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Observation of gravitationally induced entanglement between two massive particles can be viewed as
implying the existence of the nonclassical nature of gravity. However, weak interaction in the gravitational
field is extremely small so that gravitationally induced entanglement is exceptionally challenging to test in
practice. For addressing this key challenge, here we propose a criterion based on the logical contradictions
of weak entanglement, which may boost the sensitivity of the signal due to the gravitationally induced
entanglement. Specifically, we make use of the weak-value scenario and Einstein-Podolsky-Rosen steering.
We prove that it is impossible for a classical mediator to act on two local quantum objects to simulate
amplified-weak-value phenomenon in two-setting Einstein-Podolsky-Rosen steering. Our approach can
amplify the signal of gravitationally induced entanglement that were previously impossible to observe by
any desired factor that depends on the magnitude of the weak value. Our results not only open up the
possibility of exploring nonclassical nature of gravity in the near future, but they also pave the way for weak
entanglement criterion of a more general nature.
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I. INTRODUCTION

Quantum theory and general relativity, the two back-
bones of modern physics, have been verified with very
high precision in their respective fields. Yet, it is hard to
unify them into a unique corpus of laws. One possible
route to that general theory is the quantization of gravity,
with the same spirit as other field theories. However, there
is a long-standing debate whether gravity should be
quantized [1–5]. Traditionally, it is believed that the effects
of quantum gravity should occur at high energy scales or
in the short length regime which are beyond the reach of
current technology. Recently, there has been a revival of
the idea of a tabletop probe, which highlights the inter-
action of the probe mass with the gravitational field
generated by another mass [6–10]. Especially, two gravity-
induced-entanglement tests, sometimes called the Bose-
Marletto-Vedral (BMV) experiments [11,12], have been
proposed, which may be use to expose the quantum nature
of gravity. BMV’s protocol aims to provide a firm evidence
on whether the gravitational field is mediated by the
transfer of quantum information. Bose et al. suggest that
if we admit the central principle of quantum information
theory—entanglement between two systems cannot be
created by local operations and classical communication
(LOCC)—then gravitationally induced entanglement indi-
cates that gravity must be quantum [12]. On the other hand,
Marletto and Vedral argue for this view through a more

general information-theoretic argument [11,13], which is
based on constructor theory [14]. Specifically, one does
not need to assume any specific dynamics law of mediators
(in this case the gravitational field) to justify the con-
clusions of creating entanglement in the experimental
proposal [11,13]. In this article, we will focus on the
quantum formalism. Till now, a variety of advanced
theoretical and experimental proposals have been sug-
gested to investigate the gravitationally induced entangle-
ment and nonclassicality [15–40].
Entanglement witnesses are a suitable method for meas-

uring the gravitationally induced entanglement [41,42].
Unfortunately, due to the extremely weak strength of
gravity, a “strong” and detectable entanglement signal might
require a longer interaction time of massive particles in a
superposition of two locations (matter-wave-like interfer-
ometer), which poses a serious challenge to current exper-
imental techniques. As we all know, a general rule of thumb
is that the larger and heavier a particle is, the shorter its
coherence time. In particular, the experiments must be
implemented within the coherent time otherwise the loss
of entanglement due to decoherence would prevent us from
concluding anything about the quantum nature of gravity. Is
it possible to detect weakly entangled signals with limited
coupling time for a given mass of particles and a finite
resolution or sensitivity of the measurement devices? Could
we amplify the signals of these nonclassical correlations?
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This is an issue that has not been mainly considered in
previous studies [15–40] and is also the main motivation for
our present paper.
There is a famous parametric amplification approach in

quantum information field, called weak-value amplification
[43–45]. Weak values have their root in quantum weak
measurement, which describes a weak coupled measure-
ments, proposed by Aharonov, Albert, and Vaidman [43].
Weak-value amplification exploits the fact that the post-
selection of the weak measurement of a pointer can yield an
amplified shift that is exceptionally sensitive to small
changes in an interaction parameter. This has been success-
fully applied to the estimation of a range of small physical
parameters [45], including beam deflection [46,47], fre-
quency shifts [48], phase shifts [49], and so on.
In this article, we propose a criterion for determining

weak, gravitationally induced entanglement, which makes
use of a weak-value scenario and Einstein-Podolsky-Rosen
(EPR) steering [50–52]. Specifically, we unify the weak
measurements (weak value amplification scenarios) in the
framework of EPR steering. Similar to the Bell test [53,54],
we consider two sets of measurement bases that can be
randomly selected, one of which is the normal measurement
basis (e.g., the computational basis) and the other one
corresponding to weak value amplification. We present a
comparison of two predictions of the quantum and classical
mediator, the measurement probability distribution and the
measurement visibility. We show that in the case of weak
entanglement, the classical mediator (in this case, the
gravitational field) cannot simulate the results related to
the measurement visibility of weak-value basis, thus ruling
out the separable model. Concretely, our approach can
amplify the signal of gravitationally induced entanglement
by any desired factor that depends on the magnitude of the
weak value. Compared to the previous protocols, our
approach allows us to observe entangled signals that were
previously impossible to observe. Besides, our criterion is
not limited to the detection of weak entanglement in gravity.
It is applicable to more general case of weak entanglement,
including potentially macroscopic entanglement.

II. QUANTUM FORMALISM OF
BMV EXPERIMENTS

Here we focus on the quantum formalism of BMV
experiments. As shown in Fig. 1, the BMV proposal is
presented. Two quantum mass QA and QB are initially at a
distance from each other. Each mass individually undergoes
Mach-Zehnder-type interference in parallel, and thus inter-
acts with the other mass via the gravitational field, which
plays the role of the mediator M. Under the assumption of
locality, observation of gravitationally induced entangle-
ment between QA ⊕ QB is the indirect evidence of non-
classicality (quantumness) of the mediator M [11–13].
Specifically, The initial state of system QA and system QB
is a separable state (by the first beam splitter), donated as

ϱA⊗ϱB¼jþiAhþj⊗ jþiBhþj, where jþi ¼ 1ffiffi
2

p ðj0i þ j1i.
Since the masses on different paths interact via the gravi-
tational field, the state of the composite system becomes,
before they enter their respective final beam splitters,
ϱAB ¼ ΛðϱA ⊗ ϱBÞ, where Λð·Þ is the map of channel
(operation) acting on quantum systemsQA andQB induced
by the mediator M. If the quantum state ϱAB cannot be
written as

P
i piϱ

i
A ⊗ ϱiB, then ϱAB is an entangled state,

which indicates that the action Λð·Þ is an entanglement
operation. These results may be the evidence of quantum-
ness for the mediator M [11,13,39]. On the contrary, a
classical mediator can only produce unentangled quantum
state for quantum systems QA and QB, that is ϱCAB ¼
ΛCðϱA ⊗ ϱBÞ ¼

P
i piϱ

i
A ⊗ ϱiB, where ΛCð·Þ denotes the

effective channel induced by a classical mediator.

