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We analyze the vacuum structure of N ¼ 3; D ¼ 4 supergravity coupled to 9 vector multiplets with
gauge group SOð3Þ × SUð3Þ. Aside from the central N ¼ 3 AdS4 vacuum at the origin, on which the
supermultiplet structure reproduces the massless sector of M theory compactified on N0;1;0, we find a rich
structure of AdS4 vacua preserving N ¼ 0, 1, 2, 3 supersymmetry. These new vacua are arranged in a
manifold spanned by scalar fields corresponding to exactly marginal deformations of the dual CFT. This
manifold has the form T3=K, where K is a discrete subgroup of the gauge group: N ¼ 3, 2, and 1 vacua
correspond, respectively, to a point, a line and a surface in the three-dimensional vacuum manifold. We
study RG flows from the centralN ¼ 3 vacuum and elaborate on the possible higher dimensional origin of
the new vacua. For the reader’s convenience we also provide a review of the embedding tensor formulation
of D ¼ 4;N ¼ 3 gauged supergravities. In particular, we provide formulas involving the fermion shift
tensors and mass matrices in N ¼ 3 theories, which can be applied to a generic gauging.
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I. INTRODUCTION

Lower-dimensional gauged supergravities have provided
a valuable framework for consistently studying the dynam-
ics of a subset of physical degrees of freedom associated
with type II superstring theories in D ¼ 10 or D ¼ 11
supergravity. Defining such models amounts to construct-
ing consistent truncations of the higher dimensional
theories on specific backgrounds. Of particular interest
are solutions ofD ¼ 10 type II supergravities or ofD ¼ 11
supergravity whose geometry is a warped product
AdS4 ×w Md, d ¼ D − 4, of a four-dimensional anti–de
Sitter spacetime and an internal compact manifold Md.
Once this is achieved, one can try to explore relevant
properties such as perturbative and nonperturbative

stability of the solutions. As far as the construction of
consistent truncations within maximal lower-dimensional
supergravities is concerned, exceptional field theory [1,2]
provides an efficient framework for embedding certain
lower dimensional models into superstring or M theories
and for studying perturbative stability of their solutions
[3,4]. In the more general case, important progress has
been made towards a systematic construction of lower-
dimensional consistent truncations [5,6]. In this case the
setup is the one of generalized geometry in which a wide
class of consistent truncations can be described by
exploiting the concept of generalized GS-structure mani-
folds with singlet intrinsic torsion. Earlier results related
to the construction of consistent truncations of D ¼ 11
supergravity compactified on manifolds Md with tri-
Sasakian geometry were obtained in [7].
Our present work is inspired by one of these spontaneous

compactifications, which has the form

AdS4 × N0;1;0; ð1:1Þ

where, within the infinite class of Sasakian homogeneous
spaces Np;q;r introduced by Castellani and Romans in [8],
the case fp; q; rg ¼ f0; 1; 0g defines the unique instance of
a seven-dimensional homogeneous tri-Sasakian manifold.
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As shown in the original paper [8] and systematically
reviewed in [9], the vacuum (1.1) admits three anti–
de Sitter Killing spinors and, correspondingly, the whole
spectrum of Kaluza-Klein states is arranged into super-
multiplets of the following supergroup:

Giso ¼ OSpð3j4Þ × SUð3Þ: ð1:2Þ

Such organization of the Kaluza-Klein states was achieved
in [10], which also provides the general form of the
OSpð3j4Þ supermultiplets. Later, in [11], this result was
compared with the spectrum of primary conformal fields
pertaining to a candidate D ¼ 3 superconformal field
theory suggested by the HyperKähler quotient construction
of the metric cone CðN0;1;0Þ. All the Kaluza-Klein towers
are perfectly reproduced but there are also additional ones
that the superpotential of the candidate theory does not
suppress, as it was remarked in [11]. A precise comparison
of these very early results with those much later derived in
the framework of quiver theories associated with orbifolds
N0;1;0=Zk, [12,13] is still missing in the literature.
As for the massless supermultiplets the above-mentioned

spectrum is very simple, it just contains the massless
graviton multiplet and the 9 massless vector multiplets.
The massless graviton multiplet includes the graviton gμν,
three gravitinos ψAμ, three gauge fields AAB

μ gauging the R
symmetry SO(3) and one spin one-half field χ•. Each
massless N ¼ 3 vector multiplet has a field content equal
to that of an N ¼ 4 multiplet, namely, one vector Aμ, four
spin one-half spinors ðλA; λÞ, organized into a triplet and a
singlet of SO(3) and six scalars organized into two triplets of
SO(3). The nine vector multiplets are divided into eight in
the adjoint of SU(3), the bosonic group factor in (1.2), and
one in a singlet (the so called Betti multiplet originating from
the nontrivial cohomology group of N0;1;0 in degree two).
In the present work we start considering a four-

dimensional N ¼ 3 supergravity coupled to 9 vector
multiplets, whose gauge group G ¼ SOð3Þ × SUð3Þ, coin-
cides with the isometry group of the internal manifold. We
are aware, however, that this model does not fit the N ¼ 4
consistent truncation defined in [7]. Nevertheless the vacua
we shall analyze are described within a smaller truncation
of the original N ¼ 3 model, with scalar manifold
ðSUð1; 1Þ=Uð1ÞÞ3. The study of the possible embedding
of these vacua within the consistent truncation of [7] and
thus their actual relation with the compactification (1.1)
will be the subject of future investigation. As for the full
N ¼ 3 model with nine vector multiplets, it certainly
reproduces, around the centralN ¼ 3 vacuum at the origin,
properties of the linearized theory on the (1.1) background,
in particular the massless AdS supermultiplets, though
possibly not their complete nonlinear interactions.
In this first work, we focus on this N ¼ 3 gauged

supergravity and its vacuum structure independently

of its possible relation with M-theory compactifications.
In particular we find, besides the central AdS4 N ¼ 3-
supersymmetric vacuum, naturally associated with the
compactification (1.1), a rich structure of new vacua, with
different supersymmetries.
This model has also been recently studied in [14,15].

Here we present a broad analysis of the vacuum structure of
the theory that is not contained in the above research. Aside
from theN ¼ 3AdS4 vacua with SUð2Þ × Uð1Þ and SOð3Þ
symmetries, which were already found in [14,15], our
analysis unveils new compact loci of N ¼ 1 and N ¼ 2

vacua, besides perturbatively stable N ¼ 0 ones. These
new vacua, to our knowledge, were overlooked in
the literature. We provide for the N ¼ 3, 2, 1 vacua the
corresponding supermultiplet structures and study the
relevant RG flows. All these vacua form a compact
manifold T3=K, where K is a discrete subgroup of the
gauge group, isomorphic to the symmetric group S4. The
N ¼ 3, 2 and 1 vacua correspond, respectively, to a point, a
line and a surface in the three-dimensional vacuum mani-
fold, the remaining points define perturbatively stable
N ¼ 0 anti–de Sitter vacua. The compact vacuum mani-
fold, with geometry T3=K, is spanned by three angular
variables which define flat directions of the scalar potential
and which are thus natural candidates to correspond to
exactly marginal deformations of the dual CFT. In this latter
theory these deformations would therefore realize a pattern
of supersymmetry breaking, when moving from a super-
symmetric vacuum to a less supersymmetric one in the
same moduli space, by marginal deformations.
Let us end this introduction with a few more details about

the model under consideration and our results. As first
derived in [16,17] the 6n scalars of a matter coupled
supergravity theory with n vector multiplets are organized
into the complex coordinates of the noncompact Kählerian
manifold:

Mscalar ¼
SUð3; nÞ

SUð3Þ × SUðnÞ × Uð1Þ : ð1:3Þ

Hence, a choice of n, in our case n ¼ 9, defines a unique
ungauged supergravity theory.
Using the embedding tensor formalism [18–21] (for

reviews see [22,23]), we study the gauging of the group:

G ¼ SOð3Þ × SUð3Þ; ð1:4Þ

and search for extrema of the corresponding scalar poten-
tial. As mentioned above, such a gauge theory has, at the
origin of the coset manifold

MS ≡Mn¼9
scalar ¼

SUð3; 9Þ
SUð3Þ × SUð9Þ × Uð1Þ ; ð1:5Þ
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an anti–de Sitter vacuum preserving N ¼ 3 supersymme-
tries that naturally corresponds to the original M-theory
compactification (1.1). Obviously there are other extrema
whose geometrical interpretation in higher dimensions is
yet to be understood.
In particular, by means of a consistent truncation of our

theory to singlets of certain specified subgroups of the
gauge group (1.4) we find two other vacua with N ¼ 3
supersymmetry in D ¼ 4. Specifically,

(i) Truncating to the singlets under the subgroup

SOA
diagð3Þ ¼ diagðSOð3Þ × SOIð3ÞÞ ⊂ G; ð1:6Þ

where SOð3Þ ⊂ OSpð3j4Þ is the R-symmetry group,
while SOIð3Þ ⊂ SUð3Þ is the real restriction of the
complex group under which the fundamental rep-
resentation remains irreducible

3SUð3Þ ⟶
SOIð3Þ

3;

we find a second N ¼ 3 vacuum whose isometry is
simply OSpð3j4Þ and all the other fields arrange
themselves into N ¼ 3 massive vector multiplets
(for details see Sec. V).

(ii) Truncating to the singlets under the subgroup:

SOB
diagð3Þ ¼ diagðSOð3Þ × SOIIð3ÞÞ ⊂ G; ð1:7Þ

where SOð3Þ ⊂ OSpð3j4Þ is once again the R-
symmetry group, while SOIIð3Þ∼SUIIð2Þ⊂SUð3Þ
is locally isomorphic to the natural SUIIð2Þ subgroup
of SU(3) under which the fundamental representa-
tion splits into a singlet plus a doublet,

3SUð3Þ ⟶
SUIIð2Þ

2 ⊕ 1;

we find a third N ¼ 3 vacuum whose isometry is
simply OSpð3j4Þ and all the other fields arrange
themselves into N ¼ 3 massive vector multiplets
but with different energy (scaling dimension)
eigenvalues than in the previous case (for details
see Sec. V).

Each of the above N ¼ 3 vacua is connected to loci of
N ¼ 2, 1, and 0 vacua through three angular flat directions
of the scalar potential. In fact they are part of vacuum
manifolds with geometry T3=K, as mentioned above. Our
paper is organized as follows:
In Sec. II we review N ¼ 3 supergravity in four

dimensions. Starting from the ungauged theory, we illus-
trate the general procedure to construct the gauged one
using the embedding tensor formalism. Of particular
relevance to our analysis is the derivation of the fermion-
shift tensors, the mass matrices, and the scalar potential

from the S½Uð3Þ × UðnÞ�-irreducible components of the
so-called T tensor.
In Sec. III we specialize to the model with nine vector

multiplets (one of them, corresponding to the Betti multi-
plet, being completely decoupled). Supplemented by three
vectors from the gravity multiplet, these 3þ 8 vector fields
gauge the (3þ 8)-dimensional compact subgroup G ¼
SOð3Þ × SUð3Þ of the isometry group G ¼ SUð3; 9Þ asso-
ciated with the scalar manifold of the ungauged theory.
Section IV sets up the stage for analysis of the vacuum

structure of the above model. Since the scalar manifold
is 54-dimensional, it is a daunting task to extremize the
scalar potential in general. Thus, we restrict the study to
two different consistent truncations of the theory, each
associated with a six-dimensional scalar manifold that is
embedded into the full scalar manifold inequivalently. On
these subspaces the scalar potential can be extremized and
we find that in both cases the vacuum manifold has the
topology of an orbifold: a 3-torus quotiented by a particular
discrete subgroup of the gauge group. We then describe loci
of different co-dimensions in the vacuum manifold, based
on the amount of preserved supersymmetry as well as on
breaking patterns of the gauge group.
Section V is devoted to decomposing the mass spectra on

vacua preserving N of the three original supersymmetries,
into unitary irreducible representations of the supergroup
OSpðN j4Þ, which represents the superconformal group of
the holographically dual SCFT3.
In Sec. VI we present domain-wall solutions dual to RG

flows between the maximally symmetric vacuum at the
origin of the scalar manifold and other less symmetric
vacua, whose holographic meaning remains to be uncov-
ered. We verify the a theorem for these flows.
Finally, we summarize the content of this paper and offer

a brief outlook in the conclusions.
Technical details are given in the Appendices.

Appendices A–C deal with various aspects of the embed-
ding tensor formalism. Appendix D fixes conventions for
gauge group generators. In Appendix E we provide the
details of the domain-wall solutions of Sec. VI. Appendix F
presents relevant unitary irreducible representations of
OSpðN j4Þ. Finally, Appendix G provides detailed tables
of mass spectra of the gauged supergravity in various
vacua.

II. GAUGED N = 3 SUPERGRAVITY

In this section we define the general field theoretical
setting of our analysis by reviewing the main facts about
N ¼ 3 supergravity and its gaugings [17].

A. The ungauged model

For the sake of fixing the relevant notations, let us start
with reviewing the general features of an ungauged N ¼ 3
supergravity, namely, of the version of the theory in which
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the vector fields are not minimally coupled to any
other field.
A generic model of this kind features, besides the

supergravity multiplet, a number n of vector multiplets.
In particular the gravity multiplet consists of the graviton
gμν, μ; ν ¼ 0;…; 3 being the space-time index, three
gravitinos ψAμ, A ¼ 1;…; 3, three vector fields (gravipho-
tons) AAB

μ , and one dilatino χABC ¼ χ•ϵABC. Each of the n
vector multiplets (labeled by I ¼ 1;…; n), contains a
vector field AIμ, four gauginos λIA; λI, and three complex
scalar fields ϕIAB.
Therefore the model features nv ¼ 3þ n vector fields

and 3 × n complex scalar fields spanning a complex scalar
manifold of the form

Mscalar ¼
G
H

¼ SUð3; nÞ
S½Uð3Þ × UðnÞ� ; ð2:1Þ

the isotropy group being locally isomorphic to the product
of the R-symmetry group HR ¼ Uð3Þ and the group
Hmatter ¼ SUðnÞ acting on the vector multiplets only.
The electric-magnetic duality symmetry.—The global on-

shell symmetry group of the ungauged model is the isometry
group G ¼ SUð3; nÞ of the scalar manifold, provided its
nonlinear action on the scalar fields is combined with a
symplectic, electric-magnetic duality action on the vector
field strengths and their magnetic duals.
The symplectic duality action of G on the electric and

magnetic charges is defined by the representation

Rη ¼ ð3þ nÞ ⊕ ð3þ nÞ: ð2:2Þ
The representation ð3þ nÞ, in turn, branches with respect
to the subgroup H as follows:

ð3þ nÞ → ð3; 1Þ−1 ⊕ ð1;nÞ3
n
: ð2:3Þ

There is an obvious complex basis of the representation
space of Rη, in which the action of the group G is block
diagonal. A vector in this basis is denoted by

VM¼ðVΛ;VΛÞ; VΛ¼ðVAB;VIÞ; VΛ¼ðVΛÞ�; ð2:4Þ

where VAB is a complex vector in the representation
ð3; 1Þ−1 of H while VI transforms in the ð1;nÞþ3

n
of the

same group. In this basis a representation of a generic
element T ¼ ðTΛ

ΣÞ of SUð3; nÞ in its fundamental repre-
sentation ð3þ nÞ has the form

T ∈ G → Rη½T�MN ≡
�
T 0

0 T�

�
; ð2:5Þ

where T satisfies the defining condition T†ηT ¼ η,
η ¼ diagðþ1;þ1;þ1;−1;…;−1Þ. The structure of the
matrix T in terms of H-covariant blocks is

T ¼
�
TAB

CD TABJ

TICD TI
J

�
: ð2:6Þ

The drawback of this basis is that the matrixRη½T�MN is not
symplectic.1 The real symplectic representation of G in
terms of matrices in Spð2ð3þ nÞ;RÞ, is obtained through
the following change of basis:

