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We provide a new extension to the geometric construction of six-dimensional (6D) (1,0) superconformal
field theories (SCFTs) that encapsulates Higgs branch structures with identical global symmetry but
different spectra. In particular, we find that there exist distinct 6D (1,0) SCFTs that may appear to share
their tensor branch description, flavor symmetry algebras, and central charges. For example, such subtleties
arise for the very even nilpotent Higgsing of ðso4k; so4kÞ conformal matter; we propose a method to predict
at which conformal dimension the Higgs branch operators of the two theories differ via augmenting the
tensor branch description with the Higgs branch chiral ring generators of the building block theories. Torus
compactifications of these 6D (1,0) SCFTs give rise to four-dimensional (4D) N ¼ 2 SCFTs of class-S,
and the Higgs branch of such 4D theories are captured via the Hall-Littlewood index. We confirm that
the resulting 4D theories indeed differ in their spectra in the predicted conformal dimension from their
Hall-Littlewood indices. We highlight how this ambiguity in the tensor branch description arises beyond
the very even nilpotent Higgsing of ðso4k; so4kÞ conformal matter and hence should be understood for
more general classes of 6D (1,0) SCFTs.
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I. INTRODUCTION

A generic quantum field theory is characterized by its
symmetries, both global and local. Many diverse quantum
field theories can be engineered from superstring theory in
ten dimensions, which has no global symmetries and
famously has only local symmetries required by anomaly
cancellation [1]. However, lower-dimensional theories
that arise via string theory compactifications may have
many kinds of global symmetries; in particular, there can
be R symmetries, if the compactification preserves super-
symmetry, and flavor symmetries that commute with the
(super-)Lorentz transformations. The flavor symmetry
provides an important property describing the quantum
field theory; understanding the flavor symmetry amounts to
analyzing the flavor symmetry algebra f and its global form
F, where F is ambiguous from f up to the center of f. The
spectrum of states of the theory falls into representations

of f, and there can be subtle distinctions between the global
form of the symmetry group F depending on those states.
The analysis of the spectrum of the theory can demonstrate
that theories that appear to be identical at the level of the
flavor symmetry algebra are different. Determining which
states, in which representations of f, exist in the theory is
related to the geometric and topological properties of the
compactification space Y. However, how these states are
encoded in the geometry is often challenging to determine.
In this paper, we explicitly show how such states are
captured in Y for certain compactifications of string theory
down to six dimensions and then further down to four
dimensions.
In particular, the theories we look into in this paper are

superconformal field theories (SCFTs). A natural question
is then how does one effectively distinguish superconfor-
mal field theories. The most natural things to look at are
the invariants of an SCFT. We define the “conventional
invariants” of an SCFT to be the central charges, the flavor
algebras, and the flavor central charges; these are invariants
in the sense that if these quantities differ between two
SCFTs then those SCFTs are themselves different.
However, these are not complete invariants: many distinct
SCFTs are known for which all of these quantities are
identical. A more refined invariant, but still not complete, is
the Higgs branch. In another vein, the global form of the
flavor symmetry group F is more refined than the flavor
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symmetry algebra f and can distinguish theories which
differ only up to the center of F.
We will analyze six-dimensional SCFTs and take a six-

dimensional perspective on analyzing four-dimensional
SCFTs. In fact, studying six-dimensional SCFTs has been
particularly insightful and has played an important role in
understanding lower-dimensional theories. The quintessen-
tial examples are the understanding of the S-duality of
four-dimensional (4D) N ¼ 4 super-Yang–Mills [2] and
the class-S construction [3,4] of 4D N ¼ 2 SCFTs from
the six-dimensional (6D) (2,0) SCFTs. The class-S con-
struction involves a twisted compactification of the 6D
(2,0) SCFT of type g on a n-punctured genus g Riemann
surface Cg;n. In this paper, we write such 4D SCFTs as

SghCg;nif� � �g; ð1:1Þ

where � � � refers to the data describing the punctures. The
puncture data have been (almost) exhaustively worked out
in Refs. [5–14]. The power of this approach is reflected in
how a multitude of physical properties of the 4D SCFTs are
encoded in the geometry of the punctured Riemann surface.
Another origin of 4D N ¼ 2 SCFTs in six -dimensions

is the torus compactification of a 6D (1,0) SCFT. When
utilizing this approach, there is no need to perform any
topological twist, as the flatness of the torus guarantees
that supersymmetry is preserved in the compactification.
In fact, a 6D (1,0) SCFT origin provides a particularly
powerful perspective to understand the Higgs branch of the
lower-dimensional SCFTs, as a supersymmetry-preserving
torus compactification does not modify the Higgs branch.
This process can also be utilized in the reverse direction:
if one understands aspects of the Higgs branch of a 4D
N ¼ 2 SCFT from the class-S perspective, and there also
exists a 6D (1,0) on T2 perspective, then one can learn
about the Higgs branch of the 6D (1,0) SCFT.
Four-dimensional N ¼ 2 SCFTs which have such

6D (1,0) and 6D (2,0) origins have been discovered in recent
years [15–18]. The general principle is that theories of class-S
of type g obtained from spheres withN simple punctures and
any two regular punctures associated to nilpotent orbits of g
have an alternative description in terms of 6D rank-N ðg; gÞ
conformal matter, Higgsed by the same nilpotent orbits of g,
compactified on a torus. In Ref. [18], it was pointed out that
the 6D (1,0) origin makes manifest the full flavor algebra of
the 4D theory, whereas only a subalgebra is manifest in the
class-S description. This is the original example of the 6D
(1,0) origin being the optimal approach to the 4D Higgs
branch. Unfortunately, the connection between the geometric
construction of 6D (1,0) SCFTs [19,20] and their Higgs
branches has not been fully developed.
A vast landscape of 6D (1,0) SCFTs has a geometric

construction via F-theory [19,20]. This approach involves
constructing the description of the theory at the generic point
of its tensor branch, which is captured by a collection of

curves and algebras. Furthermore, there are simple
rules for building new 6D SCFTs by compositing theories
associated to ≤3 curves. It has generally been believed that
theories with the same tensor branch description correspond
to the same SCFT; in particular, such theories have the same
anomaly polynomials and all attendant SCFT invariants.
However, we show that this is not the case in this paper.

From the class-S description of the T2 compactification of
the 6D (1,0) SCFTs that we consider, we study the Hall-
Littlewood index to determine the Higgs branch spectrum.
By looking at the spectra via the Hall-Littlewood indices,
we see that the two theories differ at somewhat large
conformal dimensions; however, they do have the same
conventional invariants. Given that the two theories have
different Higgs branches, they are necessarily distinct
theories. Theories with identical “conventional invariants”
which nevertheless differ in their Higgs branch spectrum
have been studied recently in Refs. [21,22] for some 4D
SCFTs of class-S. In terms of the 6D (1,0) geometric
construction, we find that there is an ambiguity in how the
curves are composited together, and resolving this ambi-
guity leads to distinct 6D SCFTs. In this way, we propose a
method to recover the relevant aspects of the different
Higgs branches directly from the 6D (1,0) perspective and
thus provide one of the first methods to recover the higher-
dimensional operators on the Higgs branch directly from
the geometric construction of the 6D (1,0) SCFTs.
The rest of the paper is organized as follows. In Sec. II,

we explain the construction of rank-N ðDk;DkÞ conformal
matter and the Higgs branch deformations induced by pairs
of nilpotent orbits of the so2k ⊕ so2k flavor symmetry from
the geometric perspective of F-theory; we determine that
there is a previously overlooked subtlety with the compo-
siting by rank-1 ðD;DÞ conformal matter, which occasion-
ally leads to inequivalent theories with the same tensor
branch description. In Sec. III, we highlight these distinct
theories for a variety of examples involving nilpotent orbits
associated to very even D-partitions, and we determine at
what conformal dimension the operator spectrum on the
Higgs branch differs. The torus compactifications of these
6D (1,0) SCFTs lead to 4D N ¼ 2 SCFTs which have a
dual description in class-S, and in Sec. IV, we observe that
the two theories are also distinct from that perspective and
the Hall-Littlewood index differs at the same order as
predicted from the 6D (1,0) description. Finally, in Sec. V,
we conclude, discuss the significance of our results, and
present some future directions.

