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In higher dimensions, we study degenerate-higher-order-scalar-tensor theories and we derive solutions
that resemble the Schwarzschild anti–de Sitter black holes. We compute their thermodynamic quantities
following the Wald formalism, satisfying the first law of thermodynamics and a higher dimensional Smarr
relation. Constructing a Noether charge with a suitable choice of a spacelike Killing vector, we obtain the
shear viscosity of the nongravitational dual field theory, where for a suitable choice of the couplings
functions, the Kovtun-Son-Starinets bound is violated. These results are corroborated by the calculation of
the Green’s functions following the Kubo formalism.
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I. INTRODUCTION

General relativity (GR) provides the standard description
of gravity. Extensions of GR have been considered in the
literature as gravitational alternatives, for instance, for
unified descriptions of inflation and cosmic acceleration.
Various proposals include FðRÞ gravity, scalar-tensor
theories, and string-inspired and Gauss-Bonnet theories
[1–7]. Some of these models might be consistent with local
tests, and the occurrence of finite-time future singularities
in modified gravity may be cured by the addition of higher-
derivative terms. For a review, see, e.g., [8]. In particular,
in the 1970s, Horndeski constructed a four-dimensional
scalar-tensor theory wherein the equations of motions are at
most of the second order in the derivatives of the field
functions [9]. Motivated with the above, in recent years a
new class of scalar-tensor theories of gravity that extend
Horndeski, or “generalized Galileon,” models have been
proposed. Despite possessing equations of motion of
higher-order derivatives, the propagating degrees of free-
dom satisfy second-order equations of motion and are thus
free from Ostrogradski instabilities [10].

Astrophysical implications [11–13] have yielded
further motivation to study theories of gravity
beyond Horndeski proposal, channeling in a model
denominated as degenerate-higher-order-scalar-tensor
(DHOST) theory, also avoiding Ostrogradsky instability
due to its degeneracy property [14,15]. It is important
to note that these degenerate theories have allowed the
exploration of four-dimensional regular black holes
[16,17], rotating black holes stealth [18], and three-
dimensional spinning configurations [19]. As far as
we know, the extension of these solutions for higher-
dimensional theories is still an open problem, which we
address in this work.
On the other hand, the AdS=CFT correspondence

[20–22] is a relation between a gravitational theory in
D-spacetime dimensions and a field theory in flat (D − 1)
dimensions (without gravity). In its most general form, it is
known as a gauge/gravity duality. One nice property of this
duality is that when the field theory is strongly coupled the
gravitational dual is weakly coupled and vice versa. This
property opens a large window of applications in many
different areas. In particular, it gives support to study the
dynamics of tightly coupled systems, especially the
transport coefficients from condensed matter and hydro-
dynamics to the quark-gluon plasma formed at relativistic
heavy-ion collisions [23–31]. One of these coefficients is
the well-known shear viscosity η [27,28], calculated from
holographic bottom-up models. Under this scenario, it is
possible to compute the ratio between η and the entropy
density s, arising a conjecture about a universal bound,
known as the Kovtun-Son-Starinets (KSS) bound, which
reads [27,28,32,33]
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η

s
≥

1

4π
; ð1Þ

being a support in a variety of gravity dual models [34–37].
On the contrary, for some examples—which include

unconventional superconducting systems [25,27], the
Einstein-Hilbert Gauss-Bonnet action in five dimensions
[38,39], the Horndeski theory [40–44], as well as the
DHOST theories in four dimensions [45]—the KSS bound
is violated, at least for some choices of the relevant
parameters of these models.
In this work, we consider DHOST theories in higher

dimensions (D ≥ 3). We construct hairy black hole sol-
utions with planar geometry under this scenario and study
their thermodynamic properties. Together with the above,
in order to obtain the shear viscosity of the dual gauge
theories living in lower-dimensional flat spaces, we employ
two different methods forD > 3. The first one is performed
via the Wald formalism, with the construction of a Noether
charge and an election for the spacelike Killing vector [46].
For the second, we use the more traditional methods present
in [33,39], with the calculation of Green’s functions and the
use of the Kubo formula. The two formalisms generate the
same expression for the shear viscosity of the dual gauge
field theories, allowing violation of the KSS bound.
This paper is organized as follows: In Sec. II, we

consider DHOST theories in higher dimensions (D ≥ 3)
and obtain hairy black hole solutions with planar base
manifolds in these spacetimes. In Sec. III, through the Wald
formalism [47,48] the thermodynamics of that solutions are
explored, and in Sec. IV we obtain the viscosity/entropy
density ratio of the corresponding dual field theories for
D > 3, showing that the KSS bound could be violated in
these theories. Some details of the equations of motion
are presented in Appendix A. Further, in Appendix B, we
reobtain the viscosity/entropy density ratio using Green’s
functions and the Kubo formula, corroborating the results
of Sec. IV. Finally, Sec. V is devoted to our conclusions and
discussions.