VM ¼ ðA †OÞMNV
N; ð2:8Þ

where we have denoted a vector in the real symplectic basis
by VM ¼ ðVΛ; VΛÞ and the matrices O andA are given by

O ¼

3 n 3 n

3

n

3

n

0
BBB@

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1
CCCA

;

A ¼ 1ffiffiffi
2

p
3þ n 3þ n� 1 i1

1 −i1

�
3þ n

3þ n

:

A being the Cayley matrix and each block in its matrix
representation has dimension ð3þnÞ×ð3þnÞ. We denote by
R½T�MN the representation of a generic element T of G is
the new real basis. It defines an embedding of G into the
group Spð2ð3þ nÞ;RÞ

R∶ G → Spð2ð3þ nÞ;RÞ
⇔ ∀ T ∈ G∶ R½T�T · C ·R½T� ¼ C; ð2:9Þ

where

C≡
�

0 1

−1 0

�
:

The real symplectic basis is the one in which the vector
field strengths FΛ

μν ¼ ∂μAΛ
ν − ∂νAΛ

μ , together with their
magnetic duals GΛμν, transform, as components of a single
symplectic vector:

1Notice that in this complex basis the matrix Rη½T� is
symplectic with respect to an antisymmetric 2ðnþ3Þ×2ðnþ3Þ
matrix Cη of the form

Cη ≡
�

0 η
−η 0

�
: ð2:7Þ

Indeed the reader can verify, using the property T†ηT ¼ η, that
Rη½T�tCηRη½T� ¼ Cη.
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GM
μν ≡

�
FΛ
μν

GΛμν

�
; ð2:10Þ

the dual field strengths GΛμν being defined, as usual, in the
following way:

GΛμν ¼ −ϵμνρσ
δL

δFΛ
ρσ
: ð2:11Þ

The electric-magnetic duality action of an element T in
SUð3; nÞ is effected as follows:

GM
μν → G0M

μν ¼ R½T�−1NMGN
μν: ð2:12Þ

We shall collectively denote by AM
μ the vector of electric

gauge fields and their magnetic duals, so that, locally,
GM ¼ dAM. The representations of the various fields with
respect to G and H ∼HR ×Hmatter are given in Table I.
The coset geometry.—The scalar fields ϕ ¼ ðϕsÞ are

described in the theory by a coset representative LðϕÞ ∈
SUð3; nÞ so that the action on ϕs, by an element T ∈
SUð3; nÞ of the isometry group of the scalar manifold

T∶ ϕs → ϕ0s ¼ ϕ0sðϕrÞ; ð2:13Þ

is defined by the left action of T on the coset representative,
modulo the right action of H, namely, by the equation

T · LðϕÞ ¼ Lðϕ0Þ · hðϕ; TÞ; ð2:14Þ

where hðϕ; TÞ is a compensator in H. The Lie algebra
g ¼ suð3; nÞ of G can be written, according to the Cartan
decomposition, as the direct sum of its maximal compact
subalgebra H ¼ uð3Þ ⊕ suðnÞ, generating H, and the
subspace K of noncompact generators:

g ¼ H ⊕ K: ð2:15Þ

We shall find it convenient to choose for the scalar manifold
an H-covariant parametrization, which amounts to choos-
ing the coset representative as follows:

LðϕÞ ∈ eK; ð2:16Þ

namely, the scalar fields ϕs to be parameters of the non-
compact generatorsK ⊂ g. Being ½H;K� ⊂ K,K supports a
representation of H and, in the chosen parametrization, the

scalar fields transform under H in the same representation.
This representation is the ð3̄;nÞk þ ð3; n̄Þ−k, where k ¼
1þ 3=n and the scalar fields have the following index
structure:

ϕ ¼ ðϕABJ;ϕABJÞ; ϕABJ ¼ ðϕABJÞ�: ð2:17Þ

According to the general theory of coset spaces, in terms of
LðϕÞ we can construct the left-invariant 1-form ΩðϕÞ with
values in g:

ΩðϕÞ≡ L−1dLðϕÞ ¼ QðϕÞ þPðϕÞ; ð2:18Þ

where Q, P are the projections of Ω on the subspaces H
and K, respectively. The suð3; nÞ-Maurer-Cartan equations
dΩþΩ ∧ Ω ¼ 0 imply the following relations:

R½Q�≡ dQþQ ∧ Q ¼ −P ∧ P;

DP≡ dP þQ ∧ P þP ∧ Q ¼ 0; ð2:19Þ

whereR½Q� is the curvature 2-form, with values inH, while
D defines the exterior H-covariant derivative acting on P.
The H-irreducible components of Q and P can be read
from the matrix form ofΩ in the fundamental representation
of G:

Ω ¼
�
QAB

CD PABJ

PICD QI
J

�
; ð2:20Þ

wherePABI ¼ðPIABÞ�.We further definePABI ¼ðPABIÞ�
and PIAB ¼ ðPIABÞ�. The Riemannian metric on the
scalar manifold can be computed as follows:

G stðϕÞdϕs ⊗ dϕt ¼ PABI
s PABIjtdϕs ⊗ dϕt: ð2:21Þ

The coset representative can be evaluated as a symplectic
matrix in the R representation: We shall also equivalently
describe PABI

s by the tensor PsA
I ¼ 1

2
ϵABCP

BCI
s .

R½LðϕÞ� ¼ ðLðϕÞMNÞ: ð2:22Þ

Similarly Eq. (2.14) can bewritten in terms of matrices in the
same representation. We choose the symplectic basis so that
the compensator in (2.14) is represented by an orthogonal
ð6þ 2nÞ × ð6þ 2nÞ matrix R½hðϕ; TÞ�. Since the coset
representative is acted on from the left and from the right
by two different groups, namely, G and H, respectively,

TABLE I. Relevant representations with respect to G and H. The fermions λIA and λI have opposite chirality.

AM
μ ψAμ χ• λIA λI FAB

μν FI
μν

G ð3þ nÞ þ ð3þ nÞ 1 1 1 1 1 1

H ð1; 1Þ0 ð3; 1Þþ1
2

ð1; 1Þþ3
2

ð3;nÞnþ6
2n

ð1;nÞ3ðnþ2Þ
2n

ð3; 1Þ−1 ð1; n̄Þ−3
n
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we can refer the corresponding indices to two different bases.
We choose in particular the real basis for the left index and
the complex one for the right index, so as to define the
matrix L̃ðϕÞ≡ ðLðϕÞMNÞ.
One can define on the scalar manifold the follow-

ing ð6þ 2nÞ × ð6þ 2nÞ symmetric, symplectic, negative-
definite matrix (summation over N being understood)

MðϕÞ ¼ −L̃ðϕÞ · L̃ðϕÞ† ¼ −LðϕÞMNðLðϕÞNNÞ�; ð2:23Þ

which encodes the nonminimal couplings of the scalar
fields to the vector ones. Under an isometry T ∈ SUð3; nÞ,
which maps ϕ into ϕ0ðϕÞ, the matrix MðϕÞ transforms as
follows:

Mðϕ0Þ ¼ R½T� ·MðϕÞ ·R½T�T; ð2:24Þ

as it can be verified by applying Eq. (2.14) in the relevant
representation, together with the property that Rη½hðϕ; TÞ�
is unitary (orthogonal in the real basis).
The definition of the dual field strengths GΛμν can be

encoded in a symplectic covariant condition on GM
μν known

as the twisted self-duality condition [24] (we suppress the
spacetime indices for convenience):

�GM ¼ −ðC ·MðϕÞÞMNG
N: ð2:25Þ

One can verify that the group G is a global symmetry of the
field equations and Bianchi identities provided the action of
a generic isometry T ∈ G on the scalar fields is combined
with a symplectic duality action (2.12) on the vector field
strengths and their magnetic duals and with the action of
the compensating transformation hðϕ; TÞ on the fermionic
fields in the appropriate H representation [25].

B. The gauged model

So far we have been dealing with the ungauged N ¼ 3,
D ¼ 4 models, focusing on their main features and, in
particular, on their on-shell global symmetry properties,
encoded in the group G ¼ SUð3; nÞ. Supersymmetry
requires these models to have no scalar potential and thus
the only vacuum is a Minkowski spacetime with 3n
complex scalar moduli. Nontrivial dynamics for the scalar
fields, encoded in a scalar potential, can be introduced,
without manifestly breaking supersymmetry, through the
gauging procedure, which amounts to introducing an
internal gauge group G and corresponding minimal cou-
plings of the vector fields to the other fields (see [17] for the
original construction ofN ¼ 3,D ¼ 4models with electric
gaugings). Although in the present work we shall focus on
a specific gauging and study the corresponding vacuum
structure, we describe in this section the general duality
covariant formulation of the gauging procedure based on
the embedding tensor [19–21,26]; see [22,23] for reviews.

The gauging procedure consists of promoting a suitable
subgroup G of the global symmetry group G of the
ungauged theory to local symmetry and in modifying
the Lagrangian and the supersymmetry transformation laws
in order for the resulting theory to feature the same amount
of supersymmetry as the original one (N ¼ 3 in our case).
Gauging a group G requires the introduction of minimal
couplings of the vector fields to the other fields. This, in
general, would break the original electric-magnetic duality
symmetry G of the ungauged model. In the embedding
tensor formulation of the gauging procedure, we keep a
formal G covariance of the field equations by encoding all
the information about the local embedding of G inside G in
a G-covariant tensor Θ. This formalism requires a certain
level of redundancy in the description of the theory by
introducing, aside from the electric gauge fields AΛ

μ

corresponding to gauge generators XΛ, also magnetic
ones AΛμ gauging the generators XΛ and two-forms Bα ¼
ðBαμνÞ, α ¼ 1;…; dimðGÞ, in the adjoint representation of
the global symmetry group G. Grouping the electric and
magnetic vectors, as well as the corresponding gauge
generators, in symplectic vectors AM

μ , XM, respectively,
we can write the gauge connection as follows:

Ωgμ ≡ gAM
μ XM; ð2:26Þ

g being the coupling constant. The condition that the gauge
algebra of G be a subalgebra of G in turn requires that the
gauge generators XM be linear combinations of the global
symmetry group generators tα

2:

XM ¼ ΘM
αtα: ð2:27Þ

This defines the embedding tensor ΘM
α which encodes all

the information about the choice of G inside G. This object
formally transforms in the product R × AdjðGÞ of the
symplectic (electric-magnetic) duality representation R
of G times its adjoint representation. Consistency of the
gauging procedure, namely, the possibility of constructing
a locally G-invariant,N -supersymmetric action, requires Θ
to satisfy linear and quadratic constraints. These are best
expressed in terms of the tensor

XMN
P ≡ ΘM

αR½tα�NP:

The linear constraint reads

XðMN
RCPÞR ¼ 0: ð2:28Þ

The quadratic constraints are two:

2The electric-magnetic duality representation R being sym-
plectic, R½tα� are symplectic generators and thus satisfy the
following condition: R½tα�MPCNP ¼ R½tα�NPCMP.
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ðaÞ∶ ½XM; XN � þ XMN
PXP ¼ 0; ð2:29Þ

ðbÞ∶ CMNΘM
αΘN

β ¼ 0: ð2:30Þ

The former expresses the property of Θ being gauge
invariant and implies that the gauge fields transform under
the duality action of G, as a global symmetry group, in its
co-adjoint representation. The latter condition (2.30) guar-
antees that no more than the number nv of the vector fields
of the model are involved in the gauging, namely, that there
are no more than nv linearly independent gauge generators
XM. This condition, in particular, implies the existence of a
symplectic frame (related to the original one by a sym-
plectic transformation) in which the “magnetic” compo-
nents ΘΛα of Θ are zero (“electric” frame). It can be shown
that, for N ≥ 3, condition (2.29) implies (2.30), while in
the maximal theory, N ¼ 8, they are equivalent.
Spacetime derivatives in the action are then replaced by

covariant ones:

∂μ → ∂μ −Ωgμ; ð2:31Þ

and the Abelian field strengths by non-Abelian ones:

∂μAM
ν − ∂νAM

μ → ∂μAM
ν − ∂νAM

μ þ gXNP
MAN

½μA
P
ν�: ð2:32Þ

This, as far as the scalar part of the action is concerned,
requires considering the gauged Maurer-Cartan vielbein
and connection matrices P̂, Q̂ on the scalar manifold. The
latter are constructed out of the gauged Maurer-Cartan left-
invariant 1-form, in the complex basis (2.5), as follows:

Ω̂ ¼ R½L−1ðd −ΩgÞL� ¼ P̂ þ Q̂; ð2:33Þ

where 2P̂ ¼ Ω̂þ Ω̂† and 2Q̂ ¼ Ω̂ − Ω̂† are the noncom-
pact and compact components of Ω̂, respectively. In other
words, P̂ is the gauged vielbein and Q̂ is the gauged
H-connection in the real symplectic representation.
The gauged scalar kinetic term reads as

e−1L scal:kin ¼
1

2
G rsDμϕ

rDμϕs

¼ 1

2
TrðP̂μ · P̂

μÞ ¼ P̂ABI
μ P̂μ

ABI; ð2:34Þ

where e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðgμνÞj
p

and Dμϕ
s ¼ ∂μϕ

s − gAM
μ Θα

Mk
s
α is

the gauge covariant derivative of the scalar fields, ksα being
the Killing vectors of the scalar manifold isometries
generated by tα.
The vector kinetic terms in the Lagrangian read

e−1L v:kin ¼
1

4
IΛΣHΛ

μνHΣμνþ 1

8e
RΛΣϵ

μντγHΛ
μνHΣ

τγ: ð2:35Þ

The symmetric matrices IΛΣ andRΛΣ are derived from the
symplectic matrix MðϕÞ defined in (2.23) as follows3:

M ¼ −L̃L̃† ¼
�
RI−1Rþ I −RI−1

−I−1R I−1

�
: ð2:36Þ

HΛ is the electric component of the symplectic field strength
HM ¼ FM þ g

2
CMNΘα

MBα, FM ¼ dAM þ g
2
XNP

MAN ∧ AP

being the symplectic non-Abelian field strength of AM. In
general, this latter is not gauge covariant since the gene-
ralized gauge structure constantsXMN

P ¼ X½MN�P þ XðMNÞP

do not satisfy the Jacobi identity whenever the symmetric
component XðMNÞP is nonvanishing. The auxiliary fields
Bαμν, and their suitably defined gauge variation, must be
introduced in order to define the gauge covariant field
strength GM ¼ ðHΛ; GΛÞ. GΛ ¼ −ϵμνρσ δL

δHρσ
is the dual

of HΛ.4 In terms of GM we obtain the equations of motion
for AM

μ (which comprise the field equations for the electric
vector fields and the Bianchi identities):

ϵμνρσDνGM
ρσ ¼ 2CMN δL matter

δAM
μ

; ð2:37Þ

whereLmatter denotes the part of the Lagrangian describing
the coupling of the vectors to the scalar and fermion fields.
Gauge invariance of the action and supersymmetry

require the addition of order-g topological terms and
Yukawa terms to the action as well as an order-g2 scalar
potential VðϕÞ. The Yukawa terms have the following
general form (we use the notation of [23]):

e−1LYukawa ¼ gð2ψ̄A
μ γ

μνψB
νSAB þ iλ̄IγμψAμNI

A

þ λ̄IλIMIJ Þ þ H:c:; ð2:38Þ

where λI is a collective symbol to describe the positive-
chirality spin-1=2 fermions

λI ≡ fλIA; λI; χ•g:

As usual, in the Weyl representation, the positive-chirality
spinor fields λI are the charge-conjugate of the negative-
chirality ones. The quantities SAB ¼ SBA, NI

A and MIJ ,
as well as their complex conjugates SAB ≡ ðSABÞ�,
NI

A ≡ ðNI
AÞ�, MIJ ≡ ðMIJ Þ�, are H-covariant tensors

that depend on the scalar fields and (linearly) on the
embedding tensor. The same quantities uniquely define
the scalar potential that satisfies the so-called potential
Ward identity:

3Recall that we have chosen the symplectic basis so that
R½H� ∈ SOð6þ 2nÞ.