II. ðD;DÞ CONFORMAL MATTER AND
NILPOTENT HIGGSING

In this paper, we provide substantial evidence that the
tensor branch description of a 6D (1,0) SCFT from
Refs. [19,20] is insufficient, in the sense that it does not
distinguish between particular 6D (1,0) SCFTs that have
nonisomorphic Higgs branches. Six-dimensional SCFTs
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are theories which contain degrees of freedom correspond-
ing to tensionless strings [2,23], which magnetically couple
to tensor multiplets, and each of those strings acquires
tension at a generic point of the tensor branch.
The geometric construction is via F-theory compactified

on a noncompact elliptically fibered Calabi-Yau threefold
satisfying the negative-definite condition for the intersec-
tion pairing of compact rational curves in the base of the
fibration and that the singular fibers above the intersection
points of the curves are minimal.1,2 Each compact curve
gives rise to a string, with the tension proportional to the
volume of the curve. The intersection pairing corresponds
to the Dirac pairing on the charge lattice of the strings,
and the singular fiber is associated to a gauge algebra where

the gauge coupling is proportional to the inverse of the
associated string tension. The SCFT limit involves taking
the volume of all compact curves to zero simultaneously,
which is identical to taking the tensionless limit for each
string. In particular, we utilize this curve-intersection
technology to build 6D (1,0) SCFTs with minimal con-
formal matter ðG;GÞ [41]. The geometric construction
itself is modular and can be reduced to the combinatorial
problem of compositing together a small collection of
“building blocks.” Specifically, we can get such a 6D SCFT
from compositing together theories associated to the non-
Higgsable clusters (NHCs) [42–44]. Writing the negative of
the self-intersection number of the curves and the algebras
associated to the singular fibers, the NHCs can be written as

3
su3

; 4
so8

; 5
f4
; 6

e6
; 7

e7
; 8

e7
; 12

e8
; 2

su2

3
g2
; 2 2

su2

3
g2
; 2

su2

3
so7

2
su2

;

2 � � � 2|fflffl{zfflffl}
N−1

; 2 � � � 2|fflffl{zfflffl}
N−3

2
2

2; 222
2

22; 2222
2

22; 22222
2

22: ð2:1Þ

Each NHC may be tuned, meaning that the gauge algebra
can be enhanced beyond that which is written in Eq. (2.1).
Another key ingredient is the rank-1 E-string, correspond-
ing to a (−1)-curve with no associated gauge algebra, and
its tuned counterparts:

1
g
: ð2:2Þ

This theory has a flavor algebra f, and we can use 1
g
to

composite together up to two tuned non-Higgsable clusters,

for example, n
gL and m

gR, via gauging a gL ⊕ gR subalgebra
of f; this would lead to

n
gL
1
g
m
gR: ð2:3Þ

As long as the resulting tensor branch configuration
satisfies the negative-definite-ness and minimality con-
straints, then one can iterate this process of composition
to generate a vast landscape of 6D (1,0) SCFTs. Hence,
each tuned E-string theory as in Eq. (2.2) plays a role to
composite together SCFTs.
To clarify the notation, we now give an explicit example.

Consider a noncompact elliptically fibered Calabi-Yau
containing three compact curves in the base: C1, C2,
and C3. We take the intersection matrix to be

Ci · Cj ¼

0
B@−1 1 0

1 −3 1

0 1 −1

1
CA

ij

; ð2:4Þ

where the numbers on the diagonal are the self-intersection
numbers; it is straightforward to see that this matrix is
negative definite. Furthermore, take the singular fibers over
each of the three curves to correspond to the gauge algebras
g1 ¼ g3 ¼ ϕ and g2 ¼ su3. Then, we can write this tensor
branch configuration in a succinct form as

1 3
su3

1: ð2:5Þ

This configuration involves compositing together two

copies of the rank-1 E-string with the 3
su3

non-Higgsable
cluster. We use this concise notation throughout this work.
In this paper, we focus on the 6D (1,0) SCFTs known

as rank-N ðso2k; so2kÞ conformal matter and the interact-
ing fixed points obtained by nilpotent Higgsing of the
so2k ⊕ so2k flavor symmetry. Certain nilpotent Higgsings
lead to theories with the same tensor branch description;
however, when compactified on T2, the SCFTs have an
alternative description in terms of class-S, and from that
perspective, we see that the Higgs branches are non-
isomorphic. In these cases, we propose precisely how to
augment the 6D (1,0) tensor branch description with
additional information about the compositing theories
such that we observe the distinct Higgs branches.
While we focus on (nilpotent Higgsing of) ðso2k; so2kÞ
conformal matter, this is not the only occasion where an
ambiguity in the compositing arises, as we discuss briefly
in Sec. V, and thus we expect that this additional

1See Ref. [24] for a recent review of the construction of 6D
SCFTs from F-theory, including all necessary conditions and
their derivation.

2If F-theory is instead compactified on a compact Calabi-Yau
threefold, the resulting theory is a 6D (1,0) supergravity theory.
See Refs. [25–40] for some examples of such geometric con-
structions.
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information needs to be accounted for in the tensor branch
descriptions of numerous 6D (1,0) SCFTs.
The rank-N conformal matter theory of type ðso2k; so2kÞ

arises in M-theory as the theory living on the world volume
of N M5-branes probing a C2=Γso2k orbifold singularity
[41]. In the geometric construction of 6D (1,0) SCFTs, this
theory is obtained by compositing N − 1 copies of the
tuned non-Higgsable cluster

4
so2k

; ð2:6Þ
with N copies of the tuned E-string:

1
spk−4

: ð2:7Þ
To wit, we have the configuration

1
spk−4

½so2k�
4

so2k
1

spk−4 � � � 4
so2k

1
spk−4

½so2k�

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N−1ð−4Þ-curves

: ð2:8Þ

We refer to the 1
spk−4

as the compositing theory, and it is an
SCFT in its own right; in fact, it is the minimal ðso2k; so2kÞ
conformal matter theory. This theory has an so4k enhanced
flavor symmetry.3 The Higgs branch chiral ring has two
generators: a moment map μ in the adjoint representation of
the so4k flavor symmetry and an additional generator μ� in
one of the spin representations of the so4k. The latter
transforms in the representation of the SUð2Þ R symmetry
with highest weight k − 2. A priori, there can be two
SCFTs, one with the Higgs branch chiral ring generated by
ðμ; μþÞ and the other with the Higgs branch chiral ring
generated by ðμ; μ−Þ. However, it is easy to see that these
are equivalent SCFTs related by the outer automorphism
of so4k. We refer to this pair of equivalent theories as

1
spþk−4

and 1
sp−k−4

; ð2:9Þ
respectively. This may lead us to think that the tensor
branch configuration for rank-N ðso2k; so2kÞ conformal
matter written in Eq. (2.8) is ambiguous; however, these
theories are equivalent for all combinations of signs on the
(−1)-curve. We explicitly explore this scenario and argue in
Sec. III E why all combinations of signs are equivalent.
The rank-N ðso2k; so2kÞ conformal matter theory has

an so2k ⊕ so2k flavor symmetry. Then, there exist Higgs
branch renormalization group flows to new interacting
fixed points, triggered by giving nilpotent vacuum expect-
ation values to the moment map of each of the flavor

symmetry factors. Let us assume that N is large enough
such that the nilpotent Higgsing leads to an interacting 6D
SCFT. Then, we can determine the tensor branch configu-
ration of the 6D (1,0) SCFT at the end of the renormaliza-
tion group-flow from the pair of nilpotent orbits that we use
to Higgs [50–54]. Each tensor branch configuration con-
tains compositing theories of the form

1
spq

: ð2:10Þ

In each case of compositions with Eq. (2.10), it is necessary
to determine whether there is a distinction if one compo-
sites with

1
spþq

or 1
sp−q

: ð2:11Þ

Nilpotent orbits of so2k are classified by integer partitions
of 2k, which denote the decomposition of the vector
representation under the corresponding embedding of su2.
Since the vector representation is real, not every partition
of 2k is allowed: the even parts must appear with even
multiplicity, yielding a D-partition. Furthermore, each very
even D-partition—a D-partition with only even parts—
corresponds to two distinct nilpotent orbits, which we
refer to as the redI and blueII orbits.4 The tensor branch
description after Higgsing depends only on the pair of
D-partitions, and thus one concludes that the tensor branch
descriptions for the Higgsings by ðredI; redIÞ and ðredI;
blueIIÞ are the same.5,6

However, we find that, while the tensor branch descrip-
tions appear the same, the different Higgsings actually lead
to theories with a different Higgs branch operator spectrum
and thus do correspond to two distinct 6D (1,0) SCFTs.
We see precisely for those Higgsings that the distinction

between compositing with 1
spþq

versus 1
sp−q

is important.
In six dimensions, an spq gauge algebra a priori is

required to be accompanied by a choice of discrete theta
angle, as π5ðspqÞ ¼ Z2. However, if there exists n hyper-
multiplets in the fundamental representation of spq, then

3The Higgs branch of this SCFT has been studied from the
perspective of magnetic quivers [45–48]. Aspects of the Higgs
branch of minimal ðso2k; so2kÞ conformal matter for some k ≥ 5
have also been explored from a conformal bootstrap approach in
Ref. [49].

4See, e.g., Ref. [14] or the standard Ref. [55] for further details
on nilpotent orbits. Reference [55] uses the subscripts I and II to
distinguish the two nilpotent orbits corresponding to a very even
D-partition; Ref. [14] uses the colors red and blue to distinguish
them. Here, in a somewhat redundant notation, we will use both.

5There are examples in Ref. [54], whereN is sufficiently small,
such that the ðredI; redIÞ and ðredI; blueIIÞ pairs of nilpotent
Higgsings lead to distinct tensor branch descriptions. Such cases
are exceptional.