II. DHOST THEORIES AND HAIRY BLACK HOLE
SOLUTIONS IN HIGHER DIMENSIONS

To our knowledge, DHOST theories in D ¼ 3 and
D ¼ 4 spacetime dimensions have been studied in
Refs. [7,10,14–19]. Here we generalize these previous
approaches to the D-dimensional case (D ≥ 3) defining
the action as

S½gμν;ϕ� ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
L; ð2Þ

where the Lagrangian L reads

L ¼ λ0ZðXÞ þ ½1þ λ1GðXÞ�Rþ
X5
i¼2

λiAiðXÞLi; ð3Þ

with X ≔ ∂μϕ∂
μϕ being the kinetic term of the scalar

field ϕ, and

L2 ≔ ð□ϕÞ2 − ϕμνϕ
μν; L3 ≔ □ϕϕμϕμνϕ

ν; ð4Þ

L4 ≔ ϕμϕμνϕ
νρϕρ; L5 ≔ ðϕμϕμνϕ

νÞ2: ð5Þ

Here R is the scalar curvature, λm, with m ∈ f0; 1; 2; 3;
4; 5g, are convenient parameters to control the couplings
between the functions ZðXÞ, GðXÞ, and AiðXÞ, with
i ∈ f2; 3; 4; 5g, while we have defined ϕμ ≔ ∇μϕ and
ϕμν ≔ ∇μ∇νϕ. For later convenience, we also define the
derivative with respect to X, FX ≔ dF=dX, so that, for
instance, ZX≔dZ=dX, GX ≔ dG=dX, and AiX ≔ dAi=dX.
The equations of motions with respect to the metric gμν and
the scalar field ϕ are given by

Eμν ≔ GZ
μν þ GG

μν þ
X5
i¼2

GðiÞ
μν ¼ 0; ð6Þ

Eϕ ¼ ∇μJ μ ¼ ∇μ

�
δL

δðϕμÞ
−∇ν

�
δL

δðϕμνÞ
��

¼ 0; ð7Þ

where the expressions given in Eμν and J μ are reported
in the Appendix A.
For the generalized scalar-tensor configuration

Eqs. (2)–(5), we consider the following higher-dimensional
metric ansatz:

ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ r2
XD−2

i¼1

dx2i ; ð8Þ

ϕðt; rÞ ¼ ψðrÞ; ð9Þ

where only a radial dependence for the scalar field ϕ is
required, given that we are working on a planar base
manifold. In order to simplify our computations, we also
suppose that the kinetic term X is a constant. This
hypothesis implies that

X ¼ grrðψ 0Þ2; ð10Þ
and the square of the derivative of the scalar field ϕ can be
cast as

ðψ 0Þ2 ¼ X
f
; ð11Þ

where ð0Þ denotes the derivative with respect to the radial
coordinate r. Following the steps performed in [19,45], we
fix the function A5 as

λ5A5 ¼
ð2λ2A2 þ Xλ3A3 þ 4λ1GXÞ2

2Xð1þ λ1Gþ λ2XA2Þ
−
�
λ3A3 þ λ4A4

X

�
;

ð12aÞ
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or

λ5A5 ¼
1

X

�½Z2ðXÞ�2
2Z1ðXÞ

− Z3ðXÞ
�
; ð12bÞ

defining the functions

Z1ðXÞ ¼ 1þ λ1GðXÞ þ Xλ2A2ðXÞ; ð12cÞ

Z2ðXÞ ¼ 2λ2A2ðXÞ þ λ3XA3ðXÞ þ 4λ1GXðXÞ; ð12dÞ

Z3ðXÞ ¼ λ3A3ðXÞ þ λ4A4ðXÞ: ð12eÞ

Then, a solution in higher dimensions D ≥ 3 reads

fðrÞ ¼ hðrÞ ¼ λ0Zr2

ðD − 1ÞðD − 2ÞZ1

−
M
rD−3 ; ð13Þ

where M is a positive integration constant, as long as the
coupling functions are related in the following form

2ðD − 2ÞðZZ1ÞX ¼ ðD − 1ÞZ2Z; ð14Þ

and the scalar field from (11) can be obtained as

ϕðt; rÞ ¼ ψðrÞ

¼ �
�

2l
D − 1

� ffiffiffiffi
X

p
ln

"
r
D−3
2

 
r
l
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

l2
−

M
rD−3

s !#
:

ð15Þ

Many commentaries can be carried out with respect to the
solution (13)–(15). First, the metric function h ¼ f resem-
bles the well-known Schwarzschild-AdS (anti–de Sitter)
black hole in D-spacetime dimensions. Second, Eq. (14)
represents the extension of the particular cases found

previously in four [45] and three dimensions [19], where
the scalar field is well defined on the location of the event
horizon rh ¼ ðMl2Þ 1

D−1 and in order to have a real and
nontrivial expression for ϕ, we need X > 0 for r ≥ rh.
Finally, in order to have an asymptotically AdS black hole
configuration, we will define the AdS radius l as

l2 ¼ ðD − 1ÞðD − 2ÞZ1

λ0Z
; ð16Þ

and impose the constraint

Z1

λ0Z
> 0;

to have a real expression for l. Summarizing—with the
DHOST theory, Eqs. (2)–(5), together with a constant kinetic
termX and the coupling functionsZ,G, and theAis satisfying
the relation (14)—we can obtain a higher-dimensional hairy
solution with a planar base manifold given in Eqs. (11)–(13).
In the following section, we will derive the thermodynamic
quantities corresponding to this solution.

