂T −

ðP2 þ Z2Þ cosð2TÞ − 2

2
ffiffiffi
2

p ∂V −
sinð2TÞ
2

ffiffiffi
2

p ðP∂P þ Z∂ZÞ;

km
3̄
∂m ¼ −

cos2ðTÞffiffiffi
2

p ∂T þ ðP2 þ Z2Þ cosð2TÞ þ 2

2
ffiffiffi
2

p ∂V þ sinð2TÞ
2

ffiffiffi
2

p ðP∂P þ Z∂ZÞ;

km
4̄
∂m ¼ 2

ffiffiffi
2

p
sin2ðTÞ∂T þ

ffiffiffi
2

p
ðP2 þ Z2Þ cosð2TÞ∂V þ

ffiffiffi
2

p
sinð2TÞðP∂P þ Z∂ZÞ;

km
5̄
∂m ¼ ∂Θ: ð2:22Þ

Note that ðkm
2̄
þkm

3̄
Þ∂m¼ ffiffiffi

2
p

∂V and ð2km
2̄
− 2km

3̄
þ km

4̄
Þ∂m ¼

2
ffiffiffi
2

p
∂T .

Following the above proposal, in the rest of this section,
we will prove that the coordinate system Xm ¼
ðT; V; X2; X3; ZÞ with ðX2; X3Þ ¼ ðP sinΘ; P cosΘÞ gives
rise to a geodesically complete spacetime.

1. On the generators of time translations

Before performing the full analysis of geodesic complete-
ness of the deformed spacetime, let us first identify the
possible Hamiltonians (generators of time translations)
within the isometry algebra k in (2.18). We will look for
generators of this kind that are part of the Cartan subalgebra
of k because in that case, one can find an adapted coordinate
systemwhere the generator of time translations simply shifts
one of the coordinates, which can be identified as time.
The first natural question is thus to identify all the

possible Cartan subalgebras of k, as explained in
Appendix C. Up to automorphisms, there are two possible
inequivalent choices of Cartan subalgebras, namely,

ðIÞ∶ spanfd −M01; p0 þ p1;M23g;
ðIIÞ∶ spanfp0 − p1 þ αðk0 þ k1Þ; p0 þ p1;M23g; ð2:23Þ
where we leave a possible α > 0 coefficient for later
convenience.
Identifying the possible generators of time translations is

now a very simple task. One can construct a generic linear
combination of the Cartan generators and demand that the
corresponding Killing vector k̄m has a strictly negative norm
in every region of spacetime. Notice, however, that p0 þ p1

and M23 are not timelike and, being central elements, it is
easy to remove their contribution by a spacetime-coordinate
redefinition. We can therefore simply compute the norm of

the Killing vectors associated to the two possible Cartans of
the slð2;RÞ subalgebra of k. We find

ðIÞ∶ k̄m¼km
1̄
; k̄mk̄m¼

ðP2þZ2Þð4Z4−η2sinð2TÞ2Þ
4Z6

ðIIÞ∶ k̄m¼kmð2̄Þ−k
m
ð3̄Þþ

1

2
km
4̄
; k̄mk̄m¼−

ðZ2þP2Þðη2þ4Z4Þ
2Z6

;

ð2:24Þ
where in the latter case, we took α ¼ 1=2. While other
choices of α > 0 are possible, we make this choice here to
matchwith the expression ð2kmð2Þ − 2kmð3Þ þ km

4̄
Þ∂m ¼ 2

ffiffiffi
2

p
∂T

found above for thegenerator ofT translations.Whilst in case
(I), the norm of the Killing vector is not everywhere negative
(set, e.g., T ¼ 0); in case (II), we do have a strictly timelike
Killing vector for generic values of the coordinates and of the
deformation parameter η. The relevant Cartan subalgebra is
thus that of class (II) with α ¼ 1=2. Concluding, the
coordinate T will be our preferred global time coordinate
and the Hamiltonian is16

H ¼ 1ffiffiffi
2

p
�
p0 − p1 þ 1

2
ðk0 þ k1Þ

�
: ð2:25Þ

16In the literature, in similar setups, sometimes the Hamil-
tonian is identified with d −M01 ∼ h. While this is of course
possible when considering the complexified algebra [where any
choice of Cartan can be brought to d −M01; see, e.g., (C1)], here
we insist on respecting reality conditions. Notice that the square
of d −M01 has a positive trace and thus, cannot correspond to a
timelike Killing vector. In fact, if we take for the sake of the
argument the case of group manifolds, the Killing vectors can be
identified by kma ¼ TrðTbAd−1g TaÞlb

m where lb
m is the inverse of

lm
b and dXmla

μTa ¼ g−1dg. When moving to the identity of the
group (i.e., at g ¼ 1), the norm kma kam of the Killing vector
reduces to TrðTaTaÞ. Therefore, a necessary condition for ka to
be timelike is that TrðTaTaÞ < 0.
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Interestingly, when taking the undeformed limit η → 0, the
above Hamiltonian does not reduce to something equivalent
to the BMN generator of time translations [71], because it is
possible to check that there is no inner automorphism of
SUð2; 2Þ that relates H to p0 þ k0.

2. Analysis of geodesic completeness

In this section, we will analyse whether the coordinate
system Xm ¼ ðT; V; P;Θ; ZÞ, which describes Sch2 space-
times globally, are also well-defined global coordinates for
the Jordanian deformation. This analysis is necessary
because when comparing the Sch2 metric, given in
Eq. (3.18) of [70], and the Jordanian metric, given in
(2.21), we see that the Jordanian case has an additional term
P2

4Z6 dT2, which may lead to pathologies.
There are typically two common ways to analyze

whether coordinates are global or not. First, one can try
to find the embedding in a higher dimensional spacetime17

and argue whether or not the embedding coordinates cover
the full hypersurface. Another possibility is to consider
geodesics γðtÞ, parametrized by a geodesic parameter
t ∈ R, and investigate geodesic completeness of the coor-
dinate system. We will follow the latter method. Before
doing so explicitly, let us recall the criterions concerning
geodesic (in)completeness and singular spacetimes.
A coordinate system is called geodesically complete if

all geodesics γðtÞ are defined for all values of the geodesic
parameter t ∈ R, within the ranges of coordinates that
parametrize the manifold. A spacetime is said to be geo-
desically incomplete if there exists a finite value t0 of the
geodesic parameter such that the geodesic γðt0Þ hits an
extremal value allowed by the range of spacetime coor-
dinates, and the geodesic γðtÞ cannot be extended to t > t0.
Hitting an (apparent) metric singularity would not be

considered pathological—and therefore would not classify
as geodesic incompleteness—if the geodesic “bounces
back” (i.e., if it can be continued to allowed ranges of
the spacetime coordinates at later t) or if the singularity is
reached only in the limit t → ∞.18

Rather than solving the five second-order geodesic equa-
tions for XmðtÞ, we can make use of the five residual Killing
isometries to perform a single integration and simplify the
calculations considerably. In particular, recall that for each
Killing vector field kmā , there is an independent charge,

Qā ¼ kmā Gmn
_Xn; ð2:26Þ

which is conserved along the geodesics.19 In other words,
since the full systemof geodesic equations can be rewritten as
_Qā ¼ 0 and we have as many Killing vectors as independent
coordinates, the geodesics can be analysed by studying the
system (2.26) rather than the usual geodesic equations. To
do so, it will be useful to introduce the conserved quan-
tities related to the manifest translational isometries in T, V
and Θ,20

kT ¼ ∂T∶ QT ¼−
4Z4ðZ2þP2Þþ η2ðZ2þP2Þ

4Z6
_T −

1

Z2
_V;

kV ¼ ∂V∶ QV ¼−
1

Z2
_T;

kΘ ¼ ∂Θ∶ QΘ ¼P2

Z2
_Θ: ð2:27Þ

An interesting feature now emerges when analyzing the
system (2.26): instead of five first order differential equations
forXmðtÞ, one finds that (2.26) decouples into four first order
differential equations and one algebraic relation among the
coordinates, which restricts the geodesics to a hypersurface.
We choose to decouple (2.26) as

_TðtÞ ¼ −QVZðtÞ2;
_VðtÞ ¼ QV

4
ðη2 þ 4ZðtÞ4Þ

�
1þ PðtÞ2

ZðtÞ2
�
−QTZðtÞ2;

_ΘðtÞ ¼ ZðtÞ2
PðtÞ2QΘ;

_PðtÞ ¼ ZðtÞ
PðtÞ

�
ZðtÞðQ1̄ þ sin 2TðtÞðQVðZðtÞ2 þ PðtÞ2Þ −QTÞÞ

cos 2TðtÞ − _ZðtÞ
�
; ð2:28Þ

17In the case of undeformed AdS5, this is of course R2;4, which is invariant under the conformal algebra SOð2; 4Þ. We show the
relation between the coordinate system Xm ¼ ðT; V; P;Θ; ZÞ and the AdS embedding coordinates in Appendix A.

18When at least one geodesic ends in a point p of the manifold, then p is a singularity. In this case, one should further study whether p
is a physical singularity or just a coordinate singularity. It is only in the latter case that one speaks of geodesic incompleteness. To
distinguish the nature of the singularity, one typically computes curvature scalars or tidal forces. The point p is an honest curvature
singularity when at least one of these become infinite at p. If all of them remain finite, and the geodesics appear to end at p, then the
coordinate system is considered to be incomplete. A fully general criterion about whether or not an apparent singularity is honest,
however, does not exist. Fortunately, we will not find such singularities, and therefore, we will not need to perform this analysis.

19Here, the dot refers to derivation with respect to the geodesic parameter t.
20The relation to the previously defined Noether charges is Q2̄ ¼ 1

4
ð2 ffiffiffi

2
p

QT þ 2
ffiffiffi
2

p
QV −Q4̄Þ, Q3̄ ¼ 1

4
ð−2 ffiffiffi

2
p

QT þ 2
ffiffiffi
2

p
QV þQ4̄Þ

and Q5̄ ¼ QΘ.

BORSATO, DRIEZEN, NIETO GARCÍA, and WYSS PHYS. REV. D 106, 066015 (2022)

066015-8



subjected to the algebraic relation, which we will call the “hypersurface equation”,

2QVP2ðtÞ ¼ 2QT − ð2QT −
ffiffiffi
2

p
Q4̄Þ cos 2TðtÞ − 2Q1̄ sin 2TðtÞ − 2QVZðtÞ2: ð2:29Þ

In fact, this equation defines a circle in the ðP; ZÞ plane
with a varying (but bounded) radius depending on TðtÞ, i.e.,
PðtÞ2 þ ZðtÞ2 ¼ R2ðTðtÞÞ.21 In addition, there is another
useful constant of motion along the geodesics, namely,

ϵ ¼ Gmn
_Xm _Xn; ð2:30Þ

with ϵ ¼ 0;−1, 1 for null, timelike, or spacelike paths.
Substituting the system (2.28) into (2.30) leads, in general,
to a complicated differential equation for _Z subjected to the
hypersurface equation.
Let us now analyze potential pathological regions of the

deformed background. Notice that we can completely
exclude the coordinates T, V, Θ from our analysis, as
translations in these directions are manifest isometries and,
thus, will not give rise to pathologies. From the background
fields (2.21), we see the only regions that can potentially be
pathological are Z; P ¼ f0;þ∞g, as the (inverse) space-
time metric appears to blow up there.
First, let us consider the regions Z → ∞ or P → ∞, in

which case the hypersurface equation plays an important
role in the analysis. In particular, the hypersurface bounds
the geodesic motion in Z and P, and forces both to a
maximal absolute value, jZj; jPj ≤ jRj, which is always
finite for a finite value of the conserved charges Qā and for
any finite value of t ∈ R. The only exception to this is when
the charge QV ¼ 0, for which the dependence of P and Z
drops out of (2.29) (equivalently, the radius R becomes
infinite). However, we can argue that also in this case there
is no pathology. First, for QV ¼ 0 the hypersurface equa-
tion forces TðtÞ to be a constant in t, which is consistent
with its geodesic equation _T ¼ −QVZ2. Hence, the coor-
dinate time does not evolve in the geodesic parameter.
This should therefore be an extreme spacelike path, as we
also see by analyzing the equation for _Z obtained from
(2.30). Remarkably, for QV ¼ 0, this equation in fact
greatly simplifies to _Z2ðtÞ ¼ ϵZðtÞ2 which is immediately
solved by

ZðtÞ ¼ Ae�
ffiffi
ϵ

p
t; ð2:31Þ

where A is an integration constant. Reality conditions thus
tell us that paths with QV ¼ 0 are only possible when they
are spacelike or null (the latter being trivial in that case).

The spacelike paths can in fact reach Z ¼ ∞ (as well as
Z ¼ 0, see also later), but they do so only at an infinite
value of the geodesic parameter t. We can thus conclude
that Z → ∞ is not a pathological region. Concerning the
behavior at P → ∞, one finds that taking QV ¼ 0 would
lead to paths that are not defined due to reality conditions.
Given that for generic QV , the motion in P is bounded, we
can again conclude that also the region P → ∞ is not
pathological. In fact, even though P can become very large
for small QV , the region P → ∞ will never be reached by
any geodesic in finite t.
Next, let us consider the Z → 0 region and analyze the

small Z behavior. Note that we can just focus on the system
T, P, Z (the solutions for Θ and V will be given once
solutions for T, P, Z are found). We will write ZðtÞ ¼ λẐðtÞ
and expand the equations around λ ¼ 0 up to OðλÞ, unless
stated otherwise. From the first equation in (2.28) and
(2.29), we will find that T and P are constant in t up to
linear order in λ. In particular,22

TðtÞ ¼ T0 þOðλ2Þ;
PðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðT0Þ

q
þOðλ2Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2QT − ð2QT −

ffiffiffi
2

p
Q4̄Þ cos 2T0 − 2Q1̄ sin 2T0

2QV

s

þOðλ2Þ; ð2:32Þ

with T0 the constant value of time.23 Now let us analyze the
equation for _Z obtained from (2.30) and (2.28) for small Z.
Up to subleading order in λ, where TðtÞ ¼ T0 þ λ2T ðtÞ þ
Oðλ3Þ and P2ðtÞ¼R2ðTðtÞÞ−λ2Ẑ2ðtÞþOðλ3Þ¼R2ðT0Þ þ
λ2ð∂T0

R2ðT0ÞT ðtÞ− Ẑ2ðtÞÞþOðλ3Þ, where T ðtÞ is such

that _T ðtÞ ¼ −QVZðtÞ2 and T ðt ¼ 0Þ ¼ 0, we find

ϵ ¼ 1

λ2

�
η2Q2

VR
2ðT0Þ þ _ZðtÞ2
ẐðtÞ2

�

þ
�

_ZðtÞ2
R2ðT0Þ

þ η2Q2
V∂T0

R2ðT0ÞT ðtÞ
ẐðtÞ2

�
þOðλÞ; ð2:33Þ

21There are a number of conditions that we can derive for the
values of the charges such that R2 ≥ 0, which should be
interpreted as reality conditions for Z and P. They should be
further subjected to a condition ensuring also that T is real when
T remains constant along the geodesic.

22Recall that P ∈�0;∞½.
23Note that if T0 is such that R2ðT0Þ ¼ 0, then (2.29) implies

that PðtÞ will have a linear in λ contribution, namely,

PðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ẐðtÞ2

q
λþOðλ2Þ. However, due to reality conditions,

the latter is only possible when Ẑ ¼ 0, and thus, P ¼ Oðλ2Þ.
Hence, this is consistent with (2.32) at R2ðT0Þ ¼ 0.
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which one can analyze order by order in λ. The leading term
thus gives

_ZðtÞ2 ¼ −η2Q2
VRðT0Þ2 þOðλ2Þ; ð2:34Þ

which in general would give an imaginary solution for Z,
i.e., ZðtÞ ¼ Z0 � t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−η2Q2

VRðT0Þ2
p

þOðλ2Þ. This means
that we cannot get arbitrarily close to Z ¼ 0 except if (i)
η ¼ 0 (the undeformed limit, in which case the spacetime is
geodesically complete, see also Appendix A), (ii) QV ¼ 0
(a case which we already analyzed in generality above
and where it was found that geodesics can reach Z ¼ 0 only
in an infinite amount of the geodesic time), and (iii)
R2ðT0Þ ¼ 0 [in which case P ¼ Oðλ2Þ and Ẑ ¼ 0 (see
also footnote 23) and thus, all the coordinates are constant
in t]. Finally, we must analyze consistency with the
equation for _P given in (2.28), which can be interpreted
as R _R − Z _Z ¼ P _P. From the leading solution for P
in (2.32), we know that _P ¼ Oðλ2Þ. Therefore, also
P _P ¼ Oðλ2Þ, and we can rewrite R _R − Z _Z ¼ P _P as

λ2
ẐðtÞ2ðQ1̄ þ sin 2T0ðQVR2ðT0Þ −QTÞÞ

cos 2T0

− λẐðtÞ _ZðtÞ ¼ Oðλ2Þ; ð2:35Þ
i.e., _ZðτÞ ¼ OðλÞ. This is consistent with what we have
found previously, i.e., Eq. (2.34), requiring either (i) η ¼ 0,
(ii) QV ¼ 0, or (iii) RðT0Þ2 ¼ 0. We can thus conclude that
the geodesics will never reach Z ¼ 0 by an evolution in t
and that this region is not pathological. Finally, analyzing
the region P → 0 using a similar strategy does not give us a
conclusive answer. However, this is of course only the
apparent pathology of polar coordinates: neither the metric
nor its inverse is singular for X2 ¼ X3 ¼ 0.
The arguments above prove that the coordinate system

Xm ¼ ðT; V; X2; X3; ZÞ is globally well-defined for any
value of the deformation parameter. We will however prefer
to work in terms of Xm ¼ ðT; V; P;Θ; ZÞ, in which the shift
isometry in Θ is manifest. This concludes our discussion
and, combined with the previous section, shows that the
coordinate T is our global time coordinate.

