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Recently it has been shown by Almheiri and Lin [1] that the reconstruction of a black-hole interior is
sensitive to knowing the exact coupling of the boundary theory even if the coupling is irrelevant. This
motivates us to enlarge the set of the one-time and two-time toy models inspired from the Sachdev-Ye-
Kitaev by deforming the same with “irrelevant” coupling. We find that half-wormholes, as well as the
wormholes, persist in the presence of the deformation, leading to a similar mechanism for curing the
factorization problem. While for the one-time case, the deformed partition function and its moments change
by an overall factor, which can completely be absorbed into a renormalization of coupling; for the two-time
(or coupled one-time) Sachdev-Ye-Kitaev we find nontrivial dynamics of the saddles as the couplings are
varied. Curiously, the irrelevant deformations that we consider can also be thought of as an ensemble
average over an overall scaling of the original undeformed Hamiltonian with an appropriate probability
distribution; this allows for the possibility that half-wormholes may also be present in suitably defined
ensemble of theories.
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I. INTRODUCTION AND SUMMARY

In AdS=CFT, the factorization problem arises if we have
a bulk manifold X with two (or multiple) disconnected
conformal boundaries say L and R. From the boundary
perspective, the partition function ZL∪R on L ∪ R should
factorize as a product of two partition functions ZL and ZR,
defined solely on the L and R component respectively. On
the other hand, the holographic dictionary instructs us to
perform a bulk computation summing up contribution from
all possible choices of X. This allows for, in particular, a
contribution from wormhole geometries connecting
the L and R. Therefore, the bulk computation seems to
capture the correlation between two boundary quantities,
i.e., hZLZRi − hZLihZRi, leading to nonfactorization.
Following [2], let us call these kinds of contributions
“connected amplitudes with disconnected boundaries”
i.e., CADB. They have recently gained lot of interest. In
particular, the wormhole saddle contributions are respon-
sible for the late time behaviors of the spectral form factor
[3,4] and correlators [5] of holographic theories in the ramp

regime, as well as the late time Hawking radiation
entropy [6,7].
The CADB lead to factorization problem only if one

insists on having a unitary dual conformal field theory with
fixed Hamiltonian. The puzzle can be avoided if one,
instead, assumes the Hamiltonian is drawn from a random
matrix ensemble. In fact, in 2D Jackiw–Teitelboim (JT)
gravity, this is precisely what happens; the dual theory of JT
gravity is not a single fixed theory, rather an ensemble of
theories [4] and hence provides a plausible explanation why
CADB exist from the boundary perspective. Even though
the ensemble average saves a potential embarrassment, this
raises a puzzle in cases where we expect and know the
AdS=CFT duality to work without any averaging, i.e.,
when a theory with a specific set of couplings in the
boundary is dual to a bulk theory with a specific set of
parameters (as in the original examples of AdS=CFT based
on maximally supersymmetric quantum field theory (QFT)
models).
The dichotomy is that on one hand wormhole contribu-

tions are important, for instance, to find the ramp in the
spectral form factor (SFF),while on the other hand they spoil
factorization. Therefore, it is desirable to search for worm-
holes even in the factorizable observables, and naturally, we
are led to find other contributionswhich restore factorization
in those scenarios. Moreover, the SFF is not self-averaging
[8]; for a single fixed theory there are erratic fluctuations
around the ramp, hence there should be some bulk con-
tribution responsible for these fluctuations. As the problem
for the full Sachdev-Ye-Kitaev (SYK) model is a difficult
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one, the authors of [9,10] focused on the SYK model at a
single time instance and within this toy problem resolved
factorization by discovering “half”-wormholes on top of the
usual wormhole contributions. We emphasize that in these
toy models, the wormholes survive even in the unaveraged
theory, and the half-wormholes added to it restore factori-
zation. See also Refs. [11,12] on the general mechanism of
how half-wormholes can possibly cure the factorization
puzzle. It is worth mentioning that [13,14] discuss two-
dimensional gravity models, where they can successfully
address the factorization puzzle. While the former discusses
an interpolating model between a random matrix ensemble
and a fixed Hamiltonian, the latter utilizes nonlocal inter-
actions in the action.
In this short paper we enlarge the set of such toy

examples by considering irrelevant deformations of the
one- (and two-) time SYK model. Since the toy models
are zero dimensional, any deformation is marginal. Our
nomenclatures are made with reference to the actual SYK
model. Let us motivate why we care about irrelevant
deformations. First of all, one might wonder how robust
is the prediction of the one-time SYK model in terms of
having wormholes and half-wormholes. More importantly,
it has been pointed out recently that the reconstruction of
black-hole interior is highly theory sensitive [1], in par-
ticular, it depends on the marginal and irrelevant couplings
nontrivially. Hence, it is a natural step to deform the
original one-time SYK model by irrelevant deformations
and ask about the presence of wormholes and half-
wormholes, to which we answer affirmatively. On top of
the one-time case, we also consider the coupled (two-time
instances) case, which is closer to the actual SYK model.
The relevant quantities that have been studied in [9,10]

for the undeformed case are given by

zSYK ¼
Z

dN ψ expðH0Þ;

ζSYKðμÞ ¼
Z

d2N ψ exp ðH0L þH0R þ μψL
i ψ

R
i Þ ð1Þ

We note that ζSYKð0Þ ¼ z2SYK. Nonzero μ can be thought of
as a two-time or coupled one-time SYK model. One of the
salient conclusions from [9,10] is

z2SYK ≃ hz2SYKi þ half-wormhole; ð2Þ

and hz2SYKi is identified with the wormhole contribution.
Later, we will refer to them as moments of partition
function. Furthermore, it has been shown in [10] that the
wormholes appear as the final term in a perturbation series
around the half-wormholes. Finally, the half-wormholes are
responsible for curing the factorization problem.
We study the above physical observables for irrelevant

deformation of H0, denoted as fðH0Þ. In particular, we
expound upon

zdeformed¼
Z

dNψ expffðH0Þg;

ζdeformedðμÞ¼
Z

d2Nψ expffðH0LÞþfðH0RÞþμψL
i ψ

R
i g:

ð3Þ

Several interesting features come out of the analysis.
(1) (Half)-wormholes persist after deformation:

We find that half-wormholes, as well as the
wormhole, persist in the presence of the deforma-
tion, leading to a similar mechanism for curing the
factorization problem.