III. THERMODYNAMICS OF THE HAIRY
SOLUTION FROM THE WALD FORMALISM

Given the hairy higher-dimensional black hole solution,
found in the previous section, to compute extensive
thermodynamic quantities (these are the mass M and
the entropy SW), we will consider the Wald formalism
[47,48]. We start through the variation of the action (2)–(5)
with respect to all the dynamical fields, which is

δS ¼ ffiffiffiffiffiffi
−g

p ½Eμνδgμν þ Eϕδϕþ∇μJμðδg; δϕÞ�;

where, as before, Eμν and Eϕ are the equations of motions
with respect to the metric and the scalar field. The surface
term Jμ reads

Jμ ¼ ffiffiffiffiffiffi
−g

p �
2ðPμðαβÞγ∇γδgαβ − δgαβ∇γPμðαβÞγÞ þ J μδϕþ δL

δðϕμνÞ
δðϕνÞ

−
1

2

δL
δðϕμσÞ

ϕρδgσρ −
1

2

δL
δðϕσμÞ

ϕρδgσρ þ
1

2

δL
δðϕσρÞ

ϕμδgσρ

�
; ð17Þ

with J μ reported in Appendix A. Further, in our case:

Pμνσρ ¼ δL
δRμνσρ

¼ 1

2
ð1þ λ1GðXÞÞðgμσgνρ − gμρgνσÞ; ð18Þ

while

SHEAR VISCOSITY FROM BLACK HOLES IN GENERALIZED … PHYS. REV. D 106, 066010 (2022)

066010-3



δL
δϕμ

¼ 2λ0ZXϕ
μ þ 2λ1GXRϕμ þ 2λ2A2Xϕ

μ½ð□ϕÞ2 − ϕλρϕ
λρ� þ 2λ3A3Xϕ

μ
□ϕϕλϕλρϕ

ρ þ 2λ3A3□ϕϕμ
λϕ

λ

þ 2λ4A4Xϕ
μϕσϕσρϕ

ρλϕλ þ λ4A4ðXÞ½ϕμ
ρϕ

ρλϕλ þ ϕσϕσρϕ
ρμ� þ 2λ5A5Xϕ

μðϕσϕσρϕ
ρÞ2

þ 2λ5A5ðXÞðϕσϕσρϕ
ρÞðϕμσϕσ þ ϕσμϕσÞ ð19Þ

and

δL
δϕμν

¼ 2λ2A2ðgμν − ϕμνÞ þ λ3A3ðgμνϕλϕλρϕ
ρ þ□ϕϕμϕνÞ þ λ4A4ðXÞðϕμϕνρϕρ þ ϕσϕμ

σϕ
νÞ þ 2λ5A5ðXÞϕσϕσρϕ

ρϕμϕν:

ð20Þ

Defining a 1-form Jð1Þ ¼ Jμdxμ and its corresponding
Hodge dual ΘðD−1Þ ¼ ð−1ÞDþ1 � Jð1Þ, together with con-
sidering a variation induced by an infinitesimal diffeo-
morphism δxμ ¼ ξμ, and making use of the equations of
motions (6)–(7), we have that JðD−1Þ ¼ ΘðD−1Þ − iξð�LÞ ¼
dð�Jð2ÞÞ, where iξ is a contraction of the vector ξμ with the
first index of �L, and in our notations the subindex “(p)”
corresponds to the fact that we are working with p-forms.
The above allows the definition of a (D − 2)-form
QðD−2Þ ¼ �Jð2Þ such that JðD−1Þ ¼ dQðD−2Þ, where

QðD−2Þ ¼ Qα1α2���αD−2
¼ ϵα1α2���αD−2μνQ

μν;

with

Qμν ¼ 2Pμνρσ∇ρξσ − 4ξσ∇ρPμνρσ þ δL
δϕμσ

ϕνξσ −
δL
δϕνσ

ϕμξσ;

ð21Þ

and Pμνρσ and δL=δϕμσ were given previously in Eqs. (18)
and (20), respectively. Concretely, for the action (2)–(5)
and using the fact from (11) that δðϕ0Þ ¼ −

ffiffiffiffi
X

p
δf=ð2f3=2Þ

[here we note that J μδϕ from (17) vanishes after making
use of the equations of motion], we find that iξΘðD−1Þ as
well as QðD−2Þ read

iξΘðD−1Þ ¼ rD−3½−ðD − 2ÞZ1δf þ 2ðD − 2Þδfð1þ λ1GÞ
þ rð1þ λ1GÞδðf0Þ�ΩD−2;