III. BMN-LIKE SOLUTION OF THE σ-MODEL

In this section, we give the derivation of a particular
pointlike string solution to the equations of motion of our
Jordanian deformation. As we will show in Sec. V, it will
lead to relatively simple quasimomenta. For us, it will be
the analog of the BMN solution valid in AdS5 × S5, and we
will call it a BMN-like solution.
For a general bosonic string configuration Xmðτ; σÞ,

recall that the equations of motion of the action Sη ¼
−

ffiffi
λ

p
4π

R
dτdσΠαβ

ð−Þ∂αX
m
∂βXnðGmn þ BmnÞ can be written in

conformal gauge as

ηαβ∂α∂βXm þ
�
ηαβΓm

nl þ
1

2
ϵαβHm

nl

�
∂αXn

∂βXl ¼ 0; ð3:1Þ

which is a generalization of the geodesic equation of a point
particle. Here, Γm

nl are the usual Christoffel symbols, and
Hmnl are the components of the torsion 3-form H ¼ dB.
Interestingly, it can be checked that these equations
evaluated for the Jordanian deformation admit a consistent
truncation on x2ðτ; σÞ ¼ x3ðτ; σÞ ¼ 0, or equivalently,
Pðτ; σÞ ¼ Θðτ; σÞ ¼ 0,24 for any value of the deformation
parameter.
Let us now consider the following σ-independent ansatz

on the coordinates:

Xm ¼ amτ þ bm; ð3:2Þ

with am and bm constant variables which will be deter-
mined upon imposing (3.1). Furthermore, we will work on
the consistent truncation Pðτ; σÞ ¼ Θðτ; σÞ ¼ 0, equiva-
lently we set aP ¼ aΘ ¼ bP ¼ bΘ ¼ 0. Since there is no
σ-dependence, this pointlike string will not couple to the
Kalb-Ramond two-form, and its equations of motion are
therefore simply the geodesic equations. Solving them for
the variables am and bm while imposing that fields are real
singles out the solution,25

aZ ¼ 0; and aV ¼ −
η2aT
4b2Z

; ð3:3Þ

while the other variables remain free. Because of the
manifest isometries in T, V, and Θ, we can however set
bT ¼ bV ¼ bΘ ¼ 0 without loss of generality. In summary,
our pointlike string solution thus evolves as

T ¼ aTτ; V ¼−
η2aT
4b2Z

τ; Z¼ bZ; P¼ 0; Θ¼ 0:

ð3:4Þ

This solution is in fact exactly the same as the one studied
for the Schrödinger Sch5 × S5 background (at least, in the
deformed AdS subsector) in [39]. The reason is that on the

24In the latter case, the limit Pðτ; σÞ → 0 on the equations of
motion (in particular, the equation of motion for Θ) should be
taken with care. First, one must set Pðτ; σÞ to a constant P to then
find that in the resulting equations of motion the limit P → 0 can
indeed be taken smoothly.

25When one does not impose the consistent truncation
Pðτ; σÞ ¼ Θðτ; σÞ ¼ 0, but still assumes the pointlike ansatz

(3.2), there is one other real solution namely aZ ¼ aP ¼ 0, aV ¼
− η2aT ðb2Zþb2PÞ

4b4Z
and aΘ ¼ aT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ 4b4Z

p
2b2Z while the other varia-

bles remain free. Carrying the analysis of this solution through
(again using the isometries to set bT ¼ bV ¼ bΘ ¼ 0), one will
find the associated quasimomenta to be quite complicated, and
we will therefore not consider this possibility further.
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consistent truncation P ¼ 0, the Jordanian metric given in
(2.11) coincides precisely with the Schrödinger metric.
Given that this solution is pointlike, the isometry charges
defined in (2.26) will coincide with the Noether charges
defined in (2.16). In terms of (2.26) and (2.27), we get

QT ¼ −aT; QV ¼ −aTb−2Z ; QΘ ¼ 0;

Q1̄ ¼ 0; Q4̄ ¼ −
ffiffiffi
2

p
aT: ð3:5Þ

Note that these charges are independent of the deformation
parameter. As a consistency check, one can furthermore
verify that the hypersurface equation (2.29) is satisfied, as it
should.
The solution we described here is further subjected to the

Virasoro constraints, which will couple the deformed AdS
with the undeformed sphere subsector. For Yang-Baxter
deformations, the Virasoro constraints, obtained by varying
the action (2.4) with respect to the world sheet metric, can
be written as [8]

STrðAαð2Þ
ð�Þ A

βð2Þ
ð�Þ Þ ¼ 0; ð3:6Þ

wherewe defined theworld sheet projectionsAα
ð�Þ ¼ Παβ

ð�ÞAβ

of the one-form A defined in (2.15). In conformal gauge, the

Virasoro constraints would read STrðAð2Þ
� Að2Þ

� Þ ¼ 0, and
parametrizing the group element as before as g ¼ gags,
we can identify an AdS and sphere contribution as

STrðAð2Þ
a�A

ð2Þ
a�Þ þ STrðAð2Þ

s�A
ð2Þ
s�Þ ¼ 0 ⇔ TrðAð2Þ

a�A
ð2Þ
a�Þ

¼ TrðAð2Þ
s�A

ð2Þ
s�Þ; ð3:7Þ

wherewe used that the supertrace is defined as the trace in the
AdS algebra while it isminus the trace in the sphere algebra,
and where Aa� and As� are the projections of A on the AdS
and sphere subalgebra, respectively. On our solution, (3.4)
the Virasoro constraints then require the following relation
between sphere and AdS variables:

�
1 −

η2

4b4Z

�
a2T ¼ −TrðAð2Þ

s�A
ð2Þ
s�Þ: ð3:8Þ

IV. MAP TO AN UNDEFORMED YET
TWISTED MODEL

Starting from this section, for simplicity, we specify our
discussion to the nonunimodular case. We therefore con-
sider a deformation generated by an R-matrix as in (2.7)
with ζ ¼ 0. We remind that this case gives rise to back-
ground fields that do not satisfy the type IIB supergravity
equations but only the “modified” supergravity equations.
This study will be however preparatory to the unimodular
case, to which we will go back in Sec. VII.

A. Review of the twist

Homogeneous Yang-Baxter deformed σ-models are
known to be on shell equivalent to undeformed yet twisted
models; see, e.g., [42,43]. This is due to the fact that it is
possible to identify the Lax connections of the two models,
while achieving a map of the equations of motion of the two
sides. In other words, there is an on shell relation between
the σ-model on the η-dependent deformed background and
the σ-model on the undeformed one, and there is a one-to-
one map of the solutions to the equations of motion of the
two sides. This map, however, implies that if we choose to
have periodic boundary conditions on the world sheet for
the deformedmodel (which may be motivated by the choice
of studying closed strings on the deformed background),
then we must generically have twisted boundary conditions
for the undeformed one. This situation is a generalization of
what happens for TsT transformations, where the twisted
boundary conditions can be derived and written explicitly
in a local and linear way [29,30]. From now on, we will use
tildes on all objects of the undeformed yet twisted model.
For example, if g ∈ G denotes the group element used to
construct the periodic Yang-Baxter model, we will use
g̃ ∈ G to denote the group element of the η-independent
twisted model. The map between the two sets of degrees of
freedom can be written as

g ¼ F g̃h; ð4:1Þ

where F ∈ F is called the “twist field” and is responsible
for translating between the two formulations. Recall that F
is the Lie group of f ¼ ImðRÞ. In these expressions, we
are also allowing for a possible gauge transformation,
implemented as a right-multiplication by h ∈ Gð0Þ. This
possibility is always present in the (super)coset case, given
the local Gð0Þ-invariance of the σ-model action. The twist
field F is fixed by demanding that the Lax connections of
the deformed and undeformed models can be identified
[see also (5.1)]. This amounts to require that the “modified
current” A� of the deformed model defined in (2.15) can be
identified with the Maurer-Cartan current J̃� ¼ g̃−1∂�g̃ of
the undeformed model, up to a possible gauge trans-
formation h, so that

A� ¼ h−1J̃�hþ h−1∂�h: ð4:2Þ

It is important to remark that the Virasoro constraints are
compatible with the on shell identification. In fact, it is easy
to see that using (4.2) the Virasoro conditions for the

deformed model written in (3.6) give STrðJ̃αð2Þð�Þ J̃
βð2Þ
ð�Þ Þ ¼ 0,

which are precisely the Virasoro conditions for the unde-
formed model. This is actually a crucial point to claim on
shell equivalence in the case of a string σ-model.
The fact that g has periodic world sheet boundary

conditions now indeed implies that g̃ is not periodic in
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σ ∈ ½0; 2π� but rather satisfies the following twisted boun-
dary conditions:

g̃ð2πÞ ¼ Wg̃ð0Þhð0Þh−1ð2πÞ; ð4:3Þ

where W ¼ F−1ð2πÞF ð0Þ is called the twist.26 Both the
twist W and the twist field F are gauge-invariant under the
right-multiplication by h. Moreover, it is clear that it is
always possible to use a compensating gauge transforma-
tion to fix h ¼ 1 in (4.1). In this sense, onlyW controls the
physically relevant twisted boundary conditions, and we
can talk about a left twist only. At the same time, we want to
include the possibility of having a nontrivial h ≠ 1 because
it may be important in certain calculations. It becomes
crucial, for example, if we want to insist on using the same
parametrization for g and g̃ in terms of coordinates.27 The
reader may worry that the need of determining h will
introduce unnecessary complications in the calculations,
but in Sec. IV D 1, we will explain how to efficiently by-
pass it and, if needed, easily derive the relevant h.
By identifying the Lax connections, it is in principle

straightforward to write down an expression for F and W
in terms of the degrees of freedom g of the deformed
model; see [42,43]. In addition to being an unnatural
expression for the twisting of the undeformed model, that
solution is however written in terms of a path-order
exponential. It is therefore plagued by nonlocalities that
make it unusable for practical purposes. In [44], this
problem was solved by rewriting the solution for W in
terms of the degrees of freedom g̃ instead. Depending on
the choice of the R-matrix, the twisted boundary conditions
may correspond to complicated nonlinear relations among
the coordinates evaluated at σ ¼ 2π and σ ¼ 0 (a fact
which is related to the non-Abelian nature of the deforma-
tion) but W itself takes a simple expression in terms of g̃
that only involves single (as opposed to nested) integrals.
Importantly, W is constant and, therefore, it is written in
terms of conserved charges of the twisted σ-models. These
do not need to be Noether charges, as they may correspond
to some hidden symmetries. We refer to [44] for a more
detailed explanation on how to construct W from a given
R-matrix, where the derivation was done for the case of the
PCM as well as that of (super)cosets on (semi)symmetric

spaces. In fact, the generalization from the former to the
latter only involves some decorations of the formulas with
certain linear combinations of projectors on the Zn-graded
subspaces of g (with n ¼ 2, 4). In particular, the derivation
of the Jordanian twist of Sec. 4.3 of [44] is still valid also in
the supercoset case, and it is therefore given by28

W ¼ exp ðQðh − qeÞÞ; ð4:4Þ

which takes values in the Lie subgroup F, and where we
have the following expressions for the conserved charges:

Q≡ log
1 − ηYþðτ; 0Þ
1 − ηYþðτ; 2πÞ

; q≡ Yhðτ; 2πÞ − Yhðτ; 0Þ
Yþðτ; 2πÞ − Yþðτ; 0Þ

;

ð4:5Þ

with Yh; Yþ projections of the Lie-algebra valued field,

Yðτ; σÞ ¼ Yhðτ; σÞTh þ Yþðτ; σÞTþ

¼ PT

�Z
σ

0

dσ0d̂g̃−1ð∂τg̃g̃−1Þðτ; σ0Þ

þ
Z

τ

0

dτ0d̂g̃−1ð∂σ g̃g̃−1Þðτ0; 0Þ
�
þ Yð0; 0Þ: ð4:6Þ

As anticipated, the above expression differs from the one
valid in the PCM case (which can be found in [44]) just by
the insertion of the linear operator d̂g̃−1 ¼ Adg̃d̂Ad−1g̃ , where

d̂ was defined in Sec. II A. Note that also Y is gauge
invariant under the local right-multiplication of g̃ by h. The
above formula for the Jordanian twistW will be our starting
point for the construction of the classical spectral curve of
our model, as well as for the computation of the one-loop
quantum corrections to its spectrum.

B. Manifest symmetries of the twisted model

Before continuing with the study of the Jordanian
deformation and the corresponding twisted model, it is
useful to analyze the manifest symmetries of the latter and
understand how they are related to those of the former,
which were discussed in Sec. II B. The following discus-
sion is valid for the whole family of homogeneous Yang-
Baxter deformations, so we do not need to specify to the
Jordanian case. We give the presentation for the supercoset,
but the same considerations can be made already in the
simpler PCM setup.
Let us define

Q̂ ¼ 1

2π

Z
2π

0

dσĴ τ; ð4:7Þ

26Notice that although g; g̃; h;F depend on both world sheet
coordinates τ and σ, when writing the boundary conditions, we
will omit the explicit τ dependence and write down only the
values that σ takes, to have a lighter notation.

27For example, as we will do later, this happens if we para-
metrize g as in (2.10) in terms of coordinates fx0; x1; ρ; θ; zg and
g̃ in the same way but with coordinates fx̃0; x̃1; ρ̃; θ̃; z̃g [or
equivalently in terms of the corresponding global coordinates
under the transformation (2.20)]. In this case, the on shell
identification condition requires h ≠ 1. A gauge transformation
can be used to reabsorb h in g or g̃, but that would imply that the
parametrization of the coset representative would not be given
anymore by (2.10).

28Compared to [44], here we use the notation Q ¼ logQA and
q ¼ QB.
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where29

Ĵ α ¼ Adg̃

�
J̃ð2Þα −

1

2
γαβϵ

βγðJ̃ð1Þγ − J̃ð3Þγ Þ
�
: ð4:8Þ

In the undeformed and periodic (i.e., W ¼ 1) supercoset
σ-model, (4.7) are the conserved Noether charges and (4.8)
the Noether currents corresponding to the (left) G invari-
ance of the action [68]. In fact, the Noether chargesQ of the
deformed model defined in (2.16) agree with Q̂ in the limit
η → 0. In the twisted case (W ≠ 1), Q̂ in (4.7) is not
necessarily a conserved charge. In fact, although the
Noether current is still conserved (∂αĴ

α ¼ 0) simply as
a consequence of the equations of motion, the twisted
boundary conditions may in general break the constancy in
time of Q̂, since

∂τQ̂ ¼ 1

2π

Z
2π

0

dσ ∂τĴ τ ¼
1

2π

Z
2π

0

dσ∂σĴ σ

¼ ðAdW − 1ÞðĴ σÞjσ¼0; ð4:9Þ

where (4.3) was used. In particular, if we consider the pro-
jection of Q̂ along a given generator TA ∈ g as Q̂A ¼
STrðQ̂TAÞ, we have ∂τQ̂A¼STr½ðĴ σÞjσ¼0ðW−1TAW−TAÞ�.
It is now clear that if some TÃ ⊂ TA commutes with the
whole subalgebra f, then Q̂Ã is a conserved charge for the
twisted model. Note that spanðTÃÞ forms a subalgebra of g.
For the specific Jordanian deformation, we consider in this
paper, we have that the manifest bosonic symmetries are

Tã ¼ fd −M01; p0 − p1; k0 þ k1;M23g: ð4:10Þ

Importantly, if TÃ commutes with f, then it is also a
symmetry of the R-matrix and of the deformed model
because it automatically solves (2.13).30 Therefore, mani-
fest symmetries of the twisted model correspond to iso-
metries of the YB model.
It is worth stressing that the opposite is not always true:

one may have an isometry of the YB model satisfying
(2.13), which is not a manifest symmetry of the twisted
model because TA does not commute with f. In our case of a
Jordanian R-matrix, an example of this kind is given by
e ¼ ðp0 þ p1Þ= ffiffiffi

2
p

. In fact, e is a symmetry of the
R-matrix and therefore an isometry of the YB model,
but it does not commute with f, so Q̂e ¼ STrðQ̂eÞ is not a
conserved charge (in particular W−1eW ≠ e).
Notice that when TA commutes with f, the expression for

the charges of the twisted model agree with those of the
Noether charges of the deformed one, and they are related
by the on shell map (4.2). In fact, let us start from

Q ¼ 1

2π

Z
2π

0

dσJ τ; ð4:11Þ

whereJ was defined in (2.14), so thatQA ¼ STrðQTAÞ is a
conserved Noether charge of the deformed model already
defined in (2.16) if TA satisfies (2.13). Then it is straight-
forward to see that

½½TA; f�� ¼ 0 ⇒ Q̂A ¼ 1

2π

Z
2π

0

dσ STr

�
g̃

�
J̃ð2Þτ −

1

2
ðJ̃ð1Þσ − J̃ð3Þσ Þ

�
g̃−1TA

�

¼ 1

2π

Z
2π

0

dσ STr

�
F−1g

�
Að2Þ
τ −

1

2
ðAð1Þ

σ − Að3Þ
σ Þ

�
g−1FTA

�

¼ 1

2π

Z
2π

0

dσ STr

�
g

�
Að2Þ
τ −

1

2
ðAð1Þ

σ − Að3Þ
σ Þ

�
g−1FTAF−1

�

¼ 1

2π

Z
2π

0

dσ STr

�
g

�
Að2Þ
τ −

1

2
ðAð1Þ

σ − Að3Þ
σ Þ

�
g−1TA

�
¼ QA; ð4:12Þ

where we used PðiÞðJ̃Þ ¼ hPðiÞðAÞh−1 for i ≠ 0. According
to the discussion above, all manifest symmetries Q̂Ã can be
written as isometries QĀ of the deformed model, but not all
isometriesQĀ can be written as a manifest symmetry Q̂Ã, so

that schematically fQ̂Ãg ⊂ fQĀg. Because of the classical
equivalence between the two models, we expect that the
isometries of the deformed model that are not manifest
symmetries of the twisted model should correspond to a
more general family of hidden symmetries, which is always
there for integrable models.

C. A simpler twist

In general, there is not a unique way to write the twistW
that controls the boundary conditions. We should rather

29In conformal gauge, it reads Ĵ τ ¼Adg̃ðJ̃ð2Þτ − 1
2
ðJ̃ð1Þσ − J̃ð3Þσ ÞÞ.

30In fact, ½½TA; RX�� ¼ R½½TA; X�� because the left-hand-side
is obviously 0, and because using Rx ¼ − 1

2
RIJSTrðxTJÞTI

with TI ∈ f, the right-hand-side is − 1
2
RIJSTrð½TA; X�TJÞTI ¼

− 1
2
RIJSTrð½TJ;TA�XÞTI ¼ 0.
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think in terms of equivalent classes of twists. For example,
if g̃ satisfies the twisted boundary conditions (4.3), and we
define a new field g̃0 related to g̃ by the simple field
redefinition g̃0 ¼ ug̃ with u ∈ G constant, then it follows
that the new field satisfies the boundary conditions,

g̃0ð2πÞ ¼ W0g̃0ð0Þhð0Þh−1ð2πÞ; W0 ¼ uWu−1: ð4:13Þ

The fields g̃ and g̃0 are equivalent representations of the
same model in terms of different variables, so that we are
free to choose whether we want to work with g̃ or g̃0.
Therefore, we should not think of the twisted boundary
conditions as being identified by a unique expression W,
sinceW0 ¼ uWu−1 belonging to the same equivalence class
actually describes the same physics.
Notice that if W ∈ F then in general W0 belongs to

F0 ¼ uFu−1; in other words, it belongs to an adjoint orbit
ofG on F. The relation to the degrees of freedom of the YB
model now is g ¼ Fu−1g̃0h. In [44], the solution for the
twist field was constructed by fixing the initial condition
F ð0; 0Þ, and while the above field redefinition breaks this
choice, it can be restored by the compensating field
redefinition g0 ¼ ug, so that we can write

g0 ¼ F 0g̃0h; F 0 ¼ uFu−1: ð4:14Þ

Notice that in general the YB model written in terms of
these new degrees of freedom g0 will be constructed not in
terms of R but rather by the R-matrix R0 ¼ AduRAd−1u .
This is obviously a physically equivalent antisymmetric
solution of the CYBE.31 It is worth remarking that the Lax
connections constructed out of g̃ and g̃0 are equal because u
is assumed to be constant, and therefore, also the two
corresponding monodromy matrices (and not just their
eigenvalues) are equal to each other.
We now want to exploit the above possibility to define a

new twist W0 for the Jordanian deformation, that has the
advantage of having a simpler expression compared to W.
We start from (4.4), and we rewrite it in a “factorized” form
by using the following identities coming from the Baker-
Campbell-Hausdorff (BCH) formula:

expðAÞ expðBÞ ¼ exp

�
Aþ s

1 − e−s
B

�
; and

expðAÞ expðBÞ expð−AÞ ¼ exp ðesBÞ;
ð4:15Þ

which hold when ½A; B� ¼ sB for s ≠ 2πin. First, we
parametrize W in (4.4) as

W ¼ exp

�
Aþ s0

1 − e−s
0 B0

�
; ð4:16Þ

where we have to identify

A ¼ Qh; B0 ¼ qðe−Q − 1Þe; s0 ¼ Q; ð4:17Þ

which is consistent with ½h; e� ¼ e. Now, using the above
identities, we can write

exp
�
Aþ s0

1 − e−s
0 B0

�
¼ expðs0B0Þ expðAÞ

¼ expððes − 1ÞBÞ expðAÞ
¼ expð−BÞ expðesBÞ expðAÞ
¼ expð−BÞ expðAÞ expðBÞ; ð4:18Þ

where we defined B≡ es
0
B0=ðes − 1Þ. For consistency with

½A;B� ¼ sB, we must have s ¼ s0.32 Notice that in our case
we simply have B ¼ −qe. To conclude, the twist can be
written as

W¼ u−1W0u; whereW0 ¼ expðQhÞ; and u¼ expð−qeÞ:
ð4:19Þ

This is remarkable, because the new twist is identified by
the Lie algebra element h only, and all information
regarding e is lost in the g̃0-model. The above arguments
also imply that the spectrum of both the g̃- and the
g̃0-models do not depend on the charge q, at least at the
classical and one-loop level. Naively, the charge q controls
the boundary conditions of the twisted model, but as we
just showed, this dependence can be removed by a simple
field redefinition. In the next section, we will see this
independence of the spectrum on q more explicitly. Notice
that in the derivation of factorizing the twist, there is a
subtlety whenQ → 0, because then some formulas diverge.
We will come back to this point in Sec. VII, where we
will discuss the factorization of the twist in a more gen-
eral setup that encompasses also the case of unimodular
deformations.