A. Weak-value scenario of BMV experiments

Under the time evolution of the joint state of the two
masses is purely due to their mutual gravitational inter-
action [11,13]. Thus, the channel Λð·Þ of quantum mediator
M mentioned above (in Fig. 1) is an unitary operation.
Specifically, the unitary is given as U ¼ expð−i Hτ

ℏ Þ ¼
cosðΔϕτ

2ℏ ÞI ⊗ I þ i sinðΔϕτ
2ℏ ÞZ ⊗ Z, where H ¼ − Δϕ

2
Z ⊗ Z

is the Hamiltonian of the two mass is [23,24] in which
Δϕ ¼ Gm1m2ð1d − 1ffiffiffiffiffiffiffiffiffiffi

d2þL2
p Þ. After the unitary evolution, the

joint quantum state of QA and QB becomes

jΨi ¼ UjþiA ⊗ jþiB;

¼ cos

�
Δϕτ
2ℏ

�
jþiAjþiB þ i sin

�
Δϕτ
2ℏ

�
j−iAj−iB; ð1Þ

which is a two-qubit entangled state. Without loss general-
ity, jΨi can be rewritten in other basis. For the qubit case,
the identity can be expressed as I ¼ jϵihϵj þ jϵ⊥ihϵ⊥j,
satisfying hϵ⊥jϵi ¼ 0. Here we define jϵi ¼ ϵj0i −ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
j1i and jϵ⊥i ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
j0i þ ϵj1i, where ϵ is a

real positive number. Now the composite state becomes

FIG. 1. Symmetric Bose-Marletto-Vedral experiment for test-
ing gravitationally induced entanglement. There are tow massQA
and QB. Each mass individually undergoes Mach-Zehnder-type
interference in parallel and interacts with the other mass via
gravity.
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jΨi ¼ ðjϵihϵj þ jϵ⊥ihϵ⊥jÞ ⊗ IjΨi;
¼ αjϵiA ⊗ jχ̃ϵiB þ βjϵ⊥iA ⊗ jχ̃ϵ⊥iB; ð2Þ

where α ¼ hϵjþi, β ¼ hϵ⊥jþi, jχ̃ϵi ¼ cosðΔϕτ
2ℏ ÞjþiBþ

i sinðΔϕτ
2ℏ ÞAϵ

wj−i, and jχ̃ϵ⊥i¼ cosðΔϕτ
2ℏ Þjþiþ isinðΔϕτ

2ℏ Þ
Aϵ⊥
w j−i. As can be seen, the weak values are embedded

in the quantum states jχ̃ϵi and jχ̃ϵ⊥i, which are given as

Aϵ
w ¼ hϵjZjþi

hϵjþi ¼ ϵþ
ffiffiffiffiffiffiffi
1−ϵ2

p

ϵ−
ffiffiffiffiffiffiffi
1−ϵ2

p and Aϵ⊥
w ¼hϵ⊥jZjþi

hϵ⊥jþi ¼−ϵþ
ffiffiffiffiffiffiffi
1−ϵ2

p

ϵþ
ffiffiffiffiffiffiffi
1−ϵ2

p ¼− 1
Aϵ
w
,

respectively. From the nature of jΨi, it follows that if the
quantum system QA is projected into jϵi (jϵ⊥i), then the
quantum state of system QB will collapse to (unnormal-
ized) state jχ̃ϵi (jχ̃ϵ⊥i), and vice versa. The amplified weak-
value Aϵ

w can be achieved if the result of the collapse of
quantum system QA to jϵi when α ¼ hϵjþi is very small.
From this perspective, the generation of weak value can be
explained as it originated from EPR steering [50–52],
which is determine by the measurements of one of the
parties [55].
As we have shown above, the weak value Aϵ

w (Aϵ⊥
w )

determine the form of the quantum state jχ̃ϵi (jχ̃ϵ⊥i). The
larger the weak value Aϵ

w, the bigger (smaller) the compo-
nent j−i of the quantum state jχ̃ϵi (jχ̃ϵ⊥i). According to the
theory of weak-value amplification, the quantum state jχ̃ϵi
is more likely to be accurately measured with a big weak
value Aϵ

w when the phase parameter Δϕτ
2ℏ is extremely small.

So one may use such amplification phenomenon to enhance
sensitivity of signal of gravitationalliy induced entangle-
ment. Unfortunately, the weak-value amplification approach
is specific to parametric amplification, and it cannot be used
directly to rule out the possibility of classical models.
Therefore, one needs to find an entanglement criterion with
weak-value amplification to exclude the model of classical
mediator.

III. EPR STEERING AND WEAK-VALUE
SCENARIO

Here we focus on how to construct an entanglement
criterion with the weak-value amplification. As we have
shown above, the weak-value scenario is a special case of
EPR steering, which corresponds to a one-measurement
setting. It is known that the experimental results of a one-
measurement setting in EPR steering can be easily simu-
lated by a local model. Therefore, from this point of view,
the amplified weak value in BMV experiments may be
simulated by a classical mediator. That is, one cannot
determine the quantumness of gravity directly with a weak
value amplification scenario. In general, EPR steering
scenario needs at least two different measurement bases
(two-measurement setting) to determine whether the joint
quantum state is steerable (entangled) or not. Hence, one
may consider exploiting the EPR-steering scenario to
determine entanglement while keeping the measurement

basis corresponding to the weak value amplification as one
of the two measurement bases for EPR steering.
Nowadays, EPR steering has been heavily studied,

including the detection of various linear and nonlinear
inequalities (see review [56]). There is also some quantum
steering paradox based on logical contradictions [57–59].
However, we will show that none of these can be directly
used for the verification of weakly amplified versions of
quantum steering. The reason is that all of these depend on
the expectation value, which is related to the probability (the
probability of weak amplification is very low). This could
lead to experimental errors masking the true entangled
signal. In the following, we consider not only the probability
distribution of the steered quantum states, but we also
introduce a physical quantity: the visibility of the meas-
urement (Π) of one of subsystem, i.e., QB. We express this
quantity in terms of V ¼ TrðϱBΠÞ, where ϱB is the steered
normalized density matrix of QB. We will show that the
genuine entanglement signal is hidden in the visibility.
Satisfying all conditions of probability distribution and
visibility allows us to exclude any separable state model.

IV. WEAK ENTANGLEMENT CRITERION

In general EPR steering scenario, there are two parities,
one of which is trusted and the other is untrusted. In that
case, local hidden state model is considered [52] to simulate
the predictions of genuine EPR steering. Fortunately, in
the following, we do not need to make use of local hidden
state model (a separable model is considered) to analyze
the steering since two parities are trusted (controlled by
ourselves) and the systemQA andQB are genuine quantum
states. As mentioned above, the quantum states genera-
ted by quantum mediator is jΨi ¼ cosðΔϕτ

2ℏ ÞjþiAjþiB þ
i sinðΔϕτ

2ℏ Þj−iAj−iB [60]. Here we set two measurement
bases for QA as fj0i; j1ig and fjϵi; jϵ⊥ig, respectively,
and we have four steered but not normalized quantum states

ρ̃h0jAB ðQÞ ¼ 1

2
jϕþihϕþjB;

ρ̃h1jAB ðQÞ ¼ 1

2
jϕ−ihϕ−jB;

ϱ̃hϵjAB ðQÞ ¼ jαj2Trðjχ̃ϵihχ̃ϵjÞjχϵihχϵjB;
ϱ̃hϵ

⊥jA
B ðQÞ ¼ jβj2Trðjχ̃ϵ⊥ihχ̃ϵ⊥ jÞjχϵ⊥ihχϵ⊥ jB; ð3Þ

where α ¼ hϵjþi, β ¼ hϵ⊥jþi, jϕ�i ¼ cosðΔϕτ
2ℏ Þjþi�

i sinðΔϕτ
2ℏ Þj−i, jχϵihχϵj¼ jχ̃ϵihχ̃ϵj

Trðjχ̃ϵihχ̃ϵjÞ, jχϵ⊥ihχϵ⊥ j ¼
jχ̃ϵ⊥ ihχ̃ϵ⊥ j

Trðjχ̃
ϵ⊥ ihχ̃ϵ⊥ jÞ

,

and ϱ̃B represent the unnormalized quantum states [(Q)
represents the quantum mediator]. Equation (3) indicates
that when we project the quantum states of QA to
j0i; j1i; jϵi; jϵ⊥ig, we get the quantum states of QB are
jϕþi; jϕ−i; jχϵi; jχϵ⊥i with probabilities
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fpð0;ϕþÞ; pð1;ϕ−Þ; pðϵ;χϵÞ; pðϵ⊥;χϵ⊥ Þg