4This is true once the field equations for Bα μν are implemented.
The latter imply the identification of HΛ and GΛ.
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δABVðϕÞ ¼ g2ðNI
ANI

B − 12SACSBCÞ: ð2:39Þ

Besides order-g and g2 modifications to the action, the
gauging procedure also requires additional order-g terms in
the supersymmetry transformation laws of the fermion
fields:

δψAμ ¼ DμϵA þ igSABγμϵ
B þ…;

δλI ¼ gNI
AϵA þ…: ð2:40Þ

Note that all the modifications of the action and the fermion
supersymmetry transformation laws implied by the gauging
procedure are defined in terms of the composite fields SAB,
NI

A, and MIJ . These H-covariant tensors in N ¼ 3

supergravities are

SAB¼SBA; NIA
B; NAI; NA; MIA

J; M•;IA; M•;I; MIA;JB;

ð2:41Þ

and are components of a singleH tensor called the T tensor,
defined in terms of XM and L as

TMN
P ≡ ðL̃−1ÞMQðL̃−1R½XQ�L̃ÞNP: ð2:42Þ

The T-tensor TMN
P being the transform of XMN

P via L̃−1, it
satisfies the same linear and quadratic constraints as the
latter:

T ðMN
PCQÞP ≡ −T ðMNQÞ ¼ 0; ð2:43Þ

½TM; TN �RT þ TMN
PTPR

T ¼ 0: ð2:44Þ

The former selects, within the product of R × AdjðGÞ, the
representation (using the Dynking label notation)

ð0; 1; 0;…; 0; 1Þ ⊕ ð1; 0;…; 0; 1; 0Þ ð2:45Þ

corresponding to the tensors

TΛΣ
Γ ¼ T ½ΛΣ�Γ; TΛΣ

Γ ¼ ðTΛΣ
ΓÞ� ¼ T ½ΛΣ�

Γ;

respectively. The underlined indices refer to the complex
basis (2.5) and run from 1 to 3þ n. The fermion shift
tensors and the mass matrices (2.41) are identified with
the H ¼ S½Uð3Þ × UðnÞ�-irreducible components of TΛΣ

Γ,
TΛΣ

Γ. The precise relations are given in Appendices B
and C. In particular the fermion-shift tensors entering are
expressed in terms of the components of the T-tensor as
follows:

SAB ¼ −
1

2
ϵðAjCDTCD

BÞ;

NB ¼ TEB
E;

NCI ¼ ϵABCTAB
I;

NIA
B ¼ −2T IA

B þ T IC
Cδ

A
B: ð2:46Þ

There are differential relations among these H-tensors
named gradient flow equations [23,27]. They are found
by decomposing in irreducible H components the general
relation:

DTMN
P ¼ −R½P�MQTQN

P þ ½T ;R½P��NP; ð2:47Þ

where D is the H-covariant derivative. The above equation
is obtained from the definition of the T tensor and
Eq. (2.18) in the R representation.
Finally the quadratic constraints (2.44) also imply the

potential Ward identity (2.39) which, specialized to the
N ¼ 3 models under consideration, reads

NANBþNAINBIþNIC
BNIC

A−12SACSBC¼δBAV; ð2:48Þ

where, for the sake of notational convenience, we have
absorbed the coupling constant g in the definition of the
embedding tensor and thus in the fermion-shift tensors. This
identity is necessary in order to preserve N ¼ 3 supersym-
metry of the gauged action to quadratic order in the
embedding tensor. For a derivation of the potential Ward
identity from the quadratic constraints see Appendix A.

C. General mass formulas

We give below the general mass formulas for the
fermionic and bosonic fields in a given vacuum of the
model. On this background the vector and fermion fields
vanish, while the scalar fields take constant values
ϕ0 ¼ ðϕs

0Þ which extremize the scalar potential:

∂V
∂ϕs

����
ϕ¼ϕ0

¼ 0: ð2:49Þ

The value V0 ¼ Vðϕ0Þ of the scalar potential in ϕ0 defines
the cosmological constant: Λ ¼ V0. We shall study vacua
of anti–de Sitter (AdS) type, for which V0 < 0. In this case

the AdS radius L is given by L ¼
ffiffiffiffiffiffiffiffi
− 3

V0

q
.

1. Scalar masses

The scalar masses can be computed on the vacuum ϕ0 by
expanding, up to second order terms in the scalar fluctua-
tions around ϕ0, the scalar-field part of the gauged action

e−1L scal ¼
1

2
G rsDμϕ

rDμϕs − VðϕÞ; ð2:50Þ
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where the kinetic part was defined in (2.34). The square-
mass matrix for the scalar fields then reads

MðscalÞ
r
t ¼ G ts ∂

2V
∂ϕs

∂ϕr

����
ϕ¼ϕ0

: ð2:51Þ

The squared-mass spectrum of the scalar fields on ϕ0 is
then given by the eigenvalues of MðscalÞ

r
t.

2. Vector mass matrix

The masses for the vector fields originate from their
minimal couplings to the scalars. By using the twisted self-
duality condition (2.25)

�G ¼ −C ·M ·G; ð2:52Þ

which holds also for the gauged field strengths GM, and
restricting only to the couplings of the vector fields to the
scalar ones, one can rewrite Eqs. (2.37) in the following
form

MMN
�D�GN ¼ g2Θα

Mk
r
αG rsksβΘ

β
NA

N: ð2:53Þ

From this we obtain the vector squared-mass matrix on the
vacuum

MðvectorÞP
M ¼ g2R½L−1�QPR½L−1�QNK NM

¼ −g2ðM−1 ·K ÞPM; ð2:54Þ

where

K MN ≡ Θα
Mk

r
αG rsksβΘ

β
N jϕ¼ϕ0

: ð2:55Þ

The eigenvalues ofMðvectorÞP
M will correspond to the vector

squared-mass spectrum.5 Let us observe that detðMðvectorÞÞ ∝
det ðR½L−1� ·K ·R½L−T �Þ. This allows us to compute the
vector mass spectrum as the eigenvalues of

MðvectorÞ
PN ¼ g2

4
TrðTP · TN þ TP · ðTNÞ†Þ: ð2:56Þ

Indeed,6

K MN ¼ 1

2
TrðKMKNÞ; ð2:57Þ

where

KM ≡ 1

2
ðR½L�−1 · XM ·R½L� þ ðR½L�−1 · XM ·R½L�Þ†Þ

is the projection of the adjoint action of L on XM along its
noncompact component.

D. Fermionic masses

The masses for the fermion fields originate from the
Yukawa terms (2.38). As mentioned earlier, the tensors
SAB, NA

I , and MIJ are defined as components of the T
tensor.

1. Gravitinos masses and supersymmetry breaking

Let us choose as fermionic vacuum hψA
μ i ¼ hλIi ¼ 0.

In order to preserve the supersymmetry generated by ϵAQA

we must have

hδψAμi ¼ ∇μϵA þ iSABjϕ¼ϕ0
γμϵ

B ¼ 0; ð2:58Þ

hδλIi ¼ NA
I jϕ¼ϕ0

ϵA ¼ 0: ð2:59Þ

Let us assume that the vacuum is N 0 supersymmetric,
0 ≤ N 0 ≤ 3. Then, we have N 0 Killing spinors ϵa,
a∶ 1;…;N 0. Integrability of Eq. (2.58) implies

SaASbAjϕ¼ϕ0
¼ −

V0

12
δba: ð2:60Þ

While from Eq. (2.59) we obtain Na
I ¼ 0. If the vacuum is

N 0 ¼ 3 supersymmetric, then the gravitinos mass matrix
SS⋆jϕ¼ϕ0

will be proportional to the identity with eigen-

values m2
ψ ¼ − V0

12
. When V0 < 0, this will correspond

to AdS-massless gravitinos, as expected in the case of
fully preserved supersymmetry. Indeed, the goldstinos
ηA ∝ NI

AλI vanish in that case.

2. Fermionic matter masses

Upon the redefinition,7

ψA
μ → ψA

μ þ i
12

X
C

�
S

SS⋆ þ V0

12
13×3

�
A

C

γμη
C; ð2:61Þ

we obtain the linearized equations

iγμDμλI ¼
�
2MIJ −

1

3

X
AB

�
S

SS⋆ þ V0

12
13×3

�
AB

NA
IN

B
J

�
λJ

≡MIJ λ
J ð2:62Þ5Note that this spectrum does not depend on the symplectic

frame. Since, by virtue of the quadratic constraint on the
embedding tensor, we can always rotate the latter to the electric
frame in whichΘΛα ¼ 0. Because of the quadratic constraint, half
of the eigenvalues of the matrix MðvectorÞ vanish.

6See also Eq. (2.34). Naively, we trade the scalar product on G
H

with the trace on the R symplectic representation.

7In other words, we reabsorb the massless goldstinos in the
gravitinos. The sum is intended over the nonvanishing goldstinos
components, the one corresponding to a nonsingular sub-block of
SS⋆ þ V0

12
13×3.
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So we compute the fermionic matter mass spectrum as the
eigenvalues of MM†J

I .

III. THE MODEL WITH GAUGE
GROUP SOð3Þ × SUð3Þ

After having given, in Sec. II, a general review of the
D ¼ 4,N ¼ 3 gauged supergravity in the duality-covariant
formulation, we focus here on the special choice of the
gauge group G ¼ SOð3Þ × SUð3Þ which, as discussed in
the introduction, is the natural candidate to describes the
AdS4 vacuum resulting from a Freund Rubin compactifi-
cation of eleven dimensional supergravity on N0;1;0. As we
shall see, from inspection of the vacuum structure of
the model, besides the latter vacuum, a rich web of new
vacua arises.

A. The model

We shall restrict ourselves to electric gaugings, namely,
to an embedding tensor with only electric components ΘΛ

α

(ΘΛα ¼ 0), since we have verified that a dyonic gauging of
the same group does not lead to new physical properties of
the model.
The quadratic constraints (2.29) require the branching of

the representation R of G with respect to the subgroup G
to contain the adjoint representation of the latter, which
defines the gauge vector fields among the 3þ n vectors. As
pointed out in the introduction, we choose the model with
n ¼ 9 vector multiplets so that the fundamental represen-
tation of G ¼ SUð3; 9Þ branches with respect to G as
follows:

12 ⟶
SOð3Þ×SUð3Þ ð3; 1Þ ⊕ ð1; 8Þ ⊕ ð1; 1Þ: ð3:1Þ

The last singlet on the right-hand side represents the Betti
multiplet.
The 54 real scalar fields span the manifold:

MS ¼
SUð3; 9Þ

S½Uð3Þ × Uð9Þ� ; ð3:2Þ

and all belong to the vector multiplets.
The gauge generators XM are expressed in terms of the

isometry ones tα through the embedding tensor, as in
(2.27). Denoting by t̂l, l ¼ 1, 2, 3, and t̂m, m ¼ 1;…; 8,
the infinitesimal isometry generators of the groups SOð3Þ
and SUð3Þ, respectively (see Appendix D for the matrix
form of these generators in the fundamental representation
of the corresponding groups), we can define the gauge
generators Xl, Xm as8

Xl ¼ g1 t̂l; Xm ¼ g2 t̂m; ð3:3Þ

where we have denoted by g1, g2 the coupling constants
associated with the two groups (in other words, in the
chosen basis of the isometry generators, the embedding
tensor is diagonal with entries g1 and g2). These are the only
nonvanishing components of the symplectic vector of
generators XM:

XΛ ¼ 0; fXΛg ¼ fXl; Xm; XΛ¼12 ¼ 0g:

The representation Rη of t̂l and t̂m in the complex
basis (2.5) reads

Rη½t̂� ¼

0
BBB@

adjðt̂Þ 03×9 03×3 03×9

09×3 09×9 09×3 09×9

03×9 03×9 adjðt̂Þ� 03×9

09×3 09×9 09×3 09×9

1
CCCAt̂ ∈ soð3Þ;

ð3:4Þ

Rη½t̂� ¼

0
BBBBBBBB@

03×3 03×8 0 03×3 03×8 0

08×3 adjðt̂Þ 0 08×3 08×8 0

0 0 0 0 0 0

03×3 03×8 0 03×3 03×8 0

08×3 08×8 0 08×3 adjðt̂Þ 0

0 0 0 0 0 0

1
CCCCCCCCA
t̂ ∈ suð3Þ:

ð3:5Þ

The 12 vector fields transform, with respect to G ¼
SOð3Þ × SUð3Þ in the representation

AΛ
μ ∶ ð3; 1Þ ⊕ ð1; 8þ 1Þ; ð3:6Þ

while we can choose an H-covariant parametrization of the
scalar manifold (3.2) in which the scalar fields have the
index structure fϕsg ¼ fϕl;m;ϕlg and transform under G
in the following representations:

ϕs∶ ð3; 8Þ½ϕl;m� ⊕ ð3; 1Þ½ϕl� þ c:c:

IV. CONSISTENT TRUNCATIONS AND TWO
CLASSES OF VACUA

The scalar potential is a complicated nonlinear function
of the 54 scalar fields and is therefore very hard to
extremize in general. Thus it is often useful to restrict to
consistent truncations of the model characterized by a
lower number of scalar fields. Consistency of the truncation
then guarantees that the extrema of the scalar potential
found in the smaller model, are vacua of the full theory. A
consistent truncation can be defined by all the fields that are

8With respect to (2.26), G is the direct product of two simple
groups so that we can introduce two different coupling constants,
one for each factor.
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singlets with respect to a subgroup of the gauge group (or,
in general, a subgroup of the duality group that leaves the
embedding tensor invariant). We shall consider two con-
sistent truncations characterized by three complex scalar

fields each, spanning a manifold of the form ½SUð1;1ÞUð1Þ �3. Then
we study extrema of the potential restricted to these
subspaces and find two compact hypersurfaces of vacua
(not systematically discussed in the literature so far). They

are defined by two different embeddings of the ½SUð1;1ÞUð1Þ �3
submanifold inside MS. To characterize them we consider
the Cartan decomposition (2.15). The generic element
k ∈ K of the coset space K has the following block form
in the fundamental representation of the suð3; 9Þ Lie
algebra

k ¼
� 03×3 X3×9

X†
9×3 09×9

�
; X ∈ Mat3×9ðCÞ: ð4:1Þ

Then the two embeddings are defined as

�
SUð1; 1Þ
Uð1Þ

�
3

↪ MS∶ ðz1; z2; z3Þ ↦ expðkÞ ð4:2Þ

with X for the two embeddings given by

Type ðiÞ∶ X ¼

0
B@

z1 0 0 0 0 0 0 0 0

0 z2 0 0 0 0 0 0 0

0 0 z3 0 0 0 0 0 0

1
CA;

ð4:3Þ

Type ðiiÞ∶ X ¼

0
B@

0 z1 0 0 0 0 0 0 0

0 0 0 0 z2 0 0 0 0

0 0 0 0 0 0 z3 0 0

1
CA:

ð4:4Þ

The above two choices of X define two three-dimensional
complex subspaces of K defined by the singlets with
respect to two discrete subgroups (stabilizers) of
G ¼ SUð3; 9Þ, which leave the embedding tensor invariant.
The stabilizer is defined as the subgroup of G, whose
elements leave k invariant:

g−1kg ¼ k; g ∈ G: ð4:5Þ

The 12-dimensional (including the decoupled Betti
multiplet) adjoint representation AdðGÞ of the gauge group
has a homomorphism into the fundamental representation
of G. The image of the generators in the fundamental
representation Ji ∈ soð3Þ, iλI=2 ∈ suð3Þ (see Appendix D
for their definition) under this homomorphism will be

denoted Ĵi and λ̂I, respectively. Then the stabilizer sub-
group fixing k corresponding to type (i) embedding reads9

Type ðiÞ∶ g1 ¼ expðπðĴ1 þ λ̂1ÞÞ ∈ SUð2ÞD ⊂ AdðGÞ ⊂ G;

g2 ¼ expðπðĴ2 þ λ̂2ÞÞ ∈ SUð2ÞD ⊂ AdðGÞ ⊂ G;

ð4:6Þ

while the stabilizer subgroup fixing k associated with
type (ii) embedding takes the form

Type ðiiÞ∶
g1 ¼ diagð1;−1;−1; 1; 1; 1;−1;−1;−1;−1; 1; 1Þ

¼ expðπð−Ĵ1 þ 2λ̂2ÞÞ ∈ SOð3ÞD ⊂ AdðGÞ ⊂ G;

g2 ¼ diagð−1; 1;−1;−1;−1; 1; 1; 1;−1;−1; 1; 1Þ
¼ expðπð−Ĵ2 þ 2λ̂5ÞÞ ∈ SOð3ÞD ⊂ AdðGÞ ⊂ G;

g3 ¼ diagð1;−1;−1;−1; 1;−1; 1;−1; 1;−1;−1;−1Þ
⊄AdðGÞ ⊂ G: ð4:7Þ

The fact that the Lie algebra generators k are unique
singlets under these discrete transformations allows us to
restrict to a minimal truncation of the theory, described just
by the three complex scalar fields zi.
Let us briefly comment on the structure of these two

discrete groups. For Type (i) the two generators form the
quaternionic group Q, where the map to the usual notation
is (g1 → i, g2 → j). For type (ii) each generator forms a Z2

group, hence the full discrete group isZ2 × Z2 × Z2. Let us
observe that in both cases the order of the discrete group is
8, however, there is a crucial difference: in the type (ii) case
we need to use an element g3 outside (the adjoint
representation of) the gauge group. This is fine because
the adjoint g3 action leaves the X-tensor invariant.10

The second point of view is that the two types of vacua
[derived within type (i) and (ii) consistent truncations] have
very specific gauge group breaking patterns. As will be
explained later, in some sense they correspond to precisely
two different preserved non-Abelian subgroups of the
SU(3) factor of the gauge group

9In the expressions below we slightly abuse notation, the
SU=SO groups are meant to represent the image of their adjoint
representations under the homomorphism.