D. Classical solution in the twisted model

1. Map from the classical solution of the deformed model

In this section, we return to our discussion of the
particular pointlike solution (3.4) of the Jordanian
deformed model and show how it can be mapped to a
twisted solution of undeformed AdS5. This means that we
need to apply the reverse logic of [44] and derive the twist

31While the above considerations are valid for a generic u ∈ G,
if u is also a symmetry of R then R0 ¼ R, and both F 0 andW0 are
still elements of the unprimed F subgroup; see also [44]. It turns
out that the u that we are about to consider is of this type.

32In fact, as soon as we have ½A; B� ¼ sB, and we define
B0 ¼ αB (for any nonvanishing α) while requiring that
½A; B0� ¼ s0B0, it is then obvious that we must have s0 ¼ s.
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field F starting from the deformed variables. As we
mentioned in IVA, its expression is then in general a
complicated path-ordered exponential, but on our specific
simple solution (3.4), it can however be evaluated explic-
itly. In this case, the easiest way to obtain F is actually to
work with the associated differential system, namely,

∂�F ¼ V�F ; V� ¼ �ηRAdgd̂A�; ð4:20Þ

which is obtained from identifying the Lax connections
of the two models. When using the initial condition
F ð0; 0Þ ¼ 1, we have F ∈ F, and thus in full generality,
we can write

F ¼ exp ðfhðτ; σÞhþ feðτ; σÞeÞ: ð4:21Þ

Solving the differential Eqs. (4.20) on the solution (3.4) is
then rather straightforward, and after imposingF ð0;0Þ ¼ 1,
we obtain

fhðτ; σÞ ¼
ηaTσ
b2Z

; feðτ; σÞ ¼
η3a2Tτσ

4
�
1 − e

ηaT σ

b2
Z

�
b4Z

: ð4:22Þ

Note that the twist fieldF reduces to the identity element in
the undeformed η → 0 limit, as it should.
Given the solution for F , the transformation to the

undeformed variables is done in principle by employing
the map g ¼ F g̃h, although this may be complicated by
possible gauge transformations. In fact, in our case, if we
insist on parametrizing both g and g̃ in the same way, then
we cannot relate the two models if h ¼ 1. Guessing the
appropriate gauge transformation is not straightforward,
if not unsatisfactory, and thus the translation between
deformed and twisted variables begs a gauge-invariant
procedure in the case of (super)coset models. To do this,
we introduce the gauge-invariant objects,

G ¼ gKgt; G̃ ¼ g̃Kg̃t; ð4:23Þ

where t denotes usual matrix transposition and K satisfies
hKht ¼ K for h ∈ SOð1; 4Þ (see, e.g., Sec. 1.5.2 of [68]).33
Then indeed G and G̃ are invariant under the local right-
multiplications g → gh and g̃ → g̃h, respectively. Using
these objects, the map g ¼ F g̃h can then be rewritten in the
following gauge-invariant way:

G ¼ F G̃F t; ð4:25Þ

and also the twisted boundary conditions (4.3) can be
rewritten as

G̃ð2πÞ ¼ WG̃ð0ÞWt: ð4:26Þ

None of these formulae now suffer from any possible
complications arising from gauge ambiguities.
Using (4.25), it is now very easy to translate to the

undeformed variables. We find, for g̃ parametrized in terms
of the global coordinates, that (3.4) is mapped to

T̃ ¼ aTτ; Ṽ ¼ 0; Z̃¼ exp

�
−
ηaTσ
2b2Z

�
bZ; P̃¼ 0;

ð4:27Þ

while Θ̃ remains free. The latter is however only a
redundancy of the chosen parametrization, and we may
set Θ̃ ¼ 0 without loss of generality. Having already
determined g; g̃;F , the unknown gauge transformation h
can now be simply derived as h ¼ g̃−1F−1g. Furthermore,
knowing F , we can also obtain the twist W of the
solution, i.e.,

W ¼ F−1ð2πÞF ð0Þ ¼ exp

�
−
2πηaT
b2Z

h
�
: ð4:28Þ

Consequently, we can identify the Jordanian chargesQ and
q from (4.4) giving precisely

Q ¼ −
2πηaT
b2Z

; q ¼ 0: ð4:29Þ

Thus, for this particular classical solution, there is no need
to simplify the twist following Sec. IV C, because q is
already zero. Translating the twisted boundary conditions
for g̃ in terms of explicit expressions for the associated
coordinates, we see that all of them are periodic except Z̃,
which satisfies Z̃ð2πÞ ¼ expðQ=2ÞZ̃ð0Þ.
There are now several consistency checks of the calcu-

lations just performed. First, one can verify that (4.26)
holds, while the twisted boundary conditions for g̃ have a
nontrivial gauge transformation h in their expression.
Secondly, knowing the solution g̃, one can calculate the
gauge-invariant object Y defined in (4.6). We find

Yhðτ;σÞ ¼−
ηaTτ
4b2Z

; Yþðτ;σÞ ¼ η−1
�
1− exp

�
ηaTσ
b2Z

��
;

ð4:30Þ

which satisfies Yð0; 0Þ ¼ 0, consistent with F ð0; 0Þ ¼ 1.
Comparing now the Jordanian charges Q and q obtained
from (4.5) with the expressions (4.29) obtained directly
from the twist field, we can check that the two results agree.

33In the matrix realization of suð2; 2j4Þ that is typically used
(see, e.g., [68]), one takes

K ¼
�
J2 0

0 J2

�
; J2 ¼

�
0 −1
1 0

�
: ð4:24Þ
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At last, one can verify that (4.27) is a solution to the
equations of motion of the undeformed σ-model.

2. More general classical solutions
of the twisted model

We now want to explore the question of finding more
general solutions of the undeformed twisted model.
Although the boundary conditions will depend on the
deformation parameter η, the equations of motion will
not, and thus, one may hope to find more solutions than
(4.27). To maintain some level of simplicity, however,
we will continue to work on the consistent truncation
P̃ðτ; σÞ ¼ Θ̃ðτ; σÞ ¼ 0 and assume that the global coordi-
nate time T̃ evolves linearly with the world sheet time τ,
i.e., as before T̃ðτ; σÞ ¼ aTτ.
On these assumptions, let us first determine the most

general solution to the twisted boundary conditions (4.26)
for the Jordanian twist W (4.4) in terms of the coordinates
Z̃ðτ; σÞ and Ṽðτ; σÞ. It is not difficult to show that in general
they must satisfy

Z̃ðτ; 2πÞ ¼ expðQ=2ÞZ̃ðτ; 0Þ;
Ṽðτ; 2πÞ ¼ expðQÞṼðτ; 0Þ þ ð1 − expðQÞÞq: ð4:31Þ

As before, one will have, however, g̃ð2πÞ ≠ Wg̃ð0Þ imply-
ing that the group element used to construct the Lax
connection of the twisted model must be dressed with a
gauge transformation.
Next, we compute the equations of motion of the

undeformed model and find that they reduce to the
following three differential equations:

0 ¼ ∂τZ̃; ð4:32Þ

0 ¼ 2aT∂τṼ − ð∂σZ̃Þ2 þ Z̃∂2σZ̃; ð4:33Þ

0 ¼ 2∂σṼ∂σZ̃ − Z̃∂2σṼ: ð4:34Þ

From (4.32) and (4.33), we find that Ṽ must be linear in τ as
Ṽ ¼ 1

2aT
Ṽ1τ þ Ṽ0 with

Ṽ1 ≡ ð∂σZ̃Þ2 − Z̃∂2σZ̃; ð4:35Þ

and Ṽ0 ≡ Ṽ0ðσÞ an unknown function of σ. Now (4.34)
holds two equations, one atOðτ0Þ and one atOðτÞ, namely,

−2∂σṼ0∂σZ̃ þ Z̃∂2σṼ0 ¼ 0; and

−2∂σṼ1∂σZ̃ þ Z̃∂2σṼ1 ¼ 0; ð4:36Þ

respectively. They can be rewritten as

2∂σ log Z̃ ¼ ∂σ log Ṽ 0
0 ¼ ∂σ log Ṽ 0

1; ð4:37Þ

where the prime denotes derivation to σ, Ṽ 0
0 ≡ ∂σṼ0 and

Ṽ 0
1 ≡ ∂σṼ1. Since all the objects involved only depend on

σ, we can perform one integration to find

Ṽ 0
0 ¼ c0Z̃2; Ṽ 0

1 ¼ c1Z̃2; ð4:38Þ

where c0 and c1 are integration constants. Only the latter
equation of (4.38) is now a differential equation for Z̃, and
once we obtain its solution, the solution for Ṽ0 (and
consequently of Ṽ) is obtained immediately by performing
a straightforward integration of the first equation of (4.38).
First, note that we can rewrite the expression for Ṽ 0

1 as

Ṽ 0
1 ¼ Z̃0Z̃00 − Z̃Z̃000 ¼ −Z̃2

�
Z̃00

Z̃

�0
: ð4:39Þ

Then the second equation of (4.38) becomes
ðZ̃00Z̃−1Þ0 ¼ −c1, which means we can do another simple
integration to find

Z̃00 þ ðc1σ þ c2ÞZ̃ ¼ 0; ð4:40Þ

with c2 another integration constant. Here the experienced
reader may recognize the Airy (or Stokes) differential
equation that has as linearly independent solutions the
Airy functions AiðxÞ and BiðxÞ. Concluding, within our
assumptions given in the beginning of this section, the
most general solution for the variable Z̃ of the undeformed
model is

Z̃ðτ;σÞ¼ αAi

�
−
c1σþc2
ð−c1Þ2=3

�
þβBi

�
−
c1σþc2
ð−c1Þ2=3

�
; ð4:41Þ

before imposing any boundary condition. These are oscil-
latory functions that at a certain turning point become
exponential. In principle, we can now also write down an
explicit solution for Ṽ, as mentioned before; however we
will refrain from doing so because it is not particularly
enlightening. Nevertheless, note that, because of the addi-
tional integration performed to obtain Ṽ0, the system has
one additional integration constant (say c3). Before impos-
ing boundary conditions, the full solution thus has in total 7
free parameters, namely aT, c0, c1, c2, c3, α, and β.
Imposing the twisted boundary conditions (4.31) gives

three equations for Z̃; Ṽ1, and Ṽ0, obtained order by order
in τ. The equation for Z̃ fixes an expression forQ while the
one for Ṽ0 fixes q. The remaining condition on Ṽ1 becomes
a constraint between the parameters,34 reducing the number
of free parameters to 6. Two further constraints between the
parameters may arise when comparing the expressions ofQ
and q with those obtained from (4.5) and (4.6), as these

34On the solution for Z̃ and Ṽ1, the constraint simply reads
Ṽ1ð2πÞZ̃ð0Þ2 ¼ Ṽ1ð0ÞZ̃ð2πÞ2.
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must of course coincide for consistency. We have not
looked into this further.
We close this section by discussing the special c1 ¼ 0

case. From (4.40), it is obvious that the most generic
solution for Z̃ then is simply,

Z̃ðσÞ ¼ α expð ffiffiffiffiffiffiffiffi
−c2

p
σÞ þ β expð− ffiffiffiffiffiffiffiffi

−c2
p

σÞ: ð4:42Þ

Depending on the sign of c2 these are exponential
or oscillatory functions. The simple solution given in
(4.27), which is the one we study in the remainder
of this paper, falls into the former class. It has α ¼ 0,
β ¼ bZ, and

ffiffiffiffiffiffiffiffi−c2
p ¼ ηaT

2b2Z
. In general, for Ṽ, we then get

Ṽ ¼ −c0
b2Z exp ð−

ηaT σ

b2
Z
Þ

ηaT
þ c3, which seems more general than

(4.27). Consistency with the boundary conditions (4.31)
however sets c0 ¼ 0 and c3 ¼ q. Here, we see explicitly
that a possible contribution from the q charge can be
eliminated by a field redefinition, which is in fact a
translational isometry in the V coordinate.

V. CLASSICAL SPECTRAL CURVE

Knowing a Lax connection that is flat on the σ-model
equations of motion allows one to apply the methods of
classical integrability. While in principle it is possible to
work from the point of view of the Yang-Baxter deformed
σ-model, we find it more convenient to work from the point
of view of the undeformed yet twisted σ-model, which is on
shell equivalent to the former. In fact, this is in analogy to
how the classical and quantum spectrum of TsT deforma-
tions is obtained; see, e.g., [30,36]. Here, we want to give a
brief summary of facts that are valid in the undeformed and
periodic case and that carry over also to the twisted one. For
more details, we refer to the original literature developed in
the periodic case; see, e.g., [47].
The Lax connection of the twisted σ-model on the

AdS5 × S5 supercoset is35

Lα ¼ J̃ð0Þα þ 1

2

�
z2 þ 1

z2

�
J̃ð2Þα −

1

2

�
z2 −

1

z2

�
γαβϵ

βγ J̃ð2Þγ

þ zJ̃ð1Þα þ 1

z
J̃ð3Þα ; ð5:1Þ

which agrees with the Lax connection of the undeformed
and periodic case [72,73] because boundary conditions
play no role in its construction. Here, J̃ðiÞ ¼ PðiÞJ̃ are
projections of the currents on the Z4-graded subspaces of
psuð2; 2j4Þ, and γαβ ¼ ffiffiffiffiffiffijhjp

hαβ. From the Lax connection,
one can construct the monodromy matrix,

Ωðz; τÞ ¼ P exp

�
−
Z

2π

0

dσ0Lσðz; τ; σ0Þ
�
; ð5:2Þ

with z ∈ C the spectral parameter. In the undeformed and
periodic case, the eigenvalues λðzÞ of Ωðz; τÞ are conserved
because Lτð2πÞ ¼ Lτð0Þ as a consequence of the periodic
boundary conditions. When considering twisted boundary
conditions as in (4.3), Lτ remains periodic as long as we
take into account the compensating gauge transforma-
tion. Therefore, the eigenvalues λðzÞ of Ωðz; τÞ are again
time independent and encode the infinite number of
conserved quantities (when expanding in powers of the
spectral parameter z), rendering the model classically
integrable. The eigenvalues depend analytically on z except
at z ¼ 0;∞ [where the poles of the Lax connection imply
essential singularities for λðzÞ] and at the points where two
(or more) eigenvalues degenerate. Instead of working with
the eigenvalues, it is simpler to work with the quasimo-
menta pðzÞ, defined as λ ¼ eip, as the essential singularities
of λ at z ¼ 0;∞ become poles. For the quasimomenta,
we use the same notation as for the undeformed and
periodic case

fp̂1ðzÞ; p̂2ðzÞ; p̂3ðzÞ; p̂4ðzÞjjp̃1ðzÞ; p̃2ðzÞ; p̃3ðzÞ; p̃4ðzÞg;
ð5:3Þ

where p̂iðzÞ with i ¼ 1;…; 4 are the quasimomenta
of the (deformed/twisted) AdS factor corresponding to
SUð2; 2Þ ⊂ PSUð2; 2j4Þ and p̃iðzÞ with i ¼ 1;…; 4 are
those of the (in this case, undeformed/untwisted) sphere
factor corresponding to SUð4Þ ⊂ PSUð2; 2j4Þ. When two
eigenvalues of the same type (i.e., both p̂ or both p̃)
degenerate, they give rise to branch points of square-root
cuts, that correspond to collective bosonic excitations.
When two eigenvalues of different type (i.e., one p̂ and
the other p̃) degenerate, they give rise to poles, that
correspond to fermionic excitations. The quasimomenta
are everywhere analytic except at these bosonic branch
points and fermionic poles, and at z ¼ 0;∞. Because of its
definition, the quasimomentum has a 2πZ ambiguity, but
this ambiguity is lost when considering dp, which can be
thought of as an Abelian differential. The spectral problem
can therefore be reformulated in terms of the classification
of the admissible algebraic curves with Abelian differential
dp. These curves can be understood as a collection of 4þ 4
sheets (one for each of the quasimomenta) connected by the
above cuts and poles. We follow the usual conventions and
employ an alternative useful parametrization of the spectral

parameter, taking z ¼
ffiffiffiffiffiffi
1þx
1−x

q
so that the points z ¼ 0;∞

correspond to x ¼ −1;þ1.
Let us continue with the list of the facts that are valid in

the undeformed and periodic AdS5 × S5 case and that
continue to be valid also in the twisted one. The Lax
connection is supertraceless, which implies that the

35In conformal gauge, this is just L�ðzÞ ¼ J̃ð0Þ� þ zJ̃ð1Þ� þ
z∓2J̃ð2Þ� þ z−1J̃ð3Þ� . The Lax connection of the Yang-Baxter
deformed model is obtained simply by replacing J̃ by A.
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superdeterminant of the monodromy matrix is 1. In turn,
this implies the “supertraceless condition,”36