¼
�
1

2
;
1

2
; jαj2Trðjχ̃ϵihχ̃ϵjÞ; jβj2Trðjχ̃ϵ⊥ihχ̃ϵ⊥ jÞ

�
; ð4Þ

respectively. If there exists a separable model (classical
mediator) that can fake the results of Eq. (4), then one is not
convinced that QA can steer QB’s quantum state (namely,
QA and QB are unentangled). Otherwise the separable
model contradicts with the quantum predictions. However,
since the precision of the measurement devices is limited
[61], we may not be able to measure the signal of weak
entanglement. One can verify that when the entanglement is
extremely weak (i.e., Δϕτ

2ℏ is very small), the probability
pðϵ;χϵÞ ¼ jαj2Trðjχ̃ϵihχ̃ϵjÞ ¼ jαj2½cos2ðΔϕτ

2ℏ Þþ sin2ðΔϕτ
2ℏ ÞjAϵ

wj2�
will be very small so that the measurement device with
resolution γ ≥ pðϵ;χϵÞ=ðpðϵ;χϵÞ þ pðϵ⊥;χϵ⊥ ÞÞ cannot distin-
guish whether QA and QB are entangled or separable or
not (See Appendix A). Therefore, we cannot directly
determine weak entanglement in this way. Similarly, entan-
glement witness and other inequality methods to calculate
the expectation value will also fail in this case.
Here we note that the Eqs. (3) and (4) may cover the

predictions of visibility of the measurement of QB (steered
state) when the heralded probability is very small, i.e.,
pðϵ;χϵÞ → 0. Here we show that the visibility of measure-
ment of system QB is more robust and powerful to detect
weak entanglement. Without loss generality, we define the
visibility of projective measurement Πi is

VΠi
ðϱBÞ ¼ TrðΠiϱBÞ; ð5Þ

One can see that, for a pure qubit, the maximal visibility
is 1 while for a mixed state, it is impossible to obtain
the visibility equals to 1. Let us set that fΠ0;Π1;Π2;Π3g
are fjϕþihϕþj; jϕ−ihϕ−j; jχϵihχϵj; jχϵ⊥ihχϵ⊥ jg, respectively.
Now we have four sets of measurement visibility

VΠ0
ðϱh0jAB Þ ¼ Trðjϕþihϕþjϱh0jAB Þ;

VΠ1
ðϱh1jAB Þ ¼ Trðjϕ−ihϕ−jϱh1AB Þ;

VΠ2
ðϱhϵjAB Þ ¼ TrðjχϵihχϵjϱhϵjAB Þ;

VΠ3
ðϱhϵ⊥jAB Þ ¼ Trðjχϵ⊥ihχϵ⊥ jϱhϵ

⊥jA
B Þ; ð6Þ

where ϱh0jAB ; ϱh1jAB ; ϱhϵjAB ; ϱhϵ
⊥jA

B are the steered and normalized
quantum state of QB. Obviously, the steered states of
Eq. (3) satisfy that all above V are equal to 1. That is

VQ
Π0
ðϱh0jAB Þ¼VQ

Π1
ðϱh1jAB Þ¼VQ

Π2
ðϱhϵjAB Þ¼VQ

Π3
ðϱhϵ⊥jAB Þ¼1; ð7Þ

in which label Q indicates quantum prediction. As we
analyzed before, in the case of extremely weak entangle-
ment, the results of Eq. (4) (probability distribution) can be
simulated by a separable state ϱCAB (See Appendix A).
Naturally, one may wonder whether separable states ϱCAB
can also emulate the measurement visibility. Our finding is

that the visibility of measurement setting VΠ2
ðϱhϵjAB Þ cor-

responding to the weak value amplification cannot be
simulated. Specifically, the classical visibility of measure-
ment Π2 is given as (See Appendix A)

VC
Π2
ðϱhϵjAB Þ ¼ TrðjχϵihχϵjϱhϵjAB Þ ¼

1
2
ϵ2pð0;ϕþÞhχϵjϕþihϕþjχϵi þ 1

2
ð1 − ϵ2Þpð1;ϕ−Þhχϵjϕ−ihϕ−jχϵi þ 1

2
pðϵ;χϵÞ

1
2
ϵ2pð0;ϕþÞ þ 1

2
ð1 − ϵ2Þpð1;ϕ−Þ þ 1

2
pðϵ;χϵÞ : ð8Þ

When the entanglement is extremely weak, without loss
generality, we set cosðΔϕτ

2ℏ Þ ≈ 1, sinðΔϕτ
2ℏ Þ ¼ Δϕτ

2ℏ . The meas-
urement basis fjϵi; jϵ⊥ig is chosen to realize weak-value
amplification (i.e., Aϵ

w ¼ k 1
Δϕτ
2ℏ

and Aϵ⊥
w ¼ 1

Aϵ
w
≈ Δϕτ

2kℏ ≪ 1,

where k is a coefficient) when ϵ → 1ffiffi
2

p and we have

α ¼ hϵjþi ≈ 0, β ¼ hϵ⊥jþi ≈ 1, and αk ≪ 1. Upon sub-
stituting these approximations into Eq. (8) (discard the
second-order small quantity jαj2, ðΔϕτ

2ℏ Þ2 and set

1� ðΔϕτ
2ℏ Þ2 ≈ 1), we obtain (See Appendix A)

VC
Π2
ðϱhϵjAB Þ ≈ 1

1þ k2
; ð9Þ

while VC
Π0

≈ VC
Π1

≈ VC
Π3

≈ 1. One can see that this result is
contradictory to the results in Eq. (7). The measured

visibility of weak entanglement is all equal to 1, however,
the separable model has a 1

1þk2. If k ¼ 1, then we have

VC
Π2
ðϱhϵjAB Þ ≈ 1

2
. This is a logical contradiction of weak

entanglement. It is clear that the distinguishability of
measurement visibility is much greater than the probability
distribution of measurement. Therefore, the signal of weak
entanglement is amplified. Another implication of amplify-
ing entanglement seems to be that we can reduce the
experimental requirement in tests of gravitationally induced
entanglement. Given the sensitivity of the measurement
device, our scheme can achieved as X ¼ Aϵ

w, saving for
coupling strength of gravity. For example, if Aϵ

w ¼ 104,
then we can reduce the mass of two systems by 10 times,
and shorten the coupling time by 100 times (See
Appendix B). Our methodology does not depend on a
specific physical system. Hence, different physical systems
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may realize amplification of gravitationally induced entan-
glement by this approaches. Besides, our weak entangle-
ment criterion remains valid at a certain degree of
decoherence and the limited precision of measurement
device (See Appendix C and D).

V. TESTS OF GRAVITATIONALLY INDUCED
ENTANGLEMENT

As a result of technological advance in quantum manipu-
lation of matter at larger mass scales [62–64] and in
gravitational measurements at smaller mesoscopic mass
scales [65], probing nonclassical nature of gravity becomes
possible. In Refs. [12,40], the spin degrees of freedom of the
particles are used to construct the Stern-Gerlach interferom-
etry to test quantum gravity. Remarkably, there are many
other physical realizations apart from spin degrees of free-
dom on probing gravitationally induced entanglement [15–
38], such as neutrinolike oscillations [15], optomechanics
[18], and atomic interferometers [27] ana in Appendix.
Very recently, there is a promising experimental proposal

that uses two-level systems coupled to a massive resonator
(a harmonic oscillator) to probe gravitationally induced
entanglement [66]. Unlike Ref. [27], it enhances the
gravitational interaction of two 2-level systems by a
massive particle (as a mediator), where the effective
gravity-induced coupling strength is increased by a factor
of gb

w [66]. Our criterion can also be applied to this scenario
to achieve additional amplification.