QðD−2Þ ¼ rD−3½rð1þ λ1GÞf0 þ 2ðD − 2Þ
× fð1þ λ1G − Z1Þ�ΩD−2;

and the variation of QðD−2Þ takes the form

δQðD−2Þ ¼ rD−3½rð1þ λ1GÞδðf0Þ
þ 2ðD − 2Þδfð1þ λ1G − Z1Þ�ΩD−2;

whereΩD−2 is the finite volume of the (D − 2)-dimensional
compact angular base manifold. Finally, taking ξμ as a

timelike Killing vector that is null on the location of the
event horizon, denoted as rh, the variation of the
Hamiltonian reads

δH ¼ δ

Z
C
JðD−1Þ −

Z
C
dðiξΘðD−1ÞÞ

¼ δ

Z
C
dðQðD−2ÞÞ −

Z
C
dðiξΘðD−1ÞÞ;

¼
Z
ΣðD−2Þ

ðδQðD−2Þ − iξΘðD−1ÞÞ;

where C and ΣðD−2Þ are a Cauchy surface and its boundary,
respectively, which has two components, located at
infinity (H∞) and at the horizon (Hþ). According to the
Wald formalism [47,48], the first law of black holes
thermodynamics,

δM ¼ TδSW; ð22Þ

is a consequence of δH∞ ¼ δHþ, whereM and SW denote
the mass as well as the entropy, while that the Hawking
temperature T reads

T ¼ κ

2π

����
r¼rh

¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
ð∇μξνÞð∇μξνÞ

r ����
r¼rh

;

¼ 1

4π

λ0Zrh
ðD − 2ÞZ1

¼ ðD − 1Þrh
4πl2

; ð23Þ

where κ is the surface gravity, rh is the location of the event
horizon, and the AdS radius l was defined previously in
Eq. (16). With all the above, we have that

δQðD−2Þ − iξΘðD−1Þ ¼ −ðD − 2ÞrD−3Z1δf;

where

δf ¼ −
δM
rD−3 :
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Computing the respective variation of the solution
(11)–(15), at the infinity we can write

δH∞ ¼ δM ¼ ðD − 2ÞZ1ΩD−2δM ð24Þ

so that the mass M takes the form

M ¼ ðD − 2ÞZ1MΩD−2 ¼
ðD − 2ÞZ1rD−1

h ΩD−2

l2
: ð25Þ

Note that the positivity of the physical mass M implies
that Z1 > 0. This thermodynamic condition will be
important, as we will see below, at the moment to study
the shear viscosity η. At the horizon, where from the metric
function (13)

δM ¼ ðD − 1ÞrD−2
h δrh

l2
;

where l2 is the AdS radius (16), we have

δHþ ¼ TδSW ¼ Tδð4πΩD−2Z1rD−2
h Þ; ð26Þ

from which the entropy SW takes the form

SW ¼ 4πΩD−2Z1rD−2
h : ð27Þ

Note that the condition Z1 > 0 from the positivity of
the mass M from Eq. (25) guarantees the positivity of the
entropy SW. It is worth pointing out that besides the
fulfillment of the first law (22), a higher-dimensional
Smarr relation [49]

M ¼
�
D − 2

D − 1

�
TSW ð28Þ

holds.

IV. THE VISCOSITY/ENTROPY DENSITY RATIO
THROUGH THE WALD FORMALISM

After obtaining the thermodynamic quantities from the
hairy higher-dimensional black hole solution, in particular
for the Wald entropy SW from (27) we can obtain the
entropy density s in our set up, given by

s ¼ SW

ΩD−2
¼ 4πrD−2

h Z1: ð29Þ

In order to calculate the shear viscosity η, according to the
procedure performed in [46], we first perform a transverse
and traceless perturbation on the metric (8) for D > 3 with
h ¼ f, which reads

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ 2r2Ψðt; rÞdx1dx2 þ r2
XD−2

i¼1

dx2i ;

ð30Þ

with the ansatz

Ψðt; rÞ ¼ ζtþ hx1x2ðrÞ;

where ζ is a constant identified as the gradient of the fluid
velocity along the x1 direction. This perturbation yields the
following ðx1; x2Þ component of the linearized Einstein
equations:

½Z1ðXÞrD−2fðhx1x2Þ0�0 ¼ 0; ð31Þ

and by using a spacelike Killing vector ∂x1 ¼ ξμ∂μ, the
charge

ffiffiffiffiffiffi−gp
Qrx2 , constructed through Qμν from (21),

becomes an integration constant [46], which reads

ffiffiffiffiffiffi
−g

p
Qrx2 ¼ Z1ðXÞrD−2fðhx1x2Þ0: ð32Þ

Imposing the ingoing horizon boundary condition

hx1x2 ¼ ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1G

Z1

s
logðr − rhÞ

4πT
þ � � � ;

as well as a Taylor expansion in the near horizon region rh

h ¼ f ¼ 4πTðr − rhÞ þ � � � ;

where T is the Hawking temperature given previously
in (23), we have

ffiffiffiffiffiffi
−g

p
Qrx2 ¼ ζZ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1G

Z1

s
rD−2
h ¼ ζ

 
1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1G

Z1

s
s

!
;

where s was given in (29). Following the steps from [46],
the shear viscosity η can be obtained in the following way

η ¼ ∂ð ffiffiffiffiffiffi−gp
Qrx2Þ

∂ζ
¼ 1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1G

Z1

s
s: ð33Þ

Since the shear viscosity η is real and non-negative, and the
fact that Z1 > 0, from the positivity of the massM (25) as
well as the entropy SW (27), we conclude that 1þ λ1G ≥ 0.
Then, the viscosity/entropy density ratio takes the form

η

s
¼ 1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1G
Z1

s
¼ 1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1GðXÞ

1þ λ1GðXÞþ λ2XA2ðXÞ

s
; ð34Þ

or
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η

s
¼ 1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z1ðXÞjλ2¼0

Z1ðXÞ

s
: ð35Þ

Here, we note that there is no a presence of the location
of the event horizon rh on the η=s ratio, and although the
dimension of the space-time D is not present in (34) [or
(35)], this expression appears actively from the relation of
the coupling functions (14). Together with the above,
since

Z1ðXÞ ≔ 1þ λ1GðXÞ þ λ2XA2ðXÞ > 0; ð36Þ

from the positivity of the mass M (and the entropy SW),
and since

1þ λ1GðXÞ ≥ 0; ð37Þ

from the reality and non-negativity of the shear viscosity
η, we conclude that λ2XA2ðXÞ > −ð1þ λ1GðXÞÞ ≤ 0. It is
worth pointing out that the above conditions are not new,
in fact, according to [50], the condition (36) together with
the strict inequality from (37) allow us to obtain neces-
sary conditions of stability in four-dimensional spherical
symmetric solutions. Curiously enough, the above is
consistent with the stability conditions for linear cosmo-
logical perturbations, guaranteeing that both the effective
gravitational constant and the squared propagation speed
of the tensor modes are positive [51], without the
requirement on the sign of λ2XA2ðXÞ. For our particular
situation, and given the explicit expression for the scalar
field ϕ found in (15), where X > 0, only the possibilities
of study are performed by analyzing λ2A2ðXÞ. First, if
λ2A2ðXÞ > 0, then the KSS bound would be violated even
in the limit λ1 → 0. On the other hand, if λ2A2ðXÞ < 0,
and still obeying the condition (36), then one recovers
the usual KSS bound where η=s > 1=ð4πÞ. Finally, if
λ2A2ðXÞ ¼ 0, which can be achieved in the limit λ2 → 0,
then the KSS bound is saturated [η=s ¼ 1=ð4πÞ].
As concrete examples from the cases showed before,

we can see that the Einstein-Hilbert case, together with a
cosmological constant (this is for λi ¼ 0 for i ¼ f1; 2; 3;
4; 5g, and Z ¼ −2Λ=λ0), is naturally recovered, where we
can see that η=s ¼ 1=ð4πÞ. Together with the above, for
example, for

GðXÞ ¼ Xj; A2ðXÞ ¼ GX ¼ jXj−1;

where j is a positive constant, while that Z and Z2 satisfy
the condition (14), we obtain

0 <
1þ λ1Xj

1þ ðλ1 þ jλ2ÞXj <
1

4π
;

as long as λ2 > 0.

In resume, with all this information we can to
conclude that, for a higher-dimensional scalar-tensor
theory (2)–(5) with specific coupling functions, repre-
sented via Z, G and the Ais, the explicit expression for
the kinetic term X can be obtained through (14), and the
solution takes the form (13)–(16). Moreover, in particu-
lar, there exists an active presence of the functions G
and Z1 in the η=s ratio, providing a new example of the
violation of the KSS bound whose Lagrangian is at most
linear in curvature tensor.