6While the tensor branch descriptions may be identical,
although a way to see the Higgs branch operators has not been
found, one may approach with the reflection of the nilpotent
Higgsing in the singular geometry, corresponding to the origin of
the tensor branch where all of the compact curves are shrunk to
zero volume, from T-brane dynamics [56–58].
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the outer automorphism of the SOð2nÞ classical flavor
symmetry rotating the hypermultiplets flips the θ angle:
0 ↔ π. This implies that the θ angle is rarely physically
relevant [59,60]. The outer automorphism also swaps the
spinor and conjugate spinor representations, so it is clear
that the distinction between sp�q is related to the distinction
between the θ angles. Exactly as for the sp�q , all combi-
nations of θ angles in the quiver that are related by outer
automorphisms of the special orthogonal factors are physi-
cally equivalent. In Ref. [59], the spectrum of instanton
strings for an spq gauge algebra next to an su2qþ8 gauge
algebra was analyzed; in that reference, it was found that
the two inequivalent embeddings of su2qþ8 inside of
so4qþ16 lead to distinct stringlike excitations. These two
embeddings are again related to the choice of θ angle for
the spq gauge algebra. While we observe the distinction
between the theories by studying high-dimension Higgs
branch operators, it would be interesting to explore the
difference between the spectra of instanton strings for the
ðredI; redIÞ and ðredI; blueIIÞ Higgsings.

III. VERY EVEN HIGGSING IN SIX DIMENSIONS
VIA EXAMPLES

In this section, we consider explicit examples of the
6D SCFTs that are obtained from rank-N ðso4k; so4kÞ
conformal matter Higgsed on the left and the right by
nilpotent orbits associated to very even D-partitions. In the
examples that we study here, we consider Higgsing both
so4k symmetries by nilpotent orbits associated to same very
even D-partition. For the purposes of the examples in this
section, we focus on the D-partitions

½ð2k − 2lÞ2; 22l�; ð3:1Þ

though it is straightforward to generalize this analysis to
any arbitrary pair of very even D-partitions. Each such
D-partition is associated to two distinct nilpotent orbits
of so4k. As discussed, we distinguish these two orbits by
coloring the D-partition red or blue and adding a subscript
“I” or “II.”
We give several examples to demonstrate how seemingly

identical-looking 6D SCFTs with identical flavor sym-
metry algebras are distinct and how it can be seen that they
differ in their Higgs branch spectrum. When Higgsing
according to Eq. (3.1), the cases where l ¼ 1 and l ¼ 2 are
rather special, and we discuss them separately. Similarly,
special care must be taken when g ¼ so8, which we
study first.

A. ðso8;so8Þ with 2 × ½24�
For our first example, we take rank-N ðso8; so8Þ

conformal matter. We consider Higgsing the so8 ⊕ so8
flavor symmetry by the pairs of nilpotent orbits ð½24�I; ½24�IÞ
and ð½24�I; ½24�IIÞ and contrast the two resulting theories.

The original conformal matter theory corresponds to the
tensor branch description

1 4
so8

1 4
so8

1 � � � 4
so8

1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
N−3ð−4Þ-curves

4
so8

1; ð3:2Þ

and we assume that N ≥ 3. According to Ref. [51], the
tensor branch description of the SCFT obtained after the
nilpotent Higgsing we are considering is

3
so7

½sp2�
1 4

so8
1 � � � 4

so8
1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

N−3ð−4Þ-curves
3
so7

½sp2�
: ð3:3Þ

The tensor branch description appears to be the same for
both the pairs ð½24�I; ½24�IÞ and ð½24�I; ½24�IIÞ for the nilpotent
Higgsing. That, however, is incorrect; the tensor branch
description in Eq. (3.3) is in fact ambiguous, and the two
possibilities correspond to distinct SCFTs. There exist
two avatars of the E-string, which have the geometric

description 1
sp�

0

, corresponding to the Higgs branch chiral
ring possessing a generator in the positive or negative
chirality spinor representation of the so16 flavor symmetry.7

We begin by studying the special case where N ¼ 4, in
which case the tensor branch configuration is

3
so7

½sp2�
1
sp�

0

4
so8

1
sp�

0

3
so7

½sp2�
: ð3:4Þ

Let μ�1 and μ�2 denote the Higgs branch chiral ring
generators of the two E-strings, in either the positive or
negative chirality spin representations. We determine the
number of gauge singlets appearing in the tensor product of
these generators

μ�1 ⊗ μ�2 ; ð3:5Þ

where the tensor product is taken over the common so8
gauged subalgebra. One finds that

μþ1 ⊗ μþ2 ¼ μ−1 ⊗ μ−2 ⊃ ð1; 1; 1Þ;
μþ1 ⊗ μ−2 ¼ μ−1 ⊗ μþ2 ⊅ ð1; 1; 1Þ: ð3:6Þ

The Higgs branch generator in the spinor representation has
conformal dimension Δ ¼ 2, and thus we see that, depend-
ing on the combination of signs in Eq. (3.4), the SCFT may
or may not have an additional Higgs branch generator at
Δ ¼ 4. Based on the comparison to class-S, discussed in

7The spinor generator for the E-string has Δ ¼ 2, and thus it
combines with the moment map operator to trigger an enhance-
ment of the flavor symmetry so16 → e8.
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Sec. IV, we associate the pairs of nilpotent orbits to tensor
branch descriptions as follows:

ð½24�I; ½24�IÞ∶ 3
so7

½sp2�
1
spþ

0

4
so8

1
spþ

0

3
so7

½sp2�
;

ð½24�I; ½24�IIÞ∶ 3
so7

½sp2�
1
spþ

0

4
so8

1
sp−

0

3
so7

½sp2�
: ð3:7Þ

The generalization of this analysis to N > 4 is now clear.
In the tensor branch configuration in Eq. (3.3), there are
N − 2 E-strings acting as compositing theories, and thus
there are N − 2 Higgs branch spinors μ�i . We must consider
the gauge singlets that appear in

μ�1 ⊗ � � � ⊗ μ�N−2; ð3:8Þ

where, again, the tensor product means that we take the
tensor product of the common so8 algebras after gauging.
We find two possible options

μþ1 ⊗ μþ2 ⊗ � � � ⊗ μþN−3 ⊗ μþN−2 ⊃ ð1; 1;…; 1Þ; ð3:9aÞ

μþ1 ⊗ μþ2 ⊗ � � � ⊗ μþN−3 ⊗ μ−N−2 ⊅ ð1; 1;…; 1Þ: ð3:9bÞ

Of course, we might expect that each of the 2N−2

combinations of signs corresponds to a different theory;
however, this would represent a dramatic overcounting.
Inside of the tensor branch description in Eq. (3.3), we can
act by an outer automorphism of any of the so8 gauge
algebras, and this has the effect of flipping the signs on the
two (−1)-curves adjacent to that gauge algebra; as an outer
automorphism, this manifestly does not change the physi-
cal theory. We choose to use the convention that all except
the leftmost and rightmost (−1)-curves have μþ; this can
always be attained via a sequence of outer automorphisms
of the so8 gauge algebras. In this way, we can think of the
two very even nilpotent orbits as Higgsing the conformal
matter theory in the following, distinct, ways:

½24�I∶ 1
sp0

4
so8

1
sp0

4
so8

1
sp0 � � � → 3

so7
1
spþ

0

4
so8

1
spþ

0 � � � ;

½24�II∶ 1
sp0

4
so8

1
sp0

4
so8

1
sp0 � � � → 3

so7
1
sp−

0

4
so8

1
spþ

0 � � � : ð3:10Þ

With this convention, it is easy to see that ð½24�I; ½24�IÞ and
ð½24�II; ½24�IIÞ give rise to the same theory after successive
actions of the so8 outer automorphisms. Similarly, for all of
the examples in this paper, outer automorphisms of the so2l
gauge algebras on the (−4)-curves can be used to show
that one can always transform the combinations of signs
on the compositing theories to ðþ;þ; � � � ;þ;þÞ or
ðþ;þ; � � � ;þ;−Þ. Thus, because of the two distinct com-
binations of signs giving rise to different numbers of gauge
singlets as in Eq. (3.9), we expect that the tensor branch

geometry in Eq. (3.3) corresponds to two distinct 6D
SCFTs, which differ in their Higgs branch operator content
at Δ ¼ 2ðN − 2Þ. Based on the matching with class-S in
Sec. IV, we associate the all plus SCFT to the pair
of nilpotent Higgsings ð½24�I; ½24�IÞ, and with one minus
to ð½24�I; ½24�IIÞ.
Finally, we can consider the special case where N ¼ 3.