VI. DISCUSSION AND CONCLUSION

Historically, there is a one measurement steering proto-
col the same as the amplification by LOCC. In particular, in
Gisin’s paper in 1995, it was called “Hidden quantum
nonlocality revealed by local filters” [67]. However, this
local filter is essentially a positive operator valued measures
and needs to be performed with the help of an additional
Hilbert space, such as an additional ancillary qubit. The
positive operator valued measures measurement will
increase the experimental difficulty because it requires
additional coupling to a new quantum system and meas-
uring it. Certainly, if one does not consider the difficulty of
measurement, then one may perform two types of entan-
glement amplification. The first type of amplification can
be achieved by using the local filter method, and the second
type of amplification is achieved by the way we propose in
the paper.
From a fundamental perspective, our work combines

weak value theory and quantum correlation theory for the
first time. We show that weak-valued amplification in the
two-setting protocol is impossible to be simulated classi-
cally. Our results also support the fact that weak values are
quantum, whereas in the past it was controversial whether
weak values were quantum or not [68–72].

Our scheme is applicable to any weakly entangled pure
state, while allowing for the presence of partial decoherence
and noise. It be expected to significantly reduce the require-
ments for experiments, allowing for the test of gravitation-
ally induced entanglement in the near future. From a more
general point of view, our result is a general weak entangle-
ment criterion. We reveal how the hidden weakly entangled
information is again presented as it is. Compared to the
previous protocols, our approach allows us to observe
entangled signals that were previously impossible to
observe. As an outlook, we expect that the criterion can
be extended to the more general mixed states, which may
make it more possible to detect the entanglement of macro-
scopic objects.
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APPENDIX A: SEPARABLE STATE MODEL FOR
CLASSICAL MEDIATOR

1. Separable state model

Here we analyze the model of separable states for QA
and QB (induced by a classical mediator) that can simulate
the results of quantum entanglement. As we mentioned
before, the quantum states generated by classical mediator
is ϱAB ¼ ΛCðϱA ⊗ ϱBÞ ¼

P
i piϱ

i
A ⊗ ϱiB, we have

ϱ̃h0jAB ðCÞ ¼
X
i

piTrðj0ih0jϱiAÞϱiB;

ϱ̃h1jAB ðCÞ ¼
X
i

piTrðj1ih1jϱiAÞϱiB;

ϱ̃hϵjAB ðCÞ ¼
X
i

piTrðjϵihϵjϱiAÞϱiB;

ϱ̃hϵ
⊥jA

B ðCÞ ¼
X
i

piTrðjϵ⊥ihϵ⊥jϱiAÞϱiB; ðA1Þ

where ϱ̃BðCÞ is the unnormalized quantum state with the
classical mediator. If a classical mediator can simulate
all the results of a quantum mediator, then it must satisfy

ϱ̃h0jB ðQÞ ¼ ϱ̃h0jB ðCÞ, ϱ̃h1jB ðQÞ ¼ ϱ̃h1jB ðCÞ, ϱ̃hϵjB ðQÞ ¼ ϱ̃hϵjB ðCÞ,
and ϱ̃hϵ

⊥j
B ðQÞ ¼ ϱ̃hϵ

⊥j
B ðCÞ. So we have
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pð0;χϕþÞj0ih0jA ⊗ jϕþihϕþjB
¼

X
i

piTrðj0ih0jϱiAÞTrðjϕþihϕþjϱiBÞϱiA ⊗ ϱiB;

pð1;χϕ− Þj1ih1jA ⊗ jϕ−ihϕ−jB
¼

X
i

piTrðj1ih1jϱiAÞTrðjϕ−ihϕ−jϱiBÞϱiA ⊗ ϱiB;

pðϵ;χϵÞjϵihϵjA ⊗ jχϵihχϵjB
¼

X
i

piTrðjϵihϵjϱiAÞTrðjχϵihχϵjϱiBÞϱiA ⊗ ϱiB;

pðϵ⊥;χϵ⊥ Þjϵ⊥ihϵ⊥jA ⊗ jχϵ⊥ihχϵ⊥ jB
¼

X
i

piTrðjϵ⊥ihϵ⊥jϱiAÞTrðjχϵihχϵ⊥ jϱiBÞϱiA ⊗ ϱiB; ðA2Þ

where

fpð0;ϕþÞ; pð1;ϕ−Þ; pðϵ;χϵÞ; pðϵ⊥;χϵ⊥ Þg

¼
�
1

2
;
1

2
; α2Trðjχ̃ϵihχ̃ϵjÞ; β2Trðjχ̃ϵ⊥ihχ̃ϵ⊥ jÞ

�
: ðA3Þ

It is well known that a pure state cannot be obtained by a
convex sum of other different states, namely, a density
matrix of pure state can only be expanded by itself. Let us
look at Eq. (A2), because the left-hand side is proportional
to a pure state; without loss of generality, one has

pð0;ϕþÞ ¼ pjTrðj0ih0jϱjAÞTrðjϕþihϕþjϱjBÞ and ϱjA ⊗ ϱjB ¼ j0ih0jA ⊗ jϕþihϕþjB;
pð1;ϕ−Þ ¼ pkTrðj1ih1jϱkAÞTrðjϕ−ihϕ−jϱkBÞ and ϱkA ⊗ ϱkB ¼ j1ih1jA ⊗ jϕ−ihϕ−jB;
pðϵ;χϵÞ ¼ pmTrðjϵihϵjϱmA ÞTrðjχϵihχϵjϱmB Þ and ϱmA ⊗ ϱmB ¼ jϵihϵjA ⊗ jχϵihχϵjB;

pðϵ⊥;χ
ϵ⊥ Þ ¼ pnTrðjϵ⊥ihϵ⊥jϱnAÞTrðjχϵ⊥ihχϵ⊥ jϱnBÞ and ϱnA ⊗ ϱnB ¼ jϵ⊥ihϵ⊥jA ⊗ jχϵ⊥ihχϵ⊥ jB: ðA4Þ

Naturally, one may consider mixing these four pure states with corresponding probabilities to construct a separable
model to simulate the prediction of quantum mediator. Since two bases a ¼ f0; 1g and b ¼ fϵ; ϵ⊥g are randomly selected
(with probability 1

2
). Therefore, the separable state induced by classical mediator can be written as

ϱCAB ¼ ΛCðϱA ⊗ ϱBÞ ¼
1

2
½pð0;ϕþÞj0ih0jA ⊗ jϕþihϕþjB þ pð1;ϕ−Þj1ih1jA ⊗ jϕ−ihϕ−jB�

þ 1

2
½pðϵ;χϵÞjϵihϵjA ⊗ jχϵihχϵjB þ pðϵ⊥;χ

ϵ⊥ Þjϵ⊥ihϵ⊥jA ⊗ jχϵ⊥ihχϵ⊥ jB�: ðA5Þ

It should be noted that if our test only uses a single basis
b ¼ fϵ; ϵ⊥g, then it is easy to find a separable state to
simulate the results of quantummediator (one can verify it).
Similar to quantum steering scenario, two or more than two
basis are considered, in theory, there is no classical
quantum mediator can simulate it (probability distribution).
However, ideal projective measurements cannot be imple-
mented in experiments since they need infinite resource
costs [61]. That is, the measurement device has limited
resolution. One can verify that when the entanglement is
extremely weak (i.e., Δϕτ

2ℏ is very small), the probability

pðϵ;χϵÞ ¼ α2Trðjχ̃ϵihχ̃ϵjÞ ¼ α2½cos2ðΔϕτ
2ℏ Þ þ sin2ðΔϕτ

2ℏ ÞjAϵ
wj2�

will be very small so that the measurement device with

resolution η ≥ pðϵ;χϵÞ=ðpðϵ;χϵÞ þ pðϵ⊥;χϵ⊥ ÞÞ cannot distin-
guish whether QA and QB are entangled or separable
or not.
Example.—Suppose Δϕτ