10One can understand this in the following way: in both cases
the SO(3) factor of the generators represents a rotation by π
around different axes, the SU(3) factor involves the spinorial
representation of SO(3) in the type (i) case, while this is not true
in the type (ii) case. Hence, the two generators in the type (i) case
really represent a rotation by π=2 around two different axes. On
the other hand, in the type (ii) case g1 and g2 are not enough to
obtain the necessary discrete group, since they square to the
identity.
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SUð3Þ ⊃
�
SUð2Þ generated by fλ1; λ2; λ3g
SOð3Þ generated by fλ2; λ5; λ7g:

ð4:8Þ

In order to compute the relevant quantities (in particular
the scalar potential), we associate with k the coset
representative L,

L ¼ expðkÞ: ð4:9Þ

From L we can in turn compute the T-tensor [see (2.42)]—
the fundamental object which contains the fermionic shifts
(which are the building blocks of the scalar potential)
together with mass matrices of fermions. Once we have the
T tensor we project to the fermionic shifts using formu-
las (2.46). The scalar potential is finally obtained from the
Ward identity (2.48)

Vjsinglet ¼
1

3
TrðNANA þ NAINAI

þNIC
ANIC

A − 12SACSACÞjsinglet: ð4:10Þ

It is useful to write the three complex scalar fields of the
two truncations, appearing in (4.3) or (4.4), as follows:

zj ¼ rj expðiαjÞ; j ¼ 1; 2; 3;

where rj ∈ R≥0 and αj ∈ ½0; 2πÞ: ð4:11Þ

In this parametrization, denoting by ϕr the six real scalar
fields fr1; r2; r3; α1;α2; α3g, the coset metric reads

ds2 ¼ G rsðϕÞdϕrdϕs ¼
X3
i

�
2dri2 þ

1

2
sinh2ð2riÞdαi2

�
:

ð4:12Þ

For the type (i) model the potential is computed to be

Vðri; αiÞ ¼ g21ð−3 − 2 cosh ð2r3Þ − cosh ð2r1Þð2þ cosh ð2r2Þ þ cosh ð2r3ÞÞ
− cosh ð2r2Þð2þ cosh ð2r3ÞÞÞ þ g22ð3þ cosh ð2r2Þð−2þ cosh ð2r3ÞÞ
− 2 cosh ð2r3Þ þ cosh ð2r1Þð−2þ cosh ð2r2Þ þ cosh ð2r3ÞÞÞ; ð4:13Þ

while for the type (ii) model it takes the following form

Vðri; αiÞ ¼ g21ð−3 − 2 cosh ð2r3Þ − cosh ð2r1Þð2þ cosh ð2r2Þ þ cosh ð2r3ÞÞ

− cosh ð2r2Þð2þ cosh ð2r3ÞÞÞ þ
g22
4
ð3þ cosh ð2r2Þð−2þ cosh ð2r3ÞÞ

− 2 cosh ð2r3Þ þ cosh ð2r1Þð−2þ cosh ð2r2Þ þ cosh ð2r3ÞÞÞ: ð4:14Þ
Note that the above expressions do not depend on αi. Since these angular variables are not Goldstone bosons, they
correspond to genuine flat directions.
Now, by virtue of the gradient-flow equations, the potential in (4.13), (4.14) can be reinterpreted in terms of a

“superpotential”; such a superpotential, W, is strictly dependent on the eigenvalues of the fermionic shift SAB, which are
given by

Type ðiÞ∶ SAB ¼ δAB

�
g1

Y3
j¼1

coshðrjÞ − g2eið−αBþαCþαDÞ
Y3
j¼1

sinhðrjÞ
�
; ð4:15Þ

Type ðiiÞ∶ SAB ¼ δAB

�
g1

Y3
j¼1

coshðrjÞ −
g2
2
eið−αBþαCþαDÞ

Y3
j¼1

sinhðrjÞ
�
; ð4:16Þ

with αB ≠ αC ≠ αD. In both type (i) and (ii) truncations,
we can construct the superpotential Wðri; αiÞ in terms
of the modulus of any of the diagonal entries of SAB
(e.g., S11):

Wðri; αiÞ ¼ 2jSAAj: ð4:17Þ

The scalar potential is defined through the “superpotential
equation”

VðrjÞ ¼ 2G rs ∂

∂ϕrWðrj; αjÞ
∂

∂ϕsWðrj; αjÞ − 3Wðrj; αjÞ2;

ð4:18Þ
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which holds both for type (i) and type (ii) vacuum. Notice
that the dependence on αi drops out in the expression of the
potential. For this reason we can define an αi-independent
superpotential as follows:

W0ðriÞ≡Wðri; αi ¼ 0Þ; ð4:19Þ
in terms of which the potential reads

VðrkÞ ¼
X3
i¼1

�
∂

∂ri
W0

�
2

− 3W2
0: ð4:20Þ

We shall use this function to derive the domain wall
solution in Sec. VI. In contrast to the analogous results
in the literature, we find a scalar potential with three flat
directions (i.e., not Goldstone bosons) when restricted to
the above defined truncations. In the dual CFT, these flat

directions are natural candidates for exactly marginal
deformations. In fact, the three angles will parametrize
two 3-tori (T3

ðiÞ, T
3
ðiiÞ) of vacua, to be discussed below.

Although the potential at these extrema does not depend on
αi, the amount of preserved supersymmetry does, thus
realizing a phenomenon of spontaneous supersymmetry
breaking through marginal deformations. To our knowl-
edge, these manifolds of vacua of the N ¼ 3 model under
consideration, preserving different amounts of supersym-
metry, have not been discussed in the literature so far. Let us
discuss them in detail.
Inspection of the gradient of the potential shows that one

can consistently set r1 ¼ r2 ¼ r3 ¼ r.11 This allows us to
write a more compact formula for the scalar potential to be
extremized

Type ðiÞ∶ Vðr; α1; α2; α3Þ ¼ VðrÞ ¼ −12½g21cosh4ðrÞ − g22sinh
4ðrÞ�; ð4:21Þ

Type ðiiÞ∶ Vðr;α1; α2; α3Þ ¼ VðrÞ ¼ −12
�
g21cosh

4ðrÞ − g22
4
sinh4ðrÞ

�
: ð4:22Þ

The extremality condition ∂V
∂r ¼ 0 determines the following three distinct values r ¼ rvac for r at the extrema:

Type ðiÞ∶ rvac ¼
1

2
log

�
g2 þ g1
g2 − gj

�
⇒ T3

ðiÞ of extrema∶ ∃ g2 > g1; ð4:23Þ

Type ðiiÞ∶ rvac ¼
1

2
log

�
g2 þ 2g1
g2 − 2g1

�
⇒ T3

ðiiÞ of extrema∶ ∃ g2 > 2g1; ð4:24Þ

Origin∶ rvac ¼ 0 ⇒ isolated extremum∶∀ g1; g2: ð4:25Þ

We see that we have one isolated vacuum that exists for all
values of the couplings g1, g2. It is located at the origin O
of the scalar manifold as expected. Aside from it there are
two types of nontrivial vacuum manifolds: both of them are
three-tori T3 parametrized by ðα1; α2; α3Þ, though embedded
differently into the scalar manifold MS. The type (i) and
type (ii) T3 vacua only exist for g2 > g1 and g2 > 2g1,
respectively. The corresponding values of the scalar potential
V (i.e., the cosmological constants at the extrema) are

Type ðiÞ∶ Λ ¼ Vjrvac ¼ −12
g21g

2
2

g22 − g21
; ð4:26Þ

Type ðiiÞ∶ Λ ¼ Vjrvac ¼ −12
g21g

2
2

g22 − 4g21
; ð4:27Þ

Origin∶ Vjrvac ¼ −12g21: ð4:28Þ
Thus all vacua have a negative constant scalar curvature, as
expected for AdS4 spacetime geometries.
We still need to introduce one more refinement since the

discussion above was slightly imprecise. The points of the
tori T3 of type (i) or (ii) are not all gauge inequivalent.
There is a discrete subgroup Γ ⊂ G of the gauge group that
identifies them. It acts on the ðz1; z2; z3Þ coordinates
introduced in (4.2) in terms of a three-dimensional irre-
ducible representation

Inversions∶

0
B@
−1 0 0

0 −1 0

0 0 1

1
CA

0
B@
−1 0 0

0 1 0

0 0 −1

1
CA
0
B@
1 0 0

0 −1 0

0 0 −1

1
CA;

Permutations∶

0
B@
0 1 0

1 0 0

0 0 1

1
CA

0
B@
1 0 0

0 0 1

0 1 0

1
CA

0
B@
0 0 1

0 1 0

1 0 0

1
CA :

ð4:29Þ

11The other vacua of the truncations have r2 ¼ r3 ¼ 0 (when
g1 ¼ 0) or r1 ¼ r2 and r3 ¼ 0 (modulo permutations of the radii).
They correspond to supersymmetric Minkowski vacua or to non-
supersymmetric and perturbatively unstableAdS vauca respectively.
The first case corresponds to a model with ungauged graviphotons.
Here we shall focus on perturbatively stable AdS vacua.
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The first line represents inversions of all possible pairs of
the z coordinates (shifts of their α phases by π), while the
second line acts by permutations. These matrices generate
the discrete group

Γ ≃ S4 ≃ S3 ⋉ K4 ≃ Th
24 ≃ O24; ð4:30Þ

where Sn is the symmetric group of n objects, K4 ≃
Z2 × Z2 is the Kleinian four-group, Th

24 ⊂ Oð3Þ is the
full tetrahedral group (including inversions) and, finally,
O24 ⊂ SOð3Þ is the rotational (orientation preserving) octa-
hedral group. The discrete group Γ ≃ S4 can be presented by
3 generators and relations among them. A possible choice of
these generators (in the three-dimensional irrep) consists of
the 3 boxed matrices in (4.29). So the conclusion of this
analysis is that the vacuum manifold Mvac depends on the
couplings g1, g2 and takes the form

Mvac¼

8>><
>>:
g2≤g1∶ O

g1<g2≤2g1∶ O∪T3
ðiÞ=S4

g2>2g1∶ O∪T3
ðiÞ=S4 ∪T3

ðiiÞ=S4:

ð4:31Þ

We may interpret the appearance of new vacua for the
above ranges of the coupling constants in terms of the
occurrence of phase transitions. As it will be discussed in
the sequel, according to the specific phases, different RG
flows between the above vacua can exist. Next, we will
characterize interesting submanifolds of the vacuum mani-
fold according to supersymmetry or gauge symmetry
breaking patterns.
In order to analyze supersymmetry breaking it is suffi-

cient to study the kernel (or, equivalently, image) of the
generalized fermionic shift tensor NA

I of spin-1
2
fields. The

index I runs over all spin–1
2
fields in the theory. In the case

of an N ¼ 3 supergravity in d ¼ 4 dimensions under
consideration it means I ¼ 1;…; 37 in the following
order: I ∈ f1 dilatino; 9 × 1 gauginoR-symmetry singlets;
9 × 3 gauginoR − symmetry tripletsg. Then the number
of unbroken supersymmetries in a given vacuum is
determined as

N vac ¼ dimðKerNA
I jvacÞ: ð4:32Þ

In light of the potential Ward identity (2.48), the number
of preserved supersymmetries is equal to the number of
eigenvalues SAA of the diagonal matrix SAB [see (4.15)
and (4.16)] satisfying

jSAAj ¼
1

2L
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−V0=12

p
; ð4:33Þ

where L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3=V0

p
is the AdS radius. Both for type (i)

and (ii), the above condition is met (modulo permutations
in angles αi) for one, two and three eigenvalues when

N ¼ 1 α1 ¼ α2 þ α3;

N ¼ 2 α1 ¼ α2; α3 ¼ 0;

N ¼ 3 α1 ¼ α2 ¼ α3 ¼ 0: ð4:34Þ

All other points break supersymmetry completely. In Fig. 1
we graphically illustrate the structure of both type (i) and (ii)
vacua, parametrized by α1, α2, α3, where the identifications
implemented by the group Γ are taken into account. The
inversions in this group amount to shifting two angles by�π,
leaving the third unaltered. We can fix these symmetries, as
well as the permutations in Γ, by restricting the values of the
angles to the following domains:

D1∶ − π ≤ α1 ≤ α2 ≤ α3 ≤ 0;

D2∶ 0 ≤ α3 ≤ α2 ≤ α1 ≤ π; ð4:35Þ

which are represented in Fig. 1 by the colored tetrahedra.
There is still an identification to be considered among the
points in the shaded region of the graph. It identifies the two
triangular faces of the tetrahedra at α3 ¼ 0 and acts as
follows:

ðα1; α2Þ ∈ D1 ∼ ðα2 þ π; α1 þ πÞ ∈ D2: ð4:36Þ

Hence we can describe the independent N ¼ 2 vacua
(α1 ¼ α2; α3 ¼ 0) by the segment belonging to D1 only.