The tensor branch description of the Higgsed theory is then

3
so7

1 3
so7
: ð3:11Þ

This theory is constructed by starting with two copies of
the theory

3
so7 ð3:12Þ

and compositing together by gauging an so7 ⊕ so7 sub-
algebra of the e8 flavor symmetry of the E-string. There are
two inequivalent embeddings of so7 ⊕ so7 inside of e8,
specified by their distinct branching rules

e8 → so7 ⊕ so7

248 → ð21; 1Þ ⊕ ð1; 21Þ ⊕ ð7; 1Þ ⊕ ð1; 7Þ ⊕ ð8; 1Þ
⊕ ð1; 8Þ ⊕ ð7; 8Þ ⊕ ð8; 7Þ ⊕ ð8; 8Þ; ð3:13aÞ

e8 → so7 ⊕ so7 ⊕ u1

248 → ð21; 1Þ0 ⊕ ð1; 21Þ0 ⊕ ð7; 1Þ2 ⊕ ð7; 1Þ−2
⊕ ð1; 7Þ2 ⊕ ð1; 7Þ−2 ⊕ ð7; 7Þ0
⊕ ð1; 1Þ0 ⊕ ð8; 8Þ1 ⊕ ð8; 8Þ−1: ð3:13bÞ

We can see that the decomposition of the moment map of
the E-string contains an so7 ⊕ so7 gauge singlet in the
latter branching rule given by Eq. (3.13b), whereas there
is none in the former branching rule given in Eq. (3.13a).
As this gauge singlet appears with conformal dimension
Δ ¼ 2, it corresponds to a moment map operator in the
gauged theory; thus, the theory with the gauge singlet has
an additional u1 flavor symmetry. This matches with the
branching rules depicted above.
The examples in this subsection can be summarized

as follows. Nilpotent Higgsing of the so8 ⊕ so8 flavor
symmetry of the rank N ≥ 3 ðso8; so8Þ conformal matter
theory by the pairs of nilpotent orbits ð½24�I; ½24�IÞ or
ð½24�I; ½24�IIÞ leads to two distinct 6D SCFTs. These two
SCFTs differ in their Higgs branch operator spectrum
starting at conformal dimension

Δ ¼ 2ðN − 2Þ: ð3:14Þ
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B. ðso4k;so4kÞ with 2 × ½ð2k− 2Þ2;22�
We now consider the tensor branch configurations corresponding to Higgsing both sides of rank-N conformal matter of

type ðso4k; so4kÞ by one of the nilpotent orbits associated to the very even D-partition ½ð2k − 2Þ2; 22�. We assume that k > 2,
as the k ¼ 2 case has been studied in Sec. III A. The tensor branch description of these theories is

3
so7

½sp1�
1
sp1

4
so12

1
sp3 � � � 1

sp2k−5|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
k−3ð−4Þ-curves

4
so4k

½sp1�
1

sp2k−4
4

so4k
1

sp2k−4 � � � 4
so4k

1
sp2k−4

4
so4k

½sp1�

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ðNþ1Þ−2ðk−1Þð−4Þ-curves

1
sp2k−5 � � � 1

sp1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
k−3ð−4Þ-curves

3
so7

½sp1�
: ð3:15Þ

We require that N ≥ 2k − 2 to prevent the two nilpotent
Higgsings from becoming correlated across the tensor
branch. In this quiver, there are N − 2 curves of self-
intersection (−1), each of which composites between the
adjacent curves. Each (−1)-curve theory contains two
Higgs branch operators: a moment map operator in the
adjoint representation of the flavor symmetry and a spinor
generator in either the Sþ or S− representation of the flavor
symmetry, as discussed around Eq. (2.9). We label the
spinor generators of each of the (−1)-curve theories as
μ�1 ; μ

�
2 ;…; μ�N−2. We wish to count the gauge singlets that

appear in the tensor product of these spinorial generators:

μ�1 ⊗ μ�2 ⊗ � � � ⊗ μ�N−3 ⊗ μ�N−2: ð3:16Þ

We can see that the decomposition of the spinor repre-

sentations of the so20 flavor symmetries of the 1
sp1

compo-
siting theories are

so20 → so7 ⊕ so12; ð3:17aÞ

Sþ → ð1; SþÞ ⊕ � � � ; ð3:17bÞ

S− → ð1; S−Þ ⊕ � � � : ð3:17cÞ

The � � � represent terms that are not singlets under the
so7, and thus we can see that there are gauge singlets in the

tensor product in Eq. (3.16). Depending on the combina-
tions of signs, we find that there are two possibilities for the
number of gauge singlets appearing inside of the tensor
product of the spinors in Eq. (3.16):

μþ1 ⊗ μþ2 ⊗ � � � ⊗ μþN−3 ⊗ μþN−2 ⊃ ð1; 1;…; 1Þ; ð3:18aÞ

μþ1 ⊗ μþ2 ⊗ � � � ⊗ μþN−3 ⊗ μ−N−2 ⊅ ð1; 1;…; 1Þ: ð3:18bÞ

This indicates that the tensor branch geometry given in
Eq. (3.15) corresponds to two 6D SCFTs that differ at
conformal dimension

2
X2k−5
q¼1
q odd

ðqþ 2Þ þ ðN − 2kþ 2Þð2k − 2Þ

¼ 2Nðk − 1Þ − 2ðk − 1Þ2 − 2; ð3:19Þ

in the spectrum of Higgs branch operators.

C. ðso4k;so4kÞ with 2 × ½ð2k − 4Þ2;24�
We now turn to the case where l ¼ 2 in the D-partition

in Eq. (3.1), and furthermore we take k ≥ 4.8 The tensor
branch configuration describing the 6D SCFT(s) obtained
by the nilpotent Higgsing of rank-N ðso4k; so4kÞ conformal
matter by nilpotent orbits associated to the very even
D-partition ½ð2k − 4Þ2; 24� is

3
so12

½sp2�
1
sp3

4
so16

1
sp5 � � � 1

sp2k−5|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
k−4ð−4Þ-curves

4
so4k

½sp1�
1

sp2k−4
4

so4k
1

sp2k−4 � � � 4
so4k

1
sp2k−4

4
so4k

½sp1�

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ðNþ1Þ−2ðk−2Þð−4Þ-curves

1
sp2k−5 � � � 1

sp3|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
k−4ð−4Þ-curves

3
so12

½sp2�
: ð3:20Þ

Again, we consider the gauge singlets that appear in the
tensor products of the μ�i :

μ�1 ⊗ μ�2 ⊗ � � � ⊗ μ�N−3 ⊗ μ�N−2: ð3:21Þ

Of course, we can see that this would never lead to a singlet
under the so12 gauge algebras on the left and the right.
However, anomaly cancellation requires that an so12
algebra on a (−3)-curve includes the presence of a half-
hypermultiplet in one of the spin representations of the

8The case of k ¼ 3 can also be studied but requires some
modification to the exposition. We leave this as a straightforward
exercise for the interested reader.
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so12. We can consider two a priori distinct SCFTs,

corresponding to 3
soþ

12

and 3
so−

12

, where the sign denotes the
chirality of the spinor belonging to the half-hypermultiplet.

Similarly to the 1
sp�q

theories, compositing together with
different signs can lead to different SCFTs.
We refer to the scalars inside of these two half-

hypermultiplets as μ�L and μ�R , respectively, and then we
consider gauge singlets appearing in the decomposition

μ�L ⊗ μ�1 ⊗ μ�2 ⊗ � � � ⊗ μ�N−3 ⊗ μ�N−2 ⊗ μ�R : ð3:22Þ

A priori, there is no expectation that the construction of
gauge-invariant operators involving hypermultiplets on the
tensor branch leads to operators of the 6D SCFT at the
origin. In the context of 6D SCFTs however, this is not
without precedent; for example, the “end-to-end” operators
of Refs. [61,62], are operators of 6D (1,0) SCFTs obtained
by taking gauge singlet combinations of hypermultiplets
along the 6D quiver. Furthermore, we see that this analysis
matches the alternative derivation via the class-S construc-
tion in Sec. IV, and thus we have strong evidence that these
operators do indeed ascend to operators of the 6D SCFT.

It is easy to see that when all of the signs in Eq. (3.22) are
positive one obtains a gauge singlet inside of this tensor
product and when exactly one of the signs is negative one
does not obtain any gauge singlet.9 As such, we expect that
the two different combinations of signs lead to distinct 6D
SCFTs, with different spectra of states on their Higgs
branches. Using the known conformal dimensions of the μ�i
and μ�L;R, the difference in Higgs branch operators occurs at
conformal dimension

2þ 2
X2k−5
q¼3
q odd

ðqþ 2Þ þ ðN − 2kþ 4Þð2k − 2Þ

¼ 2kN − 2N þ 8k − 12 − 2k2: ð3:23Þ

D. ðso4k;so4kÞ with 2 × ½ð2k− 2lÞ2;22l�
Finally, we consider the cases where l ¼ 3;…; k − 1,

which requires that we have k ≥ 4. The tensor branch
configuration for rank-N ðso4k; so4kÞ conformal matter
Higgsed on the left and the right by nilpotent orbits
corresponding to such a D-partition ½ð2k − 2lÞ2; 22l� is

spl−3
1

so4lþ4
4

½spl�

sp2l−1
1

so4lþ8

4

sp2lþ1

1
…

sp2k−5
1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{k−l−1ð−4Þ−curves
so4k
4

½sp1�

sp2k−4
1

so4k
4

sp2k−4
1

…
so4k
4

sp2k−4
1

so4k
4

½sp1�

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ðNþ1Þ−2ðk−lÞð−4Þ−curves
sp2k−5

1
…

sp2l−1
1

so4lþ4
4

½spl�

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{k−l−1ð−4Þ−curves
spl−3
1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N−1ð−4Þ−curves

:

ð3:24Þ

We can see that it is necessary to have N ≥ 2ðk − lÞ to
prevent the effects of the nilpotent Higgsing on each side of
the quiver from correlating with each other. The flavor
algebra is

f ¼

8>>>>><
>>>>>:

sp2k if l ¼ k − 1; N ¼ 2ðk − lÞ;
sp⊕2

l ⊕ sp2 if N ¼ 2ðk − lÞ;
sp⊕2

k if l ¼ k − 1;

sp⊕2
l ⊕ sp⊕2

1 otherwise:

ð3:25Þ

Before turning our hand to the general case, let us analyze
the case with the fewest number of curves. We take

l ¼ k − 1 and N ¼ 2ðk − lÞ ¼ 2: ð3:26Þ

In this case, the Higgsing acts as follows:

1
sp2k−4

½so4k�
4

so4k
1

sp2k−4

½so4k�
⟶
ð½22k�;½22k�Þ

1
spk−4

4
so4k

½sp2k�
1

spk−4
: ð3:27Þ

We expect that when the two compositing theories corre-
sponding to the (−1)-curves have different chirality spinors
as the generators of their chiral ring, then we will have
distinct 6D SCFTs on the right-hand side. We first analyze
some of the Higgs branch operator content of

1
spþk−4

4
so4k

½sp2k�
1

spþk−4
: ð3:28Þ

We have four generators of the Higgs branch chiral ring
before compositing: the moment maps μL and μR and the
spinors μþL and μþR . In particular, both μþL and μþR transform
in the Sþ representation of their so4k flavor symmetries,
and after gauging, we find that

9Flipping any two signs leaves the number of gauge singlets
invariant, as discussed in Sec. III A, so there are only these two
distinct options.
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μþL ⊗ μþR ⊃ 1; ð3:29Þ

where we write only the so4k singlet representations
appearing in the decomposition. If we were to instead
consider the Higgs branch of

1
spþk−4

4
so4k

½sp2k�
1

sp−k−4
; ð3:30Þ

then we would have μ−R instead of μþR , and the tensor
product of the two different spin representations of so4k
does not yield a singlet:

μþL ⊗ μ−R ⊅ 1: ð3:31Þ

As the spinor generators have conformal dimension
Δ ¼ k − 2, then the two theories associated to the tensor
branch descriptions appearing in Eqs. (3.28) and (3.30) are
distinct theories, and they begin to differ in their Higgs
branch spectrum at Δ ¼ 2k − 4.
It is now straightforward to consider the general tensor

branch description in Eq. (3.24). We can see that if all of the
N compositing theories have a positive chirality spinor then
there will be a gauge singlet in the N-fold tensor product,
whereas if exactly one of the compositing theories has a
negative chirality spinor, then that gauge singlet is not
present.10 As such, we expect these two 6D SCFTs to differ
in the Higgs branch spectra at conformal dimension

2ðl − 1Þ þ 2
X2k−5
q¼2l−1
q odd

ðqþ 2Þ þ ðN − 2kþ 2lÞð2k − 2Þ

¼ 2Nðk − 1Þ − 2l − 2ðk − lÞ2: ð3:32Þ

Because of the duality of class-S when compactified on a
torus, as discussed in Sec. IV, we refer to the theory with
the extra gauge singlet as the Higgsing by the nilpotent
orbits ð½ð2k − 2lÞ2; 22l�I; ½ð2k − 2lÞ2; 22l�IÞ and that
without as the Higgsing by the nilpotent orbits
ð½ð2k − 2lÞ2; 22l�I; ½ð2k − 2lÞ2; 22l�IIÞ.
We now consider several special cases that will be of

particular relevance in Sec. IV. First, take l ¼ k − 1, and
thus the very even D-partitions that we consider are of the
form ½22k�. We find that the ð½22k�I; ½22k�IÞ theory has a
Higgs branch operator of dimension

ð½22k�I; ½22k�IÞ∶Δ ¼ 2ðN − 1Þðk − 1Þ − 2; ð3:33Þ

that is absent from the ð½22k�I; ½22k�IIÞ theory. Similarly,
when l ¼ k − 2, we see an operator belonging to the Higgs
branch chiral ring at

ð½42; 22k−4�I; ½42; 22k−4�IÞ∶Δ ¼ 2ðN − 1Þðk − 1Þ − 6;

ð3:34Þ

in the ð½42; 22k−4�I; ½42; 22k−4�IÞ theory, that is not present in
the ð½42; 22k−4�I; ½42; 22k−4�IIÞ theory.
More generally, if we Higgs on the left with D-partition

½ð2k − 2lÞ2; 22l� and on the right with D-partition ½ð2k−
2l0Þ2; 22l0 �, assuming that l;l0 ≥ 3 and N ≥ 2k − l − l0,
we find that there is a flavor singlet Higgs branch operator
in the ð½ð2k − 2lÞ2; 22l�I; ½ð2k − 2l0Þ2; 22l0 �IÞ theory with
conformal dimension

ð½ð2k − 2lÞ2; 22l�I; ½ð2k − 2l0Þ2; 22l0 �IÞ∶Δ
¼ 2Nðk − 1Þ − ðk − lÞ2 − ðk − l0Þ2 − l − l0; ð3:35Þ

which is absent in the ð½ð2k−2lÞ2;22l�I; ½ð2k−2l0Þ2;22l0 �IIÞ
theory. We can see that Eq. (3.35) in fact holds more
generally, when l;l0 ≥ 1, by comparing to the results found
in Secs. III B and III C. In fact, by generalizing further, we can
see that Eq. (3.35) holds for l;l0 ≥ 0.

E. Nonexample: The uniqueness of conformal matter

We have now demonstrated in a variety of examples that
the Higgs branch depends on whether one composites
together the (−4)- or (−3)-curves with the positive or
negative chirality versions of minimal ðD;DÞ conformal
matter. We have observed that Higgsing by the two distinct
nilpotent orbits belonging to the same very even D-partition
leads to distinct 6D SCFTs. In this way, we find that the
Higgs branch renormalization group flows recreate the
double Hasse diagram formed by pairs of nilpotent orbits
of so2k. At this point, the reader may be wondering why it
is that only the tensor branch configurations associated to
nilpotent Higgsing by very even D-partitions have two
avatars. Any nilpotent Higgsing of rank-N ðso2k; so2kÞ
conformal matter leads to a tensor branch which contains
minimal ðD;DÞ conformal matter as a compositing theory,
and thus one may expect that in all cases there are distinct
theories depending on whether one chooses the composit-
ing theories to have the positive or negative chirality
spinors. In this section, we demonstrate in an example
that these a priori distinct theories usually give rise to
the same 6D SCFT. Consider the example of rank-2
ðso4k; so4kÞ conformal matter, for which one can write
down the following two tensor branch descriptions:

1
spþ

2k−4

½so4k�
4

so4k
1

spþ
2k−4

½so4k�
and 1

spþ
2k−4

½so4k�
4

so4k
1

sp−
2k−4

½so4k�
: ð3:36Þ

Once we understanding the branching rule
10Again, flipping any pair of signs does not change the gauge

singlet from what is written here.
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so8k → so4k ⊕ so4k

Sþ → ðSþ; SþÞ ⊕ ðS−; S−Þ
S− → ðSþ; S−Þ ⊕ ðS−; SþÞ; ð3:37Þ

it is straightforward to determine that there are the follow-
ing gauge singlet states, charged under the so4k ⊕ so4k
flavor symmetry, in each respective theory. In the þþ
theory, we have

μþL ⊗ μþR ¼ ðSþ; SþÞ ⊕ ðS−; S−Þ; ð3:38Þ

whereas in the þ− theory, there is instead

μþL ⊗ μ−R ¼ ðSþ; S−Þ ⊕ ðS−; SþÞ: ð3:39Þ

Thus, we see that there is the same number of gauge singlets
appearing inside of μ�L ⊗ μ�R , and furthermore the difference
between the representations of the Higgs branch operators
under the flavor symmetry can be compensated by an outer
automorphism of one of the so4k factors. It is then clear that
the two putative theories appearing in Eq. (3.36) are, in fact,
equivalent. For the class of 6D (1,0) SCFTs obtained via
nilpotent Higgsing of rank-N ðD;DÞ conformal matter, a
general analysis, involving outer automorphisms of the
gauge and flavor algebras similar to the discussion in
Sec. III A, reveals that there is only this subtle distinction
in the Higgs branch spectrum when the tensor branch
description is that associated to nilpotent Higgsing of the
so4k ⊕ so4k flavor symmetry by pairs of nilpotent orbits
associated to very even D-partitions.

IV. 6D (1,0) ON T2 AND CLASS S

At this point, the reader may be wary. We have argued for
the existence of Higgs branch operators of 6D (1,0) SCFTs
by studying gauge-invariant combinations of Higgs branch
operators on the partial tensor branch. However, there is
no guarantee that the operators thus constructed actually
parametrize the Higgs branch of the SCFT at the origin of
the tensor branch. Indeed, the analogous construction in 4D
N ¼ 2 would fail rather badly; when one moves out on the
Coulomb branch (the analog of the tensor branch in four
dimensions), generically the entire Higgs branch is lifted.
Fortunately, for the classes of 6D (1,0) SCFTs that we are

considering, there is an alternative description of the Higgs
branch at the superconformal fixed point. It is isomorphic
to the Higgs branch of a certain 4D N ¼ 2 SCFT of
class-S. From the class-S description, there is an indepen-
dent computation of the Hilbert series of the Higgs branch,
from which we can confirm our conjecture that these
6D (1,0) SCFTs are distinct, despite sharing the same
tensor branch description, and furthermore vindicates our
method for extracting the spectrum of Higgs branch
operators from the tensor branch configuration.