2ℏ is very small and Aϵ
w is very

large, we approximate cosðΔϕτ
2ℏ Þ ≈ 1 and sinðΔϕτ

2ℏ Þ ≈ Δϕτ
2ℏ . So

we have jχ̃ϵ⊥i ≈ jþi and jχ̃ϵi ¼ jþi þ i Δϕτ
2ℏ Aϵ

wj−i. Here we

set Δϕτ
2ℏ Aϵ

w ¼ 1, the quantum state jχ̃ϵi becomes jþi þ ij−i.
So we have

fpð0;ϕþÞ;pð1;ϕ−Þ;pðϵ;χϵÞ;pðϵ⊥;χϵ⊥ Þg ¼
�
1

2
;
1

2
;2α2;β2

�
: ðA6Þ

Recall that α¼hϵjþi, β ¼ hϵ⊥jþi, jϵi¼ ϵj0i−
ffiffiffiffiffiffiffiffiffiffiffi
1−ϵ2

p
j1i,

and jϵ⊥i ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
j0i þ ϵj1i. If we want to get a big weak

valueAϵ
w ¼ hϵjZjþi

hϵjþi ¼ ϵþ
ffiffiffiffiffiffiffi
1−ϵ2

p

ϵ−
ffiffiffiffiffiffiffi
1−ϵ2

p , then ϵ should be close to 1ffiffi
2

p . So

α ≈
ffiffi
2

p
Aϵ
w
¼ ffiffiffi

2
p Δϕτ

2ℏ and β ≈ 1. Therefore, Eq. (A6) becomes

fpð0;þÞ; pð1;þÞ; pð−;χϵÞ; pðþ;þÞg ¼
�
1

2
;
1

2
; 4

�
Δϕτ
2ℏ

�
2

; 1

�
:

ðA7Þ
It is easy to verify that the above results can be simulated by a
separable state jþiA ⊗ jþiB (a more accurate model should
be in the form of ϱCAB) if 4ðΔϕτ2ℏ Þ2 is small, which may be
masked by the noise of measurement device.
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2. Visibility of measurement for a separable model

Before we calculate the visibility of measurement, we need to find the reduced density matrix ϱh0jAB ; ϱh1jAB ; ϱhϵjAB , and ϱhϵ
⊥jA

B
for ϱCAB, which is as follows:

ϱh0jAB ¼ TrAðj0ih0jA ⊗ IBϱCABÞ
Trðj0ih0jA ⊗ IBϱCABÞ

¼
1
2
pð0;ϕþÞjϕþihϕþj þ 1

2
ϵ2pðϵ;χϵÞjχϵihχϵj þ 1

2
ð1 − ϵ2Þpðϵ⊥;χϵ⊥ Þjχϵ⊥ihχϵ⊥ j

1
2
pð0;ϕþÞ þ 1

2
ϵ2pðϵ;χϵÞ þ 1

2
ð1 − ϵ2Þpðϵ⊥;χ

ϵ⊥ Þ
;

ϱh1jAB ¼ TrAðj1ih1jA ⊗ IBϱCABÞ
Trðj1ih1jA ⊗ IBϱCABÞ

¼
1
2
pð1;ϕ−Þjϕ−ihϕ−j þ 1

2
ð1 − ϵ2Þpðϵ;χϵÞjχϵihχϵj þ 1

2
ϵ2pðϵ⊥;χ

ϵ⊥ Þjχϵ⊥ihχϵ⊥ j
1
2
pð1;ϕ−Þ þ 1

2
ð1 − ϵ2Þpðϵ;χϵÞ þ 1

2
ϵ2pðϵ⊥;χϵ⊥ Þ

;

ϱhϵjAB ¼ TrAðjϵihϵjA ⊗ IBϱCABÞ
TrðjϵihϵjA ⊗ IBϱCABÞ

¼
1
2
ϵ2pð0;ϕþÞjϕþihϕþj þ 1

2
ð1 − ϵ2Þpð1;ϕ−Þjϕ−ihϕ−j þ 1

2
pðϵ;χϵÞjχϵihχϵj

1
2
ϵ2pð0;ϕþÞ þ 1

2
ð1 − ϵ2Þpð1;ϕ−Þ þ 1

2
pðϵ;χϵÞ ;

ϱhϵ
⊥jA

B ¼ TrAðjϵ⊥ihϵ⊥jA ⊗ IBϱCABÞ
Trðjϵ⊥ihϵ⊥jA ⊗ IBϱCABÞ

¼
1
2
ð1 − ϵ2Þpð0;ϕþÞjϕþihϕþj þ 1

2
ϵ2pð1;ϕ−Þjϕ−ihϕ−j þ 1

2
pðϵ⊥;χϵ⊥ Þjχϵ⊥ihχϵ⊥ j

1
2
ð1 − ϵ2Þpð0;ϕþÞ þ 1

2
ϵ2pðϵ;χϵÞ þ 1

2
pðϵ⊥;χ

ϵ⊥ Þ
: ðA8Þ

Now, substituting them into the Eq. (6), we get the visibility of measurement of ϱCAB:

VC
Π0
ðϱh0jAB Þ ¼ Trðjϕþihϕþjϱh0jAB Þ ¼

1
2
pð0;ϕþÞ þ 1

2
ϵ2pðϵ;χϵÞhϕþjχϵihχϵjϕþi þ 1

2
ð1 − ϵ2Þpðϵ⊥;χ

ϵ⊥ Þhϕþjχϵ⊥ihχϵ⊥ jϕþi
1
2
pð0;ϕþÞ þ 1

2
ϵ2pðϵ;χϵÞ þ 1

2
ð1 − ϵ2Þpðϵ⊥;χϵ⊥ Þ

;

VC
Π1
ðϱh1jAB Þ ¼ Trðjϕ−ihϕ−jϱh1AB Þ ¼

1
2
pð1;ϕ−Þ þ 1

2
ð1 − ϵ2Þpðϵ;χϵÞhϕ−jχϵihχϵjϕ−i þ 1

2
ϵ2pðϵ⊥;χϵ⊥ Þhϕ−jχϵ⊥ihχϵ⊥ jϕ−i

1
2
pð1;ϕ−Þ þ 1

2
ð1 − ϵ2Þpðϵ;χϵÞ þ 1

2
ϵ2pðϵ⊥;χϵ⊥ Þ

;

VC
Π2
ðϱhϵjAB Þ ¼ TrðjχϵihχϵjϱhϵjAB Þ ¼

1
2
ϵ2pð0;ϕþÞhχϵjϕþihϕþjχϵi þ 1

2
ð1 − ϵ2Þpð1;ϕ−Þhχϵjϕ−ihϕ−jχϵi þ 1

2
pðϵ;χϵÞ

1
2
ϵ2pð0;ϕþÞ þ 1

2
ð1 − ϵ2Þpð1;ϕ−Þ þ 1

2
pðϵ;χϵÞ ;

VC
Π3
ðϱhϵ⊥jAB Þ ¼ Trðjχϵ⊥ihχϵ⊥ jϱhϵ

⊥jA
B Þ ¼

1
2
ð1 − ϵ2Þpð0;ϕþÞhχϵ⊥ jϕþihϕþjχϵ⊥i þ 1

2
ϵ2pð1;ϕ−Þhχϵ⊥ jϕ−ihϕ−jχϵ⊥i þ 1

2
pðϵ⊥;χϵ⊥ Þ

1
2
ð1 − ϵ2Þpð0;ϕþÞ þ 1

2
ϵ2pðϵ;χϵÞ þ 1

2
pðϵ⊥;χϵ⊥ Þ

; ðA9Þ

where jϕ�i ¼ cosðΔϕτ
2ℏ Þjþi � i sinðΔϕτ

2ℏ Þj−i, jχϵi ¼
cosðΔϕτ

2ℏ ÞjþiBþi sinðΔϕτ
2ℏ ÞAϵ

wj−i
½cos2ðΔϕτ

2ℏ Þþsin2ðΔϕτ
2ℏ ÞjAϵ

wj2�
1
2

, and jχϵ⊥i ¼ cosðΔϕτ
2ℏ Þjþiþi sinðΔϕτ

2ℏ ÞAϵ⊥
w j−i

½cos2ðΔϕτ
2ℏ Þþsin2ðΔϕτ

2ℏ ÞjAϵ⊥
w j2�12

.