FIG. 1. Representation of one of the two manifolds of vacua
parametrized by α1, α2, α3. There is a residual identification
(4.36) among the points on the plane α3 ¼ 0. The vertices
ð−π;−π;−πÞ and ðπ; π; πÞ are also identified.
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Let us now describe the gauge group breaking patterns
in various vacua. To determine the subgroup H0 ⊂ G of the
gauge group that remains unbroken in the vacuum, one
solves for the centralizer h0 ∈ LieðH0Þ ⊂ suð3; 9Þ of the
coset generator k in (4.2) evaluated at the given vacuum

½kjvac; h0� ¼ 0: ð4:37Þ

Equipped with this knowledge let us classify the submani-
folds of Mvac based on the residual gauge symmetry. We

systematize the discussion starting from the most generic
submanifolds with least residual gauge symmetry, going to
more restricted submanifolds with bigger gauge symmetry
according to the following chain of subgroups

1 ⊂ � � � ⊆ HðkÞ
0 ⊆ � � � ⊆ Hð1Þ

0 ⊂ G: ð4:38Þ

Below we give the list of special submanifolds of Mvac,
together with their properties, i.e., topology, preserved
supersymmetry. and residual gauge symmetry12

Type (i): g2 > g1

ðα1; α2; α3Þgeneric
Mvac ¼ T3=S4

N ¼ 0

H0 ¼ Uð1Þ

⊃
⊆

ðα2 þ α3; α2; α3Þ
Mvac ¼ T2=K4

N ¼ 1; ðα2;α3 ≠ 0Þ
H0 ¼ Uð1Þ

⊃
⊂

ðα2; α2; 0Þ
Mvac ¼ S1=Z2

N ¼ 2; ðα2 ≠ 0Þ
H0 ¼ Uð1ÞD × Uð1Þ

⊉
⊂

ðα1; α1; α1Þ
Mvac ¼ S1=Z2�
α1 ≠ 0∶N ¼ 0

α1 ¼ 0∶N ¼ 3

H0 ¼ SUð2ÞD × Uð1Þ

⟶
r→0

Mvac ¼ pt ¼ O

N ¼ 3

H0 ¼ G

; ð4:39Þ

Type (ii): g2 > 2g1

ðα1; α2; α3Þgeneric
Mvac ¼ T3=S4

N ¼ 0

H0 ¼ 1

⊃
⊆

ðα2 þ α3; α2; α3Þ
Mvac ¼ T2=K4

N ¼ 1; ðα2; α3 ≠ 0Þ
H0 ¼ 1

⊃
⊂

ðα2; α2; 0Þ
Mvac ¼ S1=Z2

N ¼ 2; ðα2 ≠ 0Þ
H0 ¼ Uð1ÞD

⊉
⊂

ðα1; α1; α1Þ
Mvac ¼ S1=Z2�
α1 ≠ 0∶N ¼ 0

α1 ¼ 0∶N ¼ 3

H0 ¼ SOð3ÞD

⟶
r→0

Mvac ¼ pt ¼ O

N ¼ 3

H0 ¼ G

: ð4:40Þ

As we commented in (4.8), Type (i) vacua are associated
with the embedding SUð2Þ ⊂ SUð3Þ which has a U(1)

commutant. Namely, one takes the diagonal combination
of this SU(2) subgroup with the SO(3) factor in the gauge
group [taking also into account the U(1) commutant] in
order to arrive at [see (4.38)]

Hð1Þ
0 ¼ SUð2ÞD × Uð1Þ: ð4:41Þ

This is the residual gauge symmetry of the S1=Z2 vacua
[first box on second line of (4.39)]. The gauge groups of all
other vacua in the type (i) chain are subgroups of this one.

12In the following diagrams, the upper inclusion sign captures
the relation between various submanifolds, while the lower one
represents relations among unbroken gauge groups H0. The
inclusion between gauge groups is regular, but this is not always
the case for the vacuum manifolds. For instance, the two circles
(with antipodal identification) are disjoint up to one point that
they share. The first circle is N ¼ 2, the second one is N ¼ 0,
and the single common point is actually N ¼ 3.
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Similarly, the only other non-Abelian subgroup of SU(3) is
SO(3). The embedding SOð3Þ ⊂ SUð3Þ has no commutant,
so in this case one arrives at

Hð1Þ
0 ¼ SOð3ÞD; ð4:42Þ

which is the residual gauge group of highest rank for
type (ii) vacua in (4.40).
Moreover, let us remark that the singlets with respect to

these maximal subgroups Hð1Þ
0 are the unique ones given

in (4.3) and (4.4) [with the appropriate specification of
phases shown in (4.39) and (4.40)]. To argue this, as a first
step it is useful to remind the branching rules of the adjoint
representation 8 of SU(3) with respect to its only two non-
Abelian subgroups SU(2) and SO(3)

8jSUð3Þ → ð1 ⊕ 2 × 2 ⊕ 3ÞjSUð2Þ; ð4:43Þ

8jSUð3Þ → ð3 ⊕ 5ÞjSOð3Þ: ð4:44Þ

Recall that the scalar fields parametrizing the scalar
manifold MS transform in the ð3; 8þ 1Þ representation
under G ¼ SOð3Þ × SUð3Þ. So combining the above
decomposition with the adjoint representation 3 of SO(3)
and restricting to the diagonal subgroups results in

ð3; 2 × 1 ⊕ 2 × 2 ⊕ 3ÞjSOð3Þ×SUð2Þ
→ ð1 ⊕ 2 × 2 ⊕ 3 × 3 ⊕ 2 × 4 ⊕ 5ÞjSUð2ÞD ; ð4:45Þ

ð3; 1 ⊕ 3 ⊕ 5ÞjSOð3Þ×SOð3Þ
→ ð1 ⊕ 3 × 3 ⊕ 2 × 5 ⊕ 7ÞjSOð3ÞD : ð4:46Þ

We see that in both cases there is a unique singlet as we
claimed.
Having analyzed the residual supersymmetry of our

distinguished subset of vacua, we move on to calculating
mass spectra in each of these vacua. In the next section
we present a general algorithm for construction of mass
matrices for fields of all spins. Then we apply these
techniques and compute the spectra in all supersymmetric
points and show that they organize into OSpðN j4Þ super-
multiplets, for N ¼ 1, 2, 3.13

V. ORGANIZING SUPERGRAVITY FIELDS
INTO OSpðN j4Þ SUPERMULTIPLETS

Here we will show results for vacua that preserveN ¼ 1,
2, 3 supersymmetry. There are, however, N ¼ 0 vacua,
which completely break supersymmetry and the mass

spectrum of supergravity excitations around these vacua
has been computed as well. However, it is not particularly
illuminating and for this reason it will not be presented in
this paper.

A. General comments on OSpðN j4Þ supermultiplets

To describe supermultiplets we will follow the notation
of [28]. The particular case of OSpðN j4Þ supermultiplets
relevant in this paper was also studied earlier in [29].
We briefly summarize just the necessary conventions and

definitions of [28] useful in our special case. For details,
the reader is kindly asked to consult the original paper.
Supermultiplets of OSpðN j4Þ will be classified by Dynkin
labels of its maximal compact subgroup SOðN ÞR ×
SOð3ÞJ × SOð2ÞΔ. The first factor represents the R sym-
metry, the second the (Wick rotated) Lorentz transforma-
tions in three dimensions, and finally the last factor is
generated by the dilatation operator D. At the level of
algebras, we use for the first two factors the isomorphism
soð3Þ ≃ suð2Þ, whenever available (always for the spin
part and for the R symmetry if N ¼ 3). In such a situation,
R and J are understood as suð2Þ weights and the authors
of [28] work in conventions common in math literature
where they belong to non-negative integers, R; J ∈ Z≥0.
For N ¼ 2, the SOð2Þ ≃ Uð1Þ R charge takes values in
real numbers, R ∈ R. Finally, if N ¼ 1, there is no R
symmetry and states are labeled just by spin and scaling
dimension.
Then a supermultiplet will be denoted by its lowest

weight state

X½J�ðRÞΔ ; where X ¼ L; A1; A2; B1; B2; ð5:1Þ

from which the complete supermultiplet is constructed by
raising operators. As explained above, R is the R-symmetry
charge, J the spin, and Δ the scaling dimension. The letter X
specifies the type of the supermultiplet: L stands for a
long supermultiplet, A for a short supermultiplet at the
threshold (i.e., its scaling dimension ΔA can be continuously
approached from above), whileB represents an isolated short
multiplet (i.e., its scaling dimension ΔB < ΔA is separated
by a gap).
From supergravity computations at the classical level14

one obtains not directly the scaling dimensions, but rather
masses of the particles (here we refer to the uncorrected
mass; the AdS4 mass is then obtained by combining this
uncorrected mass with curvature contributions). It is thus
useful to build a dictionary between the uncorrected masses
and the scaling dimensions Δ or, equivalently, energies E0,
depending on whether we are using a gauge theory or

13We computed mass spectra also for AdS4 vacua that break
supersymmetry completely to SOð3; 2Þ. However, we are not
going to present these results in this paper.

14For N ¼ 3 the scaling dimension and hence the mass is a
function of quantized quantities only—the spin and the R charge.
It cannot receive any corrections and is thus exact.
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gravity language. For particles of various spin it takes
the form

spin Δ≡ E0

0 1
2
ð3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4m2

p
Þ

1 1
2
ð3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

p
Þ

1
2
; 3
2

1
2
ð3þ 2jmjÞ

ð5:2Þ

B. N = 3 vacua

1. OSpð3j4Þ supermultiplets

The R-symmetry Lie algebra is soð3Þ ≃ suð2Þ. To label
the states we will use the Dynkin label (R) of suð2Þ. We
work in conventions common in the math literature,
namely, ðRÞ ∈ Z. So (1) and (2) denote the fundamental
and the adjoint representation of suð2Þ. The remaining
labels of states in a supermultiplet are the spin and the
scaling dimension.
In Appendix F a we list only those OSpð3j4Þ super-

multiplets that will be necessary to encompass the super-
gravity excitations in N ¼ 3 vacua discussed in this paper
(in the tables the R symmetry representation is denoted by
its dimension, i.e., 2 for the fundamental):

2. N = 3 vacuum preserving H0 =G

The mass spectrum in this isolated N ¼ 3 maximally
symmetric vacuum is summarized in Table II. A quick
consistency check employs the Goldstone theorem.
There are 11 unbroken gauge generators and no broken
ones in this vacuum. Therefore we expect no massive
vector fields and 11þ 1 massless ones. The additional
vector comes from a completely decoupled massless vector
supermultiplet—the Betti multiplet. This supermultiplet
will be present in all the following spectra. Later, it will
be included without further comments. The supergravity
excitations can be assembled into the following super-
multiplets of OSpð3j4Þ

Spec ¼ A1½0�ð0Þ3
2|fflfflffl{zfflfflffl}

massless graviton
multiplet

⊕ 9 × B1½0�ð2Þ1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
massless vector

multiplets

; ð5:3Þ

as can be easily checked by comparing Table II with the
field content of the supermultiplets, which was summarized
in the previous section.

3. N = 3 vacuum preserving H0 =SUð2ÞD × Uð1Þ ⊂ G

The spectrum at the single N ¼ 3 supersymmetric point
(lying on S1=Z2 manifold of vacua, spanned by
α1 ¼ α2 ¼ α3, invariant under the same subgroup H0 of
the gauge group) is shown in Table III. Inspection of the
supermultiplet tables presented in Appendix F a leads to the

conclusion that the spectrum given in Table III is organized
into the following supermultiplets:

Spec¼ A1½1�ð0Þ3
2|fflfflffl{zfflfflffl}

massless graviton
multiplet

⊕ B1½0�ð4Þ2 ⊕ 2×B1½0�ð3Þ3
2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

massive vector multiplets

⊕ 2×B1½0�ð2Þ1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
massless vector

multiplets

:

ð5:4Þ

A consistency check is provided by the Goldstone theorem.
The gauge symmetry breaking pattern in this vacuum tells
that there are 7 broken generators and 4 unbroken ones.
Hence the number of massive vector fields is 7 and that
of the massless ones is 4þ 1, in agreement with the
above tables.

4. N = 3 vacuum preserving H0 =SOð3ÞD ⊂ G

As in the previous case, the vacuum manifold that is
invariant under the subgroup H0 ¼ SOð3ÞD is S1=Z2,
spanned by α1 ¼ α2 ¼ α3. Again, there exists a single
supersymmetric point on this circle of vacua that preserves
N ¼ 3 supersymmetry. The spectrum at this special
vacuum consists of states listed in Table IV. Comparison
with the supermultiplet tables results in a unique grouping
of the states in Table IV into OSpð3j4Þ supermultiplets

Spec ¼ A1½1�ð0Þ3
2|fflfflffl{zfflfflffl}

massless graviton
multiplet

⊕ B1½0�ð6Þ3 ⊕ B1½0�ð4Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
massive vector multiplets

⊕ B1½0�ð2Þ1|fflfflffl{zfflfflffl}
massless vector

multiplet

: ð5:5Þ

Goldstone theorem serves as a check of consistency.
There are 3 unbroken and 8 broken gauge generators
in this vacuum and hence 8 massive and 3þ 1 massless
vector fields. Looking at the tables we see that this is in
fact true.

C. N = 2 vacua

1. OSpð2j4Þ supermultiplets

We have a SOð2Þ ≃ Uð1Þ R symmetry and thus states of
the OSpð2j4Þ supermultiplets are labeled by the U(1) R
charge R ∈ R, spin and scaling dimension. There are two
independent supercharges with R charge (þ1) and (−1),
respectively. The shortening condition for a supermultiplet
can occur for each of them independently. Therefore we
have four different types of shortening conditions: long-
long, long-short, short-long, and short-short.
The next topic we need to discuss is what happens when

the scaling dimension of a long multiplet hits the unitarity
bound. In such a situation it splits into a sum of (partially)
short multiplets. But the content of states is the same on
both sides of the relation. For instance, on the example of a

long massive gravitino multiplet—LL̄½1�ðRÞΔ>jRjþ3
2

. When its

scaling dimension hits the unitarity bound, it splits into a
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short massive gravitino multiplet and a short massive vector
multiplet. In Eqs.15

R>0∶LL̄½1�ðRÞΔ>Rþ3
2

⟶
Δ→Rþ3

2LĀ1½1�ðRÞRþ3
2

⊕LĀ2½0�ðRþ1Þ
Rþ2 ; ð5:6Þ

R < 0∶ LL̄½1�ðRÞΔ>−Rþ3
2

⟶
Δ→−Rþ3

2A1L̄½1�ðRÞ−Rþ3
2

⊕ A2L̄½0�ðR−1Þ−Rþ2:

ð5:7Þ

Analogously, a long massive vector multiplet can split into
a short massless vector multiplet and a conjugate pair of
1
2
-hypermultiplets (forming a full hypermultiplet).
In order to decide whether the scaling dimension is

above the unitarity bound or it has been reached, one needs
to compute independently the R charge and the scaling
dimension. We know that the N ¼ 2 vacua spontaneously

breaks the R symmetry to Uð1Þ ← SOð3Þ; hence we can
infer the R charges content from the breaking pattern of
R-symmetry representations present in the corresponding
N ¼ 3 vacua. Taking all these comments into account, we
find a unique way to organize the spectra in OSpð2j4Þ
supermultiplets. In Appendix F b we list the relevant ones.

2. N = 2 vacuum preserving
H0 =Uð1ÞD × Uð1Þ ⊂ SUð2Þ × Uð1Þ ⊂ G

The gauge symmetry breaking pattern in this vacuum
takes the form G¼SOð3Þ×SUð3Þ→H0¼Uð1ÞD×Uð1Þ.
According to Goldstone theorem the 12 vector fields split
into 9 massive ones and 2þ 1 massless (two gauging H0

and one belonging to the Betti multiplet). The supergravity
mass spectrum displayed in Table V can be arranged into
the following supermultiplets:

Spec ¼ A1Ā1½2�ð0Þ3|fflfflfflfflfflffl{zfflfflfflfflfflffl}
massless graviton

multiplet

⊕ LL̄½1�ð0Þjmð1Þ
G jþ1

2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
long massive

gravitino multiplet

⊕ LL̄½0�ð0Þ2|fflfflfflffl{zfflfflfflffl}
long massie

vector multiplet

⊕ 2 × A2Ā2½0�ð0Þ1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
massless vector

multiplets

⊕
�
2 × LĀ2½0�ð

1
2
Þ

3
2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

short massive
vector multiplets

⊕ 2 × LB̄1½0�ð1Þ1 ⊕ 2 × LB̄1½0�ð
3
2
Þ

3
2

⊕ LB̄1½0�ð2Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1
2
−hypermultiplets

�
⊕ ðR → −RÞ; ð5:8Þ

where

mð1Þ
G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g41 þ g42 − 2g21g

2
2 cos 2α2

p
g22 − g21

ð5:9Þ

is the mass of the single massive gravitino.