To verify that our tensor branch analysis is really
capturing differences in the SCFTs at the origin of the
tensor branch, we use a duality to the class-S construction
[3,4]. It is known that rank-N ðg; gÞ conformal matter
compactified on a T2 gives rise to the same 4D N ¼ 2
SCFT as the compactification of the 6D (2,0) SCFT of
type g on a sphere with two maximal punctures and N
simple punctures [15–17]. In the rank-1 case, this was
extended beyond maximal punctures in Ref. [18]. We write
this equivalence as

T g;NfO1; O2ghT2i ¼ SghS2ifO1; O2; O
⊕N
simpleg: ð4:1Þ

Here, O1 and O2 are nilpotent orbits in g; on the left, they
Higgs the g ⊕ g flavor symmetry in six dimensions,
whereas in the class-S description on the right, they
correspond to partial closure of the two full punctures.
Because of the torus compactification, the Higgs branch of
this 4DN ¼ 2 SCFT is identical to the Higgs branch of the
original 6D (1,0) theory.
The Hall-Littlewood limit of the superconformal index

[63–67] can be obtained from the class-S description. It is a
formal power series of the form

IHLðτÞ ¼ TrHHL
τ2ðΔ−RÞð−1ÞF; ð4:2Þ

where HHL is the subspace of local operators satisfying
Δ − 2R − r ¼ j1 ¼ 0; here, Δ is the conformal dimension,
R is the charge under the SUð2Þ R symmetry, and r is the
charge under theUð1Þ R symmetry. The index counts (with
sign) operators in short multiplets of the superconformal
symmetry, B̂R and DRð0;j2Þ (in the notation of Dolan and
Osborn [68]). It is generally believed [63,69,70] that there
are no DRð0;j2Þ multiplets in genus-0 theories of class-S.11

In this case the Hall-Littlewood index coincides with the
Hilbert series of the Higgs branch of the class-S theory,
with each B̂R operator contributing τ2R to the index. The
refined version of the index, IHLða; τÞ, is defined similarly
but with the coefficient of τ2R being the character χðaÞR of
the flavor symmetry representation under which the B̂R
operators transform, rather than merely the dimension.
For an (N þ 2)-punctured sphere, the Hall-Littlewood

index takes the form [63,67]

IHLða; τÞ ¼
X
Λ

QNþ2
i¼1 KHLðaiÞPΛðaiÞ

ðKHLðfτgÞPΛðfτgÞÞN
; ð4:3Þ

where we describe each term contributing to this expression
in the following:

11Exceptions to this conjecture seem to occur for class-S on
spheres with at least four twisted punctures [71]. As we do not
consider such configurations in this paper, these exceptions are
not relevant.
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(1) The sum is over finite-dimensional irreducible rep-
resentations Λ of g. Here, we are interested in
g ¼ so4k, and we denote Λ by its Dynkin labels

Λ ¼ ðn1; n2;…; nn−2; nSþ ; nS−Þ; ð4:4Þ

where the last two Dynkin labels are those associ-
ated to the two irreducible spinor representations.
The outer automorphism of so4k acts on the repre-
sentation ring by exchanging nSþ ↔ nS− .

(2) Flavor fugacities ai associated to the ith puncture
are determined by decomposition of the fundamental
representation of g as a representation of ρiðsu2Þ×
fi. Here, ρi∶su2 → so4k describes the embedding
associated to the nilpotent orbit of the ith puncture;
the fi is the remaining flavor symmetry algebra.
Furthermore,fτg is the fugacity for the trivial puncture
(i.e., the regular embedding of su2 ↪ so4k).

(3) The K-factor associated to the ith puncture is
determined by the restriction of the adjoint repre-
sentation adg of g to ρiðsu2Þ × fi as

adg ¼ ⨁
j
Vj ⊗ Rj;i; ð4:5Þ

where Vj is the (2jþ 1)-dimensional irreducible
representation of su2 and Rj;i is the corresponding
representation of fi, possibly reducible. Upon this
decomposition, a K factor for the ith puncture is

KHLðaiÞ ¼ ð1 − τ2ÞrankðgÞ2 PE

�X
j

τ2ðjþ1ÞχfiRj;i
ðaiÞ

�
;

ð4:6Þ

where PE½� � �� denotes the plethystic exponential and
χfiRj;i

ðaiÞ is the character of the flavor algebra fi in the
relevant representation.

(4) The PΛ are Hall-Littlewood polynomials for the
representation Λ, which are given by

PΛðaiÞ ¼
1

WΛðτÞ
X
w∈W

ewðΛÞ
Y
α∈Φþ

1 − τ2e−wðαÞ

1 − e−wðαÞ
; ð4:7Þ

WΛðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
w∈StabWðΛÞ

τ2lðwÞ
s

; ð4:8Þ

where Φþ are the positive roots of g, W is the Weyl
group of g, and flavor fugacities faig can be assigned
once we choose a basis for the weight lattice for g.

(5) The unrefined index is recovered in the limit of
setting the fugacities ai → 1.

The simple puncture in the class-S theory of type so4k
corresponds to the D-partition ½4k − 3; 3�. For the punctures

O1, O2, we will take two very even D-partitions. It is a
fundamental fact of the representation theory of so4k that a
very even D-partition, O, gives rise to two nilpotent orbits,
OI and OII. The two orbits are exchanged by the outer
automorphism of so4k, which exchanges Sþ ↔ S−.
The spinor representations Sþ and S− decompose differ-

ently under the corresponding embeddings of su2 ⊕ f.
(1) Under the embedding corresponding to OI:

(a) For k even, Sþ decomposes as half-integer-spin
representations of su2 tensored with pseudoreal
representations of f, while S− decomposes as a
direct sum of integer-spin representations of su2

tensored with real representations of f.
(b) For k odd, Sþ decomposes as half-integer-spin

representations of su2 tensored with real repre-
sentations of f, while S− decomposes as a direct
sum of integer-spin representations of su2 ten-
sored with pseudoreal representations of f.

(2) Under the embedding corresponding to OII, the
decompositions of Sþ and S− are reversed.

By contrast, representations of the form Λ ¼ ðn1; n2;…;
n2k−2; 0; 0Þ decompose identically under the embeddings
corresponding to OI and OII.
The outer automorphism of so4k is clearly a symmetry of

the conformal field theory. In the index in Eq. (4.3), it
exchanges Λþ with Λ−, which are given by

Λþ ¼ ðn1; n2;…; n2k−2; nSþ ; nS−Þ;
Λ− ¼ ðn1; n2;…; n2k−2; nS− ; nSþÞ; ð4:9Þ

i.e., the representations with the final two Dynkin labels
interchanged. This obviously leaves the sum unchanged. In
particular, this means that the theory with two very even
puncturesOI; O0

I is isomorphic to the theory with OII; O0
II.

However, they are not necessarily (and, in general, are not)
isomorphic to the theory with OI; O0

II. At the level of the
index in Eq. (4.3), however, the difference is invisible up to
the order in the τ expansion at which the representations
Λ ¼ ð0; 0;…; 0; 1; 0Þ and/or ð0; 0;…; 0; 0; 1Þ first contrib-
ute to the index.
There is a simple formula [13] for the order at which

each representation Λ first contributes to the index written
in Eq. (4.3). Let

wðOÞ ¼ ðw1; w2;…; w2k−2;wSþ ; wS−Þ ð4:10Þ

be the weighted Dynkin diagram corresponding to the
nilpotent orbit O.12 The entries of wðOÞ are either 0,1 or 2.
For the simple puncture, we have

wð½4k − 3; 3�Þ ¼ ð2; 2;…; 2; 0; 2; 2Þ; ð4:11Þ

12See page 83 of Ref. [55] for the determination of the
weighted Dynkin diagram from the D-partition.
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and the weighted Dynkin diagram corresponding to the
trivial puncture (O ¼ Oregular) is

w0 ¼ ð2; 2;…; 2; 2; 2Þ: ð4:12Þ

Then, the leading contribution to the index from the
representation Λ is the contribution from the characters
χRΛ

ðaÞτnΛ , where

nΛ ¼ Λ · C−1 ·

�
Nw0 −

XNþ2

i¼1

wðOiÞ
�
; ð4:13Þ

and C is the Cartan matrix. The character χRΛ
is obtained as

follows. First, for each puncture Oi, we can decompose the
representation Λ of so4k under the corresponding embed-
ding ρiðsu2Þ × fi as

Λ ¼ ⨁
j
Vj ⊗ RΛj;i: ð4:14Þ

Next, we let ji be the largest value of j that occurs in the
decomposition in Eq. (4.14) at the ith puncture. Then,