Recall that fpð0;ϕþÞ;pð1;ϕ−Þ;pðϵ;χϵÞ;pðϵ⊥;χ
ϵ⊥ Þg¼f1

2
;1
2
;α2Trðjχ̃ϵihχ̃ϵjÞ;β2Trðjχ̃ϵ⊥ihχ̃ϵ⊥ jÞg, Trðjχ̃ϵihχ̃ϵjÞ ¼ cos2ðΔϕτ

2ℏ Þþ
sin2ðΔϕτ

2ℏ ÞjAϵ
wj2, Trðjχ̃ϵ⊥ihχ̃ϵ⊥ jÞ¼ cos2ðΔϕτ

2ℏ Þþsin2ðΔϕτ
2ℏ ÞjAϵ⊥

w j2, jhϕþjχϵij2¼ jcos2ðΔϕτ
2ℏ Þþsin2ðΔϕτ

2ℏ ÞAϵ
wj2

½cos2ðΔϕτ
2ℏ Þþsin2ðΔϕτ

2ℏ ÞjAϵ
wj2�

, jhϕþjχϵ⊥ij2¼
jcos2ðΔϕτ

2ℏ Þþsin2ðΔϕτ
2ℏ ÞAϵ⊥

w j2
½cos2ðΔϕτ

2ℏ Þþsin2ðΔϕτ
2ℏ ÞjAϵ⊥

w j2�, jhϕ−jχϵij2 ¼ j cos2ðΔϕτ
2ℏ Þ−sin2ðΔϕτ2ℏ ÞAϵ

wj2
½cos2ðΔϕτ

2ℏ Þþsin2ðΔϕτ
2ℏ ÞjAϵ

wj2�
, jhϕ−jχϵ⊥ij2 ¼ j cos2ðΔϕτ

2ℏ Þ−sin2ðΔϕτ2ℏ ÞAϵ⊥
w j2

½cos2ðΔϕτ
2ℏ Þþsin2ðΔϕτ

2ℏ ÞjAϵ⊥
w j2�, one has

VC
Π0
ðϱh0jAB Þ ¼

1
4
þ 1

2
ϵ2α2j cos2ðΔϕτ

2ℏ Þ þ sin2ðΔϕτ
2ℏ ÞAϵ

wj2 þ 1
2
ð1 − ϵ2Þβ2j cos2ðΔϕτ

2ℏ Þ þ sin2ðΔϕτ
2ℏ ÞAϵ⊥

w j2
1
4
þ 1

2
ϵ2α2½cos2ðΔϕτ

2ℏ Þ þ sin2ðΔϕτ
2ℏ ÞjAϵ

wj2� þ 1
2
ð1 − ϵ2Þβ2½cos2ðΔϕτ

2ℏ Þ þ sin2ðΔϕτ
2ℏ ÞjAϵ⊥

w j2� ;

VC
Π1
ðϱh1jAB Þ ¼

1
4
þ 1

2
ð1 − ϵ2Þα2j cos2ðΔϕτ

2ℏ Þ − sin2ðΔϕτ
2ℏ ÞAϵ

wj2 þ 1
2
ϵ2β2j cos2ðΔϕτ

2ℏ Þ − sin2ðΔϕτ
2ℏ ÞAϵ⊥

w j2
1
4
þ 1

2
ð1 − ϵ2Þα2½cos2ðΔϕτ

2ℏ Þ þ sin2ðΔϕτ
2ℏ ÞjAϵ

wj2� þ 1
2
ϵ2β2½cos2ðΔϕτ

2ℏ Þ þ sin2ðΔϕτ
2ℏ ÞjAϵ⊥

w j2� ;

VC
Π2
ðϱhϵjAB Þ ¼

1
4
ϵ2

j cos2ðΔϕτ
2ℏ Þþsin2ðΔϕτ

2ℏ ÞAϵ
wj2

½cos2ðΔϕτ
2ℏ Þþsin2ðΔϕτ

2ℏ ÞjAϵ
wj2�

þ 1
4
ð1 − ϵ2Þ j cos2ðΔϕτ

2ℏ Þ−sin2ðΔϕτ2ℏ ÞAϵ
wj2

½cos2ðΔϕτ
2ℏ Þþsin2ðΔϕτ

2ℏ ÞjAϵ
wj2�

þ 1
2
α2½cos2ðΔϕτ

2ℏ Þ þ sin2ðΔϕτ
2ℏ ÞjAϵ

wj2�
1
4
ϵ2 þ 1

4
ð1 − ϵ2Þ þ 1

2
α2½cos2ðΔϕτ

2ℏ Þ þ sin2ðΔϕτ
2ℏ ÞjAϵ

wj2�
;

VC
Π3
ðϱhϵ⊥jAB Þ ¼

1
4
ð1 − ϵ2Þ j cos2ðΔϕτ

2ℏ Þþsin2ðΔϕτ
2ℏ ÞAϵ⊥

w j2
½cos2ðΔϕτ

2ℏ Þþsin2ðΔϕτ
2ℏ ÞjAϵ⊥

w j2� þ
1
4
ϵ2

j cos2ðΔϕτ
2ℏ Þ−sin2ðΔϕτ2ℏ ÞAϵ⊥

w j2
½cos2ðΔϕτ

2ℏ Þþsin2ðΔϕτ
2ℏ ÞjAϵ⊥

w j2� þ
1
2
β2 cos2ðΔϕτ

2ℏ Þ þ sin2ðΔϕτ
2ℏ ÞjAϵ⊥

w j2
1
4
ð1 − ϵ2Þ þ 1

4
ϵ2 þ 1

2
β2½cos2ðΔϕτ

2ℏ Þ þ sin2ðΔϕτ
2ℏ ÞjAϵ⊥

w j2� : ðA10Þ
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3. Examples

When the entanglement is extremely weak, cosðΔϕτ
2ℏ Þ ≈ 1,

sinðΔϕτ
2ℏ Þ ¼ Δϕτ

2ℏ ∼ 0. The measurement basis fjϵi; jϵ⊥ig
can realize weak-value amplification (i.e., Aϵ

w ≈ 1
Δϕτ
2ℏ

and

Aϵ⊥
w ¼ 1

Aϵ
w
≈ Δϕτ

2ℏ ≪ 1) when ϵ → 1ffiffi
2

p and we have α¼
hϵjþi≈0, β ¼ hϵ⊥jþi ≈ 1. Upon substituting these approxi-
mations into Eq. (A10) [discard the second-order small
quantity jαj2, ðΔϕτ

2ℏ Þ2 and set 1� ðΔϕτ
2ℏ Þ2 ≈ 1], we obtain

VC
Π0
ðϱh0jAB Þ ≈ 1;

VC
Π1
ðϱh1jAB Þ ≈ 1;

VC
Π2
ðϱhϵjAB Þ ≈ 1

2
;

VC
Π3
ðϱhϵ⊥jAB Þ ≈ 1: ðA11Þ

One can see that this result is contradictory to the results
analyzed in our main text. The measured visibility of weak
entanglement is all equal to 1; however, the separable model
has a 1

2
. This is a logical contradiction.