3. N = 2 vacuum preserving H0 =Uð1ÞD ⊂ SOð3ÞD ⊂ G

The gauge symmetry G ¼ SOð3Þ × SUð3Þ is partially spontaneously broken toH0 ¼ Uð1ÞD. We conclude that out of the
12 vector fields 10 become massive, while 1þ 1 (one belonging to the Betti multiplet) remain massless.
This agrees with the supergravity mass spectrum shown in Table VI, which can be organized in a supermultiplet structure

given here:

Spec ¼ A1Ā1½2�ð0Þ3|fflfflfflfflfflffl{zfflfflfflfflfflffl}
massless graviton

multiplet

⊕ LL̄½1�ð0Þjmð2Þ
G jþ1

2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
long massive

gravitino multiplet

⊕ LL̄½0�ð0Þ2|fflfflfflffl{zfflfflfflffl}
long massive

vector multiplet

⊕ A2Ā2½0�ð0Þ1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
massless vector

multiplet

⊕ LL̄½0�ð0Þ3|fflfflfflffl{zfflfflfflffl}
long massive

vector multiplet

⊕
�
LL̄½0�ð1Þ3|fflfflfflffl{zfflfflfflffl}
long massive

vector multiplet

⊕ LĀ2½0�ð2Þ3|fflfflfflfflffl{zfflfflfflfflffl}
short massive
vector multiplet

⊕ LB̄1½0�ð3Þ3 ⊕ LB̄1½0�ð2Þ2 ⊕ LB̄1½0�ð1Þ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1
2
−hypermultiplets

�
⊕ ðR → −RÞ; ð5:10Þ

15When changing the R-symmetry sign we also need to exchange the role of the left and right components of the supermultiplet, those
corresponding to the two independent supercharges.
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where

mð2Þ
G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16g41 þ g42 − 8g21g

2
2 cos 2α2

p
g22 − g21

ð5:11Þ

is the mass of the single massive gravitino.

D. N = 1 vacua

1. OSpð1j4Þ supermultiplets

Since the R symmetry is trivial, states of irreducible
representations of OSpð1j4Þ are labeled just by spin and
scaling dimension. In Appendix F c we list only six super-
multiplets that will be needed, four long and two short ones.

2. N = 1 vacuum preserving
H0 =Uð1Þ ⊂ Uð1ÞD × Uð1Þ ⊂ SUð2ÞD × Uð1Þ ⊂ G

The gauge symmetry G¼SOð3Þ×SUð3Þ in this vacuum
is partially spontaneously broken to H0 ¼ Uð1Þ. Thus
there are dimðGÞ − dimH0 ¼ 10 broken generators and
Goldstone theorem implies in this situation that the total
12 vector fields split into 10 massive and 1þ 1 massless
ones (one in the Betti multiplet). Indeed, the above
reasoning complemented by the computation of the mass
spectrum within supergravity, reported in Table VII
leads to a uniqueN ¼ 1 supermultiplet spectrum in AdS4
(i.e. OSpð1j4Þ)

Spec ¼ A1½3�5
2|fflffl{zfflffl}

massless graviton multiplet

⊕ L½2�Δð1Þ
G1

⊕ L½2�Δð1Þ
G2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

massive gravitino
multiplets

⊕ 2 × A1½1�3
2|fflfflfflfflfflffl{zfflfflfflfflfflffl}

massless vector
multiplets

⊕ 4 × L½1�2 ⊕ L½1�Δð1Þ
V1

⊕ L½1�Δð1Þ
V2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

massive vector multiplets

⊕ L0½0�3 ⊕ 2 × L0½0�2 ⊕ 8 × L0½0�3
2
⊕ L0½0�Δð1Þ

H1

⊕ L0½0�Δð1Þ
H2

⊕ 6 × L0½0�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
matter multiplets

ð5:12Þ

When comparing the supermultiplet spectrum (5.12) to
the mass spectrum of supergravity presented in Table VII,
Higgs phenomenon has to be taken into account. Namely,
the longitudinal modes of massive vectors (gravitini) are
massless scalars (spin-1

2
fermions). The scaling dimensions

(energies) appearing in Table VII are expressed in terms of
the parameters of the supergravity theory as follows

Δð1Þ
G1 ¼ Δð1Þ

H1 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g41 þ g42 − 2g21g

2
2 cosð2α2Þ

p
g22 − g21

; ð5:13Þ

Δð1Þ
G2 ¼ Δð1Þ

H2 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g41 þ g42 − 2g21g

2
2 cosð2α3Þ

p
g22 − g21

; ð5:14Þ

Δð1Þ
V1 ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βð1Þ1 − 4

ffiffiffiffiffiffiffi
βð1Þ2

qr

2ðg22 − g21Þ
; ð5:15Þ

Δð1Þ
V2 ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βð1Þ1 þ 4

ffiffiffiffiffiffiffi
βð1Þ2

qr

2ðg22 − g21Þ
; ð5:16Þ

βð1Þ1 ¼ 5g41 þ 5g42 − 2g21g
2
2ð4 cosð2α2Þ þ 4 cosð2α3Þ − 3Þ;

ð5:17Þ

βð1Þ2 ¼ g81 þ 2g61g
2
2 þ 10g41g

4
2 þ 2g21g

6
2 þ g82

þ 8g41g
4
2 cosð2ðα2 þ α3ÞÞ

þ 2g21g
2
2ðg21 þ g22Þ2ðcosð2ðα2 − α3ÞÞ

− 2 cosð2α2Þ − 2 cosð2α3ÞÞ: ð5:18Þ

3. N = 1 vacuum preserving
H0 = f1g ⊂ Uð1ÞD ⊂ SOð3ÞD ⊂ G

In this vacuum we observe a complete spontaneous
symmetry breaking G ¼ SOð3Þ × SUð3Þ → H0 ¼ f1g.
Hence Goldstone theorem dictates that there are 11 massive
vector fields and just a single massless vector in the Betti
multiplet.
The mass spectrum of supergravity fields summarized

in Table VIII is organized into the following OSpð1j4Þ
supermultiplets

Spec ¼ A1½3�5
2|fflffl{zfflffl}

massless
graviton
multiplet

⊕ L½2�Δð2Þ
G1

⊕ L½2�Δð2Þ
G2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

massive gravitino
multiplets

⊕ A1½1�3
2|fflffl{zfflffl}

massless
vector

multiplets

⊕ 5 × L½1�7
2
⊕ L½1�Δð2Þ

V1
⊕ L½1�Δð2Þ

V2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
massive vector multiplets

⊕ 3 × L0½0�4 ⊕ 8 × L0½0�3 ⊕ 2 × L0½0�2 ⊕ L0½0�Δð2Þ
H1

⊕ L0½0�Δð2Þ
H2

⊕ 3 × L0½0�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
matter multiplets

: ð5:19Þ
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The values of scaling dimensions determining the super-
gravity mass spectrum presented in Table VIII take the
form of the ones in the corresponding type (i) vacua with
the replacement g1 → 2g1.

VI. DOMAIN WALL SOLUTIONS

In the previous section we have studied the (super-)
conformal-multiplet arrangement of the fields on the new
AdS4 vacua. In this section we will show that the latter can
be interpreted as fixed points of RG flows triggered by
relevant operators which pertain to the CFT dual to the
central vacuum. In order to do this, we consider a (3þ 1)-
dimensional bulk space-time, parametrized by the coordi-
nates xμ ¼ ðxi; yÞ, and use the standard domain-wall (DW)
ansatz for the metric, which has the usual form

ds2 ¼ e2AðyÞds21;2 − dy2 ¼ e2AðyÞdxiηijdxj − dy2;

ηij ¼ ðþ;−;−Þ; ð6:1Þ

ϕr ¼ ϕrðyÞ; i; j ¼ 0; 1; 2; ð6:2Þ

where ds21;2 defines the flat Minkowski metric in three
dimensions, AðyÞ is the scale factor, y is the coordinate
transverse to the wall, and all scalar fields ϕðyÞ depend only
on the transverse coordinate y.16

From the AdS=CFT point of view, the domain wall
ansatz corresponds to an RG flow between the UV and IR
fixed points described by the asymptotic regions y → �∞.
Let us be more explicit by considering the consistent

truncation described in Sec. IV, generated by the three
complex scalar fields z1, z2, z3. We recall that solutions of
the truncated theory are solutions of the complete theory
and that all fields in the DW solution are functions of the
transverse coordinate y only. From the coset metric (4.12)
and the ansatz in (6.1) one can obtain, after consistently
setting all fermions and vector fields to zero, the effective
Lagrangian density17

L ¼ −e3A
X3
i

�
3A00 þ 6A02 þ ðr0iÞ2

þ 1

4
sinh ð2riÞ2ðα0iÞ2 þ Vðri; αiÞ

�
; ð6:3Þ

where the potential for type (i) and type (ii) models was
given in (4.13) and (4.14), respectively. We leave the details
of the DW solutions in Appendix E. Here we focus on the
main properties and their possible interpretation in the dual
picture. In particular, we search for configurations in which
the radii ri are equal to the same field r. Then the phases αi

do not depend on y. Therefore, the constant values of the
phases αi select the critical point at the end of the flow
(IR fixed point) as in Table (4.39) [or (4.40) for type
(ii) vacuum], the starting point being the central N ¼ 3
vacuum (UV fixed point). The “shape” of the domain wall
is implicitly governed by the field rðyÞ through the warping
function AðyðrÞÞ. For the sake of simplicity let us consider
the type (i) consistent truncation (4.3) [type (ii) consistent
truncation gives the same results after substituting
g1 → 2g1], which provides the vacuum at the origin and
the one described by (4.23). In this case we obtain the DW
solution, whose explicit expression is given in Eq. (E27),
Appendix E. It is useful to perform the following change of
coordinates in order to study the behavior near the fixed
points of the flow:

xi ↦ ðg21 − εg22Þxi; r ¼ rðyÞ; ε ¼
�
0 r → 0

1 r → r⋆
;

ð6:4Þ

where rðyÞ is the solution for r in the DW background.
Actually, it is enough to know the expression for the inverse
relation yðrÞ given by (E28). Then the DW metric becomes

ds2 ¼ 1

4

�ðg1cschðrÞ − g2sechðrÞÞ2
g41

dxidxi

−
csch2ðrÞsech4ðrÞ
ðg1 − g2 tanhðrÞÞ2

dr2
�
: ð6:5Þ

Now, we consider the limit r → 0 to obtain

ds2 ∼ ds2UV ¼ 1

4r2g21
ð−dr2 þ dxidxiÞ; ð6:6Þ

which is the metric for an AdS4 space with radius

R2 ¼ −
3

Λ
¼ 1

4g12
; ð6:7Þ

in agreement with the value of Λ at r ¼ 0 in (4.26). This
expression provides directly the asymptotic behavior of r
near the conformal boundary. Indeed, in this particular case
the metric is in the usual Poincaré coordinates with radial
direction z. Hence, we have r ∼ z and Δr ¼ 1. On the other
side, expanding ds2 near r → r⋆ we get

ds2 ∼ ds2IR ¼ R2

�
u2dxjdxj −

du2

u2

�
; ð6:8Þ

where u ¼ ðr − r⋆Þ and

R2 ¼ −
3

Vðr⋆Þ ¼
g22 − g12

4g12g22
; ð6:9Þ

16From now on, we will omit the y dependence of the scalar
fields and the scale factor in the DW metric.

17Here, primes denote derivatives with respect to the y direction.
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as expected from (4.26). The relation with Poincaré
coordinates is given by u ¼ 1

z. So that ðr − r⋆Þ ∼ z−1

and Δu ¼ −1.
The interpretation as an RG flow, is the following.

When we switch on the r source (the combination
δr1 þ δr2 þ δr3) at the origin we introduce a relevant
deformation, indeed the scaling dimension of the operator
coupled to r will be ΔOr

j0 ¼ 2. This triggers an RG flow
that eventually ends at r ¼ r⋆, where the operator becomes
irrelevant, indeed ΔOr

jr⋆ ¼ 4. We are flowing from the
N ¼ 3 SCFT3 dual to the AdS4 background at r ¼ 0 (the
UV region) to a CFT3 dual to the AdS4 background
at r ¼ r⋆ (in the IR region). In general the IR three-
dimensional dual theory will not be superconformal. For
particular values of αi the IR critical point will correspond
to a SCFT3 with different amounts of supersymmetries, in
agreement with the classification given in (4.39).
As a check for our interpretation, we compute the scalar

spectrum of the truncation near r ¼ 0 and r ¼ r� and we
obtain the masses ð−2;−2;−2;−2;−2;−2Þ and ð4;−2;−2;
0; 0; 0Þ, respectively. The latter correspond to the combi-
nations ðδr1þδr2þδr3;δr2−δr1;δr3−δr1;δα1;δα2;δα3Þ.
Another relevant check of the interpretation of r ¼ 0 as
the UV critical point and r ¼ r⋆ as the IR one is provided
by the holographic c theorem [30,31]. Following these
works we compute

aðyÞ ¼ A0ðyÞ−2; ð6:10Þ

where

A0ðyÞ ¼ −2g2sinh3ðrðyÞÞ þ 2g1cosh3ðrðyÞÞ: ð6:11Þ

It follows that aðyðrÞÞ is monotonically decreasing as a
function of r ∈ ½0; r⋆�, consistently with the holographic c
theorem aUV ≥ aIR.

VII. CONCLUSIONS

In this work, after providing a review of the embedding
tensor formulation of D ¼ 4 extended gauged supergravity
specialized to the N ¼ 3 case, we have focused on a
particular model with gauge group G ¼ SOð3Þ × SUð3Þ
and studied its vacua. We find, aside from the N ¼ 3
vacuum at the origin of the scalar manifold preserving the
whole gauge group, one 3-torus of vacua for g1 ≤ g2 ≤ 2g1
and two 3-tori of vacua for g2 > 2g1. Each of these
manifolds contains, aside from a known isolated N ¼ 3

vacuum [15], a line of N ¼ 2 vacua, a surface of N ¼ 1
vacua, and the remaining stable, nonsupersymmetric vacua,
all of which to our knowledge were overlooked in the
literature. These vacua were found, in particular, consistent
truncations of the model described by three complex scalar
fields zi ¼ rieiαi . The three angular coordinates αi para-
metrizing the 3-tori of vacua are flat directions of the scalar

potential and thus are reasonably expected to correspond
to exactly marginal deformations in the dual CFT at
the boundary. Therefore, within each of these three-
dimensional loci, vacua with different amounts of super-
symmetry, or no-supersymmetry at all, are connected
through flat directions of the scalar potential, indicating
in the dual CFT picture, a possible (partial) supersymmetry
breaking triggered by exactly marginal operators. This is
reminiscent of a similar property displayed by a class
of vacua recently found within gauged maximal four-
dimensional supergravity in [32], describing type IIB
S-fold backgrounds [33] and generalizing earlier super-
symmetric solutions of the same kind [34–41]. The vacua
studied in [32] define a locus parametrized by two compact
axionic deformations χ1, χ2, which are flat directions of the
scalar potential at the corresponding critical points. For
generic values of χ1, χ2 the solutions are nonsupersym-
metric, for χ1 ¼ −χ2 they feature N ¼ 2 supersymmetry
and for χ1 ¼ χ2 ¼ 0 supersymmetry is enhanced toN ¼ 4.
These two flat deformations are conjectured in [32] to
define marginal deformations of the N ¼ 4 S-fold CFT
[35] dual to the solution found in [34], and thus to span a
nonsupersymmetric conformal manifold of the dual CFT.18

As a side comment, within a holographic picture, we
expect the locus of N ¼ 2 vacua to be at least two-
dimensional if they are to correspond to the conformal
manifold of N ¼ 2 deformations of the dual SCFT. This
follows from the general property that the moduli space
of N ¼ 2 deformations of a SCFT is a Kähler manifold
[43,44] (see also [38,45] for an application of this property
to the S-fold backgrounds and their holographic descri-
ption). The situation is similar to that of the N ¼ 2
1-parameter vacua studied in [36]. In that case the complex
completion of the corresponding compact marginal defor-
mation was later found in [38]. By the same token we
therefore expect to find an extra flat direction of N ¼ 2
vacua possibly in the full D ¼ 4 theory considered here.19

The above discussion is related to the general problem
of uplifting the web of vacua discussed here to type II
superstring theory or toD ¼ 11 supergravity. One could try
to embed a suitable truncation of the model studied here
(containing the 3-tori of vacua) into maximal supergravity,
and then use exceptional field theory techniques [1,2,46] in
order to uplift them to string or M theory. Another
possibility is that the truncation of the model describing
the new vacua studied here does not fit in a maximal
supergavity. In this case one should work with less super-
symmetric consistent truncations possibly implementing
the analysis of [5]. In particular one could try to obtain a
subsector of our model capturing the new solutions and the
central one as a compactification of string or M theory by

18Holographic evidence of conformal manifolds of the dual 3d
N ¼ 1 SCFTs have been recently given in [42].