(2) Wormholes as large fluctuations around half-
wormholes even after deformation:
Just like the original undeformed model, the

wormhole can be thought of as a large fluctuation
around the half-wormhole saddle. One need not add
it separately. The scenario mimics the case of the
tensionless string, where one can prove the back-
ground independence of the partition function [15].
See also Ref. [16] for stringy realizations which
point out several limitations of ensemble QFTs in
absence of a UV completion.

(3) Deformation ¼ renormalization:
For the one-time case, the deformed partition

function changes by an overall factor, which can
completely be absorbed into a renormalization of
coupling J amongst fermions. Quantitatively, con-
sider the following deformation fðH0Þ (E0 is the
ground state energy of the undeformed model) and
define the function B,

fðH0Þ ¼
X∞
α¼0

hðE0; αÞHα
0;

Bðr1Þ≡
X

fαi⩾1gP
i
αi¼p

�Yr1
i¼1

hðE0; αiÞ
�
; ð4Þ

so that for the one-time model, the renormalized
coupling Jrenormalized is given by

Jrenormalized ¼ J

�
p!

Xp
r1¼1

1

r1!
Bðr1Þ

�1=p

: ð5Þ

For more details, see the end of Sec. II, in particular,
Eq. (41). For the two-time (or coupled one-time)
SYK, we find nontrivial dynamics of the saddles as
the couplings are varied. In particular, one can
understand the deformation for the two-time case
as renormalization of the two-time coupling μ. In
this case the wormholes lose their self-averaging
characteristics if the renormalized μrenormalized
becomes very large. On the other hand, in the
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regime, 1=N ≪ μrenormalized ≪ 1, the wormholes
persist and dominate over half-wormhole just like in
the undeformed case.

(4) Deformation ¼ ensemble average over overall
scale:
The irrelevant deformations that we consider

can also be thought of as an ensemble average
over an overall scaling of the original undeformed

Hamiltonian (along with a possible shift in ground
state energy) with an appropriate probability
distribution. This allows for the possibility that
the half-wormhole may persist in a suitably defined
ensemble theory as well. In particular, we can
express Eq. (3) for appropriate pðlÞ, which depends
on the deformation coupled with a possible shift in
the ground state energy E0:

zdeformed ¼
Z

dlpðlÞ
Z

dN ψ elðH0−E0Þ;

ζdeformedðμÞ ¼
Z

dlL dlR pðlLÞpðlRÞ
Z

d2N ψ elLðH0L−E0ÞþlRðH0R−E0ÞþμψL
i ψ

R
i : ð6Þ

Specifically, for TT̄ deformation and Gaussian deformation, we have

pTT̄deformed ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
8πλl3

p exp

�
−
ðl − 1Þ2
8λl

�
l ∈ ½0;∞Þ;

pGaussiandeformed ¼ 1ffiffiffiffiffiffi
2π

p
s
exp

�
−
ðl − l�Þ2

2s2

�
l ∈ ð−∞;∞Þ: ð7Þ

Here λ; s;l� parametrize the deformation. For more details,
see Sec. II and Sec. IV.
The einbein averaging mentioned above is, in fact, an

annealed one in contrast to the usual disordered averaging
in the q fermion coupling in zSYK, which is a quenched
average. This curious feature of deformation being captured
by annealed average is, in fact, more generic than being a
model dependent feature. For example, in the case of
Lagrangian field theories the annealed ensemble averaging
over couplings gi, corresponding to operator Oi is equiv-
alent to deforming the original theory by local composite
operators1 built out of Oi. In Eq. (6), the role of coupling g
is played by an overall scaling of the original Hamiltonian,
which plays the role of O.
It is worth mentioning that in [17] it has been shown,

using harmonic analysis on SLð2;ZÞ, that the fixed N
ensemble average of SLð2;ZÞ invariant physical observ-
able over the N ¼ 4 supersymmetric conformal manifold
upon taking the large N limit reproduces the large N, large
‘t-Hooft coupling limit. This provides another example
where the ensemble average is equivalent to a theory with
particular coupling, albeit in some particular limit. See also
Ref. [18] for the implication of harmonic analysis of
SLð2;ZÞ in context of 2D CFT. In recent years, the
ensemble average over some appropriate moduli space

of 2D CFT has been considered in many papers, which
includes [19–29], see also Refs. [30–32]. It deserves
mentioning that the ensemble average over overall scaling
induces a deformation that is briefly discussed in the
concluding section of [1].
Deformations of the SYK theory have previously been

studied in [33,34]. The 1D analog of the TT̄ deformation
was shown to be equivalent to coupling an undeformed
theory to the worldline quantum gravity. The generic
deformation H0 → fðH0Þ is speculated to couple the
undeformed theory to other 1D quantum gravities [33].
For the SYK model, [34] finds that the effect of the
deformation, HðJÞ → HðJÞ þ λTT̄, can essentially be cap-
tured in the renormalization of the coupling of the theory:
J → Jrenormalized ¼ JðλÞ. It is also quite important
to normalize the vacuum energy by adding a shift:
H0 → H0 − E0. This constant shift, though trivial for the
undeformed theory, gives inequivalent deformed theories.
In particular, the renormalization becomes trivial when
E0 ¼ 0. We show that similar features are also present in
deformation of one- and two-time SYK models. It deserves
mentioning that the TT̄ deformation in context of JT
gravity is studied in [35] (see also Refs. [36–38] and
[39,40] for TT̄ deformation of JT gravity and various
quantum mechanical models).
The organization of the rest of the paper, along with

glimpses of some results, are as follows. In Sec. II we
review the one-time undeformed SYK model, then go on
studying its TT̄ deformation. The deformed version is
investigated in two different ways. The first method

1Unlike the one-point theories described in the paper, the
quantum field theory in the higher dimension has coincidence
singularities and usually one needs to be careful about handling
the composite operators.