X
i

p̂i ¼
X
i

p̃i: ð5:4Þ

Moreover, the Z4 automorphism of psuð2; 2j4Þ is still
implemented by sending z → iz or equivalently, x → 1=x at
the level of the Lax connection. We will call this the
“inversion symmetry”. At the level of the quasimomenta, it
implies [47]

p̂kð1=xÞ ¼−p̂k0 ðxÞ; p̃kð1=xÞ ¼−p̃k0 ðxÞþ 2πmϵk; ð5:5Þ

where k ¼ ð1; 2; 3; 4Þ and k0 ¼ ð2; 1; 4; 3Þ. Notice that this
permutation is related to the choice of charge conjugation
matrix in psuð2; 2j4Þ. For the sphere quasimomenta, the
inversion symmetry allows for a possible shift with ϵk ¼
ð1; 1;−1;−1Þ and m ∈ Z, which is related to winding
around the S5 space. For the AdS quasimomenta, this
possibility is not allowed by the requirement of absence of
winding for the time coordinate.
Combining the supertraceless condition, the inversion

symmetry, and the Virasoro constraints, one has a synchro-
nization37 of the poles of the quasimomenta at x ¼ �1 also
in the twisted case,

pðxÞ

¼ diagðαð�Þ; αð�Þ;−αð�Þ;−αð�Þjαð�Þ; αð�Þ;−αð�Þ;−αð�ÞÞ
x� 1

þOðx� 1Þ0: ð5:6Þ

The bosonic cuts and the fermionic poles must respect the
inversion symmetry, which means that in both cases, they
must come in even number. For example, we can write the
gluing condition of two quasimomenta on a cut (or more
generally on a collection of cuts) Ĉðk;lÞ or C̃ðk;lÞ as

p̂kðxþ iϵÞ − p̂lðx − iϵÞ ¼ 2πn̂ðk;lÞ; for x ∈ Ĉðk;lÞ;

p̃kðxþ iϵÞ − p̃lðx − iϵÞ ¼ 2πñðk;lÞ; for x ∈ C̃ðk;lÞ;

ð5:7Þ

and similar equations must hold for the cuts, which are the
images of Ĉðk;lÞ and C̃ðk;lÞ under x → 1=x. Similarly, if there
is a fermionic pole at x�ðk;lÞ, by inversion symmetry there

will be another pole for quasimomenta at 1=x�ðk;lÞ. Because
of this property, we can declare a “physical” region as the
one for which jxj > 1. The cuts in the physical region
(i.e., half of the cuts in the pair of cuts connected by
inversion symmetry) will be considered the “fundamental”
ones.
To conclude, let us also say that we can still define the

filling fractions for sphere cuts C̃ðk;lÞ connecting the sheets k̃
and l̃ as

K̃ðk;lÞ ¼ −
ffiffiffi
λ

p

8π2i

I
dx

�
1 −

1

x2

�
p̃k ¼

ffiffiffi
λ

p

8π2i

I �
xþ 1

x

�
dp̃k

¼ −
ffiffiffi
λ

p

8π2i

I �
xþ 1

x

�
dp̃l; ð5:8Þ

where the integration path is defined by a closed loop that
encircles the fundamental cut C̃ðk;lÞ. Similarly, we define the

filling fractions for AdS cuts Ĉðk;lÞ connecting the sheets k̂

and l̂ as

K̂ðk;lÞ ¼ −
ffiffiffi
λ

p

8π2i

I
dx

�
1 −

1

x2

�
p̂l ¼

ffiffiffi
λ

p

8π2i

I �
xþ 1

x

�
dp̂l

¼ −
ffiffiffi
λ

p

8π2i

I �
xþ 1

x

�
dp̂k:; ð5:9Þ

where the integration path is defined by a closed loop that
encircles the fundamental cut Ĉðk;lÞ. In the periodic case,
these filling fractions are identified as the action variables
of the integrable model [48], and they are taken to be
quantized as integers in a semiclassical treatment [47]. In
the twisted case, we can do the same, because the
identification of the definition of the filling fractions comes
from the position of the poles of the Lax connection, and
these are still at x ¼ �1. The filling fractions can also be
written in terms of the so-called twist function [74], and this
is invariant under an homogeneous Yang-Baxter deforma-
tion [42].
In the periodic case, the expansion of the monodromy

matrix around z ¼ 1 (or equivalently, x ¼ ∞) yields (at the
lowest nontrivial order) the conserved Noether charges
coming from the psuð2; 2j4Þ superisometry. In the twisted
case, this picture is modified by the presence of W. In fact,

36In principle, one can modify the above equation by adding a
shift by 2πn with n ∈ Z. This can be removed by the freedom
of shifting the quasimomenta by any integer multiple of 2π. In
the periodic case, one can use this freedom so that at large x the
quasimomenta go like pðxÞ ∼Oð1=xÞ. In the twisted case, the
twist can introduce additional finite terms in the strict x → ∞
limit. However, Eq. (5.4) remains valid because these finite shifts
cancel each other in the above equation, as a consequence of
detW ¼ 1.

37When we later study one-loop corrections, we will
slightly relax this synchronization of the poles to pðxÞ∼
diagðαð�Þ ;αð�Þ;βð�Þ;βð�Þjαð�Þ;αð�Þ;βð�Þ;βð�ÞÞ

x�1
þOðx� 1Þ0, because in that

case, one should consider also fermionic contributions and the
tracelessness condition of suð2; 2Þ and suð4Þ of the purely
bosonic classical case is no longer enforced.
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after considering a gauge transformed Lax connection
L0
σ ¼ g̃Lσ g̃−1 − ∂σ g̃g̃−1, one finds38

g̃ð0ÞΩðzÞg̃ð0Þ−1 ¼ W−1P exp

�
−
Z

2π

0

dσL0
σ

�
; ð5:10Þ

which, when writing z ¼ 1þ ϵ, leads to

g̃ð0ÞΩðz ¼ 1þ ϵÞg̃ð0Þ−1 ¼ W−1 þ 4πϵW−1Q̂þOðϵ2Þ;
ð5:11Þ

where Q̂was defined in (4.7). In the periodic case (W ¼ 1),
Q̂ is the Lie-algebra valued conserved Noether charge, and
one can use a PSUð2; 2j4Þ automorphism to put it in the
Cartan subalgebra. After doing that, the monodromy matrix
is diagonal at least to order ϵ, and the eigenvalues are
therefore written in terms of the Cartan charges. In the
twisted case, the monodromy matrix is nontrivial already at
order zero in the ϵ-expansion, and the quasimomenta will
depend also on the eigenvalues of W. Generically, Q̂ on its
ownwill not be conserved in the twisted case. As wewill see
in the next section, when computing the eigenvalues of the
above expansion they are not necessarily written in terms of
the standard Cartan charges of psuð2; 2j4Þ: there is a
“polarization” induced by the presence ofW, so that instead
the quasimomenta are written in terms of the conserved
Cartan charges of the algebra of symmetries of the twisted
model (which we discussed in Sec. IV B). The symmetries
of the twisted model form a subalgebra of psuð2; 2j4Þ, and
the corresponding choice of Cartan subalgebra may not be
equivalent to the one of the periodic case. We will now be
more explicit about the computation of the eigenvalues of
the monodromy matrix around z ¼ 1.
Let us emphasize the great advantage of making the

above discussion from the point of view of the twisted
rather than deformed model. In the latter case, the expan-
sion of the monodromy matrix around z ¼ 1 would give
rise to complicated nonlocal expressions that would be very
hard to work with.

A. Asymptotics of the quasimomenta

To obtain the expression for the quasimomenta around
z ¼ 1, we must compute the eigenvalues of the expression
(5.11). Since the Jordanian twist W given in (4.4) is
diagonalizable, we can restrict our discussion to diago-
nalizable matrices. The explanation that we are about to
give is actually valid for a generic diagonalizable twist.
The diagonalization of (5.11) to order ϵ follows the same

route as the diagonalization of a Hamiltonian in perturba-
tion theory of quantum mechanics. Let us rephrase that

procedure in a different language. First, consider the
diagonalization of W−1 as D ¼ S−1W−1S. To be as general
as possible, we allow eigenvalues to be degenerate

D ¼ diagðd1;…; d1; d2;…; d2;…Þ; ð5:12Þ
where the eigenvalue di comes with multiplicity mi. We
will introduce projectors P½i� ¼ diagð0; 0;…; 0; 1; 1;…;
1; 0; 0;…; 0Þ that have only mi entries with value 1 in
correspondence with the eigenvalues di, and 0 otherwise.
Note that P½i�D ¼ DP½i� ¼ diP½i�. We can then write for
Ω0ðzÞ ¼ g̃ð0ÞΩðzÞg̃ð0Þ−1,
Ω0ðz ¼ 1þ ϵÞ ¼ SðDþ ϵXÞS−1 þOðϵ2Þ;

X ≡ 4πDS−1Q̂S: ð5:13Þ
From simple reasoning in linear algebra, we know that to
compute the ϵ correction to the eigenvalues of D, we must
first project

X½i� ≡ P½i�XP½i�; ð5:14Þ
and then compute the eigenvalues of X½i�. If there is a block
corresponding to eigenvalues all of which have multiplicity
1, then the above is equivalent to projecting on this
nondegenerate block, and the diagonal part of this block
will give the correction to the eigenvalues.
With this procedure, it is easy to compute the expansion

of the eigenvalues. In our case, we find in the AdS sector,

d1 ¼ 1þ 2πϵð−C1 − C3Þ þOðϵ2Þ;
d2 ¼ eþQ=2ð1þ 2πϵðC1 − C2ÞÞ þOðϵ2Þ;
d3 ¼ e−Q=2ð1þ 2πϵðC1 þ C2ÞÞ þOðϵ2Þ;
d4 ¼ 1þ 2πϵð−C1 þ C3Þ þOðϵ2Þ; ð5:15Þ

where

C1 ¼ iQ̂½M23�;

C2 ¼ Q̂½dþM01� −
ffiffiffi
2

p
qQ̂½p0þp1�;

C3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ̂½d−M01�Þ2 þ Q̂½−p0þp1�Q̂½k0þk1�

q
; ð5:16Þ

and Q̂i ¼ STrðQ̂TiÞ. The explicit expression for q given
in (4.5) can be written precisely as q ¼ Q̂h=Q̂e ¼
Q̂½dþM01�=ð

ffiffiffi
2

p
Q̂½p0þp1�Þ, which implies C2 ¼ 0. This fact

is very important. It means that the only components of Q̂
that contribute to the eigenvalues of the monodromy matrix
are those which correspond to the symmetries of the twisted
model; see (4.10). In fact, we managed to get rid of both
dþM01 and p0 þ p1, which do not have this property. We
remind that all of the symmetries of the twisted model are
also isometries of the YB model, and in terms of the
isometric chargesQā ¼ STrðTāQÞwithQ defined in (4.11)
and the isometric generators Tā in (2.18), we can write

38For simplicity, we are writing these formulas in the case that
the twisted boundary conditions are just g̃ð2πÞ ¼ Wg̃ð0Þ; i.e.,
h ¼ 1 in (4.3). If h ≠ 1, one simply has to use a gauge trans-
formation by g̃h rather than just g̃, and the right-hand-side of
(5.11) is still given by the same expression.
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C1 ¼ iQ5̄; C3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ1̄Þ2 þ ð−Q2̄ þQ3̄ÞQ4̄

q
: ð5:17Þ

Again, the combination Q2̄ þQ3̄ does not appear: it would
be an isometry of the deformed model, but it is not a
symmetry of the twisted model.
The appearance of a square root is archetypal in the

computations of eigenvalues, and in fact, it appears also in
the undeformed periodic case. It is, however, an awkward
feature for practical computations, especially when com-
puting semiclassical corrections to the conserved charges
of the model. Nevertheless, as in the periodic case, see,
e.g., [46], one can use an automorphism to get rid of the
square root and in fact, transform the expressions to ones
which only involve Cartans of the symmetry algebra. First,
as done in Appendix C, we identify h ¼ 1

2
ðd −M01Þ; eþ ¼

1
2
ðp0 − p1Þ; e− ¼ − 1

2
ðk0 þ k1Þ, which close into a

slð2;RÞ subalgebra of the algebra of isometries k. We
can construct dual generators h⋆ ¼ 1

2
h; e� ¼ e∓ spanning

a dual slð2;RÞ algebra. We can then construct Qslð2;RÞ ¼
Qhh⋆þQþeþþQ−e−¼ðQ1̄h

⋆þðQ2̄−Q3̄Þeþ−Q4̄e
−Þ=2.

It is easy to check that 2STr½ðQslð2;RÞÞ2� ¼ ðQ1̄Þ2þ
ð−Q2̄ þQ3̄ÞQ4̄, and thus,

C3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2STr½ðQslð2;RÞÞ2�

q
: ð5:18Þ

Now recall that the generator of global time translations
is (2.25), which we can write as H ¼ 1ffiffi

2
p ð2eþ − e−Þ.

The global energy is thus E ¼ STrðQslð2;RÞHÞ ¼
1ffiffi
2

p ðQ2̄ −Q3̄ þ 1
2
Q4̄Þ. The other generators in slð2;RÞ

can then be rotated such that they close into an soð2; 1Þ ∼
slð2;RÞ algebra. Indeed, define TE ≡ H=2, TP ≡ ðeþ þ
e−=2Þ=

ffiffiffi
2

p
then, TJ ≡ h ½TJ;TE� ¼ TP, ½TJ;TP� ¼ TE and

½TE;TP� ¼ TJ hold.39 We can now define the dual genera-
tor H⋆ of global time translations as STrðH⋆TPÞ ¼
STrðH⋆TJÞ ¼ 0 and STrðH⋆HÞ ¼ 1, which fixes

H⋆ ¼ −
eþffiffiffi
2

p þ e−
2

ffiffiffi
2

p ¼ −
T2̄ − T3̄

2
ffiffiffi
2

p −
T4̄

4
ffiffiffi
2

p : ð5:19Þ

At this point, we use the classification of adjoint orbits in
slð2;RÞ (see, e.g., Appendix C). Depending on the algebra
element, the adjoint action may bring it to something
proportional to h;eþ or eþ − e−. When discussing the
classical spectral curve, we always assume that we are
considering classical solutions that correspond to highest
weight states belonging to the same orbit as the generator of
time translations H. In other words, we assume that by an
inner automorphism, we can transform Qslð2;RÞ to the form

Qslð2;RÞ ¼ EH⋆. In that case, one has STr½ðQslð2;RÞÞ2� ¼
−E2=2 such that we simply get

C3 ¼ iE: ð5:20Þ
The AdS quasimomenta in the x variable now simply

expand as

p̂1 ∼ −
2πðQΘ þ EÞ

x
þOðx−2Þ;

p̂2 ∼ −
i
2
Qþ 2πQΘ

x
þOðx−2Þ;

p̂3 ∼þ i
2
Qþ 2πQΘ

x
þOðx−2Þ;

p̂4 ∼
2πð−QΘ þ EÞ

x
þOðx−2Þ; ð5:21Þ

where we defined QΘ ≡Q5̄, since it is the angular
momentum charge related to rotations by the angle Θ.
Notice that the asymptotics of the AdS quasimomenta
depend only on three conserved charges, namely the energy
E and the angular momentumQΘ atOðx−1Þ, and the charge
Q at order Oðx0Þ, which controls the twisted boundary
conditions. This situation should be compared to the three
charges (energy and two spins) that appear in the asymp-
totics of the quasimomenta in the periodic case at Oðx−1Þ.

B. Classical algebraic curve
for the BMN-like solution

Let us now consider a specific classical solution and derive
the corresponding quasimomenta. We will do this for the
BMN-like solution that we have constructed. We can
compute the quasimomenta using either the deformed or
undeformed description. On the one hand, in the deformed
picture [when the solution is given by (3.4)], the Lax
connection is clearly σ-independent, so that the path-ordered
exponential in the definition of the monodromy matrix
reduces to a simple matrix exponential of Lσ . On the other
hand, in the twisted picture [when the solution is given by
(4.27)], the solution depends on σ, making the computation
potentially more involved. However, this dependence can be
eliminated via a gauge transformation and leads to the same
result. This is in fact not surprising, since the two models
share the same Lax connection, so that the computation is
bound to be the same. Given that we can ignore the path-
ordering in the exponential, to obtain the quasimomenta, we
can then simply compute the eigenvalues of Lσ itself. In
terms of the spectral parameter x, we find

p̂1ðxÞ ¼ −p̂4ðxÞ ¼
2πaT

ffiffiffiffiffiffiffiffiffiffi
x2−β2
ðx−1Þ2

q
ðxþ 1Þ ;

p̂2ðxÞ ¼ −p̂3ðxÞ ¼
2πaTx

ffiffiffiffiffiffiffiffiffiffiffi
1−β2x2
ðx−1Þ2

q
ðxþ 1Þ ; ð5:22Þ

39This is the algebra of AdS2, or the Lorentz algebra in three
dimensions. Hence, TP can be interpreted as a momentum
generator, and TJ as a boost.
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where we defined β≡ η
2b2Z

, and we remind that aT and bZ are

parameters that enter the classical solution; see, e.g., (3.4). In
the vanishing deformation limit, which now corresponds to
the β → 0 limit, they reduce to the meromorphic quasimo-
menta associated to the BMN solution of undeformed
AdS5 × S5 [51], and in that sense, the solution (3.4)
[equivalently (4.27)] is a “BMN-like” solution. The defor-
mation, however, introduces a cut between sheet 1̂ and 4̂ and
a cut between sheet 2̂ and 3̂. Note that the inversion symmetry
(5.5) is satisfied. For later convenience, let us write the
quasimomenta in the physical region jxj > 1,

p̂1ðxÞ ¼ −p̂4ðxÞ ¼
2πaT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − β2

p
x2 − 1

;

p̂2ðxÞ ¼ −p̂3ðxÞ ¼
2πaTx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2β2

p
x2 − 1

: ð5:23Þ

Matching these explicit expressions with the general asymp-
totics of the quasimomenta (5.21) gives us the following
expressions of the charges involved:

QΘ ¼ 0; E ¼ QT ¼ −aT; Q ¼ −4πaTβ; ð5:24Þ

with matches with (3.5) and (4.29).
In addition to the kinematics in the deformed AdS5 space,

wewill take our solution to have nontrivial kinematics in the
S5 space as well. Specifically, we consider a pointlike string
traveling with constant velocity around a big circle of S5,
ϕ ¼ ωτ. Here, ω is proportional to the conserved charge
associated to an angular momentum on S5. As the S5 part of
our space is not deformed, we can borrow the quasimomenta
from the usual BMN solution [51],

p̃1 ¼ p̃2 ¼ −p̃3 ¼ −p̃4 ¼
2πωx
x2 − 1

: ð5:25Þ

In the solution that we are considering, the Virasoro
condition (3.8) reads

ω ¼ aT

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
: ð5:26Þ

This implies that if want both ω and aT to be real, we must
have jβj ≤ 1. Notice that, as we commented above, the
Virasoro constraint can be reinterpreted as a synchroniza-
tion condition on the poles of the quasimomenta at x ¼ �1.

VI. QUANTUM CORRECTIONS
TO THE BMN-LIKE SOLUTION

In this section, we study the quantum corrections to the
quasimomenta related to our specific BMN-like solution.
Specifically, we apply the recipe presented in [51,55] to
compute the one-loop correction to its energy. Despite the
fact that those articles originally present this technique for

undeformed AdS5 × S5, it has been successfully applied
also to deformed backgrounds, such as the flux-deformed
AdS3 × S3 [57–59] or the Schrödinger background [60].