V. CONCLUSIONS AND DISCUSSIONS

In the present paper we explored the dimensional
continuation of planar hairy black hole solutions found
in [19,45], where the theory is given by a model denomi-
nated as DHOST theory, Eqs. (2)–(5), constructed by a
nontrivial scalar field ϕ and its derivatives, the Ricci scalar
R, and coupling functions depending on the kinetic term
X ≔ ∂μϕ∂

μϕ Eq. (10), which we suppose to be constant.
In this case, black holes resemble the well-known
Schwarzschild-AdS configurations in arbitrary dimensions,
where the integration constantM is related to the mass, and
the AdS radius depends on the coupling functions present
in the theory, being interpreted as an effective cosmological
constant. With these results, via the Wald formalism, we
compute their thermodynamical parameters, which satisfy
the first law, Eq. (22), as well as a higher-dimensional
Smarr relation, Eq. (28).
Motivated by recent concrete examples presented in the

literature (see [40,41,43–45]), where the bound for the
viscosity/entropy density ratio Eq. (1) can be violated,
we analyzed the shear viscosity η for DHOST theory,
Eqs. (2)–(5), following two procedures. The first one,
through the construction of a conserved charge as well
as a suitable election of the Killing vector [46] where in this
case it is not necessary to impose any hydrodynamic limit,
such as the low frequencies, to define the transport
coefficient. On the other hand, in the second one, via
Green’s functions and Kubo formula, given by [33,39],
respectively, and explained in the Appendix B. For both
techniques, we obtain the same expression for the η=s ratio.
Here we note that these results are not a surprise, because
the boundary condition to the effective action for the
transverse off-diagonal gravitons hx1x2 for the two methods
considers the gravity fluctuations around the metric. For
higher-dimensional planar black holes in DHOST theories,
the presence of the coupling functions G and Z1 in the η=s
ratio, provides a new example of the violation of the KSS
bound whose Lagrangian is at most linear in curvature
tensor. Note that only with specific coupling functions
(these are Z, G and the Ais), the explicit expression for the
kinetic term X, obtained through (14), and the solution
(13)–(16), are required. In fact, according to the expression
(34) [or (35)], the η=s ratio is controlled by the parameters
λ1 and λ2 as well as the kinetic term X and the coupling

BRAVO-GAETE, SANTOS, and BOSCHI-FILHO PHYS. REV. D 106, 066010 (2022)

066010-6



functions A2ðXÞ together with GðXÞ, allowing us to get
cases where the KSS bound can be violated, fulfilled, or
saturated. It is worth pointing out that although in the
expression (34) there is no explicit presence of the dimension
of the space-time, this quantity appears implicitly in the
relation of the coupling functions obtained in (14).
From this work, some natural extensions can be raised.

For example, to simplify our computations, from the
beginning we suppose that the kinetic term X is a constant.
It would be interesting to explore more general solutions in
arbitrary dimensions, where now from (10) X ¼ XðrÞ,
which allows us to explore the shear viscosity η on
configurations with nonstandard asymptotically behaviors,
as was studied for Lifshitz black holes in [41]. Finally, these
results deserve further investigation both in their own right,
in particular in the context of the AdS=CFT correspondence
and their implications.
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APPENDIX A: RELEVANT TENSORS AND
VECTORS FOR THE EQUATIONS OF MOTION

For the sake of completeness, in this Appendix we report

the expressions for GZ
μν, GG

μν, the GðiÞ
μν s and J μ present in

Eqs. (6) and (7)

GZ
μν ¼ λ0

�
−
1

2
ZðXÞgμν þ ZXϕμϕν

�
;

GG
μν ¼ ð1þ λ1GÞGμν þ λ1GXRϕμϕν − λ1∇ν∇μGþ λ1gμν∇λ∇λG;

Gð2Þ
μν ¼ λ2

�
−ϕμðA2X∇νXÞ□ϕ − ðA2X∇μXÞϕν□ϕ − A2ϕνμ□ϕ − ϕνμϕλðA2X∇λXÞ þ ϕνϕλμðA2X∇λXÞ þ ϕμϕλνðA2X∇λXÞ

þ A2Rνλϕμϕ
λ þ A2Rμλϕνϕ

λ − A2ϕλνμϕ
λ þ 1

2
A2gμνð□ϕÞ2 þ gμνϕλðA2X∇λXÞ□ϕþ A2gμνϕλϕρ

ρ
λ

− A2gμνRλρϕ
λϕρ þ 1

2
A2gμνϕρλϕ

ρλ þ A2Xϕμϕνðð□ϕÞ2 − ϕλρϕ
λρÞ
�
;

Gð3Þ
μν ¼ λ3

�
−
1

2
A3ϕμϕνð□ϕÞ2 − 1

2
ϕμϕνϕλðA3X∇λXÞ□ϕþ 1

2
A3ϕμϕλνϕ

λ
□ϕþ 1

2
A3ϕνϕλμϕ

λ
□ϕ −

1

2
A3ϕμϕνϕ

λϕρ
ρ
λ

þ 1

2
A3Rλρϕμϕνϕ

λϕρ −
1

2
ϕμðA3X∇νXÞϕλϕρλϕ

ρ −
1

2
ðA3X∇μXÞϕνϕ

λϕρλϕ
ρ −

1

2
A3ϕνϕ

λϕρλμϕ
ρ −

1

2
A3ϕμϕ

λϕρλνϕ
ρ

− A3ϕνϕ
λϕρλϕ

ρ
μ − A3ϕμϕ

λϕρλϕ
ρ
ν þ

1

2
gμνϕλðA3X∇λXÞϕρϕσρϕ

σ þ 1

2
gμνA3ϕ

λϕρϕσρλϕ
σ þ gμνA3ϕ

λϕρϕσρϕ
σ
λ

þ A3Xϕμϕνð□ϕÞϕρϕσρϕ
σ

�
;