WORMHOLES AND HALF WORMHOLES UNDER … PHYS. REV. D 106, 066014 (2022)

066014-3



involves using einbein to recast the model as an original
SYK model with an integral over the einbein variable. The
integral over einbein for the TT̄ deformation can also be
interpreted as ensemble averaging. From the exact answer
we conclude that wormholes, as well as half-wormholes,
are present in the deformed theory. The other method
involves explicitly evaluating the z2deformed as a finite
perturbation series around the half-wormhole saddle, where
the wormhole appears as the final term in the series. We
further generalize this second method to any arbitrary
deformation fðH0Þ. In Sec. III, we look at two-time
SYK and its deformed version, i.e., we study ζdeformed
and dynamics of saddle points. As our work reveals
the interpretation of deformation in terms of ensemble
averaging, in Sec. IV we study the Gaussian deformation.
In particular, one chooses the overall scaling of the
Hamiltonian from a Gaussian ensemble; this model is
exactly equivalent to a quadratic deformation of the original
Hamiltonian. Since this falls under the class of arbitrary
deformation, the conclusion regarding the presence of half-
wormholes remains true.

II. THE ONE-TIME SYK UNDER TT̄

In this section after a short review of the undeformed
single-time SYK model, we analyze the deformed case. We
write down the exact deformed partition function and its
moments using both the einbein approach, as well as
through a Taylor expansion in the deformation parameter.
We find that the deformed partition function is proportional
to the undeformed single-time zSYK. Recalling that zSYK has
half-wormholes and wormholes, we establish the presence
of half-wormholes and wormholes in the deformed theory.
The method involving the einbein further reveals that one
can view the deformation as an ensemble average. Using
the Taylor expansion method, one can conclude the
presence of half-wormholes for H → fðHÞ for any nice
enough function f.

A. Undeformed theory

We start with the toy version of the undeformed SYK
model wherein we focus on a single time instance. The
analog of the partition function is built out of the following
multi-Grassmann valued number:

H0¼ iq=2
X

1≤i1<���<iq≤N
Ji1���iqψ i1���iq ; ψ i1���iq ≡ψ i1ψ i2 � � �ψ iq :

ð8Þ

The couplings Ji1���iq are drawn randomly from a Gaussian
distribution:

hJi1���iqi ¼ 0; hJi1���iqJj1���jqi¼
ðq−1Þ!
Nq−1|fflfflffl{zfflfflffl}
J̄2

δi1j1 � � �δiqjq : ð9Þ

We also assumed that both N, q are even integers, and the
ratio N=q ¼ p is a positive integer. The partition function
can be expressed as a Grassmannian integral,

zSYK¼
Z

dNψ expðH0Þ¼
X

A1<���<Ap

sgnðAÞJA1
� ��JAp

; ð10Þ

where in the last line the fermions were integrated out. The
labels Ai denote ordered nonintersecting subsets of
f1;…; Ng with cardinality q. We remark that on noninter-
secting subsets Ai ¼ fai1; ai2; � � � aiqg of f1;…; Ng with
cardinality q and aim < ain if m < n; “ordering” is defined
as follows: ai1 < aj1 ⇔ Ai < Aj for i ≠ j. In the unde-
formed model with the explicit form of zSYK, we may
evaluate the averaged (over J) moments: hzkSYKi. Clearly,
hzSYKi ¼ 0 since there are no possible Wick contractions of
J indices. The two lowest nontrivial moments come from

hz2SYKi ¼
N!

p!ðq!Þp ðJ̄
2Þp;

hz4SYKi ¼
�
J̄2

q!

�
2p X

n1þn2þn3¼p

ðqn1Þ!ðqn2Þ!ðqn3Þ!
ðn1!n2!n3!Þ2

: ð11Þ

In the large N limit, it follows that

hz4SYKi ≈ 3hz2SYKi2: ð12Þ

The correlations in the hz2SYKi ¼ hzLzRiSYK contraction are
the “wormhole” contribution. We have added replica
indices L and R to distinguish the replicas. For hz4SYKi
we therefore have hzLzRzL0zR0 iSYK. Among all the
possible contractions in the large N limit, the ones that
dominate turn out to be hz4SYKi ≈ hzLzRiSYKhzL0zR0 iSYKþ
hzLzL0 iSYKhzRzR0 iSYK þ hzLzR0 iSYKhzRzL0 iSYK. It also turns
out that each of the averages are equal to each other and
equal to the wormhole correlation, from whence Eq. (12)
follows.

1. Half-wormholes of the undeformed theory

The half-wormholes are the contributions to the unaver-
aged z2SYK, in addition to hz2SYKi which restore factorization.
The regime where the half-wormholes dominate is best
seen by introducing collective fields g ∝

P
i ψ

L
i ψ

R
i and its

conjugate σ. It turns out that the factorized answer can be
expressed as follows:

z2SYK ¼
Z

dσΦ0ðσÞΨ0ðσÞ; ð13Þ
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where

Φ0ðσÞ ¼
Z

d2N ψ exp½ie−iπ=qσψL
i ψ

R
i − J̄2ðψL

Aψ
R
AÞ þ iq=2JAðψL

A þ ψR
AÞ�

¼
Z

d2N ψ exp

�
ie−iπ=qσψL

i ψ
R
i −

N
q

�
1

N
ψL
i ψ

R
i

�
q
þ iq=2JAðψL

A þ ψR
AÞ
	
: ð14Þ

Here we have used J̄2 ¼ ðq−1Þ!
Nq−1 and ðψL

Aψ
R
AÞ ¼ 1

q! ðψL
i ψ

R
i Þq

to go from the second line to the third line. The Ψ0ðσÞ is
given by

Ψ0ðσÞ ¼
Z

∞

−∞

dg
2π=N

exp

�
N

�
−iσg −

1

q
gq
�	

ð15Þ

and is independent of the disorder. Therefore, disorder
average hΦ0ðσÞi is well approximated by the contributions
of the wormhole saddles. On the complex σ plane these lie
symmetrically on the unit circle separated out by angle
2π=q. In order to compute the RMS, we need

hΦ2
0ðσÞi ¼

Z
d4gabd4σabIðσ; σab; gabÞ; ð16Þ

where we have

Iðσ; σab; gabÞ≡ 1

ð2π=NÞ4 exp
�
N logðσ2 þ σLR0σRL0

− σLL0σRR0 Þ − N

�
iσabgab þ

gqab
q

�	
; ð17Þ

where ða; bÞ ∈ fðL;L0Þ; ðL;R0Þ; ðR;R0Þ; ðR;L0Þg and
σLR ¼ σL0R0 fixed to σ and not integrated over. Note that
σab ¼ 0 is a trivial saddle for any value of σ and responsible
for hΦ0ðσÞi2 contribution to hΦ2