A. Corrections to the classical quasimomenta

Although we are not working on undeformed
AdS5 × S5, most of the road map to construct quantum
fluctuations described in [51,55] applies to our deformed
background. The main idea behind this computation is to
introduce (quantum) excitations in the form of cuts so small
that we can treat them as poles. As in the macroscopic case,
if the microscopic excitation we are adding connects two
sheets associated to hatted quasimomenta or two sheets
associated to a tilded quasimomenta, the excitation is
bosonic. If the excitation we are adding connects a tilded
quasimomenta with a hatted quasimomenta, the excitation
is fermionic.
These new cuts will modify the quasimomenta we

computed in the previous section, but the properties that
they must fulfil are restrictive enough to fully constrain how
they are altered. The starting point is the fact that the
corrections to the quasimomenta cannot alter the gluing
condition on a cut (5.7), that is

ðpk þ δpkÞðxþ iϵÞ − ðpl þ δplÞðx − iϵÞ ¼ 2πnðk;lÞ;

for x ∈ Ĉðk;lÞ or x ∈ C̃ðk;lÞ: ð6:1Þ

This condition is true for the macroscopic cuts associated to
the classical solution, which imposes the following con-
dition on the perturbations:

δpkðxþ iϵÞ− δplðx− iϵÞ ¼ 0; for x∈ Ĉðk;lÞ or x∈ C̃ðk;lÞ:

ð6:2Þ

A similar condition is imposed for themicroscopic cuts that
we are introducing to compute the quantum corrections,
and this fixes the positions, xkln , where these cuts can be
placed by

pkðxkln Þ − plðxkln Þ ¼ 2πn; ð6:3Þ

where the mode number n takes integer values. Notice that,
due to inversion symmetry (5.5), we only focus on
solutions with jxkln j > 1. We say that an excitation is in
the physical region if the position of the pole fulfils that
property.
Now that we know where to place the new cuts/poles, we

also need information regarding their residues at xkln . We
will not discuss the explicit expression of the residues at
this point but instead will only talk about the relative sign
between the residues in the two sheets. We will provide
more details on the residues in Appendix D. For bosonic
excitations, the poles are actually infinitesimally small
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square-root cuts connecting two sheets. This means that the
residues on the two sheets have to have opposite signs.
For fermionic excitations, the poles are actual poles, and
they have to have the same residue. This can be summa-
rized as

Resx¼xijn
p̂k ¼ ðδik̂ − δjk̂Þαðxijn ÞNij

n ;

Resx¼xijn
p̃k ¼ ðδjk̃ − δik̃Þαðxijn ÞNij

n ; ð6:4Þ

with i < j taking values 1̂, 2̂, 3̂, 4̂, 1̃, 2̃, 3̃, 4̃. Here, Nij
n

indicates the number of quantum excitations in the physical
region that connect pi with pj and have mode number n,

and αðxijn Þ is the residue of the pole associated to that
excitation. A more detailed explanation on the origin of
these signs can be found in [47].
The number of excitations Nij

n are not generically free:
they have to satisfy the level-matching condition,

X
n

n
X
all ij

Nij
n ¼ 0: ð6:5Þ

This condition can be understood from a mathematical
perspective as a consequence of the Riemann bilinear
identity [47]. Physically, because the new poles modify
the value of the filling fractions (see also footnote 40), the
Nij

n can be interpreted as the amplitudes of the physical
modes, which are related to mode numbers through
conventional string level matching.
In addition to these pieces of information, these correc-

tions have some important features that they inherit from
properties of the classical quasimomenta. Among those, the
most relevant for us are the inversion symmetry of (5.5)

δpkðxÞ ¼ −δpk0 ð1=xÞ; ð6:6Þ

and the synchronization of the poles at �1,

δpðxÞ ∼ diagðδαð�Þ; δαð�Þ; δβð�Þ; δβð�Þjδαð�Þ; δαð�Þ; δβð�Þ; δβð�ÞÞ
x� 1

þ…: ð6:7Þ

Notice that we are using the relaxed version of the
synchronization of poles as commented on in footnote 37,
because we will have to consider also fermionic excitations
when computing quantum corrections.
The final piece of information that we need to compute

the perturbations is their asymptotic behavior for large
values of x. This can be obtained by analyzing the asymp-
totic behavior of the quasimomenta (5.21). We require40

0
BBBBBBBB@

δp̂1

δp̂4

δp̃1

δp̃2

δp̃3

δp̃4

1
CCCCCCCCA

¼ 4π

x
ffiffiffi
λ

p

0
BBBBBBBB@

þ δΔ
2
þ N 1̂ 4̂ þ N 1̂ 3̂ þ N 1̂ 3̃ þ N 1̂ 4̃

− δΔ
2
− N1̂ 4̂ − N 2̂ 4̂ − N 2̃ 4̂ − N1̃ 4̂

−N 1̃ 3̃ − N 1̃ 4̃ − N1̃ 3̂ − N1̃ 4̂

−N 2̃ 3̃ − N 2̃ 4̃ − N2̃ 3̂ − N2̃ 4̂

þN 1̃ 3̃ þ N 2̃ 3̃ þ N 1̂ 3̃ þ N 2̂ 3̃

þN 1̃ 4̃ þ N 2̃ 4̃ þ N 1̂ 4̃ þ N 2̂ 4̃

1
CCCCCCCCA

þOðx−2Þ; ð6:8Þ

where δΔ is the anomalous correction of the energy and
where Nij ¼

P
n N

ij
n is the total number of poles in the

physical region connecting sheet i and j. The above formula
can be justified in the same way as in the undeformed
periodic case. In particular, one can assume that the addition
of quantum excitations produces integer shifts in the charges
that appear at order 1=x in the large-x asymptotics of the
quasimomenta (5.21), which justifies the presence of Nij.
Here, we are also assuming that only the energy is allowed to
receive anomalous corrections, and we will see that the
results will be consistent with this. Notice that abovewe have
not included the asymptotics of p̂2 and p̂3. The reason is that
the classical asymptotic behavior (5.21) suggests that their
form is nonstandard (i.e., they might be finite in the x → ∞
limit) as a consequence of the twist.Wewill actually not need
them to compute δΔ, and we refer to [60] for a similar
strategy applied in the case of the Schrödinger background.
Nevertheless, we discuss the asymptotic behavior of p̂2 in
detail in Sec. VI B and, importantly, we will show that the
charge Q does not get any anomalous correction.
Combining all the properties we have enumerated, we

possess enough information about the analytic structure of
these corrections to be able to reconstruct them. As this is a
tedious and sometimes repetitive process, we have rel-
egated the details regarding this reconstruction to
Appendix D, while here we collect the final results. If
we denote each contribution to δΔ as

δΔ ¼
X
n

ΩijðxnÞNij
n ; ð6:9Þ

40In all the following expressions, we rescale our conserved
charges with a factor of

ffiffiffi
λ

p
, so that the reader can compare them

with the previous literature more easily. We want to stress that the
normalization factor 4πffiffi

λ
p can be modified in the sense that it does

not affect the computation of the anomalous contribution to
the energy δΔ, at the condition that we also modify the
normalization of the residues αðxijn Þ consistently. However, the
natural way to fix this normalization factor is by demanding
that the correction to the filling fractions Kði;jÞ is given by Nij,

i.e., −
ffiffi
λ

p
8π2i

H
dxð1 − 1

x2Þðpi þ δpiÞ ¼ Kði;jÞ þ Nij. In this sense,
the normalization chosen for the filling fractions fixes also the
normalization of the asymptotics of δp.
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we find the following expressions:

Ω1̃ 3̃ðxnÞ ¼ Ω1̃ 4̃ðxnÞ ¼ Ω2̃ 3̃ðxnÞ ¼ Ω2̃ 4̃ðxnÞ ¼ 2
Kð1Þ
x2n − 1

;

ð6:10Þ

Ω1̂ 4̂ðxnÞ ¼ 2
x2nKð1=xnÞ
x2n − 1

− 2; ð6:11Þ

Ω2̂ 3̂ðxnÞ ¼
2KðxnÞ
x2n − 1

; ð6:12Þ

Ω1̂ 3̂ðxnÞ ¼ Ω2̂ 4̂ðxnÞ ¼
x2nKð1=xnÞ þ KðxnÞ

x2n − 1
− 2; ð6:13Þ

Ω1̂ 3̃ðxnÞ ¼ Ω1̂ 4̃ðxnÞ ¼ Ω1̃ 4̂ðxnÞ ¼ Ω2̃ 4̂ðxnÞ

¼ x2nKð1=xnÞ þ Kð1Þ
x2n − 1

− 1; ð6:14Þ

Ω2̂ 3̃ðxnÞ ¼ Ω2̂ 4̃ðxnÞ ¼ Ω1̃ 3̂ðxnÞ ¼ Ω2̃ 3̂ðxnÞ

¼ KðxnÞ þ Kð1Þ
x2n − 1

; ð6:15Þ

where KðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2β2

p
.

The final step is to use Eq. (6.3) to find the value of
the spectral parameter at which we have to place the
microscopic cuts, xn, and substitute it in the above
equations. As the process is the same for all the cases
mutatis mutandis, we will illustrate it in the case 1̂ 3̃.
The algebraic equation p̂1ðxnÞ − p̃3ðxnÞ ¼ 2πn has two
solutions,

xn ¼
aT

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2T þ n2

p
n

: ð6:16Þ

Because
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2T þ n2

p
≥ aT ≥ aT

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
for real values of n

and jβj ≤ 1 [as required from reality conditions, see below
(5.26)] the solution with minus sign has modulus smaller
than one, and we will disregard it. Substituting this result
into Ω1̂ 3̃ðxnÞ, we find

Ω1̂ 3̃ðxnÞ ¼
x2nKð1=xnÞ þ Kð1Þ

x2n − 1
− 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2T þ n2

a2T

s
− 1:

ð6:17Þ

The remaining contributions take the following form:

Ω1̃ 3̃ðxnÞ ¼ Ω1̃ 4̃ðxnÞ ¼ Ω2̃ 3̃ðxnÞ ¼ Ω2̃ 4̃ðxnÞ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2 þ n2

a2T

s
; ð6:18Þ

Ω1̂ 4̂ðxnÞ ¼ −2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ n2

a2T
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

a2T
ð1 − β2Þ

svuut ; ð6:19Þ

Ω2̂ 3̂ðxnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ n2

a2T
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

a2T
ð1 − β2Þ

svuut ; ð6:20Þ

Ω1̂ 3̂ðxnÞ ¼ Ω2̂ 4̂ðxnÞ ¼ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2 þ n2

a2T

s
; ð6:21Þ

Ω1̂ 3̃ðxnÞ ¼ Ω1̂ 4̃ðxnÞ ¼ Ω1̃ 4̂ðxnÞ ¼ Ω2̃ 4̂ðxnÞ

¼ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

a2T

s
; ð6:22Þ

Ω2̂ 3̃ðxnÞ ¼ Ω2̂ 4̃ðxnÞ ¼ Ω1̃ 3̂ðxnÞ ¼ Ω2̃ 3̂ðxnÞ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

a2T

s
: ð6:23Þ

In order to have an independent check of our results, we
have computed the bosonic AdS contributions using the
method of quadratic fluctuations in the picture of the
deformed model. The details of that computation are
collected in Appendix E, and the final results are consistent
with the ones obtained using the classical spectral curve of
the twisted model.
Another nontrivial check that our results pass is the

fact that we recover the usual BMN contributions in the
undeformed limit (see, for example, [75]), i.e., Ω ¼ −1þffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

ω2

q
, upon using the Virasoro constraint (5.26).

B. Anomalous correction to the twist

Before computing the one-loop correction to the
dispersion relation of the BMN-like solution, we want to
make some comments on the asymptotic behavior of δp̂2

and its effect on the charge Q of the twist. In particular, we
will show that there is no contribution to the Oðx0Þ term of
the expansion. To that end, we will use the inversion
symmetry (6.6) to compute δp̂2 from the different δp̂1

excitations that we constructed in Appendix D.
Let us begin with the excitation 2̃ 3̃. Using inversion

symmetry on

δp̂1ðxÞ ¼
4πffiffiffi
λ

p Kð1Þ
Kð1=xÞ

xn
x2n − 1

2x
x2 − 1

; ð6:24Þ

we can check that
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δp̂2ðxÞ ¼ −δp̂1

�
1

x

�
≈

8π

x
ffiffiffi
λ

p Kð1Þffiffiffiffiffiffiffiffi
−β2

p xn
x2n − 1

þOðx−2Þ:

ð6:25Þ

Despite getting a nontrivialOðx−1Þ term, we can check that
it actually vanishes when we impose the level-matching
condition. The other three excitations associated to the S5

have the same behavior, as δp̂1 has a similar form for
all four.
The situation is very similar for both the excitations

associated to 1̂ 4̂ and 1̂ 3̃. In particular, we have

δp̂2 ≈
X
n

Kð1=xnÞffiffiffiffiffiffiffiffi
−β2

p αðxnÞNn

xnx
þOðx−2Þ; ð6:26Þ

δp̂2 ≈
X
n

αðxnÞ
xn

ffiffiffiffiffiffiffiffi
−β2

p Kð1=xnÞ þ Kð1Þ
2x

Nn þOðx−2Þ; ð6:27Þ

respectively. In both cases, the 1=x term is proportional to
the pole-fixing condition (6.3) and, thus, proportional to n.
This means that both the x0 and x−1 term vanish once the
level-matching condition is imposed.
The situation for the excitations associated to 1̂ 3̂ and 2̂ 3̃

is slightly different. For these kinds of excitations, we find
that

δp̂2≈−
X
n

�
4πffiffiffi
λ

p þαðxnÞ
xn

KðxnÞþKð1=xnÞffiffiffiffiffiffiffiffi
−β2

p �
Nn

2x
þOðx−2Þ;

ð6:28Þ

δp̂2 ≈
X
n

�
4πffiffiffi
λ

p þ αðxnÞ
xn

KðxnÞ þ Kð1Þffiffiffiffiffiffiffiffi
−β2

p �
Nn

2x
þOðx−2Þ;

ð6:29Þ

respectively. The analysis in both cases is the same: the x0

contribution vanishes automatically, while the second term
in the x−1 contribution vanishes due to the level-matching
condition. However, in both cases, we have a nonvanishing
∓ P

n
2πNnffiffi

λ
p at order x−1.

The behavior of the remaining excitations can be inferred
using the different tricks described in Appendix D, e.g., the
composition of excitations described in D 4 or the fact that
the classical solution has pairwise symmetric quasimo-
menta (D26).
Let us summarize and compare our results with what we

would expect from the asymptotic behavior of the quasi-
momenta (5.21). First, we find that the x0 terms of the
expansion of δp̂2 for large values of x vanish in all the
cases. In (5.21), these terms corresponds to the conserved
charge Q, associated to the twist. Hence, we find that Q
does not receive any anomalous correction, δQ ¼ 0. On the
other hand, depending on the excitation we are considering,

the x−1 terms either vanish (after imposing the level-
matching condition) or give a constant contribution. In
particular, 1̂ 3̂, 2̂ 4̂, 2̂ 3̃, 2̂ 4̃, 1̃ 3̂, and 2̃ 3̂ fall in this second
category, where the two bosonic excitations contribute with
−Nn=2 and the four fermionic excitations withþNn=2.

41 If
we try to interpret this from the lens of undeformed
AdS5 × S5, the appearance of, e.g., a contribution propor-
tional to N1̂ 3̂

n =2 in δp̂2 is surprising. Due to the presence of
the twist, however, the contribution of certain excitations to
the asymptotics of δp̂2 and δp̂3 do in fact mix. Note in
particular that the only nonvanishing excitations are those
which connect one sheet affected by the twist with a sheet
that is not affected by the twist. Comparing with (5.21), the
new asymptotics suggest a shift of the spin charge QΘ as

QΘ → QΘ − N1̂ 3̂ − N2̂ 4̂ þ N2̂ 3̃ þ N2̂ 4̃ þ N1̃ 3̂ þ N2̃ 3̂:

ð6:30Þ

Let us emphasize that this contribution is nondynamical, as
it only depends on the number of excitations Nij

n but not on
the position of the poles xijn . Similar shifts of spin charges
are found also in undeformed AdS5 × S5, see, e.g., [51],
where the spins get corrections in which the contributions
of fermionic excitations are weighted with a factor of 1=2
relative to those of bosonic excitations. It would be
interesting to understand this behavior for twisted models
in more generality.

C. One-loop correction to the energy

Now we have enough information to compute the one-
loop correction to the energy of our classical string. This is
done by considering that the excitations we are introducing
behave as harmonic oscillators and computing their ground
state energy. Mathematically, this means that

E ≈ Eclass þ E1−loop ¼ Eclass þ
1

2

X
n∈Z

X
ij

ð−1ÞFijΩijðxnÞ;

ð6:31Þ

where we have Fij ¼ 0 for bosonic and Fij ¼ 1 for

fermionic contributions, respectively, and where Eclass ¼
−E ¼ ffiffiffi

λ
p

aT (recall that we rescale charges with
ffiffiffi
λ

p
).