The more general case is that we set Aϵ
w ¼ k 1

Δϕτ
2ℏ

, where

is the coefficient. We also assure cosðΔϕτ
2ℏ Þ ≈ 1,

sinðΔϕτ
2ℏ Þ ¼ Δϕτ

2ℏ , A
ϵ⊥
w ¼ 1

Aϵ
w
≈ Δϕτ

2kℏ ≪ 1, and αk ≪ 1. One has

VC
Π0
ðϱh0jAB Þ ≈ 1;

VC
Π1
ðϱh1jAB Þ ≈ 1;

VC
Π2
ðϱhϵjAB Þ ≈ 1

1þ k2
;

VC
Π3
ðϱhϵ⊥jAB Þ ≈ 1: ðA12Þ

APPENDIX B: EXPERIMENTAL
CONSIDERATION

We have shown that steering scenarios with weak value
amplification are not possible to be simulated classically. In
the following, we focus on the analysis of the steered state
for weak-value amplification, so as to consider the fea-
sibility of the experiment for detecting weak, gravitation-
ally induced entanglement. Let us set m1 ¼ m2 ¼ m and
suppose that the coupling strength of gravity is weak. After
the weak gravity interaction and projective measurement

(hϵj) on QA, the system QB becomes ϱhϵjAB ðQÞ ¼ jχϵihχϵjB
with probability jαj2½cos2ðΔϕτ

2ℏ Þ þ sin2ðΔϕτ
2ℏ ÞjAϵ

wj2�.
One can see that there is a weak value, which is

Aϵ
w ¼ hϵjZjþi

hϵjþi ¼ ϵþ
ffiffiffiffiffiffiffi
1−ϵ2

p

ϵ−
ffiffiffiffiffiffiffi
1−ϵ2

p . If the coupling strength of inter-

action of gravity is 0, then Δϕ ¼ 0. In this case, the final
state of system QB is jþi, which does not carry any weak-
value information. That is, there is no entanglement
between these two quantum system. On the contrary, when

the coupling strength is not 0 but small; that is, there is a
gravitationally induced phase, and the final state of system
QB becomes jχϵi ≈ 1

½1þjΔϕ
2ℏA

ϵ
wj2�

1
2

ðjþi þ i Δϕ
2ℏ A

ϵ
wj−iÞ. One can

see that the quantum state ofQB depends on the weak value
Aϵ
w. Suppose that we measure an observable Π̂2 ¼ jχϵihχϵj

on the system QB. The observable of the displacement of
Π2 is the expectation value of the final state minus the
expectation value of the initial state (jþi) ofQB, and we get

hΔΠ̂2iQ ¼ TrðΠ2ϱ
hϵjA
B Þ − TrðΠ2jþihþjÞ;

¼ VQ
Π2
ðϱhϵjAB Þ − 1

½1þ j Δϕ
2ℏ A

ϵ
wj2�

;

¼ 1 −
1

½1þ j Δϕ
2ℏ A

ϵ
wj2�

: ðB1Þ

One can see that if Δϕ
2ℏ A

ϵ
w ¼ 1, hΔΠ̂2iQ ¼ 1

2
. Even though

the heralded probability 2jαj2 ¼ 1–2ϵ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
is small,

after many runs of experiment, we can still observe a clear
shift of the quantum state, which is a signal of entanglement
between two system introduced by gravity (average shift
will be 0 without entanglement generation).
For example, in the Ref. [11], the shift of quantity about

entanglement is p1 ¼ sin2ðΔϕ
2ℏÞ ≈ Δϕ2

4ℏ2 in the case of weak
coupling, where p1 is the probabilities for the mass to
emerge on path 1 (R). For showing the clear enhancement
of our scheme, we give a simple example. If we set Aϵ

w ¼
104 and Δϕ2

4ℏ2 ¼ 10−4, then we have hΔΠ̂2iQ ¼ 1
2
, while

p1 ≈ 10−4. That is, we can enhance the sensitivity and
resolution for detect the quantum gravity 0.5 × 104 times
by using a weak-value amplification scheme. However, in
above example, the steered probability becomes p ¼ 2 ×
10−8 in weak-value scheme. Fortunately, for existing
quantum technologies, the frequency of experiments can
reach MHz and beyond (supposing the time of gravitational
interaction to be within microseconds). That is we may
have 106 runs in one second. The total run of experiments is
about p × 106 × 3600 × 24 ¼ 864 each day. This is
enough for us to achieve an accurate experimental estima-
tion. Given a resolution of measurement, we achieved
X ¼ 104, saving for the coupling strength of gravity. In
other words, we can reduce the mass of two systems by 10
times, and shorten the coupling time by 100 times. This is a
very experiment-friendly scheme, which increases the
feasibility of testing gravitationally induced entanglement
by using existing technology.

APPENDIX C: OBSERVING QUANTUM
GRAVITY USING LIMITED RESOLUTION

OF THE MEASUREMENT DEVICE

In a von Neumann–type measurement, the pointer is
shifted proportional to the eigenvalues of the measured
observable
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jψi ⊗ jϕðqÞi →
X
a

hajψi · jai ⊗ jϕðq − g0aÞi; ðC1Þ

where Ψ and ϕðqÞ are the initial states of system and probe,
respectively, the index a refers to the eigenbasis of the
observable, q is the position of the probe, and g0 is a coupling
constant. The outcome of the measurement is then provided
by reading the position of the probe.
In a ideal projective measurement the probe’s initial state

is narrower than the distance between the eigenvalues, i.e.,
hϕðq − aÞjϕðq − a0Þi ¼ δaa0 ; hence, reading the probe’s
position provides full information of the measured physical
quantity and collapses the system into the corresponding
eigenstate of the observable. However, it has been shown
that the ideal projective measurements cannot be imple-
mented in experiments since they need infinite resource
costs [61]. Therefore, the resolution of measurement devices
are always limited, that is jhϕðq − aÞjϕðq − a0Þij2 ¼ γ ≠ 0.
This is the noise come from the measurement process.
In the previous section, we consider two quantum system

in initial state jþijþi interact each other by gravity, and one
of them postselected to an almost completely orthogonal
state jϵi ¼ ϵj0i −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
j1i, where ϵ is close to 1ffiffi

2
p . This

postselected operation is exactly limited by the resolution
of measurement γ. So the minimal overlap hϵjþi ¼ ffiffiffi

γ
p

,
which determines the upper limit of the weak value,

MaxðAϵ
wÞ ≈

ffiffi
2

pffiffi
γ

p .

Now let consider the case that the square of effective
coupling strength Δϕ2

4ℏ2 ¼ γ. That is one cannot measure the
entanglement using traditional entanglement witness meth-
ods [11,12], since the signal of gravitationally induced
entanglement is covered by the noise of measurement
device. In this case, a weak-value-based scheme is still
work. One can obtain obvious signal of gravitationally
induced entanglement hΔΠ̂2iQ ¼ 2

3
≫ γ.

APPENDIX D: OBSERVING GRAVITATIONALLY
INDUCED ENTANGLEMENT WITH

DECOHERENCE

In fact, the decoherence exists in experiment. The longer
time in single run, the more decoherence. Besides, the
evolution of desired initial quantum state is not ideal
because the system is inevitably coupled with the envi-
ronment. Let us consider an environment-induced
decoherence model (other decoherence models are out of
our analysis) for the system QA and QB. Without a loss of
generality, we consider the action of environment as a
partially depolarizing channel, which is given as

NEðϱÞ ¼ ð1 − qÞϱþ q
I
d
; ðD1Þ

where q corresponds to the degree of a system that has been
decohered. Therefore, the final state before measurement
has a mathematical form

ϱAB ¼ ð1 − qÞjΨihΨj þ q
IA ⊗ IB

4
; ðD2Þ

where jΨi ¼ αjϵiA ⊗ jχ̃ϵiB þ βjϵ⊥iA ⊗ jχ̃ϵ⊥iB. Therefore,
we can get four steered states

ϱ̃h0jAB ðQÞ ¼ ð1 − qÞ
2

jϕþihϕþjB þ q
2
IB;

ϱ̃h1jAB ðQÞ ¼ ð1 − qÞ
2

jϕ−ihϕ−jB þ q
2
IB;