19We are grateful to Nikolay Bobev for making this comment.

GAUGED N ¼ 3, D ¼ 4 SUPERGRAVITY: A NEW WEB … PHYS. REV. D 106, 066012 (2022)

066012-21



means of a suitableGS-structure manifold. There is also the
possibility that no consistent truncation can describe our
solutions. If the uplift of the whole new family of vacua is
possible, assessing perturbative stability of the correspond-
ing N ¼ 0 backgrounds would in principle require the
computation of the corresponding Kaluza-Klein spectrum
in order to check if theD ¼ 4 scalar modes have all squared
masses exceeding the BF bound. However, borrowing an
argument used in [32] that nonsupersymmetric vacua
connected to stable supersymmetric ones by continuous
parameters are expected to be pertutbatively stable, we
anticipate perturbative stability of the N ¼ 0 vacua. The
ten or eleven dimensional backgrounds, if found, would
then provide further holographic evidence in favor of the
existence of nonsupersymmetric conformal manifolds.
Another outcome of our analysis is the construction of

the RG flows connecting the AdS4 × N0;1;0 vacuum at the
origin to any of the vacua in the 3-tori, generalizing the flow
found in [15] to solutions connecting the origin to N ¼ 2,
N ¼ 1, and N ¼ 0 IR fixed points. Understanding these
new flows in the dual CFT picture and the uplift of their
fixed points is also a subject of future investigation.
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APPENDIX A: WARD IDENTITY

A particular case of Eq. (2.44) is the following one:

TΛR
ΠTΣ

Π
Δ − TΣ

R
ΠTΛΠ

Δ þ TΛ
Σ
ΠT

Π
R
Δ ¼ 0: ðA1Þ

Terms like TM
ΛΣ and TMΛΣ do not appear because R is

block diagonal. We further restrict to

TADΠTBΠC − TB
DΠTA

ΠC þ TA
BΠTΠD

C

¼ TAD
ETB

E
C − TB

D
ETAE

C þ TA
B
ETE

D
C

þ TAD
ITB

I
C − TB

D
ITAI

C þ TA
B
IT I

D
C ¼ 0: ðA2Þ

Now we recall

TΛA
B ¼ −TΛ

B
A

and TΛA
I ¼ TΛ

I
A

ðA3Þ

to obtain

QAD
BC ≡−TAD

ETBC
E þ TBE

DTAE
C þ TAE

BTEC
D

þ TAD
ITBC

I − TBI
DTAI

C − TAI
BT IC

D ¼ 0: ðA4Þ

The following decomposition holds true20:

TAD
E ¼ 1

2
ðϵADBSBE þ δ½AE N

D�Þ;
TAD

I ¼ ϵBADTBI: ðA5Þ

In terms of SAB and NA, we compute21

−ϵĀADϵB̄BCTAD
ETBC

E ¼ −ðSS�ÞĀB̄ −
1

2
ðϵĀEDNDSB̄E þ ϵB̄EDNDSĀEÞ −

1

4
ðδĀB̄NANA − NĀN

B̄Þ;

ϵĀADϵ
B̄BCTBE

DTAE
C ¼ 1

4

�
δĀ

B̄TrfSS�g − ðSS�ÞĀB̄ þ 1

2
ðϵĀEDNDSB̄E þ ϵB̄EDNDSĀEÞ þ

1

4
δĀ

B̄NANA −
3

4
NĀN

B̄

�
;

ϵĀADϵ
B̄BCTAD

ITBC
I ¼ 4TĀIT

B̄I;

ϵĀADϵ
B̄BCTAE

BTEC
D ¼ ϵĀADϵ

B̄BCTBE
DTAE

C;

−ϵĀADϵB̄BCTBI
DTAI

C ¼ −ϵĀADϵB̄BCTAI
BT IC

D: ðA6Þ

It is easy to verify the last two equations. Indeed, Eq. (2.43)
implies

TΛΣ
Δ ¼ −TΣΛ

Δ: ðA7Þ

We get rid of terms of the form S · N thanks to

QAD
BD ¼ 0 ⇔ ϵAEC̄SC̄BNE

¼ −
1

2
δB

ANCNC þ 1

2
NANB þ 4δB

ATCITCI

− 4TBITAI − 4T IB
DT IA

D þ 4T IA
BT ID

D: ðA8Þ

Finally, we obtain22

21SAB ¼ ðSABÞ�.
20SAB ¼ SBA. 22Actually, to get (2.46) we must redefine SAB ¼ −2SAB,

ND ¼ 2ND, TCI ¼ 1
2
NCI .
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ϵĀADϵ
B̄BCQAD

BC−
32

3
QAD

ADδĀ
B̄

¼0⇔NANBþNAINBIþNIC
BNIC

A−12SACSBC¼δĀ
B̄V:

ðA9Þ

APPENDIX B: FERMION SHIFT TENSORS AND
MASS MATRICES FROM T TENSOR

We present a systematic way to identify the interesting
components of the T tensor involved in the definitions of
fermionic shifts and mass matrices.

a. Fermionic shifts

In order to identify fermionic shifts inside T we consider
what theirH representation should correspond to. This task
is easy since we know that they enter fermionic supersym-
metry transformations with parameter ϵA ∈ ð3; 1Þþ1

2
.

Indeed, we have

ð3; 1Þþ1
2
hδψAμi ¼ h∇μϵA þ iSABγμϵ

Bi ⇒ SAB ∈ ð6; 1Þþ1

ð1; 1Þþ3
2
hδχ•i ¼ hNDϵDi ⇒ ND ∈ ð3̄; 1Þþ1

ð3;nÞnþ6
2n
hδλIAi ¼ hNIA

BϵBi ⇒ NIA
B ∈ ð8þ 1;nÞþ3

n

ð1;nÞ3nþ6
2n
hδλIi ¼ hNIAϵ

Ai ⇒ NIA ∈ ð3;nÞ2nþ3
n

ðB1Þ

We see that the wanted components of T , possibly
projected with G ⊂ H-invariant tensors, must have one
or two R-symmetry indices and no more than one matter
index. The independent choices, obtained from TAB

C, T IA
B,

TAB
I up to complex conjugation, are

ϵABðDTAB
CÞ ∈ ð6; 1Þþ1; ϵAB½DTAB

C� ⇔ TEB
B ∈ ð3̄; 1Þþ1;

T IA
B ∈ ð8þ 1;nÞþ3

n
; ϵCABTAB

I ∈ ð3;nÞ2nþ3
n
:

ðB2Þ

This are exactly the needed representation in the definition
of fermionic shifts.

b. Fermionic Mass Matrices

Now we move to MIJ . We play the same game as
before. In this case we discover their representations from
the possible λ̄IMIJ λ

J ∈ ð1; 1Þ0 interactions23 which are of
the following form:

χ̄•M••χ• ⇒ M•• ∈ ð1; 1Þ−3; ðB3Þ

χ̄•M•
Iλ

I ⇒ M•
I ∈ ð1;nÞ3

n
; ðB4Þ

χ̄•M•;IAλIA ⇒ MIA ∈ ð3̄; n̄Þ−2nþ3
n
; ðB5Þ

λ̄IMIJλ
J ⇒ MIJ ∈

�
1;
1
2
nðnþ 1Þ

�
3ðnþ2Þ

n

; ðB6Þ

λ̄IMI
AJλAJ ⇒ MI

AJ ∈ ð3̄;n × n̄Þþ1; ðB7Þ

λ̄AIMAIjBJλBJ ⇒ MAIjBJ ∈
�
3;
1
2
n̄ðn̄ − 1Þ

�
−nþ6

n

: ðB8Þ

We can easily convince ourselves that the only components
of T , up to identifications, matching these representations
are

T IJ
J ∈ ð1; n̄Þ−3

n
; TAJ

I ∈ ð3̄;n × n̄Þþ1;

ϵABCT IJ
C ∈

�
3;
1
2
n̄ðn̄ − 1Þ

�
−nþ6

n

; ϵCABTAB
I ∈ ð3;nÞ2nþ3

n
:

These are the only ones entering gradient flow equations.
Then, MIJ and M•• are consistently vanishing.
The precise relations between the mass matrices and

the corresponding components of the T tensor is given in
Appendix C.

APPENDIX C: THE GRADIENT FLOW
EQUATIONS

We consider here the different projections of Eq. (2.47)
into H-covariant components:

DNA ¼ 1

2
PE

INIA
E þ 1

2
ϵEACNCIP

I
E þ 1

2
PA

INIE
E;

DNCI ¼ 2ϵABCP
B
JTAJ

I − 2SCDP
D
I þ ϵCDBNBPD

I;

DNIA
B ¼ −2PI

Cϵ
CADSDB þPI

BNA

þPJ
Dð−2δDBT IA

J þ T ID
Jδ

A
BÞ

þPD
Jð2δADT IJ

B − T IJ
Dδ

A
BÞ;

DSBE ¼ −
1

2
ϵADðBNID

EÞPA
I −

1

2
PIðENBÞI: ðC1Þ

On the other hand, using the general form of the gradient
flow equations required by the supersymmetry of the gauged
Lagrangian, see [23], specialized to the N ¼ 3 models,
we find,

DNA ¼ PE
ITAI

E þ TAE
IP

I
E − 2PA

IMI
•

− 2PI
FM•IEϵ

EAF;

DNCI ¼ −2SCDP
D
I − 2MIJP

J
C − 2MI

JAPB
JϵACB;

DNIA
B ¼ −2PI

Cϵ
CADSDB þPJ

ET IE
Jδ

A
B þPE

JT IJ
Eδ

A
B

− 2PJ
BMIA

J − 2MIAjJCPD
JϵCBD;

DSBE ¼ −
1

2
ϵADðBNID

EP
A
I −

1

2
PI

ðENBÞI: ðC2Þ
23One could find the needed components for NA

I and SAB
looking for a gravitino-gravitino and gravitino-fermions mass
terms.
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Direct comparison between (C1) and (C2) suggest the
following identifications

T IE
E ¼ 2MI

•; T IA
J þ

1

2
δIJN

A ¼ MAI
J;

T IJ
A ¼ −

1

2
ϵABCMIBjJC; TAB

I ¼ 2ϵABCM•IC ðC3Þ

and

MIJ ¼ 0: ðC4Þ

The latter condition is consistent with the discussion of
Appendix B, where it is also shown that the mass matrixM••,
which does not enter the above gradient flow equations, is in
fact vanishing.

APPENDIX D: GAUGE GENERATORS

The SOð3Þ × SUð3Þ generators t̂l; t̂m in the fundamental
representations of the respective groups read

t̂l¼1 ¼ J1 ¼

0
B@

0 0 0

0 0 1

0 −1 0

1
CA; t̂l¼2 ¼ J2 ¼

0
B@

0 0 −1
0 0 0

1 0 0

1
CA; t̂l¼2 ¼ J3 ¼

0
B@

0 1 0

−1 0 0

0 0 0

1
CA;

t̂m¼3þI ¼
i
2
λI; I ¼ 1;…; 8;

where

λ1 ¼

0
B@

0 1 0

1 0 0

0 0 0

1
CA; λ2 ¼

0
B@

0 −i 0

i 0 0

0 0 0

1
CA; λ3 ¼

0
B@

1 0 0

0 −1 0

0 0 0

1
CA;

λ4 ¼

0
B@

0 0 1

0 0 0

1 0 0

1
CA; λ5 ¼

0
B@

0 0 −i
0 0 0

i 0 0

1
CA; λ6 ¼

0
B@

0 0 0

0 0 1

0 1 0

1
CA;

λ7 ¼

0
B@

0 0 0

0 0 −i
0 i 0

1
CA; λ8 ¼

1ffiffiffi
3

p

0
B@

1 0 0

0 1 0

0 0 −2

1
CA: ðD1Þ

APPENDIX E: SOLVING FOR THE
DW SOLUTIONS

Computed on the DW metric (6.1), the components of
the Ricci tensor read

Rij ¼ e2A½3ðA0Þ2 þ A00�ηij; ðE1Þ

Ryy ¼ −3½ðA0Þ2 þ A00�; ðE2Þ

where the 0 denotes the derivative with respect to the
transverse coordinate y and the Ricci scalar is

R ¼ 6½2ðA0Þ2 þ A00�: ðE3Þ

The Euler-Lagrange equations of motion for (6.3) are

e3A
�
2r00i þ6A0r0i−

1

2
sinhð4riÞα02i −∂riVðri;αiÞ

�
¼0; ðE4Þ

e3A sinhð2riÞ½4coshð2riÞr0iα0iþsinhð2riÞð3A0α0iþα00i Þ�¼0;

ðE5Þ

while Einstein equations read

e2A½A00 þ 3A02 þ Vðri; αiÞ� ¼ 0; ðE6Þ

3A00 þ3A02þVðri;αiÞþ
X3
i

�
2r02i þ

1

2
sinhð2riÞ2α02i

�
¼0:

ðE7Þ

The critical points of the potentials (4.13) and (4.14), that
we choose as end points of the RG flow, consist of the
origin O and other vacua at fixed radii
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TypeðiÞ∶ r1¼ r2¼ r3¼ rvac¼
1

2
log

�
g2þg1
g2−g1

�
; g2>g1;

ðE8Þ

TypeðiiÞ∶ r1¼ r2¼ r3¼ rvac¼
1

2
log

�
g2þ2g1
g2−2g1

�
; g2>2g1:

ðE9Þ

When imposing that the moduli of all zi are equal, (E4)
leads to the conclusion that αi have to be constant. In fact,
sending all ri to the same value r, and combining the three
equations in (E4), one obtains

e3A sinh ð4rÞðα021 − α022 Þ ¼ 0; ðE10Þ

e3A sinh ð4rÞðα021 − α023 Þ ¼ 0; ðE11Þ

e3A sinh ð4rÞðα022 − α023 Þ ¼ 0: ðE12Þ

a. The Solution

Setting all αi to constant values along the flow, the
equations reduce to the EOM for the field r and the Einstein
equations, which read

r00 þ 3A0r0 −
1

6
∂rVðrÞ ¼ 0; ðE13Þ

A00 þ 3ðA0Þ2 þ VðrÞ ¼ 0; ðE14Þ

3½A00 þ ðA0Þ2 þ 2ðr0Þ2� þ VðrÞ ¼ 0; ðE15Þ

VðrÞ being the potential given in (4.21) for type (i) solution
or (4.22) for type (ii). The last two equations can be
combined into the following constraint:

3ðA0Þ2 − 3ðr0Þ2 þ VðrÞ ¼ 0: ðE16Þ

Now, this system of equations can be obtained from an
effective action of the form

L eff ¼ e3A½3ðA0Þ2 − 3ðr0Þ2 − VðrÞ�

¼ 1

2
GijΦ0iΦ0j −VðΦÞ; ðE17Þ

with Φi ¼ ðA; rÞ, VðΦÞ ¼ e3AVðrÞ and Gij ¼
6e3Adiagð1;−1Þ.
The Hamiltonian corresponding to the above Lagrangian

is defined via the Legendre transform

H ¼ ΠiΦ0i −L eff ¼
1

2
GijΠiΠj þVðΦÞ; ðE18Þ

where

Πi ¼
δL eff

δΦ0i ¼ GijΦ0j ðE19Þ

are the usual canonical momenta. Then we can recast
the second-order field equations in the form of first order
ones by considering the Hamilton-Jacobi problem; namely,
by writing