Before attempting to perform the sum over n, we should
check if the series of the addends converges. We can check
that it is the case, as

X
ij

ð−1ÞFijΩijðxnÞ ¼ −
2β2

n3
þOðn−4Þ; ð6:32Þ

41Despite not being mentioned in the analysis of [60], a similar
behavior can be found in the case of the Schrödinger background.
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meaning that the partial sums over the mode number have
to converge, and we are allowed to compute the sum over
integer numbers.
First of all, we should notice that the mode number n

always appears divided by aT. We can safely assume that
aT ≫ 1 because it is related to the energy of our classical
solution. This allows us to approximate our sum over
n ∈ Z by an integral over n ∈ R.42 Then,

1

2

X
n∈Z;ij

ð−1ÞFijΩijðxnÞ ≈
aT
2

Z
∞

−∞
dn

X
ij

ð−1ÞFijΩijðxaTnÞ

¼ aT

Z
∞

0

dn
X
ij

ð−1ÞFijΩijðxaTnÞ;

ð6:33Þ
where by xaTn we mean that we are rescaling n by a factor
aT . Notice that, to get the second equality, we have used
that the frequencies only depend on n quadratically, and we
are therefore dealing with an even integrand.
At this point, it is useful to divide our contributions into

two different types,

Ωnested ¼ Ω1̂ 4̂ðxnÞ þ Ω2̂ 3̂ðxnÞ

¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ n2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðn2 þ 4β2Þ

qr
; ð6:34Þ

Ωother ¼ −8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2 − β2

q
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2 þ β2

q
:

ð6:35Þ

We do so because the nested square root structure makes
the integration of Ωnested a bit involved. Let us first
address the integral of Ωother. Instead of integrating from
0 to ∞, we shall integrate only up to a positive cutoff, Λ.
We do so because, while the total series is convergent, the
two separate contributions Ωnested and Ωother are not.
Obviously, they have divergences that later will cancel
each other. After some algebra, we find

Iother
aT

¼ 2 lim
Λ→∞

Z
Λ

0

dnΩother ¼ −2Λ2 − 2ð1þ β2Þ logð2ΛÞ

− ½ð1þ β2Þ þ ð1þ β2Þ logð1þ β2Þ
þ 2ð1 − β2Þ logð1 − β2Þ�: ð6:36Þ

The integral over Ωnested is more intricate, but it can be
simplified using a change of variables inspired by the one
proposed in Appendix C of [77]. In particular, after we
change into a variable yðnÞ that eliminates the nested

integral, i.e., Ωnested ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ yðnÞ2

p
, we can perform the

integral as

lim
Λ→∞

Z
Λ

0

dnΩnested ¼ lim
Λ→∞

Z
Λ0

0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ y2

q
y3 þ 8yβ2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4β2

p
3
;

ð6:37Þ

where Λ0 ¼ 2Λþ β2

Λ þOðΛ−3Þ. Notice that, although we
are interested in the limit of very large Λ, we have kept the
next-to-leading order of the map between the two cutoffs.
We have done that because the integral will diverge as Λ02,
which means that this subleading order of the transforma-
tion will give rise to a nontrivial contribution to the integral.
After evaluating the integral, and with a healthy dose of
algebra, we arrive at

Inested
aT

¼ 2 lim
Λ→∞

Z
Λ

0

dnΩnested ¼ 2Λ2 þ 2ð1þ β2Þ logð2ΛÞ

þ 1þ 2β − β2 − ð1þ β2Þ log ð1 − β2Þ

þ ð1þ β2Þ log
�
1 − β

1þ β

�
: ð6:38Þ

Putting both integrals together, it is immediate to check that
the divergent parts perfectly cancel, giving us

2E1−loop

aT
¼ Inestedþ Iother

aT
¼ 2β−2β2− ð3− β2Þ log ð1− β2Þ

− ð1þ β2Þ log ð1þ β2Þþ ð1þ β2Þ log
�
1− β

1þ β

�
:

ð6:39Þ

As a check of our expression, we can examine two
particularly interesting values of β. On the one hand, we
can check that E1−loop ¼ 0 for β ¼ 0. This is consistent
with the fact that we recover the BMN solution in the
undeformed limit, which does not receive corrections. On
the other hand, in the β ¼ 1 limit, the form of Ωnested
simplifies, as we can get rid of the nested square root,

lim
β→1

Ωnested ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2n2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðn2 þ 4Þ

qr

¼
ffiffiffiffiffi
n2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 4

p
: ð6:40Þ

Thus, in this limit all the contributions have the form of a
square root, and there is no need to separate the integral into
two divergent contributions, avoiding the possible issues
that a cutoff may introduce. When taking β → 1, the limit
of the integral and the integral of the limit coincide and
give E1−loop ¼ −aT logð8Þ.
To end this section, wewant to elaborate on our choice of

cutoff. As the deformation changes the masses associated to

42Here, we can use the integration method proposed in [76] to
argue that the error in our approximation has to be exponentially
small in aT , as none of our contributions have a branch cut for real
values of n.
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the different quantum fluctuations differently, we may
worry that an issue with the choice of regularization similar
to the one present in AdS4 × CP3 may arise, see, e.g.,
[78,79], where a unique summation prescription does not
exist, and one needs further information to choose the
correct one. While for AdS5 all the quantum excitations
have the same mass, for the less-symmetrical AdS4, they
can take two possible values, which allows one to separate
them into “heavy” or “light” modes. As the number of
bosonic and fermionic heavy modes is the same, and idem
for light modes, one is allowed to choose a different cutoff
for each type leading to a different result. Although our
situation may look similar at first glance, the mass of the
excitations in our background are associated to their origin,
i.e., if they are bosonic modes associated to the sphere, or to
the deformed AdS space, or to fermions. Consequently,
although a different regularization scheme may exist, it
would be highly nontrivial.

VII. THE UNIMODULAR CASE AND THE
SPECTRAL EQUIVALENCE

So far we have considered the nonunimodular deforma-
tion; i.e., we have set ζ ¼ 0 in (2.7). Here, we wish to show
that these results can be extended to unimodular deforma-
tions (ζ ¼ 1) thanks to the observation that even in this case
the twist can be factorized as explained in Sec. IV C for the
nonunimodular case. First, an extended Jordanian R-matrix
of the type (2.7) with ζ ¼ 1 solves the classical Yang-
Baxter equation if the odd elements satisfy the (anti)
commutation relations [14,65,80],

½Qi;e� ¼ 0; ½h;Q1� ¼
1

2
Q1 − ξQ2;

½h;Q2� ¼
1

2
Q2 þ ξQ1; fQj;Qkg ¼ −iδjke; ð7:1Þ

where ξ is a free real parameter. From [44], we know that
for a generic homogeneous Yang-Baxter deformation, the
twist can be taken to be in the subgroup F, and therefore, it
can be written as W−1 ¼ expðηRQÞ, where Q is a con-
served charge that takes values in the dual (with respect
to the bilinear form of g) of f. That means that we can write
it as

W−1 ¼ expðηRQÞ ¼ exp½ηð−QehþQhe

− iðQ1Q1 þQ2Q2ÞÞ�; ð7:2Þ

where QA are projections of Q. We will not calculate them
explicitly because this will not be needed for the following
argument, but notice that, when setting ζ ¼ 1, in principle
all of them can receive contributions from the fermionic
degrees of freedom. In other words, when going from the
nonunimodular to the unimodular case, the difference is not

only the presence of the new (fermionic) charges Q1, Q2,
because we can also have different expressions forQh, Qe.
First, notice that Q1, Q2 are Grassmann variables. We

are therefore working with the Grassmann enveloping
algebra, in which case anticommutators become standard
commutators. In particular, notice that if we define
Z ¼ −iηðQ1Q1 þQ2Q2Þ, then ½Z;Z� ¼ 0, because the
only nonvanishing anticommutator in (7.1) is when we
take the same odd generator, but then Q2

i ¼ 0 because it is
Grassmann. The nonunimodular twist is recovered by
formally setting Z ¼ 0.
When ξ ¼ 0 in the commutation relations, the gen-

erators Q1;Q2 do not mix, and we can repeat the argu-
ment of Sec. IV C to show that W ¼ v−1W0v, where
W0 ¼ expðηQehÞ. In fact, first we can write the twist in
the form W−1 ¼ exp ðAþ s

1−e−s B
0Þ and repeat the steps in

(4.18) if we now identify

A ¼ ηð−QehþQheÞ;
s

1 − e−s
B0 ¼ Z: ð7:3Þ

Using that ½h;Z� ¼ 1
2
Z and imposing ½A;B0� ¼ sB0, one

finds s ¼ −ηQe=2. This shows that the unimodular twist is
related by a Z-dependent similarity transformation to
exp½ηð−QehþQheÞ�. This has the same form as the
nonunimodular twist and, as explained in Sec. IV C, it
then follows that it is also related by a similarity trans-
formation to W0.
To prove the factorization of the twist for generic values

of ξ, we will now consider a different and even simpler
method, that works both for ζ ¼ 0 and ζ ¼ 1 and for any ξ.
For definiteness, we will provide the discussion in the
ζ ¼ 1 case. First, let us construct

v ¼ expðαeeÞ expðα1Q1Þ expðα2Q2Þ; ð7:4Þ

where α1, α2 are Grassmann, and compute

v−1hv ¼ hþ αeeþ
�
1

2
α1 þ ξα2

�
Q1

þ
�
1

2
α2 − ξα1

�
Q2 − iξα1α2e: ð7:5Þ

The above formula implies that

v−1 expðchÞv¼ exp

�
c

�
hþðαe− iξα1α2Þe

þ
�
1

2
α1þ ξα2

�
Q1þ

�
1

2
α2− ξα1

�
Q2

��
:

ð7:6Þ

Now we want to match the right-hand-side of the above
equation with the right-hand-side of (7.2). We can do this
only if we assume c ≠ 0, and then
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c ¼ −ηQe; αe ¼ ηQh=cþ iξα1α2; ð7:7Þ

and if we also require

1

2
α1 þ ξα2 ¼ −iηQ1=c;

1

2
α2 − ξα1 ¼ −iηQ2=c: ð7:8Þ

This system has always a solution except if ξ2 ¼ −1=4, but
this possibility is excluded because it must be ξ ∈ R to
respect the real form of psuð2; 2j4Þ. To conclude, we can
always solve also for α1;α2; αe, and then the twist can be
put in the wanted form,

W ¼ v−1W0v; W0 ¼ expðηQehÞ: ð7:9Þ

Let us make a comment on the assumption c ≠ 0 made
above. Given the solution for c in (7.7), there are only
two possibilities in which c can vanish. The undeformed
limit η → 0 is obviously not problematic: when η → 0
then W → 1 so the factorization is trivially true. The only
real worry should be the case Qe ¼ 0 with η ≠ 0. Let us
analyze this situation in the nonunimodular case, when
Qe ¼ −Q=η and Q was given in (4.5). Then, Qe can
vanish (at finite η) only if Q ¼ 0. Given (4.4), this leads
to a trivial twist W ¼ 1, unless q compensates the zero of
Q with a divergence. This is possible only if the field
configuration is such that

Yhðτ; 2πÞ − Yhðτ; 0Þ ≠ 0; Yþðτ; 2πÞ − Yþðτ; 0Þ ¼ 0:

ð7:10Þ

In other words, the degrees of freedom in Ye are periodic
while those in Yh are not. Therefore, in this sector of the
theory the nonunimodular twist cannot be put into the
form expðchÞ, and it is instead equal to W ¼ expð−weÞ
with w ¼ Qq finite and nonzero. This is in fact a
nondiagonalizable twist, with all eigenvalues equal to 1.
While the leading-order asymptotics of the quasimomenta
around z ¼ 1 (or x ¼ ∞) would match those of the
untwisted case, the next-to-leading order will change. A
similar analysis is obviously valid also for the unimodu-
lar twist.
We conclude this section by arguing the spectral

equivalence of the unimodular and the nonunimodular
models, up to certain caveats that we are about to point
out. In the sector where the twists of the unimodular
and nonunimodular models are both equivalent to
W0 ¼ expðηQehÞ, the fact that the classical spectra of
the two models are the same is rather straightforward.
First, in both cases, one can implement field redefinitions
as explained in IV C to obtain boundary conditions
controlled just by W0 ¼ expðηQehÞ. As remarked above,
the explicit expressions for Qe in the two cases differ,
because in the unimodular case, there are additional
contributions from the fermionic degrees of freedom.

However, these vanish when considering classical sol-
utions, and therefore, the classical spectral curves of the
two models are indistinguishable. One may worry that
the nondiagonalizable sector [where the twist is instead
W ¼ expð−weÞ] may be problematic from the point of
view of the spectral equivalence. But also in this case, the
twists of the two models would differ only by contribu-
tions of the fermionic degrees of freedom, that do not
contribute at the classical level.
We can push this argument even to the one-loop level. In

fact, one may use the method of [51,55] to compute
quantum corrections to the classical spectrum, as we have
done in the previous section for the nonunimodular case.
The advantage of this method is that the only data that is
needed to compute the one-loop shift is the classical
spectral curve itself. Because the two classical spectral
curves agree, the unimodular and nonunimodular models
will also have the same 1-loop corrections to the spectrum.
It would be interesting to understand if it is possible to
make any statement beyond one-loop, since it is always
possible that the spectral equivalence breaks down at higher
loops. However, we want to point out that even at one-loop
level, there may be extra subtleties not discussed so far.
In fact, the whole argument is done under the assumption
that it is possible to reformulate the Yang-Baxter deformed
model as the undeformed yet twisted one. While this
is certainly true at the classical level because the two
σ-models are equivalent on shell, it is possible that the
equivalence breaks down at the quantum level. An anomaly
may occur especially in the nonunimodular case, when the
background fields do not satisfy the standard supergravity
equations and the σ-model is not Weyl invariant. In the
presence of such an anomaly, even if the (quantum) spectra
of the two twisted models were the same, the spectra of the
corresponding Yang-Baxter deformations (with ζ ¼ 0 and
with ζ ¼ 1) may not be related in an obvious way. It would
be very interesting to investigate these possible scenarios in
more details.

VIII. CONCLUSIONS

In this paper, we have considered a Jordanian deforma-
tion of the AdS5 × S5 superstring background, that pre-
serves the (classical) integrability and at least 12
superisometries.43 We have identified global coordinates
for the deformed background, and in particular, a global
time coordinate. This fact is crucial for the correct iden-
tification of the energy when considering the spectral
problem from first principles, and we believe that it will

43Interestingly, as already noted in [65] using findings of [81],
this Jordanian deformation can also be obtained by a sequence of
TsT and S-duality transformations. It therefore provides an
example of a transformation involving S-duality that preserves
integrability. See [82] for more recent examples.
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be important in order to have insights into an AdS=CFT
interpretation of the deformation.
Importantly, we have reformulated the deformed model

in terms of an undeformed yet twisted model. In this
twisted picture, we were able to obtain a general class of
solutions to the σ-model equations of motion written in
terms of Airy functions. Our further study, however,
focused on a particular simple solution which we called
BMN-like. Given that the difference compared to the
standard (periodic) case of AdS5 × S5 is only in a twist
appearing in the boundary conditions, we could borrow
several methods of integrability that had already been used
in the past. We did this not just at the level of the classical
spectral curve but also when including its first quantum
corrections since, despite the twist, the methods are
essentially unaltered.
The only place where the construction of the classical

spectral curve is changed with respect to the standard case
is in the form that the quasimomenta take at large values of
the spectral parameter. In particular, we are forced to
reevaluate the ansatz for the asymptotic behavior of the
quantum corrections for some of our quasimomenta. For
example, in the standard case, we can extract the contri-
bution to the anomalous correction to the energy from any
of the corrections to the quasimomenta associated to the
AdS directions. However, in the deformed background, we
have studied, this contribution does not appear in those
quasimomenta which are affected by the twist.
An interesting outcome of our results is that we find no

anomalous quantum correction for the charges that control
the twisted boundary conditions. The only charge that
receives quantum corrections is the energy, and we interpret
this as the spectral problem being well-posed. The situation
is reminiscent to the β-deformation [28], where the twist
appears in the form of phases that enter the Bethe equations
[36], for example. Also in that situation, it is the energy of
the string (or the dual anomalous dimension of single-trace
operators) that receives quantum corrections, while the
charges controlling the twist appear as external data, so that
the Bethe equations can be solved consistently.
The advantage of working in the language of the twisted

model resides also in the fact that the conserved charges
that label the full spectrum admit local expressions in terms
of the variables of the twisted model, while they would be
nonlocal in the variables of the deformed one. Moreover,
only (the Cartans of) the manifest symmetries of the twisted
model appear as labels of the spectrum, and this is crucial
because these are only a subset of the isometries of the
deformed one.
In the deformed picture, we know that the deformation

parameter can be reabsorbed, although this is done in such a
way that the undeformed limit η → 0 becomes subtle. One
can actually think in terms of two possible cases to be
considered, namely η ¼ 0 and η ≠ 0. This is related to the
fact that Jordanian deformation (at η ≠ 0) are essentially

non-Abelian T-duality, without any continuous deforma-
tion parameter. However, in the twisted picture, we do not
see evidence for a similar interpretation, because the
one-loop spectrum seems to depend continuously on the
deformation parameter η through the combination β ¼ η

2b2z
.

It would be interesting to understand this further.
Let us also comment on the fact that we were able

to consider both the unimodular Jordanian deformation
(giving rise to a type IIB supergravity background) and the
nonunimodular one (which does not correspond to a
supergravity solution). In this respect, the main message
from our results is that the corresponding twisted models
share the same spectrum, at least to one-loop. Unless the
argument regarding the equivalence of the deformed model
to the twisted one at the quantum level fails, this seems to
suggest that the unimodular and nonunimodular deforma-
tions share the same spectrum at least to that order. It would
be interesting to understand these subtleties further and see
whether we can make any statement beyond one-loop.
A first nontrivial check was obtained already in
Appendix E, where we found that the bosonic (AdS)
frequencies obtained from the analysis of quadratic fluc-
tuations of the deformed σ-model matches with the bosonic
(AdS) frequencies obtained from the curve of the twisted σ-
model. In addition, let us mention that the equivalence of
the quantum spectrum between a unimodular and a non-
unimodular Yang-Baxter deformation has been noted also
in [83], although in that case, the inhomogeneous Yang-
Baxter deformation was considered, for which the reinter-
pretation as a twist of the boundary conditions in the
undeformed model does not hold.
Our results offer a first step towards the understanding of

how to tackle the spectral problem for Jordanian deforma-
tions (andmore generally diagonalizable Yang-Baxter defor-
mations) of AdS5 × S5. It would be interesting to start
working from the other side of the AdS=CFT duality and
construct a corresponding deformation of N ¼ 4 super
Yang-Mills. The expectation is that there should be a notion
of a deformed/twisted spin-chain in that case, and it is worth
exploring the possibility of constructing this spin-chain
directly, to obtain insights on the potentially more difficult
construction of the deformation of the gauge theory.
From a broader perspective, it would be very interesting

to reinterpret the more generic supergravity solution-
generating techniques of [18,19] (which include also
non-Abelian T-duality, and are integrability-preserving)
in terms of twisted models within a first-order formulation.
This may open the possibility of tackling the spectral
problem in this more generic class of deformed and dual
σ-models.
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APPENDIX A: RELATION TO EMBEDDING
COORDINATES OF AdS

In this appendix, we want to explain how the global
coordinates that we use to parametrize the Jordanian-
deformed spacetime are related to the embeddingcoordinates
ofAdS. This is both to offer additional geometric intuition on
the coordinates used and to give an alternative argument to
the fact that they are global coordinates, although here this
applies only in the undeformed η ¼ 0 limit.
AdSD is defined as the hyperboloid X2

0 þ X2
D −P

D−1
i¼1 X2

i ¼ R2 (with R the AdS radius) in R2;D−1

with metric ds2 ¼ −dX2
0 − dX2

D þP
D−1
i¼1 dX2

i . Global
coordinates in AdS can be obtained by setting X0 ¼
R cosh ρ cos τG, XD ¼ R cosh ρ sin τG, Xi ¼ R sinh ρΩi

with the constraint
P

D−1
i¼1 Ω2

i ¼ 1. This gives the AdSmetric
ds2 ¼ R2ð− cosh2 ρdτG þ dρ2 þ sinh2 ρdΩ2Þ, withdΩ2 the
metric of the (D − 2)-dimensional sphere. For D > 2, the
hyperboloid is covered once if we take ρ ≥ 0; 0 ≤ τG < 2π,
and the universal cover is obtained by decompactifying the
global time τG. Themetric diverges atρ → ∞, but that is not a
problematic place: geodesics either reach it in an infinite
time, or if they do it in a finite time (as it happens for some
null geodesics) then they come back to finite ρ at later time.
Therefore, the spacetime is geodesically complete in these
coordinates.
Alternatively, the identification X0 ¼ 1

2
zð1þ z−2ðR2 þ

xixi − t2ÞÞ, XD ¼ Rt=z, Xi ¼ Rxi=zði ¼ 1;…; D − 2Þ,
XD−1 ¼ 1

2
zð1 − z−2ðR2 − xixi þ t2ÞÞ gives the metric,

ds2 ¼ R2

�
dz2 þ dxidxi − dt2

z2

�
; ðA1Þ

in the so-called Poincaré coordinates. These coordinates do
not cover the whole hyperboloid and in fact, as we will
show in the more generic deformed case in Appendix B,
some geodesics are not complete in this patch (e.g., they

reach z ¼ ∞ in a finite proper time, and cannot be
continued to z < ∞). In these coordinates, the boundary
of AdS is at z ¼ 0, where the metric diverges.
In the coordinates ðT; V;Θ; P; ZÞ of (2.20), we see that

the AdS metric (i.e., when setting η ¼ 0) diverges at Z ¼ 0,
and because of the relation to the previous coordinates, we
can identify that as the boundary of AdS. The composition
of relations between the different sets of coordinates leads
to the relation of the global coordinates ðT; V;Θ; P; ZÞ to
the embedding coordinates. Setting R ¼ 1, we find

X0 ¼
ð1þ Z2 þ P2Þ cosT − 2V sinT

2Z
;

X1 ¼
ðP2 þ Z2 − 2Þ sinT þ 2V cosT

2
ffiffiffi
2

p
Z

;

X2 ¼
P sinΘ

Z
;

X3 ¼
P cosΘ

Z
;

X4 ¼
ð−1þ Z2 þ P2Þ cosT − 2V sinT

2Z
;

X5 ¼
ðP2 þ Z2 þ 2Þ sinT þ 2V cosT

2
ffiffiffi
2

p
Z

: ðA2Þ

These expressions can be inverted as

P ¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
2 þ X2

3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðX0 − X4Þ2 þ ðX1 − X5Þ2

p ;

Θ ¼ arctanðX2=X3Þ;

V ¼ X0ð3X1 þ X5Þ − X4ðX1 þ 3X5Þffiffiffi
2

p ð2ðX0 − X4Þ2 þ ðX1 − X5Þ2Þ
;

Z ¼
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðX0 − X4Þ2 þ ðX1 − X5Þ2

p ;

T ¼ arctan

�
X1 − X5ffiffiffi
2

p ðX4 − X0Þ

�
: ðA3Þ

From these expressions, we see that we can take P > 0 and
Z > 0, and moreover,44 Θ ∈ ½0; 2π½ and T ∈ ½0; 2π½, which
in both cases are periodically identified with periods 2π.
For V, we have instead V ∈� −∞;þ∞½. While τG is an
angle in the ðX0; X5Þ plane, T is instead an angle in the
plane ðX4 − X0; X1 − X5Þ. Also in this case, we decom-
pactify it and take T ∈� −∞;þ∞½.