ϱ̃hϵjAB ðQÞ ¼ ð1 − qÞjαj2Trðjχ̃ϵihχ̃ϵjÞjχϵihχϵjB þ q
2
IB;

ϱ̃hϵ
⊥jA

B ðQÞ ¼ ð1 − qÞjβj2Trðjχ̃ϵ⊥ihχ̃ϵ⊥ jÞjχϵ⊥ihχϵ⊥ jB þ q
2
IB:

ðD3Þ

Further, we can project quantum states of QB to
jϕþi; jϕ−i; jχϵi; jχϵ⊥i with probabilities

fpð0;ϕþÞ; pð1;ϕ−Þ; pðϵ;χϵÞ; pðϵ⊥;χϵ⊥ Þg

¼
�
1

2
−
q
4
;
1

2
−
q
4
; ð1 − qÞjαj2Trðjχ̃ϵihχ̃ϵjÞ

þ q
4
; ð1 − qÞjβj2Trðjχ̃ϵ⊥ihχ̃ϵ⊥ jÞ þ

q
4

�
; ðD4Þ

Further, the visibility of measurement for quantum
mediator are

Vnoise
Π0

ðϱh0jAB Þ ¼ 1

1þ q
;

Vnoise
Π1

ðϱh1jAB Þ ¼ 1

1þ q
;

Vnoise
Π2

ðϱhϵjAB Þ ¼ 1 −
q

2Trðϱ̃hϵjAB Þ
;

Vnoise
Π3

ðϱhϵ⊥jAB Þ ¼ 1 −
q

2Trðϱ̃h;ϵ⊥jAB Þ
; ðD5Þ

where i ¼ 0, 1, 2, 3. Similarly, we can construct a separable
state (A5) model for comparison. If q is small, i.e., so that
Vnoise
Π2

ðQÞ > Vnoise
Π2

ðCÞ, then we can still obtain the ampli-
fied signal of entanglement. Therefore, our weak entangle-
ment criterion is applicable to some kinds of mixed states.

APPENDIX E: ATOMIC INTERFEROMETERS
WITH A HARMONIC OSCILLATOR

Here we analyze a possible experimental proposal
based on atomic interferometers with a harmonic oscil-
lator [27]. We analyze how to apply our weak entangle-
ment criterion to this scenario. Consider a harmonic
oscillator QA (a mechanical resonator) coupled to a
two-state system QB (an atom trapped in a double-well
potential). Since QB is a qubit state, one can set the
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position operator of the atom QB to the Pauli matrix σz
with the eigenstates jLi and jRi, which represent the
location of atom occupying, respectively. The gravitation-
ally driven Hamiltonian of these two systems is given as
(ℏ ¼ 1) [27]

H ¼ wa†aþ gðaþ a†Þσz; ðE1Þ

where w, a†, and a denote the frequency, creation, and
annihilation operators of the harmonic oscillator, respec-
tively. The coupling coefficient g correspond to the
gravitational interaction between atom and oscillator,
satisfying g ≪ w. Up to a global phase, the time-evolution
operator can be rewritten as

UðtÞ ¼ D†ðσzλÞe−iwa†atDðσzλÞ; ðE2Þ

where DðζÞ≡ expfζa† − ζ�ag is the usual displacement
operator and λ ¼ g

w. Consider this: the oscillator is ini-
tialized in its ground state j0iA and the atom is in the
superposition of jLiB and jRiB. After the time evolution,
the composite quantum state becomes jΨðtÞi ¼ UðtÞj0iA
⊗ 1ffiffi

2
p ðjLiB þ jRiBÞ ¼ 1ffiffi

2
p ðjηiA ⊗ jLiB þ j − ηiA ⊗ jRiBÞ,

where the evolved states of the oscillator are coherent
states j � ηiA ¼ Dð�λðe−iwt − 1ÞÞ. If we implement the
Hadamard gate to the two-level system QB, then we have

jΨðtÞi¼ 1

2cþ
jcatηþiA ⊗ jLiBþ

1

2c−
jcatη−iA⊗ jRiB; ðE3Þ

where jcatηþiA ¼ cþðjηiA þ j − ηiAÞ and jcatη−iA ¼
c−ðjηiA − j − ηiAÞ are the Schrödinger’s cat state with cþ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þe−2jηj2 Þ

p and c−¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−e−2jηj2 Þ

p . Since hcatη− jcatηþi ¼ 0,

one can address Eq. (E3) as a two-qubit entangled state.
However, the entanglement jΨðtÞi is very weak ( 1

2c−
is

small) due to the fact that jηj is very small (determined by
gravitational interaction). Similar to Eq. (2), one may
choose a suitable basis for QA (QB) to a new form of
jΨðtÞi, which has the amplified signal. For example, let us
expand QA to the basis fjvi ¼ sinðθÞjcatηþi þ
cosðθÞjcatη−i; jv⊥i ¼ cosðθÞjcatηþi − sinðθÞjcatηþig with
θ ≪ 1, and one has

jΨðtÞi ¼ jviA ⊗
�hvjcatηþi

2cþ
jLiB þ hvjcatη−i

2c−
jRiB

�

þ jv⊥iA ⊗
�hv⊥jcatηþi

2cþ
jLiB þ hv⊥jcatη−i

2c−
jRiB

�
:

ðE4Þ

One can see that compared to the components of jLiB, the
component of jRiB is enlarged whenQA is projected to jviA.
If θ is small enough, then one may has hvjLi

2cþ
∼ hvjRi

2c−
such that

the component of jRiB in the steered quantum state ofQB is
boosted. According to weak entanglement criteria we
proposed, this basis is the most significant ingredient
to amplify the entangled signal. Similarly, another mea-
surement basis needs to be selected, which may be
fjþi¼ 1ffiffi

2
p jcatηþiþ 1ffiffi

2
p jcatη−i; j−i¼ 1ffiffi

2
p jcatηþi− 1ffiffi

2
p jcatη−ig.

A random selection of these two measurement bases yields
the probability distribution and measurement visibility of
system QB, which allows us to witness the gravitationally
induced entanglement. In real scenarios, the resonator QB
may be a thermal state close to the ground state. We analyze
this case in the following.
In above analysis, we assume that the oscillator is

initialized in its ground state j0i. In a realistic implemen-
tation, due to the finite temperature (may be nK), the
oscillator instead starts in a mixed state, such as a thermal
state, donated as ϱth ¼

R
d2ζ 1

πn̄ e
−jζj2=n̄jζihζj. In this case,

the evolving state of the two systems becomes

ϱAB ¼
Z

d2ζ
1

πn̄
e−jζj2=n̄jΨζihΨζj; ðE5Þ

where jΨζi¼ 1
2
ðjζþηiAþjζ−ηiAÞ⊗ jLiBþ 1

2
ðjζþηiA−

jζ−ηiAÞ⊗ jRiB. Obviously, if ζ ¼ 0, then jΨζi reduces
to Eq. (E3). Here we will be concerned only with the
projective measurements hvjA (corresponds to amplified
entanglement), since the measurements of the other bases
are trivial. The conditional state of the atom becomes

ϱhvjAB ¼ TrAðjvihvjA ⊗ IBϱABÞ
TrðjvihvjA ⊗ IBϱABÞ

; ðE6Þ

leading the measurement visibility

VΠμ
ðϱhvjAB Þ ¼ TrðΠμϱ

hvjA
B Þ; ðE7Þ

where Πμ ¼ jμihμj and jμi¼ðhvjcatηþi
2cþ

jLiBþhvjcatη− i
2c−

jRiBÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j hvjcatηþi

2cþ
j2þjhvjcatη− i

2c−
j2

q
. When the thermal state is very

close to the ground state, one may has
VΠμ ðϱ

hvjA
B Þ−VC

Πμ
ðϱhvjAB Þ

γ ¼ k > 1, where γ is measurement sensi-
tivity. Therefore we may still achieve k-fold magnification
compare to the usual ones.
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