0ðσÞi. When σ ¼ 0,
the nontrivial saddles lie on the unit circle, and there are
q × q × 2 of them. One of the two kinds corresponds to
ðL;R0Þ; ðL0; RÞ contraction while the other represents
ðL;L0Þ; ðR;R0Þ contraction. As we make σ ≠ 0, these
nontrivial saddles take the form σLR0σRL0 ¼ s2e2πim=q,
σLL0σRR0 ¼ s2e2πim=q. Without loss of generality, let us
focus on the case σLR0σRL0 ¼ s2e2πim=q and σLL0σRR0 ¼ 0.
Let us name the saddles as σab�; gab�. So we have two
contributions:

hΦ2
0ðσÞi ¼ Iðσ; 0; 0Þ þ

X
nontrivial saddles

Iðσ; σab�; gab�Þ: ð18Þ

Now as we vary σ on the complex plane, hΦ2
0ðσÞi gets most

of the contribution either from the trivial saddle or from the
nontrivial ones. The region dominated by the trivial saddle
is a self-averaging one, while the other region is non-
self-averaging. Thus, we can write

hΦ2
0ðσÞi ¼ hΦ0ðσÞi2 þ

X
nontrivial saddles

Iðσ; σab�; gab�Þ: ð19Þ

It turns out that for the one-time SYK model, the wormhole
saddles (which correspond to some specific value of σ)
always lie in the self-averaging region. The non-self-
averaging region takes the shape of a scallop (see Fig. 1
in [9] for q ¼ 4). For future reference, we define

ΘðσÞ ¼
P

nontrivial saddlesIðσ; σab�; gab�Þ
hΦ0ðσÞi2

; ð20Þ

and use it as diagnostic of the self-averaging (or non-self-
averaging) region. The above exercise shows that the
wormholes persist for the one-point SYK model before
averaging since they live in the self-averaging region.
Now we turn our attention to the half-wormholes. While

the wormhole saddles are in the self-averaging regime, we
know that z2 is factorizable and cannot be self-averaging
exactly. This can be seen by setting σ ¼ 0 and noticing that
the dominant contribution to hΦ2

0i comes from nontrivial
saddles, hence σ ¼ 0 is in the non-self-averaging region. It
turns out that the following is a good approximation:

z2SYK ≃ hz2SYKi þΦ0ð0Þ; ð21Þ

where Φ0ð0Þ is dubbed as half-wormhole [9,10] and
responsible for factorization. The RMS value of the fluc-
tuation is hΦ2

0ð0Þi, which is dominated by nontrivial
saddles is of the same order as the trivial contribution:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΦ2

0ð0Þi
q

≃ hz2SYKi: ð22Þ

Furthermore, one can show that other contributions to z2SYK
are typically suppressed [9,10].

B. TT̄ deformed theory

In this subsection we focus on the λTT̄ deformation. The
deformation of the spectrum indexed by energy levels E
can fully be solved from the nonperturbative flow equation:

∂E
∂λ

¼ E2

1=2 − 2λE
: ð23Þ

The above can be integrated to find the full deformed
Hamiltonian in terms of the original one as follows:
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HðλÞ ¼ 1

4λ
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8λðH0 − E0Þ

p
Þ; ð24Þ

where H0 is the undeformed SYK Hamiltonian. We have
also included a constant E0 shift to the ground state energy
of the undeformed theory. The solution with negative sign
is perturbatively connected from the undeformed spectrum,
hence, we consider HðλÞ with only the negative sign in
front of the square root.
In what follows we will compute the moments of this

model using two methods. The first one involves intro-
ducing an einbein and then doing an ensemble average over
the einbein to implement the deformation. The second
method proceeds without the einbein by doing simple brute
force Taylor expansion of deformed Hamiltonian around
the original undeformed one.

1. Moments from exact computation-I via einbeins

A convenient way to implement the TT̄ deformation
given by Eq. (24) is to use an integral over einbeins. The

zeroth moment, i.e., the partition function, now involves
also an integral over the einbein l as follows2:

zdeformed ¼
Z

∞

0

dl
1ffiffiffiffiffiffiffiffiffiffiffiffi

8πλl3
p exp

�
−
ðl − 1Þ2
8λl

�

×
Z

dN ψ exp flðH0 − E0Þg: ð25Þ

We note that 1ffiffiffiffiffiffiffiffiffi
2πλl3

p exp f− ðl−1Þ2
8λl g can be thought of as a

probability distribution of l, the overall scaling of shifted
Hamiltonian H0 − E0. The distribution has its support on
½0;∞Þ with unit mean and 4λ variance. This is only when
the deformation coupling λ is positive.3 As promised in the
Introduction, we see the ensemble average over overall
scaling implements a deformation of the original
Hamiltonian.
We can rescale ψ in H0 to separate out the l integral so

that we obtain

zdeformed ¼
Z

dl e−S
0ðlÞ

Z
dNψ exp

�
iq=2

X
1≤i1<���<iq≤N

Ji1���iqψ
L
i1���iq

�

with; S0ðlÞ ¼ ðl − 1Þ2
8λl

þ lE0 þ
1

2
logð8πλÞ þ

�
3

2
−
N
q

�
logl: ð26Þ

Note that we have used the Grassmannian identity
dðaψÞ ¼ dψ=a above. The l integral can now be done
explicitly to obtain

zdeformed ¼
�
e

1
4λð1þ 8λE0Þ

1
4
−N
2qffiffiffiffiffiffiffiffi

2πλ
p K1

2
−N

q

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8λE0

p
4λ

	�
zSYK:

ð27Þ

Since the effect of the deformation appears as an overall
factor to zSYK, the existence of wormholes and half-
wormholes follow naturally. One can also check this by
looking at the variance and moments, e.g., the kth moment
of the partition function upon performing the SYK-like
average over the coupling J evaluates to

hzkdeformedi≡
Z �Y

A

dJAffiffiffiffiffiffi
2π

p
J̄

�
e−

1

2J̄2
J2AzkdeformedðJÞ ð28Þ

and noting the integral only affects the zkSYK factor of
zkdeformed. Thus,

hzkdeformedi¼
�
e

1
4λð1þ8λE0Þ

1
4
−N
2qffiffiffiffiffiffiffiffi

2πλ
p K1

2
−N

q

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8λE0

p
4λ

	�k

hzkSYKi:

ð29Þ

Note that in the limit λ → 0 with λE0 held fixed, we can
use the asymptotics of Bessel K to obtain

hz2deformedi≈
e2E

0
0

ð1þ8λE0Þp
hz2SYKi; E0

0¼
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8E0λ

p
4λ

:

ð30Þ

Similarly, we have

hzkdeformedi ≈
ekE

0
0

ð1þ 8λE0Þpk=2
hzkSYKi: ð31Þ

The same conclusion will be reached using the exact
computation without using einbein.

2We thank Baur Mukhametzhanov for pointing out the
one loop exactness of the deformation.

3When λ < 0, the analog process with the probability distri-
bution 1ffiffiffiffiffiffiffiffiffi

2πλl3
p exp f− ðlþ1Þ2

8λl g having support on l ∈ ð−∞; 0� with
mean −1 and variance −4λ, yields, e−HðλÞ.
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2. Moments from exact computation-II

In this subsection we evaluate the Grassmannian inte-
grals exactly to compute one-time z and its higher
moments. We find that in the leading order in N, and
more specifically when Nλ ≪ q, the answers from the
einbeins are reproduced. Our methods allow for an
easy generalization to arbitrary deformations of the type
H0 → fðH0Þ of which TT̄ is only a special case. For the
latter we can write,

zdeformed ¼
Z

dN ψ eHðλÞ

¼
Z

dN ψ exp

�
1

4λ
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8λðH0 − E0Þ

p
Þ
�

¼
Z

dNψ
X∞
r¼0

1

r!

�X∞
α¼0

hðE0;αÞHα
0

�r

; ð32Þ

where hðE0; αÞ is given by

hðE0; αÞ ¼
� X∞

k≥αk>0

1

4λE0

�
1=2
k

��
k
α

�
ð8λE0Þkð−E0Þ1−α

�

¼
8<
:

23α−2


1=2
α

��
−λ

1þ8λE0

�
α ffiffiffiffiffiffiffiffiffiffiffiffi

1þ8λE0

p
−λ for α ≥ 1;

1
4λ ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8λE0

p Þ for α ¼ 0:

ð33Þ
Now let us consider ðP∞

α¼0 hðE0; αÞHα
0Þr and separate out

the α ¼ 0 term from the rest, so that we have�
hðE0; 0Þ þ

X∞
α¼1

hðE0; αÞHα
0

�r

¼
Xr
r1¼0

�
r
r1

�
hðE0; 0Þr−r1

�X∞
α¼1

hðE0; αÞHα
0

�r1
: ð34Þ

Now the idea is that we need exactly N Grassmannian
variables to saturate the integral, thus we need to figure out
the coefficient of Hp, where N=q ¼ p. From Eq. (34) we
find that

Bðr1Þ≡
X

fαi⩾1gP
i
αi¼p

�Yr1
i¼1

hðE0; αiÞ
�
: ð35Þ

The sum runs over all possible sets fαi∶i ¼ 1; 2;…r1g
such that

P
i αi ¼ p and αi > 0. The partitions are unor-

dered, e.g., in the length r1 ¼ 3 partition of
p ¼ 4 ¼ 1þ 1þ 2, the combination contributes with
degeneracy 3 as (1,1,2),(1,2,1), and (2,1,1). Also note that

Bðr1Þ ¼ 0; if r1 > p:

This happens because αi ⩾ 1, and hence p ¼ P
i αi ⩾ r1.

Finally, performing the Grassmannian integral, we find that

zdeformed ¼ ehðE0;0Þ
�X

A

sgnðAÞJA1
JA2

� � � JAp

�

×

�
p!

Xp
r1¼1

1

r1!
Bðr1Þ

�
: ð36Þ

One can check numerically that the above equation is
identical to Eq. (27), for more details see Appendix B. Note
that Bðr1Þ is maximized when r1 ¼ p, and the most
contributing term for small λ is coming from the set
αi ¼ 1. The next leading term comes from Bðp − 1Þ, where
the most contributing term is when one of the αi ¼ 2 and
rest are set to 1:

BðpÞ ≃ ð1þ 8λE0Þ−p=2;
Bðp − 1Þ ≃ 2ðp − 1Þλð1þ 8λE0Þ−p=2−1: ð37Þ

Hence, in the approximation pλ ≪ 1, we have

zdeformed¼
1

ð1þ8λE0Þp=2
exp

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8E0λ

p
4λ

	

×

�X
A

sgnðAÞJA1
JA2

� ��JAp

�
þO

�
pλ

1þ8λE0

�
:

ð38Þ
If we now consider hz2deformedi at the leading order, then it
will precisely give us Eq. (30). Going back to Eq. (38), we
can use the replacements

J → JðλÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8λE0

p J; ð39Þ

and E0
0 from Eq. (30) to rewrite

z¼eE
0
0

�X
A

sgnðAÞJA1
ðλÞ���JAp

ðλÞ
�
þO

�
pλ

1þð4λE0
0Þ2

�
:

ð40Þ
In leading order, this is therefore the one-time SYK model
with renormalized coupling JðλÞ and ground state energy
shifted to E0

0. This is consistent with the results obtained in
the full SYKmodel using diagrammatics and einbeins [34].

3. Arbitrary deformations

For arbitrary Hamiltonian deformations H0 → fðH0Þ,
we therefore see that once we know the Taylor coefficients
fðH0Þ ¼

P
α hðE0; αÞHα

0 , the partition function reduces to
zSYK with renormalized couplings,

JArenormalized ¼ JA

�
p!