Gð4Þ
μν ¼ λ4

�
−A4ϕμϕνϕ

λϕρ
ρ
λ þ A4ϕλμϕ

λϕρνϕ
ρ − ϕμϕνðA4X∇λXÞϕρλϕ

ρ − A4ϕμϕνϕρλϕ
ρλ

−
1

2
A4gμνϕλϕρϕσρϕ

σ
λ þ A4Xϕμϕνϕλρϕ

λϕρσϕσ

�
;

Gð5Þ
μν ¼ λ5

�
−A5ϕμϕνϕ

λϕρλϕ
ρð□ϕÞ − ϕμϕνϕλðA5X∇λXÞϕρϕσρϕ

σ þ A5ϕνϕλμϕ
λϕρϕσρϕ

σ þ A5ϕμϕλνϕ
λϕρϕσρϕ

σ

− A5ϕμϕνϕ
λϕρϕσρλϕ

σ − 2A5ϕμϕνϕ
λϕρϕσρϕ

σ
λ −

1

2
A5gμνϕλϕρλϕ

ρϕσϕτσϕ
τ þ A5Xϕμϕνϕ

λϕρϕρλϕ
σϕτϕτσ

�
;

while that
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J μ ¼ J μ
Z þ J μ

G þ
X5
i¼2

J μ
ðiÞ;

with

J μ
Z ¼ 2λ0ZXϕ

μ;

J μ
G ¼ 2λ1GXRϕμ;

J μ
ð2Þ ¼ λ2f2A2Xϕ

μ½ð□ϕÞ2 − ϕλρϕ
λρ� − 2∇ν½A2ðgμν − ϕμνÞ�g;

J μ
ð3Þ ¼ λ3f2A3Xϕ

μ
□ϕϕλϕλρϕ

ρ þ 2A3□ϕϕμ
λϕ

λ −∇ν½A3ðgμνϕλϕλρϕ
ρ þ□ϕϕμϕνÞ�g;

J μ
ð4Þ ¼ λ4f2A4Xϕ

μϕσϕσρϕ
ρλϕλ þ A4ðXÞ½ϕμ

ρϕ
ρλϕλ þ ϕσϕσρϕ

ρμ� −∇ν½A4ðXÞðϕμϕνρϕρ þ ϕσϕμ
σϕ

νÞ�g;
J μ

ð5Þ ¼ λ5f2A5Xϕ
μðϕσϕσρϕ

ρÞ2 þ 2A5ðXÞðϕσϕσρϕ
ρÞðϕμσϕσ þ ϕσμϕσÞ − 2∇ν½A5ðXÞϕσϕσρϕ

ρϕμϕν�g:

APPENDIX B: SHEAR VISCOSITY FROM
GREEN’S FUNCTIONS AND KUBO FORMULA

In order to corroborate the above computation, we
perform in this section transverse and traceless perturbations
following the steps of [1,41,52–54]. In the gravity side, we
have that the black hole in generalized scalar-tensor theories
in arbitrary dimensions plays the role of the gravitational
dual of a certain fluid. Besides, to compute the shear
viscosity through the holographic correspondence it is
necessary to linearize the field equations, as in [27,28,30],
so that the effective hydrodynamics in the boundary field
theory can be constructed using conserved currents and the
energy-momentum tensor. In this sense, we do not consider
the scalar field perturbations, i.e., δϕ ¼ 0. Thus, the original
Ricci tensor of the background metric acquires a single
nonvanishing correction at linear order in Ψ, as in Eq. (30)

Rð1Þ
x1x2 ¼

1þ λ1G
Z1

�
−
r2

2
□Ψ − rf0Ψ − ðD − 2ÞfΨ

�
; ðB1Þ

where we can identify that

Rð0Þ
xx ¼ −rf0 − ðD − 2Þf: ðB2Þ

Here, the Eq. (B2) denotes any of the (diagonal) components
of the zeroth-order Ricci tensor of the background metric.
Combining Eqs. (B1) and (B2), we have