RΛ ¼ ⨂
Nþ2

i¼1

RΛji;i: ð4:15Þ

We briefly highlight this with an example. Consider
g ¼ so8 with three punctures: ½24�I , ½24�I , and [5, 3]. For
Λ ¼ 8v, we have the following decompositions:

½24�I∶
�
so8 → su2 ⊕ sp2;

8v → ð2; 4Þ; ½5; 3�∶
�
so8 → su2;

8v → 5 ⊕ 3:
ð4:16Þ

As such, we can see that RΛ¼8v ¼ ð4; 4Þ under the
sp2 ⊕ sp2 flavor symmetry from the two ½24�I punctures.
Since we take N of the punctures to be simple,

½4k − 3; 3�, Eq. (4.13) reduces to

nΛ ¼ Λ · C−1 · ðð0; 0;…; 0; 2N; 0; 0Þ − wðO1Þ − wðO2ÞÞ:
ð4:17Þ

In the examples that we wish to consider, we have

wð½22k�IÞ ¼ ð0; 0;…; 0; ð1þ ð−1ÞkÞ; ð1 − ð−1ÞkÞÞ;
wð½22k�IIÞ ¼ ð0; 0;…; 0; ð1 − ð−1ÞkÞ; ð1þ ð−1ÞkÞÞ;

wð½42; 22k−4�IÞ ¼ ð0; 2; 0;…; 0; ð1þ ð−1ÞkÞ; ð1 − ð−1ÞkÞÞ;
wð½42; 22k−4�IIÞ ¼ ð0; 2; 0;…; 0; ð1 − ð−1ÞkÞ; ð1þ ð−1ÞkÞÞ;

wð½ð2k − 2lÞ2; 22l�IÞ ¼ ð0; 2; 0; 2;…; 0; 2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
2ðk−l−1Þ

; 0; 0;…; 0|fflfflfflfflffl{zfflfflfflfflffl}
2l

; ð1þ ð−1ÞkÞ; ð1 − ð−1ÞkÞÞ;

wð½ð2k − 2lÞ2; 22l�IIÞ ¼ ð0; 2; 0; 2;…; 0; 2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
2ðk−l−1Þ

; 0; 0;…; 0|fflfflfflfflffl{zfflfflfflfflffl}
2l

; ð1 − ð−1ÞkÞ; ð1þ ð−1ÞkÞÞ: ð4:18Þ

We want to extract the values of nSþ and nS− , for which
we need

Sþ · C−1 ¼ 1

2
ð1; 2; 3;…; 2k − 2; k; k − 1Þ;

S− · C−1 ¼ 1

2
ð1; 2; 3;…; 2k − 2; k − 1; kÞ: ð4:19Þ

Putting together Eqs. (4.17)–(4.19), we get nSþ and nS− for
any pair of punctures O1 and O2. For instance, we see that

nSþð½22k�I;½22k�IÞ¼2ðk−1ÞðN−1Þ−ð1þð−1ÞkÞ;
nS−ð½22k�I;½22k�IÞ¼2ðk−1ÞðN−1Þ−ð1−ð−1ÞkÞ; ð4:20Þ

whereas we get different values for the other theories:

nSþð½22k�I; ½22k�IIÞ ¼ 2ðk − 1ÞðN − 1Þ − 1;

nS−ð½22k�I; ½22k�IIÞ ¼ 2ðk − 1ÞðN − 1Þ − 1: ð4:21Þ

Thus, we find that the discrepancy between the theories
Sso4khS2if½22k�I; ½22k�I; ½4k − 3; 3�⊕Ng and Sso4khS2if½22k�I;
½22k�II; ½4k − 3; 3�⊕Ng first appears at order τ2ðk−1ÞðN−1Þ−2
where the representation Λ ¼ Sþ (for k even) or Λ ¼ S−

(for k odd contributes a B̂ðk−1ÞðN−1Þ−1 operator. We depict
these two distinct class-S theories in terms of their N þ 2
punctured spheres in Fig. 1.
In fact, from Eq. (4.15), we see that this operator is a

singlet of the flavor symmetry. This is precisely the state
that was determined, in Eq. (3.38), to exist in the nilpotent
Higgsing of the 6D rank-N ðso4k; so4kÞ conformal matter
theory by the pair of nilpotent orbits ð½22k�I; ½22k�IÞ and that
does not exist for the ð½22k�I; ½22k�IIÞ Higgsing. In this way,
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we see that the class-S analysis of the Higgs branch
confirms the conclusion of the 6D (1,0) analysis.
Applying this method to all pairs of very even

D-partitions that were studied in Sec. III, we observe that
the 4D class-S and 6D (1,0) approaches to the Higgs branch
agree, as (perhaps) expected. The most general pair of very
even D-partitions, studied at the end of Sec. III D, was

O ¼ ½ð2k − 2lÞ2; 22l�; O0 ¼ ½ð2k − 2l0Þ2; 22l0 �: ð4:22Þ

Combining Eqs. (4.17)–(4.19), we can again determine nS�
for the pairs ðOI;O0

IÞ and ðOI;O0
IIÞ. We find for the pairs

of two reds ðOI; O0
IÞ

nSþðOI; O0
IÞ ¼ 2Nðk − 1Þ − ðk − lÞ2 − ðk − l0Þ2

− l − l0 þ ð1 − ð−1ÞkÞ;
nS−ðOI; O0

IÞ ¼ 2Nðk − 1Þ − ðk − lÞ2 − ðk − l0Þ2
− l − l0 þ ð1þ ð−1ÞkÞ; ð4:23Þ

and for the pairs of a red and a blue ðOI;O0
IIÞ

nSþðOI; O0
IIÞ ¼ 2Nðk − 1Þ − ðk − lÞ2 − ðk − l0Þ2

− l − l0 þ 1;

nS−ðOI; O0
IIÞ ¼ 2Nðk − 1Þ − ðk − lÞ2 − ðk − l0Þ2

− l − l0 þ 1: ð4:24Þ

The Hall-Littlewood indices of the two theories begin to
differ at order

τ2Nðk−1Þ−ðk−lÞ2−ðk−l0Þ2−l−l0 ; ð4:25Þ

where there is one additional flavor singlet Higgs branch
operator in the ðredI; redIÞ theory that is absent in the
ðredI; blueIIÞ theory. This is identical with the result from
the 6D (1,0) tensor branch analysis as given in Eq. (3.35).
Using the methodologies described throughout this paper,
the extension to an arbitrary pair of very even D-partitions,
both on the 6D (1,0) and class-S sides, is straightforward,
though somewhat tedious.

V. CONCLUSION

In this paper, we have demonstrated that distinct 6D (1,0)
SCFTs can share the same description of the low-energy
theory that lives at the generic point of the tensor branch.
Such SCFTs differ in their spectrum of Higgs branch
operators, which we compute in two independent ways for
the very even nilpotent Higgsing of rank-N ðD;DÞ con-
formal matter. First, we consider the generators of the
Higgs branch spectrum of the building blocks, i.e., minimal
ðD;DÞ conformal matter, out of which the 6D SCFTs we
consider are built; we then construct gauge-invariant
operators out of these generators. Alternatively, we con-
sider the compactification on a torus, which preserves the
Higgs branch, and compute the Higgs branch spectrum
from the dual class-S description of the resulting 4D
N ¼ 2 SCFTs. Both approaches lead to identical results.
To conclude, we give several examples which demon-

strate how the two possibilities for compositing via
minimal ðD;DÞ conformal matter can lead to distinct 6D
SCFTs with the same tensor branch description, outside
of the class of theories obtained via very even nilpotent
Higgsing of rank-N ðD;DÞ conformal matter. In these
examples, there generally do not exist known class-S duals,
and thus the powerful techniques used in this paper to
verify the computation of Higgs branch operators cannot be
applied. However, we seek to emphasize that such compo-
siting may also be ambiguous beyond minimal ðD;DÞ
conformal matter, for example, in configurations where the

compositing theory is instead 1
suK

. Further analysis is
required to determine when the tensor branches constructed
via the algorithms of Refs. [19,20] correspond to multiple
6D (1,0) SCFTs.