Xp
r1¼1

1

r1!
Bðr1Þ

�1=p

; ð41Þ

and ground state shifted E0 → hðE0; 0Þ, where Bðr1Þ is
defined in Eq. (35).

WORMHOLES AND HALF WORMHOLES UNDER … PHYS. REV. D 106, 066014 (2022)

066014-7



III. TWO-TIME SYK AND DEFORMATION

In this section we consider the two-time version of
the SYK model and its deformation. We begin with the
undeformed theory, which can be thought of as coupling
two one-time models with coupling denoted as μ,

ζðμÞ ¼
Z

d2N ψ exp fiq=2JAðψL
A þ ψR

AÞ þ μψL
i ψ

R
i g: ð42Þ

Note, ζð0Þ ¼ z2SYK, and we have

ζðμÞ ¼
Z

dσ Φ0ðσ − ieiπ=qμÞΨ0ðσÞ; ð43Þ

where we repeat

Ψ0ðσÞ ¼
Z

∞

−∞

dg
2π=N

exp

�
N

�
−iσg −

1

q
gq
�	

: ð44Þ

Now averaging leads to

hζðμÞi ¼
Z

dσ ðie−iπ=qσ þ μÞN
Z

∞

−∞

dg
2π=N

× exp

�
N

�
−iσg −

1

q
gq
�	

: ð45Þ

At large N the above integrals over σ and g may be
computed by saddle point. If we solve the saddle point
equations simultaneously, then we can get the saddle points
as specific values of σ. These are the analogs of the
wormhole contributions since a nonzero saddle point value
of σ implies a nonvanishing correlation between the two
replicas. Unlike the one-time case, for a nonzero μ the
wormhole saddles are no longer present on the unit circle in
the complex σ plane, though there are still q of them. We
plot in Fig. 1 for the q ¼ 4 case how the saddles behave as a
function of μ. When μ ¼ 0 the saddles appear symmetri-
cally on the unit circle as it should since ζð0Þ ¼ z2SYK. As μ
gets turned on, the saddles start to move asymmetrically.
One of the saddles always approaches the origin σ ¼ 0. As
μ increases, the rest q − 1 saddles collapse and start moving
at an angle π

2
þ π

q.

A. (Half) wormholes of the undeformed
(two-time) theory

We repeat the exercise done in the end of II A, but
now with Φ0ðσ − ieiπ=qμÞ. When μ ¼ 0 the self-averaging
region takes the form of a scallop centered at origin. The
wormhole saddles live outside the scallop and hence also
exist in the nonaveraged model (see Fig. 2). We contrast
this with the large μ, where the scallop is now centered at
σ ¼ ieiπ=qμ, i.e., the center moves along a line with an
angle π=2þ π=q. For large enough μ, the σ ≠ 0 saddles
comes within the scallop. Thus, for large enough μ,

0-1-2-3-4 1

0

-1

1

2

3

4

FIG. 1. The saddles contributing to hζðμÞi are plotted for q ¼ 4.
The saddles start out from the four rotated roots of unity. Different
colors indicate different values of μ. As μ increases, while one
saddle goes to zero, the other three merge at μei3π=4.

–2

–1

0

1

2

–1 0 1

FIG. 2. The plots are for the q ¼ 4 case. The gray regions
indicate approximately the scallop which is not self-averaging in
the complex σ plane. The black stars indicate the wormhole
saddles. For μ ¼ 0, all the saddles are in the non-self-averaging
region.
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the nonaveraged model does not have the wormhole
saddles. This is expected since increasing μ effectively
makes the model a q ¼ 2 nonaveraged model, which is a
Gaussian integrable theory. Effects of disorder in the
spectral form factor for the q ¼ 2 SYK model have been
analyzed in [41,42], wherein the ramp is exponential. On
the other hand, we know that wormholes give rise to a
linear ramp.
In Fig. 3 we illustrate the dissolution process of the

wormhole saddles with increasing jμj. The plots take into
account both the movement of the wormhole saddles, as
well as the motion of the scallop. A simple dimension
analysis shows that the threshold value μ� scales with
variance in following manner:

μ� ∝ ðJ̄2Þ1=q: ð46Þ

Also, as we see in Appendix A, there is a q dependence on
the size of the scallop. With increasing q the scallop gets
smaller, and therefore, the saddles survive further out in
the complex σ plane as compared with a lower q result.
Intuitively, as increasing q increases chaoticity, this is also
what one would expect.

B. (Half) wormholes of the deformed (two-time) theory

At this point, it is easy to figure out the effect of
deformation. We will be brief and mention the salient
features only,

ζdeformedðμÞ ¼
Z

d2 l e−SðlL;lRÞ
Z

d2N ψ exp fiq=2JAðlLψ
L
A þ lRψ

R
AÞ þ μψL

i ψ
R
i g

¼
Z

dσ Φdeformedðσ − ieiπ=qμÞΨ0ðσÞ; ð47Þ

whereΦdeformedðσ−ieiπ=qμÞ¼Φ0ðσ−ieiπ=qμrenormalizedÞ,
which can be obtained by carrying out the einbein integrals
via saddle. Thus, we can also express ζdeformedðμÞ ¼
ζðμrenormalizedÞ. Of course, note ζð0Þ ¼ z2. For the TT̄
at leading order in pλ ≪ 1, we find that the dissolution of the
wormhole saddles now happen for a different value of μ:

μ�renormalized ∝ ðJ̄2renormalizedÞ1=q ¼
ðJ̄2Þ1=q

ð1þ 8E0λÞ1=q
¼ μ�ð1þ 8E0λÞ−1=q: ð48Þ

We therefore see for λ < 0 (recall E0 is negative), if
we increase jλj, the renormalized variance J̄renormalized
decreases, and therefore, μ�renormalized < μ�, hence the
wormholes dissolve faster.
Since the 1=N expansion in this toy model is finite, it is

possible to expand ζdeformed also around the half-
wormhole, i.e., σ ¼ 0 saddle [10]:

ζdeformed ¼
Xp
k¼0

ζkðμrenormalizedÞΦ̃k; ð49Þ

where,

Φ̃k ¼
1

k!
ðJ̄2Þk

�
−

∂

∂J̄2

�
k
Φdeformedð0Þ; ð50Þ

ζkðμrenormalizedÞ

¼
Xk
n¼0

k!
ðk − nÞ!ðnqÞ!