Πi ¼
δWðΦÞ
δΦi ; ðE20Þ

where WðΦÞ is the Hamilton’s characteristic function,
solution to the Hamilton-Jacobi equation:

H ¼ 1

2
Gij

∂iW∂jW þVðΦÞ: ðE21Þ

The characteristic function WðΦÞ can be expressed in
terms of a αi-independent “superpotential” W0, defined
in (4.19), as follows:

WðA; rÞ ¼ 2e3AW0ðrÞ; ðE22Þ

Note that this superpotential also describes nonsupersym-
metric flows. Again this is related to the fact that αi, which
connect supersymmetric vacua to nonsupersymmetric ones,
are constants of motion along the flow. In terms of the
superpotential W0ðrÞ, the scalar potential is defined
through the “superpotential equation”

VðrÞ ¼ 1

3
ð∂rW0ðrÞÞ2 − 3W0ðrÞ2; ðE23Þ

which holds both for type (i) and type (ii) vacuum. Now,
from (E19) and (E20) we obtain

Φ0i ¼ Gij ∂W
∂Φj ; ðE24Þ

so that the general form of the first order equations is

TypeðiÞ∶ A0ðyÞ ¼ W0ðrÞ ¼ 2j½g1cosh3ðrÞ − g2sinh3ðrÞ�j;
r0ðyÞ ¼ − sinhð2rÞ½g1 coshðrÞ − g2 sinhðrÞ�;

ðE25Þ

TypeðiiÞ∶ A0ðyÞ ¼ W0ðrÞ ¼ j2g1cosh3ðrÞ − g2sinh3ðrÞj;

r0ðyÞ ¼ −
1

2
sinhð2rÞ½2g1 coshðrÞ − g2 sinhðrÞ�:

ðE26Þ

These equations can be easily integrated to give
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TypeðiÞ∶ AðyÞ ¼ c1 þ ln

�
g1 coshðrÞ − g2 sinhðrÞ

sinhð2rÞ
�
; ðE27Þ

y ¼ c2 −
1

2g1g2

�
2g1 arctan

�
tanh

�
r
2

��
þ g2 ln

�
tanh

�
r
2

��

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22 − g12

q
tanhð−1Þ

�
g2 − g1 tanhðr2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g22 − g12
p

��
; ðE28Þ

TypeðiiÞ∶ AðyÞ ¼ c1 þ ln

�
2g1 coshðrÞ − g2 sinhðrÞ

sinhð2rÞ
�
;

y ¼ c2 −
1

2g1g2

�
4g1 arctan

�
tanh

�
r
2

��
þ g2 ln

�
tanh

�
r
2

��

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22 − 4g12

q
tanhð−1Þ

�
g2 − 2g1 tanhðr2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g22 − 4g12
p

��
: ðE29Þ

c1 and c2 are integration constants that can be set to zero by a shift of xi coordinates.

APPENDIX F: RELEVANT SUPERMULTIPLETS

a. N = 3

A1½1�ð0Þ3
2
: massless graviton multiplet

Spin Δ≡ E0 suð2ÞR irrep m2

1
2

3
2

1 0
1 2 3 0
3
2

5
2

3 1
2 3 1 0

B1½0�ð2Þ1 : massless vector multiplet

Spin Δ≡ E0 suð2ÞR irrep m2

0 1 3 −2
2 3 −2

1
2

3
2

1 0
3
2

3 0
1 2 1 0

B1½0�ð3Þ3
2
: masssive vector multiplet

Spin Δ≡ E0 suð2ÞR irrep m2

0 3
2

4 − 9
4

5
2

4 − 5
4

5
2

2 − 5
4

1
2

2 2 1
4

2 4 1
4

3 2 9
4

1 5
2

2 3
4

B1½0�ð4Þ2 : masssive vector multiplet

Spin Δ≡ E0 suð2ÞR irrep m2

0 2 5 −2
3 1 0
3 3 0
3 5 0
4 1 4

1
2

5
2

3 1
5
2

5 1
7
2

1 4
7
2

3 4

1 3 3 2

B1½0�ð6Þ3 : masssive vector multiplet

Spin Δ≡ E0 suð2ÞR irrep m2

0 3 7 0
4 3 4
4 5 4
4 7 4
5 3 10

1
2

7
2

5 4
7
2

7 4
9
2

3 9
9
2

5 9

1 4 5 6
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b. N = 2

A1Ā1½2�ð0Þ3 : massless graviton multiplet

Spin Δ≡ E0 R m2

1 2 0 0
3
2

5
2

−1 1
5
2

þ1 1

2 3 0 0

A2Ā2½0�ð0Þ1 : massless vector multiplet

Spin Δ≡ E0 R m2

0 1 0 −2
2 0 −2

1
2

3
2

−1 0
3
2

þ1 0

1 2 0 0

LL̄½1�ð0ÞΔ0
: long masssive gravitino multiplet

Spin Δ≡ E0 R m2

0 Δ0 þ 1
2

−1 ðΔ0 þ 1
2
ÞðΔ0 − 5

2
Þ

Δ0 þ 3
2

−1 Δ2
0 − 9

4

Δ0 þ 1
2

þ1 ðΔ0 þ 1
2
ÞðΔ0 − 5

2
Þ

Δ0 þ 3
2

þ1 Δ2
0 − 9

4

1
2

Δ0 0 ðΔ0 − 3
2
Þ2

Δ0 þ 1 0 ðΔ0 − 1
2
Þ2

Δ0 þ 1 0 ðΔ0 − 1
2
Þ2

Δ0 þ 2 0 ðΔ0 þ 1
2
Þ2

Δ0 þ 1 −2 ðΔ0 − 1
2
Þ2

Δ0 þ 1 þ2 ðΔ0 − 1
2
Þ2

1 Δ0 þ 1
2

−1 ðΔ0 − 1
2
ÞðΔ0 − 3

2
Þ

Δ0 þ 3
2

−1 Δ2
0 − 1

4

Δ0 þ 1
2

þ1 ðΔ0 − 1
2
ÞðΔ0 − 3

2
Þ

Δ0 þ 3
2

þ1 Δ2
0 − 1

4

3
2

Δ0 þ 1 0 ðΔ0 − 1
2
Þ2

LL̄½0�ð0ÞΔ0>1: long masssive vector multiplet

Spin Δ≡ E0 R m2

0 Δ0 0 Δ0ðΔ0 − 3Þ
Δ0 þ 1 0 ðΔ0 þ 1ÞðΔ0 − 2Þ
Δ0 þ 2 0 ðΔ0 þ 2ÞðΔ0 − 1Þ
Δ0 þ 1 −2 ðΔ0 þ 1ÞðΔ0 − 2Þ
Δ0 þ 1 þ2 ðΔ0 þ 1ÞðΔ0 − 2Þ

(Table continued)

(Continued)

LL̄½0�ð0ÞΔ0>1: long masssive vector multiplet

Spin Δ≡ E0 R m2

1
2

Δ0 þ 1
2

−1 ðΔ0 − 1Þ2
Δ0 þ 3

2
−1 Δ2

0

Δ0 þ 1
2

þ1 ðΔ0 − 1Þ2
Δ0 þ 3

2
þ1 Δ2

0

1 Δ0 þ 1 0 Δ0ðΔ0 − 1Þ

LĀ2½0�ðR>0Þ
Rþ1 : short masssive vector multiplet

Spin Δ≡ E0 R m2

0 Rþ 1 R ðRþ 1ÞðR − 2Þ
Rþ 2 R − 2 ðRþ 2ÞðR − 1Þ
Rþ 2 R ðRþ 2ÞðR − 1Þ

3
2

Rþ 3
2

R − 1 R2

Rþ 3
2

Rþ 1 R2

Rþ 5
2

R − 1 ðRþ 1Þ2

1 Rþ 2 R RðRþ 1Þ

LB̄1½0�ðRÞ
R : 1

2
- hypermultiplet

Spin Δ≡ E0 R m2

0 R R RðR − 3Þ
Rþ 1 R − 2 ðRþ 1ÞðR − 2Þ

1
2

Rþ 1
2

R − 1 ðR − 1Þ2

c. N = 1

A1½3�5
2
: massless gravity multiplet

Spin Δ≡ E0 m2

3
2

5
2

1
2 3 0

L½2�Δ0>2: massive gravitino multiplet

Spin Δ≡ E0 m2

1
2

Δ0 þ 1
2

ðΔ0 − 1Þ2

1 Δ0 ðΔ0 − 1ÞðΔ0 − 2Þ
Δ0 þ 1 Δ0ðΔ0 − 1Þ

3
2

Δ0 þ 1
2

ðΔ0 − 1Þ2
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A1½1�3
2
: massless vector multiplet

Spin Δ≡ E0 m2

1
2

3
2

0
1 2 0

L½1�Δ0>
3
2
: massive vector multiplet

Spin Δ≡ E0 m2

0 Δ0 þ 1
2 ðΔ0 þ 1

2
ÞðΔ0 − 5

2
Þ

1
2

Δ0 ðΔ0 − 3
2
Þ2

Δ0 þ 1 ðΔ0 − 1
2
Þ2

1 Δ0 þ 1
2

ðΔ0 − 1
2
ÞðΔ0 − 3

2
Þ

L0½0�Δ0>
1
2
: matter multiplet

Spin Δ≡ E0 m2

0 Δ0 Δ0ðΔ0 − 3Þ
Δ0 þ 1 ðΔ0 þ 1ÞðΔ0 − 2Þ

1
2

Δ0 þ 1
2

ðΔ0 − 1Þ2

APPENDIX G: SUPERGRAVITY SPECTRA IN
VARIOUS VACUA

The tables below do not contain Goldstone bosons and

Goldstinos. Recall that Δð1Þ
G1=2 ¼ Δð1Þ

H1=2. The same holds

true for Δð2Þ
G1=2. The expression of the latter and Δð2Þ

V1=2 is
obtained from the corresponding quantities with the super-
script (1) and by replacing g1 with 2g1.

a. N = 3

TABLE III. Mass spectrum in the single N ¼ 3 vacuum
invariant under the subgroup SUð2Þ × Uð1Þ of the gauge group.
Spin m2 Δ≡ E0 Multiplicity

0 4 4 1
0 3 9

− 5
4

5
2

12
−2 1, 2 17
− 9

4
3
2

8

1
2

4 7
2

4
9
4

3 4
1 5

2
8

1
4

2 12
0 3

2
9

1 2 3 3
3
4

5
2

4
0 2 5

3
2

1 5
2

3

2 0 3 1

TABLE IV. Mass spectrum in aN ¼ 3 vacuum invariant under
the subgroup SOð3ÞD of the gauge group.

Spin m2 Δ≡ E0 Multiplicity

0 10 5 3
4 4 16
0 3 16

−2 1,2 11

1
2

9 9
2

8
4 7

2
16

1 5
2

8
0 3

2
5

1 6 4 5
2 3 3
0 4 4

3
2

1 5
2

3

2 0 3 1

TABLE II. Mass spectrum in theN ¼ 3 vacuum preserving the
full gauge group SOð3Þ × SUð3Þ.
Spin m2 Δ≡ E0 Multiplicity

0 −2 f1; 2g 54 ¼ 27þ 27
1
2

0 3
2

37
1 0 2 12
3
2

1 5
2

3
2 0 3 1
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b. N = 2

c. N = 1

TABLE V. Mass spectrum in the N ¼ 2 vacuum invariant
under a Uð1ÞD × Uð1Þ subgroup of the gauge group. Here,

δ ¼ jmð1Þ
G j − 1.

Spin m2 Δ≡ E0 Multiplicity

0 − 9
4

3
2

8
−2 f1; 2g 15 ¼ 6þ 9

− 5
4

5
2

12
0 3 5
4 4 1

ðδþ 2Þðδ − 1Þ δþ 2 2
δðδþ 3Þ δþ 3 2

1
2

0 3
2

8
1
4

2 12
9
4

3 4
1 5

2
4

4 7
2

2
δ2 δþ 3

2
1

ðδþ 1Þ2 δþ 5
2

4

ðδþ 2Þ2 δþ 7
2

1

1 0 2 3
3
4

5
2

4
2 3 1

δðδþ 1Þ δþ 2 2
ðδþ 1Þðδþ 2Þ δþ 3 2

3
2

1 5
2

2

ðδþ 1Þ2 δþ 5
2

1

2 0 3 1

TABLE VI. Mass spectrum in the N ¼ 2 vacuum invariant
under a Uð1ÞD subgroup of the gauge group. Here,

δ ¼ jmð2Þ
G j − 1.

Spin m2 Δ≡ E0 Multiplicity

0 −2 f1; 2g 9 ¼ 4þ 5
0 3 12
4 4 16

10 5 3
ðδþ 2Þðδ − 1Þ δþ 2 2

δðδþ 3Þ δþ 3 2

1
2

0 3
2

4
1 5

2
4

4 7
2

14
9 9

2
8

δ2 δþ 3
2

1
ðδþ 1Þ2 δþ 5

2
4

ðδþ 2Þ2 δþ 7
2

1

(Table continued)

TABLE VI. (Continued)

Spin m2 Δ≡ E0 Multiplicity

1 0 2 2
2 3 1
6 4 5

δðδþ 1Þ δþ 2 2
ðδþ 1Þðδþ 2Þ δþ 3 2

3
2

1 5
2

2

ðδþ 1Þ2 δþ 5
2

1

2 0 3 1

TABLE VII. Mass spectrum in the N ¼ 1 vacuum invariant
under a U(1) subgroup of the gauge group.

Spin m2 Δ≡ E0 Multiplicity

0 − 9
4

3
2

8
−2 f1; 2g 14 ¼ 12þ 2

− 5
4

5
2

12
0 3 3
4 4 1

ðΔð1Þ
V1 þ 1

2
ÞðΔð1Þ

V1 − 5
2
Þ Δð1Þ

V1 þ 1
2

1

ðΔð1Þ
V2 þ 1

2
ÞðΔð1Þ

V2 − 5
2
Þ Δð1Þ

V2 þ 1
2

1

Δð1Þ
G1ðΔð1Þ

G1 − 3Þ Δð1Þ
G1

1

ðΔð1Þ
G1 þ 1ÞðΔð1Þ

G1 − 2Þ Δð1Þ
G1 þ 1 1

Δð1Þ
G2ðΔð1Þ

G2 − 3Þ Δð1Þ
G2

1

ðΔð1Þ
G2 þ 1ÞðΔð1Þ

G2 − 2Þ Δð1Þ
G2 þ 1 1

1
2

0 3
2

8
1
4

2 12
1 5

2
2

9
4

3 4
4 7

2
1

ðΔð1Þ
G1 − 1Þ2 Δð1Þ

G1 þ 1
2

2

ðΔð1Þ
G2 − 1Þ2 Δð1Þ

G2 þ 1
2

2

ðΔð1Þ
V1 − 3

2
Þ2 Δð1Þ

V1
1

ðΔð1Þ
V1 − 1

2
Þ2 Δð1Þ

V1 þ 1 1

ðΔð1Þ
V2 −

3
2
Þ2 Δð1Þ

V2
1

ðΔð1Þ
V2 − 1

2
Þ2 Δð1Þ

V2 þ 1 1

1 0 2 2
3
4

5
2

4

ðΔð1Þ
G1 − 1ÞðΔð1Þ

G1 − 2Þ Δð1Þ
G1

1

Δð1Þ
G1ðΔð1Þ

G1 − 1Þ Δð1Þ
G1 þ 1 1

ðΔð1Þ
G2 − 1ÞðΔð1Þ

G2 − 2Þ Δð1Þ
G2

1

Δð1Þ
G2ðΔð1Þ

G2 − 1Þ Δð1Þ
G2 þ 1 1

ðΔð1Þ
V1 −

1
2
ÞðΔð1Þ

V1 −
3
2
Þ Δð1Þ

V1þ1
2

1

ðΔð1Þ
V2 −

1
2
ÞðΔð1Þ

V2 −
3
2
Þ Δð1Þ

V2þ1
2

1

(Table continued)
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