A. Flavor algebras from E-strings

Flavor symmetries in 6D (1,0) SCFTs can arise in a
variety of ways, as pointed out in, for example, Refs. [18,72].
One particular source is the so-called E-string flavor, which
occurs when we have a configuration of the form

� � �mg 1ρ n
h � � � : ð5:1Þ

FIG. 1. The (N þ 2)-punctured spheres associated to the class-S theories where the Higgs branch operator spectrum differs as
described in Eqs. (4.20) and (4.21). The former contains a B̂ðk−1ÞðN−1Þ−1 operator that the latter does not.
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We write a subscript ρ on the (−1)-curve to stress that
compositing the (−m)- and (−n)-curves together via an
E-string involves a choice of embedding,

ρ∶g ⊕ h → e8: ð5:2Þ

The non-Abelian part of the flavor algebra arising from such
a compositing is

fE−string ¼ Commutantðρ; g ⊕ hÞ; ð5:3Þ

i.e., the commuting subalgebra of the gauge symmetries
under the embedding ρ, which is highly dependent on the
choice of ρ. In Sec. III A, we explore the tensor branch
configuration

3
so7
1ρ 3

so7
; ð5:4Þ

and we discover that there are two inequivalent ρ, which
have commutants u1 and ϕ, respectively. The flavor sym-
metry is an invariant of the SCFT; thus, these two tensor
branch configurations correspond to distinct SCFTs, and
the duality to class-S verifies that both theories exist as
interacting 6D (1,0) SCFTs. Such ambiguity in the choice of
embedding is ubiquitous in the geometric constructions of
Refs. [19,20] and raises the question of which embeddings
lead to interacting SCFTs at the origin of the tensor branch.
We explore an example tensor branch configuration with
such an ambiguity that appears in Ref. [72]. Consider

½so7� 2
su2

1ρ 4
so8
: ð5:5Þ

To understand how the (−1)-curve composites between the
two neighboring curves, we need to understand embeddings

ρ∶su2 ⊕ so8 ⊕ fE−string → e8; ð5:6Þ

where the su2 and so8 factors must have Dynkin embedding
index 1 as they are gauged. For a detailed study of the
relevance of Dynkin embedding index one for F-theory
compactifications, see Ref. [30]. In Ref. [72], two embed-
dings were pointed out, with

fE−string ¼ su⊕3
2 and fE−string ¼ sp2; ð5:7Þ

however, in principle, there may be additional embeddings.
In fact, the embedding

ρ∶su2 ⊕ so8 ⊕ sp2 → e8 ð5:8Þ

is not appropriate in this configuration, as the Dynkin
embedding index of the su2 factor is 2, not 1. This tensor
branch configuration can also be obtained from nilpotent
Higgsing of rank-2 ðe6; e6Þ conformal matter:

1
½e6�

3
su3

1 6
e6
1 3
su3

1
½e6�
⟶
ð2A1;D4ða1ÞÞ

2
su2

½so7�
1 4
so8
: ð5:9Þ

Compactification of at least one of the SCFTs associated to
the tensor branch configuration in Eq. (5.5) then has a dual
description in terms of class-S of type e6 on a sphere with
two simple punctures and two punctures associated to the
nilpotent orbits 2A1 and D4ða1Þ.13 From the class-S per-
spective, the Hall-Littlewood index yields

1þ 30τ2 þ 64τ3 þOðτ4Þ; ð5:10Þ

which demonstrates that the flavor algebra is enhanced from
the manifest ðso7Þ16 ⊕ u⊕3

1 to14

f ¼ ðso7Þ16 ⊕ ðsu2Þ⊕3
24 : ð5:11Þ

Thus, we can confidently state, via the duality to class-S, that

2
su2

½so7�
1

½su⊕3
2

�
4
so8 ð5:12Þ

describes the tensor branch of an interacting 6D (1,0) SCFT;
however, this does not suggest that any other embeddings
of the form in Eq. (5.6) do not give rise to interacting 6D
SCFTs. It is an important question for the understanding of
the landscape of possible 6D (1,0) SCFTs to determine if
tensor branch geometries like that in Eq. (5.5) correspond to
one or more interacting SCFTs.

B. From nilpotent orbits to E8 homomorphisms

The rank-N ðg; gÞ conformal matter theories have many
tools with which their properties can be studied. In
particular, they can be realized as the world volume theories
on a stack of M5-branes probing a C2=Γg orbifold. Here, Γg

is the finite subgroup of SUð2Þ of the same ADE type as g.
In this M-theory framework, the 6D SCFT behaves as a
defect in seven-dimensional (7D) super-Yang-Mills, with
gauge algebra g, and the SCFT thus inherits a g ⊕ g flavor
symmetry. Each flavor symmetry factor can be Higgsed by
a nilpotent orbit of g, corresponding to turning on asymp-
totic boundary conditions for the scalar inside of the 7D
vector multiplet. Nilpotent orbits of simple Lie algebras
are well studied and classified [73,74]. In addition, when

13For the exceptional Lie algebras, we use the Bala-Carter
notation [73,74] for the nilpotent orbits; see Ref. [55] for more
details.

14The levels of the enhanced su2 factors are not immediately
obvious. They can be obtained by considering the degeneration
limit of the four-punctured sphere in which the theory becomes
a weakly coupled SUð2Þ gauging of interacting fixture 43 of
Ref. [9] with an additional half-hypermultiplet in the 2. Alter-
natively, the S-dual realization is a Spinð8Þ gauging of the
ðE7Þ24 × Spinð7Þ16 SCFT, which is the interacting fixture 3 of
Ref. [9]. The centralizer of so8 ⊂ ðe7Þ24 is ðsu2Þ⊕3

24 .
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compactified on a torus, the resulting 4D N ¼ 2 SCFTs
have an alternative description in terms of class-S, and thus
one has an independent construction with which to study
aspects of the Higgs branch of the 6D (1,0) SCFTs.
For other classes of 6D (1,0) SCFTs, we are not so lucky.

In this section, we remark on the 6D SCFTs obtained via
Higgs branch renormalization group flows from the rank-N
ðe8; gÞ orbi-instanton theories. The orbi-instanton is realized
in M-theory as a stack of N M5-branes probing a C2=Γg

orbifold singularity and contained inside of an M9-brane
[41]. In such a configuration, one must specify the boundary
conditions inside of the M9-brane, which are fixed by a
choice of homomorphism π∶Γg → E8, and changing these
boundary conditions corresponds to performing Higgs
branch renormalization group flows. We can consider the
Higgsed rank-N ðe8; gÞ orbi-instanton theories as

Ωg;Nðπ; σÞ; ð5:13Þ
where π∶Γg → E8 is the E8 homomorphism with which
the e8 flavor symmetry is Higgsed and σ∶su2 → g is the
nilpotent orbit by which the g flavor symmetry is Higgsed.
Homomorphisms from ΓsuK

and Γe8 to E8 have been
classified in Refs. [75,76], respectively; however in each
of the other cases, there is no known complete classification.
In addition, the orbi-instantons and their Higgsings do not
generally have known class-S descriptions after compacti-
fication on a torus, and thus that avenue for understanding
the 6D Higgs branch is closed.
In Ref. [72], the authors seek to classify the homomor-

phims Γg → E8 utilizing the study of 6D (1,0) tensor branch
geometries. Of course, if one were to attempt to derive the
nilpotent orbits in the sameway, and one did not know about

the two different ways of compositing using 1
spq

pointed out
in this paper, then one would not notice that each very even
D-partition corresponds to two nilpotent orbits. This is
pointed out in Ref. [72], in which the authors claim only
to classify such homomorphims only up to the outer auto-
morphism. Here, we argue that by including the information
about different possible compositings in the tensor branch
description one can see the difference between E8 homo-
morphisms that appear to correspond to the same tensor
branch. Furthermore, one should again be able to determine
properties of the Higgs branches of the two SCFTs obtained
in such a way and observe how they differ.
For conciseness, we consider the following example:

take the rank-N ðe8; so8Þ orbi-instanton, which has the
following tensor branch configuration:

½e8� 1 2 2
su2

3
g2
1 4
so8

1 � � � 4
so8

1

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{N−1ð−4Þ-curves

½so8�: ð5:14Þ
To be more illuminating, we focus on the case where
N ¼ 3. Consider the homomorphism π∶Γso8 → E8,

discussed in Ref. [72], which triggers a Higgs branch
renormalization group flow to a new 6D SCFT with the
following tensor branch description:

½e8�12 2
su2

3
g2
1 4
so8

1 4
so8

1½so8�→π ½so9�1 3
so7

½sp2�
1 4
so8

1 ½so8�: ð5:15Þ

As we can see, there is a (−1)-curve, corresponding to the

E-string, that composites between the 3
so7

and 4
so8

building
blocks. In Sec. III A, we saw that such a compositing was
ambiguous and could lead to distinct 6D SCFTs. Because
of this ambiguity, we propose that there are two distinct E8

homomorphisms, labeled as πI and πII, which lead to the
same tensor branch. Further Higgsing the so8 flavor
symmetry on the right by either the ½24�I or the ½24�II
nilpotent orbit leads to the following tensor branch con-
figuration:

½so9� 1 3
so7

½sp2�
1 4
so8

1 ½so8� → ½so9� 1 3
so7

½sp2�
1 3
so7 ½sp2�: ð5:16Þ

Based on the arguments in Sec. III A, in particular the two
distinct embeddings of so7 ⊕ so7 inside of e8 given in
Eq. (3.13), we expect that this tensor branch configuration
corresponds to two distinct 6D SCFTs; ðπI; ½24�IÞ with
an additional u1 flavor symmetry and ðπII; ½24�IÞ without.
Unfortunately, as we discussed, there does not exist known
class-S duals for the compactifications of Higgsed orbi-
instantons on T2, and thus, unlike in the study of Higgsed
conformal matter, we lack an independent method to verify
this plurality of 6D (1,0) SCFTs.15
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15When g ¼ suK , there are class-S descriptions for the
Higgsed orbi-instantons [59]. In that reference, the authors point
out that there exist E8 homomorphisms such that after Higgsing

the tensor branch has the form 1
spq

2
su2qþ8

� � �, and it is argued that, in
such cases, the choice of θ angle for the spq gauge algebra can
lead to two distinct 6D SCFTs. It would be interesting to verify
this from the class-S perspective.
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