�
q
N

�
n
ðNμrenormalizedÞnq: ð51Þ

In terms of this expansion the wormhole saddles appear as
the final terms in the series. Also note that in this expansion
the effect of the deformation is encapsulated via
μ → μrenormalized. In the next section we shall look into
this expansion for the exactly solvable case of Gaussian
ensemble of einbeins.

IV. THE GAUSSIAN DEFORMATION

One of the key objects that we have investigated so far is

ζdeformed ¼
Z

d2 l e−SðlL;lRÞ
Z

d2N ψ

× exp fiq=2JAðlLψ
L
A þ lRψ

R
AÞ þ μψL

i ψ
R
i g:
ð52Þ

The purpose of the einbein integral is to implement the
irrelevant deformation H → fðHÞ. One can view the above
as an ensemble average with a weight factor of e−SðlL;lRÞ.
Since SðfligÞ ¼

Q
i SðliÞ, this averaging does not induce

correlations between the “replicas” for μ ¼ 0, rather just
renormalizes JA, which is now a coupling of the irrelevant
Hamiltonian fðHÞ. On the other hand for μ ≠ 0, things are
nontrivial. One cannot simply scale out l and cast the
deformation as an overall factor.
The choice of SðlL;lRÞ provides a class of toy models

where one can replace e−SðlL;lRÞ with a probability measure.
An exactly solvable choice is the Gaussian ensemble for the
einbeins li with means l�

i and variances si. For simplicity,
we will assume lL� ¼ lR� ¼ l�. It results in the exact
deformation: H0 →

1
2
ðs2H2

0 þ 2l�H0Þ. In general, for the
deformation of the type H0 → #Hγ

0, the einbein ensemble
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(a) (b)

(c) (d)

FIG. 3. The plots are for the q ¼ 4 case. The gray regions indicate approximately the scallop which is not self-averaging in the
complex σ plane. The black stars indicate the wormhole saddles. Progressive plots are for increasing values of μ. The figure focuses on
the three saddles which are engulfed, while the other one (not shown in the last two) remains very close to zero.
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action that implements this (in the saddle-point approxima-
tion) is SðlÞ ¼ #lγ=ðγ−1Þ. Coming back to the Gaussian
deformation, the one-time partition function is given by

zdeformed ¼ hlpiszSYK; ð53Þ

where hlkis ¼
Z

∞

−∞
dllke−SðlÞ

¼ 1ffiffiffiffiffiffi
2π

p
s

Z
∞

−∞
dllk exp

�
−
ðl − l�Þ2

2s2

	
: ð54Þ

This integral can be computed exactly and leads to a result in
terms of the hypergeometric function. We can arrive at the
final answer also by using Eqs. (35) and (36) with appro-
priate h for the Gaussian case, which now reads for even p,

zdeformed ¼
�
p!

Xp
r¼p=2

1

r!
BðrÞ

�
zSYK

¼ 2p=2spffiffiffi
π

p Γ
�
1þ p
2

�
1F1

�
−
p
2
;
1

2
;−

l2�
2s2

�
zSYK:

ð55Þ

Note that the sum runs from p=2 because Bðr1Þ ¼ 0 for
r1 < p=2. This happens because αi can be 1 or 2 for the
Gaussian deformation, leading to 2r ≥

P
r
i¼1 αi ¼ p. Thus,P

r
i¼1 αi ¼ p cannot have a solution if r < p=2. A similar

calculation can be done for odd p as well, where the sum
runs from ðpþ 1Þ=2, leading to a slightly different final
expression. For simplicity, in what follows, we will assume
p is even without loosing any physical content.
In the two-time case, when μ ¼ 0, one has ζð0Þ ¼

z2SYK
Q

i¼L;Rhlpi isi , which once again may either be com-
puted exactly using Eq. (41) or using einbeins. When μ ≠ 0
we may write down the half-wormhole expansion as in
Eq. (49):

ζdeformed ¼
Xp
k¼0

Φ̃k

Xk
n¼0

k!
ðk − nÞ!ðnqÞ!

�
q
N

�
n
ðNμÞnq

×
Y
i¼L;R

�Z
dli l

p−n
i e−SðliÞ

�
: ð56Þ

Since SðliÞ is Gaussian, the integral in parentheses can be
performed exactly:

Z
∞

−∞
dllp−ne−SðlÞ ¼ 2

p−n
2 sp−nffiffiffi
π

p

8>><
>>:

Γ


1
2
ðp − nþ 1Þ

�
1F1



n−p
2
; 1
2
;− l2�

2s2

�
n≡ pðmod 2Þ

ffiffiffi
2

p l�
s Γ



p−n
2

þ 1
�
1F1



1
2
ðn − pþ 1Þ; 3

2
;− l2�

2s2

�
nþ 1≡ pðmod 2Þ:

ð57Þ

In spite of the above answer for the integral, the finite sums
in Eq. (56) cannot be explicitly performed in closed form.
However, in the small variance s → 0 coupled with the
large p and 1=N ≪ μ ≪ 1 limit, the final term of the series
Eq. (56) (the wormhole saddle ¼ hζdeformedi) dominates
and we find

ζdeformed ≈
1=N≪μ≪1

p≫1

Φ̃p
l2p
�
q

exp

�
μN

l2=q�

�
: ð58Þ

Here we have used that in the small s limit, the integral
given by Eq. (57) gives lp−n