44Given that Θ and T are obtained from the arctan, normally
they would take values in ½−π=2; π=2�. In particular, arctanðy=xÞ
is insensitive to a simultaneous change of sign of x and y. To
avoid this problem, one can define a function arctanðx; yÞ that
gives the value of the angle identified by the point in the ðx; yÞ
plane taking into account the quadrants in which x and y are
placed.
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Wewill now argue that these coordinates cover the whole
hyperboloid. First,P andΘ cover all the ðX2; X3Þ plane, with
a “warping” depending on the other 4 coordinates. If we now
define Y�

0 ¼ X0 � X4 and Y�
1 ¼ ðX1 � X5Þ=

ffiffiffi
2

p
, thenZ and

T take care of the whole ðY−
0 ; Y

−
1 Þ plane (notice that Z is the

inverseof the radial coordinate in that plane). Finally,weneed
to understand if we can cover the whole ðYþ

0 ; Y
þ
1 Þ plane.

Notice that (unlike other coordinates) V depends also on the
combinations Yþ

0 ; Y
þ
1 , not just Y

−
0 ; Y

−
1 . One may worry that

we have just one degree of freedom (i.e., V) to cover this
ðYþ

0 ; Y
þ
1 Þ plane, but in fact this is not an issue, because we

should remember that we are constraining the coordinates to
satisfy 1 ¼ X2

0 þ X2
D −

P
D−1
i¼1 X2

i ¼ −X2
2 − X2

3 þ Yþ
0 Y

−
0−

2Yþ
1 Y

−
1 , so that if for example Yþ

0 ; Y
−
0 ; Y

−
1 ; X2; X3 have been

fixed (because, for example, one solves forYþ
0 in terms ofV),

then the remaining Yþ
1 is uniquely identified. Notice that the

hyperboloid constraint is quadratic inXM, but it is linear (for
example) in Yþ

1 , so when solving for Yþ
1 the sign is

unambiguous. Naively, an issue is present when Y−
1 ¼ 0,

because then Yþ
1 is undetermined. But when Y−

1 ¼ 0

then V ¼ Yþ
1 =Y

−
0 , and we can just swap Yþ

0 and Yþ
1 in the

previous reasoning. Then one can solve the hyperboloid
constraint for Yþ

0 instead. The issue remains when both
Y−
0 ¼ Y−

1 ¼ 0, because then V, P and Z diverge. This is not
problematic because Y−

0 ¼ Y−
1 ¼ 0 is a codimension-2 sub-

space, which is not an open set in spacetime.

APPENDIX B: GEODESIC INCOMPLETENESS
OF POINCARÉ COORDINATES

For completeness, we show in this appendix that the
geodesic incompleteness of the parametrization by
Poincaré coordinates persists also when turning on the
deformation η. As usual, the strategy is to look for solutions
to the geodesic equations that are pathological, i.e., the
boundary values of the coordinates are reached in a finite
amount of geodesic time.
To start, let us construct the conserved quantities Qā ¼

kμaGμν
_Xν along the geodesics. They are equivalent to the

following equations:

_θ¼Q5̄z
2

ρ2
;

_x−¼−
ðQ2̄þQ3̄Þz2ffiffiffi

2
p ;

_xþ¼η2ðQ2̄þQ3̄Þρ2−4ðQ2̄−Q3̄Þz4þη2ðQ2̄þQ3̄Þz2
4

ffiffiffi
2

p
z2

;

_ρ¼zðzð ffiffiffi
2

p ðQ3̄−Q2̄Þx−þQ1̄Þ−z0Þ
ρ

;

ðQ2̄þQ3̄Þðρ2þz2Þ¼Q4̄−2
ffiffiffi
2

p
Q1̄x

−þ2ðQ2̄−Q3̄Þðx−Þ2:
ðB1Þ

At the same time we also have the conserved quantity,

ϵ ¼ _Xm _XmGmn

¼ −
8z4 _x− _xþ þ η2ð_x−Þ2ðρ2 þ z2Þ − 4z4ðρ2 _θ2 þ _ρ2 þ _z2Þ

4z6
:

ðB2Þ

Let us consider null geodesics, so that ϵ ¼ 0. Now the
strategy is to look for solutions that at large z go like z ∝
ðτ − τ0Þ−A for some A > 0. These are pathological because
z ¼ ∞ is reached at finite τ. To simplify the analysis, we fix
some of the values of the Qā. At the same time, we must be
careful and make sure that the last equation in (B1) does not
reduce to the form Czz2 þ Cρρ

2 þ C−ðx−Þ2 ¼ C with
Cz; Cρ; C−; C > 0: if that happened, the geodesic motion
would be bounded and no pathological behavior at z ¼ ∞
would be possible. To be concrete we take

Q1̄¼0; Q2̄≠0; Q3̄¼0; Q4̄¼0; Q5̄¼0: ðB3Þ

It is of course possible to take more generic situations, but
this will already be enough to identify pathological
behavior. In this case, (B1) reduce to

_θ ¼ 0; _x− ¼ −
Q2̄z

2ffiffiffi
2

p ; _xþ ¼Q2̄ðη2ρ2 − 4z4 þ η2z2Þ
4

ffiffiffi
2

p
z2

;

_ρ¼ zð− ffiffiffi
2

p
Q2̄zx

− − _zÞ
ρ

; 0¼ z2 − 2ðx−Þ2 þ ρ2: ðB4Þ

Notice that θ is constant, and that a solution for xþ can be
found once a solution for z is given. Therefore, in the
following, we focus on the equations for the remaining
coordinates. At this point, we look for geodesic solutions
that at large values of z have

x− ∼ α−z; for z ≫ 1; ðB5Þ
with α− a constant. Within this ansatz, the algebraic
constraint given in the last equation of (B4) reduces to
ð1 − 2α2−Þz2 þ ρ2 ∼ 0, which is compatible with large z, ρ
only if

α2− > 1=2; ⇒ ρ ∼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2− − 1

q
: ðB6Þ

Demanding compatibility with the equation for _ρ then gives

_z ∼ −
Q2̄ffiffiffi
2

p
α−

z2: ðB7Þ

This is what we were seeking, since such an equation is
solved by45 z ∝ ðτ − τ0Þ−1. The pathological behavior of this

45Importantly, this solution is compatible with (B2) in the
large-z expansion.
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solution is enough to conclude that the Poincaré coordinates
are not global coordinates for the deformed spacetime.

APPENDIX C: IDENTIFYING THE CARTAN
SUBALGEBRA OF ISOMETRIES

In this appendix, we identify the possible Cartan sub-
algebras of the algebra of isometries k given in (2.18). Since
M23 and p0 þ p1 are central elements, i.e., they commute
with all generators in k, we can focus on the remaining
generators, which span an slð2;RÞ ¼ spanðh; eþ; e−Þ
subalgebra with ½h; e�� ¼ �e� and ½eþ; e−� ¼ 2h as is
found by identifying h ¼ 1

2
ðd −M01Þ, eþ ¼ 1

2
ðp0 − p1Þ,

and e− ¼ − 1
2
ðk0 þ k1Þ. Inequivalent choices of the Cartan

subalgebra are then obtained by classifying the inequivalent
adjoint orbits of slð2;RÞ and then requiring that the
representative elements have a diagonalizable adjoint
action. Although this is a standard exercise, we repeat it
explicitly to clarify certain comments.
Let us write a generic element of the group SLð2;RÞ as

g ¼ expðchhÞ expðcþeþÞ expðc−e−Þ and of the algebra
slð2;RÞ as x ¼ αhhþ αþeþ þ α−e−. For each element
x of slð2;RÞ, one can then identify its adjoint orbit
fgxg−1g. One finds three inequivalent possibilities. First,
in fact, we can transform the generic element x to the
element h whilst preserving reality conditions as

gxg−1 ¼ ffiffiffi
γ

p
h; with γ ¼ α2h þ 4α−αþ; ðC1Þ

by specifying the element g with the coefficients,

cþ ¼ αþffiffiffi
γ

p ; c− ¼ αhð ffiffiffi
γ

p − αhÞ − 4α−αþ
2αþ

ffiffiffi
γ

p ; ðC2Þ

if γ > 0.46 The second case is that for γ ¼ 0, which can be
obtained when at least αþ or α− are nonzero (otherwise x
would also be zero). For definiteness say that αþ ≠ 0. One
can then transform x into eþ as

gxg−1 ¼ echαþeþ; with c− ¼ αh
2αþ

: ðC3Þ

Alternatively, we can take α− ≠ 0, which would transform
x into e−. However, e� are related by an inner auto-
morphism as ḡeþḡ−1 ¼ −e− with ḡ ¼ expðπ=2ðeþ − e−ÞÞ
so these two possibilities are in fact equivalent. The third
and final case is that for γ < 0, which can be obtained only
when both αþ and α− are nonvanishing. In this case, one
can transform x into eþ − e− as follows:

gxg−1 ¼ 1

2
αþ

ffiffiffiffiffiffiffiffiffiffi
−

γ

α2þ

r
ðeþ − e−Þ; ðC4Þ

by using

ch ¼
1

2
log

�
−

γ

4α2þ

�
; cþ ¼ 0; c− ¼ αh

2αþ
: ðC5Þ

Thus, given a generic x ∈ slð2;RÞ which we want to
simplify by means of inner automorphisms, we have three
inequivalent possibilities,47

h; or eþ; or eþ − e−: ðC6Þ

To identify the possible Cartan subalgebras, we must
now verify whether or not the adjoint actions adx for
the above inequivalent elements are diagonalizable. A
simple computation shows that adh is diagonalizable with
eigenvalues ð0; 1;−1Þ, adeþ is not diagonalizable, and
adeþ−e− is diagonalizable with eigenvalues ð0; 2i;−2iÞ.48
To conclude, up to automorphisms, there are two possible
choices of Cartan subalgebras of k, namely,

ðIÞ∶ spanfd −M01; p0 þ p1;M23g;
ðIIÞ∶ spanfp0 − p1 þ αðk0 þ k1Þ; p0 þ p1;M23g; ðC7Þ

where we leave a possible α > 0 coefficient for later
convenience. The choice eþ − e− would correspond to
α ¼ 1, but in the main text we find it convenient to
choose α ¼ 1=2.

APPENDIX D: ANALYTIC STRUCTURE
OF THE PERTURBATIONS

In this appendix, we detail how to compute the correc-
tion to the quasimomenta δpi that arise from adding small
excitations to our classical solution using only their analytic
properties, as described in Sec. VI A. Most of our compu-
tations mimic those of the slð2;RÞ circular string in [51]
due to the presence of a single cut in the p̂i quasimomenta,
but the asymptotic behavior of our classical quasimomenta
and some of their corrections is very different.

1. Excitations associated to the sphere

Excitations that connect two quasimomenta p̃i and p̃j

are related to considering quadratic fluctuations around a
classical solution for the modes associated to the sphere. Of
those, the only ones that give rise to physical excitations are
those that connect either 1̃ or 2̃ with either 3̃ or 4̃. Similarly
to the case described in [51], the two remaining possible
combinations, 1̃ 2̃ and 3̃ 4̃, do not give rise to physical
excitations.

46Although the case αþ ¼ 0 seems singular, it can be analyzed
on its own (for αh ≠ 0) leading to the same conclusion.

47It is immediate to see that these choices cannot be related by
inner automorphisms, given that Trðh2Þ ¼ 1;Trðe2þÞ ¼ 0;
Trððeþ − e−Þ2Þ ¼ −2.

48Notice that adeþ−e− is real, only its diagonalized version has
imaginary coefficients.
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For concreteness, here we will focus on the excitation
that connects p̃2 and p̃3, which we will denote as 2̃ 3̃, and
turn off any other excitation. The computations for the
other three excitations are the same mutatis mutandis.
Nevertheless, we will make some comments on 2̃ 4̃; and
we will discuss the remaining two in Sec. D 4.
Let us focus first on the correction δp̃2. We know that it

has to have poles at �1 and at x2̃ 3̃n . Thus, we propose the
following ansatz,

δp̃2 ¼
δαþ
x − 1

þ δα−
xþ 1

−
X
n

αðx2̃ 3̃n ÞN 2̃ 3̃
n

x − x2̃ 3̃n
: ðD1Þ

As there will be no ambiguity, we will drop the superindex
of xn and Nn to alleviate our notation.
We also know that δp̃2 is associated to δp̃1 by inversion

symmetry. Thus, we can use the information about their
behavior at large values of x to fix the residues of the poles.
On the one hand, from Eq. (6.8), we have

δp̃1 ≈Oðx−2Þ; δp̃2 ≈ −
4πffiffiffi
λ

p
X
n

Nn

x
þOðx−2Þ: ðD2Þ

On the other hand, from our ansatz and inversion symmetry
(6.6), we have

δp̃1 ≈
�
δαþ − δα− −

X
n

αðxnÞNn

xn

�

þ
δαþ þ δα− −

P
n
αðxnÞNn

x2n

x
þOðx−2Þ; ðD3Þ

δp̃2 ≈
δαþ þ δα− −

P
nαðxnÞNn

x
þOðx−2Þ: ðD4Þ

Consistency between the two expansions gives us enough
information to fix the three residues,

αðxnÞ ¼
4πffiffiffi
λ

p x2n
x2n − 1

; ðD5Þ

2δα� ¼
X
n

αðxnÞNn

�
1

x2n
� 1

xn

�
: ðD6Þ

As we anticipated in Sec. VI A, the function αðxÞ does not
need to be fixed beforehand. The consistency between the
positions and signs of the poles with the asymptotic
behavior of the corrections is enough to fix its form as a
function of the position of the pole. As expected, the
function αðxÞ is unchanged from the undeformed case [51].
This is consistent with the fact that it is related to the weight
appearing in the definition of the filling fractions (5.9). In
particular, we require that

−Nn ¼ −
ffiffiffi
λ

p

8π2i

I
C
dx

�
1 −

1

x2

�
δp̃2

¼ −
ffiffiffi
λ

p

4π
NnαðxnÞ

�
1 −

1

x2n

�
; ðD7Þ

where C is the integration contour that encircles the small
cut we are putting in. As the expressions of the filling
fractions are not affected by the deformation, neither are the
residues αðxÞ.
If we now use the condition (6.3) to find the position of

the cut, we get

p̃2ðxnÞ− p̃3ðxnÞ ¼ 2πn ⇒ xn ¼
ω�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ n2

p

n
:

ðD8Þ
Here, we are only interested in the solution with the plus
sign, as it is the one in the physical region. Substituting the
explicit expression for xn in αðxnÞ, we find that (D6) gives

2δα� ¼ 4πffiffiffi
λ

p
X
n

Nn

�
1� xn
x2n − 1

�

¼ 4πffiffiffi
λ

p
X
n

nNn

2ω

�
n

ω −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ n2

p � 1

�
: ðD9Þ

The second term in this expression actually vanishes when
we impose the level-matching condition

P
n nNn ¼ 0. This

means that δαþ ¼ δα−, although we will not make use of
this relation in the following equations.
Now that we have computed δα�, we can consider the

effect that the excitation has on the quasimomenta asso-
ciated to the (deformed) AdS part of our space and compute
δΔ. The ansätze for these corrections are a bit more
involved, as we have to consider the possibility of a shift
of the branch points arising from a backreaction of the
excitation. Thus, we will assume the following ansätze:

δp̂1ðxÞ ¼ fðxÞ þ gðxÞ
Kð1=xÞ ; δp̂4ðxÞ ¼ fðxÞ − gðxÞ

Kð1=xÞ ;

ðD10Þ

where KðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2β2

p
and the functions fðxÞ and

gðxÞ are functions to be determined. The second term of
our ansatz is inspired by the fact that ∂βKðxÞ ∝ 1

KðxÞ and by

Eq. (5.23), as the quasimomentum p̂4 still has to be the
analytic continuation of p̂1 through a square-root cut.
Let us start by constraining the function fðxÞ ¼

δp̂1ðxÞþδp̂4ðxÞ
2

. As we are considering a bosonic excitation,
the synchronization of the poles at �1 forces δp̂1ðxÞ and
δp̂4ðxÞ to have residues with opposite signs, meaning that
fðxÞ has no poles at �1. In addition, δp̂1 ≈ −δp̂4 ≈
4π
x
ffiffi
λ

p δΔ
2
þOðx−2Þ for large values of x. As we have not
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added any new poles to the AdS directions, this means that
fðxÞ is a holomorphic function that approaches zero at
infinity. According to Liouville’s theorem, the only func-
tion that fulfils these requirements is fðxÞ ¼ 0.
Now, we can fix the function gðxÞ by demanding that δp̂1

has the correct properties. As δp̂1ðxÞ only has poles at �1,
we propose the following ansatz for gðxÞ:

gðxÞ ¼ Kð1Þδαþ
x − 1

þ Kð1Þδα−
xþ 1

; ðD11Þ

where we have used the synchronization of the poles at �1
as in Eq. (6.7) to fix the residues. Matching the asymptotic
behavior of δp̂1ðxÞ with its expected behavior gives us

δΔ
2

¼
ffiffiffi
λ

p

4π

Kð1Þ
Kð0Þðδαþ þ δα−Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1− β2

q X
n

Nn

x2n − 1
: ðD12Þ

Notice that δΔ can only be real if jβj ≤ 1, which is exactly
what we found from reality conditions implied by the
Virasoro constraint.
We should remark that this construction is blind to

having the second pole in the sheet 3̃ or the sheet 4̃, as we
did not use that information at any point of the
reconstruction. This implies that the contributions to δΔ
of 2̃ 3̃ and 2̃ 4̃ have the same form as a function of xn. We
will later use the inversion symmetry to show that the other
two give us the same result.