Rð1Þ
x1x2 ¼

1þ λ1G
Z1

�
−
r2

2
□Ψþ Rð0Þ

xx Ψ
�
; ðB3Þ

and we can write the perturbed Einstein tensor to first
order as

Gð1Þ
x1x2 ¼

1þ λ1G
Z1

�
−
r2

2
□Ψþ Rð0Þ

xx Ψ −
1

2
Rð0ÞΨ

�
; ðB4Þ

¼ 1þ λ1G
Z1

�
−
r2

2
□ΨþGð0Þ

xx Ψ
�
: ðB5Þ

Together with the above and considering the Einstein tensor

as given by Gð0Þ
xx ¼ Tð0Þ

xx =2, we can write Eq. (B5) as

1þ λ1G
Z1

�
□Ψ −

1

r2

�
Tð0Þ
xx þ Tð1Þ

x1x2

	�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1G

Z1

s  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1G

Z1

s
□Ψ −

1

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1G

Z1

s �
Tð0Þ
xx þ Tð1Þ

x1x2

	!
¼ 0; ðB6Þ

where Tð1Þ
x1x2 ¼ ðδTx1x2=δgx1x2Þδgx1x2 , with

Tð0Þ
μν ¼ −

2

Z1

δ

δgμν

�X5
i¼2

λiAiLi

�
þ gμν

Z1

X5
i¼2

λiAiLi: ðB7Þ

Now, for the component Tð0Þ
xx we have

Tð0Þ
xx ¼ −

2

Z1

δ

δgxx

�X5
i¼2

λiAiLi

�
þ gxx

Z1

X5
i¼2

λiAiLi; ðB8Þ

and using the Lagrangians (4) and (5) we can see that all
the contributions from L2, L3, L4, and L5 becomes null,
because the kinetic coupling is a function of the radial

component, namely, ϕ ¼ ϕðrÞ. In this case, Tð0Þ
xx ¼ 0 ¼

Tð1Þ
x1x2 and we can write

Z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1G

Z1

s
□Ψ ¼ 0; ðB9Þ
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where in the metric background (8) with h ¼ f, and
considering Eq. (B9), we have

Z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1G

Z1

s
fΨ00 þ Z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1G

Z1

s �
f0 þ ðD − 2Þf

r

�
Ψ0

þ Z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1G

Z1

s
Ψ̈
f
¼ 0: ðB10Þ

Now, we consider the following ansatz

Ψ ¼
Z

dðD−1Þk
ð2πÞðD−1Þ e

ikxχðr; kÞ: ðB11Þ

Here x ¼ ðt; x⃗Þ and k ¼ ðω; q⃗Þ, where as we know in
general for the mass term Eq. (B11) contains contributions
k2 ¼ q2 − ω2. Nevertheless, considering the case ω → 0
and spatial momentum q ¼ 0, we can find that
χðr; kÞ ¼ χðrÞ. In addition, we can write Eq. (B11) in terms
of a Klein-Gordon-like equation [41,54] as follows

1ffiffiffiffiffiffi−gp ∂α

 
Z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1G

Z1

s ffiffiffiffiffiffi
−g

p
gαβ∂βΨ

!
¼ 0; ðB12Þ

and effective action for Eq. (B12) can be written as

S ¼ −
Z

dðD−1Þk
�
NðrÞ
2

dχðr; kÞ
dr

dχðr;−kÞ
dr

�
; ðB13Þ

where NðrÞ ¼ Z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ λ1GÞ=Z1

p ffiffiffiffiffiffi−gp
grr. This on-shell

action reduces to the surface term

S ¼ −
Z

dðD−1Þk
�
1

2
NðrÞχðr; kÞ∂rχðr;−kÞ

�����∞
rh

: ðB14Þ

Following the procedure of [41,54], we can extract the
retarded Green’s function, which reads

GR
x1x2;x1x2ðω; 0Þ ¼ −2

 
Z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1G

Z1

s ffiffiffiffiffiffi
−g

p
grr
����
rh

!

× χðr;−ωÞ∂rχðr;ωÞjrh : ðB15Þ
This expression for the Green’s function diverges at the
horizon. In order to remove this divergence we implement a
regularity condition such that the derivative of χ is given in
terms of χðrhÞ at leading order inω → 0. This low frequency
limit corresponds to the hydrodynamical limit and has
physical importance to define transport coefficients, such
as the shear viscosity, in our case [55]. From Eq. (B15), we
have

GR
x1x2;x1x2ðω; 0Þ ¼ −2iωrD−2

h Z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1G

Z1

s

¼ −2iω
�
1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1G

Z1

s �
s; ðB16Þ

where the entropy density s was given in (29). Finally, the
shear viscosity η [32,33] is given by

η ¼ − lim
ω→0

1

2ω
ImGR

x1x2;x1x2 ¼
 

1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1G

Z1

s !
s

⇒
η

s
¼
 

1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ1G

Z1

s !
; ðB17Þ

recovering the viscosity/entropy density ratio obtained in
Eq. (34). According to [28], the right-hand side of Eq. (B17)
is related to the absorption cross-section of low-energy
gravitons. From usual theories that consider the low-
frequency regime, the relation η=s is not violated but has
a universal bound. The main idea behind the computations of
the viscosity/entropy density ratio is to characterize how
close a given fluid is to be perfect. However, in our study we
show that for the generalized scalar-tensor theories in
arbitrary dimensions, Eqs. (2)–(5), this limit is violated,
due to the coupling constants that control the influence of the
kinetic term in this relation.
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