� . This is consistent with the
saddle point expectations in the zero variance limit. In this
zero “uncertainty” regime of the einbeins, the deformation
reduces to the scaling H0 → l�H0, which is the same as
J̄ → l�J̄ and μ → μ=l2=q� . This leads to the l2p

� factor and
rescaled μ in Eq. (58).
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APPENDIX A: THE q DEPENDENCE
OF THE SCALLOP

Here we work with the undeformed theory and look into
the q dependence of the size of the scallop, i.e., the half-
wormhole dominated region which is, by definition, not
self-averaging. To see this, one can calculate the ratio ΘðσÞ
defined in Eq. (20) on the complex σ plane. If ΘðσÞ > 1,
then the half-wormholes dominate. Here we consider the
case σLR0σRL0 ¼ s2e2πim=q, σLL0σRR0 ¼ 0. For the ease of
computation, we also focus on ΘðσÞ along the real σ line,
i.e., for m ¼ 0. From Fig. 4, we see that the scallop gets
smaller as q increases, thus the non-self-averaging area on
the complex σ plane decreases for increasing q.
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APPENDIX B: A MODIFIED BESSEL FUNCTION
IDENTITY

We find for various values of p, the one-time prefactors
of zSYK from Eq. (36) and Eq. (27) match each other
exactly. Below, we show some numerical plots demonstrat-
ing this agreement Fig. 5.
If we set λ ¼ 1 and parametrize x ¼

ffiffiffiffiffiffiffiffiffiffi
1þ8E0

p
4

, then the
abovematch follows from the following series representation
for modified Bessel K with negative half-integer index:

K1
2
−pðxÞ ¼

ffiffiffiffiffiffi
2π

p
e−xp!ð4xÞp−1

2

Xp
r¼1

ð−xÞr
r!

×
X

fαi⩾1gP
r
i¼1

αi¼p

Yr
i¼1

�
1
2

αi

�
ð−2x2Þ−αi ; ðB1Þ

which can be simplified into

K1
2
−pðxÞ ¼

ffiffiffiffiffiffi
2π

x

r
e−xp!2p−1

Xp
r¼1

ð−xÞr−p
r!

X
fαi⩾1gP

r
i¼1

αi¼p

Yr
i¼1

�
1
2

αi

�
:

ðB2Þ
We have checked explicitly the expressions on both sides of
the above equality for specific integer values ofp and found a
match. In what follows, we sketch a proof of the identity.
Proof.—The identity given by Eq. (B2) can be proven in

the following manner. Let us focus on the rhs of (B2), call it
IðxÞ. Now we set s ¼ p − r to rewrite

I ¼
ffiffiffiffiffi
π

2x

r
e−x

Xp−1
s¼0

ð−xÞ−s
ðp − sÞ!p!2

p
X

fαi⩾1gP
p−s
i¼1

αi¼p

Yp−s
i¼1

�
1
2

αi

�
; ðB3Þ

which can further be rewritten as

I¼
ffiffiffiffiffi
π

2x

r
e−x

Xp−1
s¼0

p!s!
ðp−sÞ!

ð2xÞ−s
s!

2
666664

X
fαi⩾1gP

p−s
i¼1

αi¼p

Yp−s
i¼1

1

αi

�
2αi−2

αi−1

�
3
777775

¼
ffiffiffiffiffi
π

2x

r
e−x

Xp−1
s¼0

p!s!
ðp−sÞ!

ð2xÞ−s
s!

2
666664

X
fβi⩾0gP

p−s
i¼1

βi¼s

Yp−s
i¼1

1

βiþ1

�
2βi
βi

�
3
777775

¼
ffiffiffiffiffi
π

2x

r
e−x

Xp−1
s¼0

p!s!
ðp−sÞ!

ð2xÞ−s
s!

2
666664

X
fβi⩾0gP

p−s
i¼1

βi¼s

Yp−s
i¼1

Cβi

3
777775: ðB4Þ

Here Cβi is the βith Catalan number. The generating
function for the Catalan numbers is

X∞
n¼0

Cnxn ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x

p

2x
: ðB5Þ

Using the generating function, we see that

2
666664

X
fβi⩾0gP

p−s
i¼1

βi¼s

Yp−s
i¼1

Cβi

3
777775¼ coefficient ofxs in

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1−4x

p

2x

�p−s

¼p−s
pþs

�
pþs
s

�
: ðB6Þ

FIG. 4. Here we have plotted ΘðσÞ along the real σ line for
q ¼ 4, 8, 12, 20, 40. As q increases, ΘðσÞ becomes less than 1 for
smaller values of σ, thus the scallop gets smaller.

FIG. 5. The lines are for different values of p and E0 for the
coefficients in Eq. (36). The black dots are corresponding points
obtained using Eq. (27). Solid line is for p ¼ 3; E0 ¼ − 1

16
,

dashed for p ¼ 4; E0 ¼ − 1
40
, and dotted for p ¼ 5; E0 ¼ − 1

15
.
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A standard way to derive the above coefficient is to do a
contour integral.
Now we plug the sum of the product of the Catalan

numbers in Eq. (B4) to obtain

I ¼
ffiffiffiffiffi
π

2x

r
e−x

Xp−1
s¼0

p!s!
ðp − sÞ!

p − s
pþ s

�
pþ s
s

� ð2xÞ−s
s!

¼
ffiffiffiffiffi
π

2x

r
e−x

Xp−1
s¼0

ðpþ s − 1Þ!
ðp − s − 1Þ!

ð2xÞ−s
s!

¼ Kp−1=2ðxÞ ¼ K1=2−pðxÞ: ðB7Þ

This completes the proof. Note, here we have usedKνðxÞ ¼
K−νðxÞ for ν ∉ Z and the following identity for the Bessel
function with half-integer index [43]:

Knþ1=2ðxÞ ¼
ffiffiffiffiffi
π

2x

r
e−x

Xn
s¼0

ðnþ sÞ!
ðn − sÞ!

ð2xÞ−s
s!

; ðB8Þ

and set n ¼ p − 1.
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