2. Excitations associated to the deformed AdS space

Excitations that connect two quasimomenta p̂i and p̂j

are related to modes associated to the deformed AdS space.
Similarly to the case of the sphere, the only ones that give
rise to physical excitations are those that connect either 1̂ or
2̂ with either 3̂ or 4̂. Due to the presence of the twist, the
excitations associated to 1̂ 4̂ and 2̂ 3̂ behave differently to
those associated to 1̂ 3̂ and 2̂ 4̂, and thus, we will treat them
separately. We will consider only one case for each
respective set because the other one can be obtained
through inversion symmetry, as we will discuss in D 4.
Let us start with the case associated to 1̂ 4̂ and turn off any

other excitation. First, note that we are not modifying the
quasimomenta associated to the sphere. This means that all
δp̃i decay at infinity as Oðx−2Þ. The only possible configu-
ration with this property is the one with δα� ¼ δβ� ¼ 0,
which allows us to set all the sphere corrections to zero,
δp̃i ¼ 0. Consequently, none of the corrections δp̂i have
poles at �1 due to their synchronization.
Similarly to what happened for the excitation 2̃ 3̃,

the residues at xn of δp̂1 and δp̂4 have the opposite
value. Furthermore, for large values of x, we have that

δp̂1 ≈ −δp̂4 ≈ 4π
x
ffiffi
λ

p δΔþ2
P

n
Nn

2
þOðx−2Þ. If we consider the

ansatz,

δp̂1ðxÞ ¼ fðxÞ þ gðxÞ
Kð1=xÞ ; δp̂4ðxÞ ¼ fðxÞ − gðxÞ

Kð1=xÞ ;

ðD13Þ

these considerations imply that fðxÞ ¼ 0 and fix gðxÞ to

gðxÞ ¼
X
n

Kð1=xnÞαðxnÞNn

x − xn
: ðD14Þ

Here, we have used the insight from our sphere compu-
tation to argue that the residue at xn has to be the same as
the undeformed one, so we can use the function αðxÞ we
computed above in (D5). Matching the asymptotic behavior
of our ansatz with its expected behavior gives us

δΔ ¼
X
n

�
2
x2nKð1=xnÞ
x2n − 1

− 2

�
Nn: ðD15Þ

Let us consider now the case associated to 1̂ 3̂ and turn
off any other excitation. Again, we are not modifying the
quasimomenta associated to the sphere, implying that none
of the corrections δp̂i have poles at �1.
Similarly to our previous cases, we start by considering

the ansatz,

δp̂1ðxÞ ¼ fðxÞ þ gðxÞ
Kð1=xÞ ; δp̂4ðxÞ ¼ fðxÞ − gðxÞ

Kð1=xÞ :

ðD16Þ
However, in contrast to previously, δp̂1ðxÞ has a pole at xn
but δp̂4ðxÞ does not, meaning that the function fðxÞ is not
holomorphic and thus, does not vanish in this case. Notice
that, instead, δp̂4ðxÞ has a pole at 1=xn inherited from
δp̂3ðxÞ due to the inversion symmetry. In fact, assuming
that δp̂3ðxÞ has a pole at xn with residue −αðxnÞ, inversion
symmetry forces δp̂4ðxÞ to have a pole at 1=xn with residue
− αðxnÞ

x2n
¼ αð 1xnÞ.

49 Substituting this information into an

ansatz of the form fðxÞ ¼ aþ b
x−xn

þ c
x−1=xn

, we arrive to

fðxÞ ¼
X
n

4πffiffiffi
λ

p xNn

2ðx − xnÞðx − 1=xnÞ
; ðD17Þ

which fulfils all our requirements, including consistency
with the asymptotic behavior of δp̂1ðxÞ and δp̂4ðxÞ, which
reads fðxÞ ≈P

n
4π
x
ffiffi
λ

p Nn
2
þOðx−2Þ. Similarly to the function

fðxÞ, we can assume that gðxÞ can be written as
gðxÞ ¼ aþ b

x−xn
þ c

x−1=xn
. These constants can be fixed

by demanding that δp̂1 has the properties we want; i.e.,
it has a pole with residue αðxnÞ at xn and no pole at 1=xn.
After some algebra, we get that

49Notice that, although δp̂2 and δp̂4 have a pole, they are not in
the physical region and they do not contribute to N2̂ 4̂

n .

SEMICLASSICAL SPECTRUM OF A JORDANIAN DEFORMATION … PHYS. REV. D 106, 066015 (2022)

066015-33



gðxÞ ¼
X
n

4πffiffiffi
λ

p KðxnÞðx − xnÞ þ x2nKð1=xnÞðx − 1=xnÞ
2ðx2n − 1Þðx − xnÞðx − 1=xnÞ

Nn:

ðD18Þ
Matching the asymptotic of our ansatz with the expected
asymptotic behavior of δp̂1 gives us

δΔ ¼
X
n

�
x2nKð1=xnÞ þ KðxnÞ

x2n − 1
− 1

�
Nn: ðD19Þ

3. Fermionic excitations

Let us move finally to fermionic excitations. Excitations
that connect a quasimomentum p̂i and a quasimomentum
p̃j or vice versa are related to fermionic modes. Here, we
will focus only on the excitation associated to 1̂ 3̃ and turn
off all other excitations. We will make some comments on
the remaining excitations at the end of this section.
We should first focus on the corrections to the quasimo-

menta associated to the sphere.Aswe are addingan excitation
to the sheet 3̃, we will consider the following ansatz:

δp̃3ðxÞ ¼
δβþ
x − 1

þ δβ−
xþ 1

þ
X
n

αðxnÞNn

x − xn
¼ −δp̃4ð1=xÞ;

ðD20Þ
δp̃1ðxÞ ¼ δp̃2ðxÞ ¼ 0: ðD21Þ

Notice that, as we are considering a fermionic excitation,
these corrections fulfil the relaxed synchronization condition
(6.7). If we impose the correct value of the residues and the
correct asymptotic behavior, we get exactly the same equa-
tions as the ones for the 2̃ 3̃ excitations (up to replacing δα�
with δβ� andNn with−Nn). Thus, we can borrow the results
we found for δβ� and the residue αðxnÞ given in (D5)
and (D9).
For the correction to the AdS quasimomenta, we will

assume the same ansatz as in the previous cases. Similarly
to the case 1̂ 3̂, we cannot set the function fðxÞ to zero
because δp̂1 has a pole at xn but δp̂4 does not. In addition,
δp̂4 has poles at �1 from the synchronization condition,
while δp̂1 does not. After imposing these restrictions, as
well as the required asymptotic behavior, we get

fðxÞ ¼
X
n

4πffiffiffi
λ

p x2Nn

2ðx − xnÞðx2 − 1Þ : ðD22Þ

With this information, we can now compute the function
gðxÞ by demanding that δp̂1ðxÞ has the correct residues at
�1 and xn, which gives us

gðxÞ ¼
X
n

4πffiffiffi
λ

p x2nðx2 − 1ÞKð1=xnÞ þ ðx2 − x2nÞKð1Þ
2ðx − xnÞðx2 − 1Þðx2n − 1Þ Nn:

ðD23Þ

Finally, matching δp̂1ðxÞ with its required asymptotic
behavior, we obtain that

δΔ ¼
X
n

�
x2nKð1=xnÞ þ Kð1Þ

x2n − 1
− 1

�
Nn: ðD24Þ

In the next section, we will discuss how to obtain the
contribution of 1̂ 4̃ from this one, but it is easy to see that the
computation has to be exactly the same as the one presented
above, giving us the same δΔ. The same happens for the
excitations 1̃ 4̂ and 2̃ 4̂.
The steps to compute the contribution of 2̂ 3̃ are

relatively similar. In fact, by analyzing the pole structure,
it is easy to reach the conclusion that the expression of δp̂2

is exactly the same one as the expression of δp̂1 for the 1̂ 3̃
excitation after substituting Kð1=xÞ by KðxÞ and adding a
constant contribution to gðxÞ. Applying the inversion
symmetry to get δp̂1 and matching it with its required
asymptotic behavior, we obtain that

δΔ ¼
X
n

�
KðxnÞ þ Kð1Þ

x2n − 1

�
Nn: ðD25Þ

Although at this point, we would have to study also the
fermionic excitations that involve either 3̂ or 4̂, we can
argue that this is not necessary. This happens because our
classical solution has pairwise symmetric quasimomenta,

p̂1 ¼ −p̂4; p̂2 ¼ −p̂3; p̃1 ¼ −p̃4; p̃2 ¼ −p̃3:

ðD26Þ
This implies that, after all the appropriate computations, we
will find that

Ω1̂ 4̃ ¼Ω1̃ 4̂; Ω2̂ 4̃ ¼Ω1̃ 3̂; Ω1̂ 3̃ ¼Ω2̃ 4̂; Ω2̂ 3̃ ¼Ω2̃ 3̂;

ðD27Þ
both for Ω understood as a function of the position of the
poles and as a function of the mode number n.

4. Composition and inversion

Up to this point, we have computed δΔ for some selected
excitations. This is enough for us, as the contribution of the
other excitations can be computed using properties such as
composition of poles and the inversion property.
The idea is that the procedure we used to compute δΔ

does not care about the exact position xn of the poles/
microscopic cuts we are adding. Before substituting the
expressions of xn obtained from (6.3) in the frequency of
the corresponding excitation, we can thus think of ΩðxÞ as
formal, off shell, functions of x. Once we substitute x ¼ xn
the frequency becomes on shell. We can use the off shell
expressions ofΩðxÞ in our advantage in two different ways.
The first one is the inversion symmetry: if we consider an
excitation connecting a given pair of sheets, we can move
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the pole associated to it to the interior of the unit circle,
making it nonphysical, and a new physical pole will emerge
in the sheets connected to the original ones by inversion
symmetry. The second one is composing two excitations
that share a pole with opposite residue on the same sheet,
say j, but connect to different sheets, say i and k,
respectively. The pole on sheet j will cancel, making the
composition of the two excitations ij and jk indistinguish-
able from having only one excitation ik. We illustrate the
latter in Fig. 1. In mathematical terms, these two ideas
imply

Ω1̂ 4̂ðxÞ ¼ −Ω2̂ 3̂

�
1

x

�
− 2; ðD28Þ

Ω1̃ 4̃ðxÞ ¼ −Ω2̃ 3̃

�
1

x

�
þΩ2̃ 3̃ð0Þ; ðD29Þ

and

ΩijðxÞ � ΩjkðxÞ ¼ ΩikðxÞ; ðD30Þ

where the� is chosen appropriately to cancel the residue in
sheet j. We will not reproduce here the derivation of these
expressions, which can be found in [55]. Let us stress again

that these relations between the different contributions only
hold when they are understood as functions of x, not as
functions of n.
Let us now compute some of the remaining frequencies

using the ones we obtained above. The process is relatively
similar for most of them, so we will consider only some
specific cases: the excitations 2̂ 3̂, 1̃ 4̃ and 1̂ 4̃. Both 2̂ 3̂ and
1̃ 4̃ can be obtained by immediate application of the above
formulas,

Ω2̂ 3̂ðxnÞ ¼ −Ω1̂ 4̂

�
1

xn

�
− 2 ¼

�
−
2KðxnÞ
1 − x2n

þ 2

�
− 2

¼ 2KðxnÞ
x2n − 1

; ðD31Þ

Ω1̃ 4̃ðxnÞ¼−Ω2̃ 3̃

�
1

xn

�
þΩ2̃ 3̃ð0Þ¼−2

ffiffiffiffiffiffiffiffiffiffiffiffi
1−β2

p
x−2n −1

−2

ffiffiffiffiffiffiffiffiffiffiffiffi
1−β2

q

¼2

ffiffiffiffiffiffiffiffiffiffiffiffi
1−β2

p
x2n−1

: ðD32Þ

The last one is obtained by considering first the compo-
sition of the excitations 2̃ 3̃ and 2̃ 4̃. This gives us that the
excitation 3̃ 4̃ hasΩ3̃ 4̃ ¼ 0, which is consistent with the fact
that it is an unphysical excitation. This result can then be
used to show, e.g., that Ω1̂ 4̃ ¼ Ω1̂ 3̃ þ Ω3̃ 4̃ ¼ Ω1̂ 3̃.

APPENDIX E: BOSONIC SECTOR OF THE
QUADRATIC FLUCTUATIONS

In order to cross-check the results we obtained using the
classical spectral curve method, we can compute the
contribution of the bosonic excitations to the one-loop
correction to the energy by considering the effective
Lagrangian of small fluctuations around the classical
solution we are interested in. We will perform this compu-
tation in the deformed periodic picture, rather than the
undeformed twisted one. The expansion of the deformed
AdS5 sector of the Lagrangian is given by50

Lðxclas þ ϵxÞ ≈ LðxclasÞ þ ϵðEOMÞ þ ϵ2

2b6Z
½4b4Zð _P2 − P02 þ _Z4 − Z02Þ

− ð4b6Z þ η2b2ZÞð _T2 − T 02Þ − 8b4Zð _T _V −T 0V 0Þ þ 4aTbZZðη2 _T þ 4b2Z _V þ 3ηZ0Þ
−a2Tð4b4Z þ η2ÞP2 − 4a2Tη

2Z2 − 4ηaTb2ZPP
0 þ 4bZηðT 0 _Z − _TZ0Þ� þOðϵ3Þ; ðE1Þ

where, by a slight abuse of notation, we have denoted the fluctuation around the coordinates with the same symbols as the
coordinates. Here, the dot and prime represent derivatives with respect to τ and σ, respectively. Notice that neither the
coordinate Θ nor the Kalb-Ramond field terms contribute at quadratic order. The fact that Θ does not appear is simply a
consequence of the noncanonical kinetic term that it has, which would appear at higher orders in the field expansion.51

FIG. 1. Illustration of the composition rule (D30). The fer-
mionic frequency Ω1̂ 3̃ðxÞ and the bosonic frequency Ω3̃ 4̃ðyÞ can
be composed, because the two excitations have a pole with
opposite residue on sheet p̃3. In particular, the residue on sheet p̃3

vanishes in the limit y → x, giving us the pole structure (and
asymptotic behavior) associated with the fermionic excitation 1̂ 4̃.
Thus, Ω1̂ 3̃ðxÞ þ Ω3̃ 4̃ðxÞ ¼ Ω1̂ 4̃ðxÞ off shell.

50The term εðEOMÞ in the expansion vanishes upon the equations of motion (EOM).
51If we want to do the counting of degrees of freedom correctly, we should change from P and Θ to Cartesian coordinates X2, X3.

However, as we are only interested in independently checking our results in Appendix D, this computation is sufficient.
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The next step is to compute the equations of motion of the fluctuations. We will use the fact that we do not want to spoil
the periodicity condition of our classical solution by considering the following ansätze for each of the coordinates:

Xm ¼
X
n

Am cosðΩnτ þ nσÞ þ Bm sinðΩnτ þ nσÞ: ðE2Þ

After some algebra, the equations of motion become the system of linear equations Mv ¼ 0 with v the vector given by
v ¼ ðAZ AT AV AP BZ BT BV BPÞ and M is the matrix,
0
BBBBBBBBBBBBBBBBBBBBB@

ffiffiffiffiffi
η3

2β3

q
ðn2þ4a2Tβ

2−Ω2
nÞ 0 0 0 0 −aTη2Ωn −2aT ηΩn

β 0

0 −1þβ2

β2
η2ðn2−Ω2

nÞ −2η
β ðn2−Ω2

nÞ 0
ffiffiffiffiffiffiffiffiffiffiffiffi
23η3β

p
aTΩn 0 0 0

0 −ðn2−Ω2
nÞ 0 0

ffiffiffiffiffi
23β
η

q
aTΩn 0 0 0

0 0 0
ffiffiffiffiffi
2η3

β3

q
ða2T ð1þβ2Þþn2−Ω2

nÞ 0 0 0 0

0 atη2Ωn
2aT ηΩn

β 0
ffiffiffiffiffi
η3

2β3

q
ðn2þ4a2Tβ

2−Ω2
nÞ 0 0 0

−
ffiffiffiffiffiffiffiffiffiffiffiffi
23η3β

p
aTΩn 0 0 0 0 −1þβ2

β2
η2ðn2−Ω2

nÞ −2η
β ðn2−Ω2

nÞ 0

−
ffiffiffiffiffi
23β
η

q
aTΩn 0 0 0 0 −ðn2−Ω2

nÞ 0 0

0 0 0 0 0 0 0
ffiffiffiffiffi
2η3

β3

q
ða2T ð1þβ2Þþn2−Ω2

nÞ

1
CCCCCCCCCCCCCCCCCCCCCA

:

ðE3Þ
If we want this system of equations to have a nontrivial solution, we need the matrix of coefficients to have vanishing
determinant. This gives us the condition,

ðn2 −Ω2
nÞ2ðn2 þ a2Tð1þ β2Þ −Ω2

nÞ2ðn4 − 4a2Tβ
2n2 − 2ð2a2T þ n2ÞΩ2

n þ Ω4
nÞ2 ¼ 0: ðE4Þ

We can check that the solutions for Ωn to this equation,
divided by QT ¼ −aT, perfectly match (6.19), (6.20), and
(6.21) up to a constant term. Additionally, we also get
solutions of the form Ωn ¼ �n. The modes associated
to these are not physical and are canceled by conformal
ghosts [84].
Instead of repeating the same computation for the S5

sector of the Lagrangian, we can argue that this part of the
space is blind to the deformation, and hence, the final result
has to be the same as the one for the undeformed back-
ground. In fact, we can check that

Ω ¼ ω�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ n2

p

QT
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2 þ n2

a2T

s
; ðE5Þ

which perfectly matches (6.18).
The mismatch by a constant between the contributions

computed using the quadratic fluctuations and the ones
computed using the classical spectral curve may be
uncomfortable. However, they are also present for unde-
formed AdS5 × S5 and arise due to each method describing
the perturbations around the classical solution using a
different frame of reference [51].
Even though these shifts have a nonphysical origin, this

does not mean at all that they are harmless, as they can give
rise to ambiguities. To discuss those ambiguities, first we

have to distinguish between two kinds of shifts that may
appear: a constant shift of Ω (usually proportional to the
energy or an angular momentum), and a shift of the mode
number n (usually proportional to a winding number).
The ones of the first kind are completely harmless, but the
ones of the second kind give rise to an ambiguity. To see
that, we can compare what would be the contribution to
the one-loop energy we obtain with and without perfor-
ming a shift of the mode number. Although the sumP∞

n¼−∞ ½2ΩðxnÞ−Ωðxn−mÞ−ΩðxnþmÞ� might initially seem
to vanish because the terms cancel each other after a
relabeling, this is not entirely correct if we consider a partial
sum up to a large enough value,Λ. Using thatΩðxnÞ ≈ n for
large n, we see that, up to subleading orders in Λ,

XΛ
n¼−Λ

½2ΩðxnÞ −Ωðxn−mÞ −ΩðxnþmÞ�

¼ 2
XΛ

n¼Λ−mþ1

½ΩðxnÞ − Ωðxn−mÞ� ≈ 2m: ðE6Þ

Luckily, we do not have shifts of this second kind in our
problem. In fact, they are usually associated to winding in
the classical solution, which ours does not possess. We
therefore conclude that these shifts do not create an
ambiguity in our final result for E1−loop.
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