PHYSICAL REVIEW D 106, 066010 (2022)

Shear viscosity from black holes in generalized scalar-tensor theories
in arbitrary dimensions

Moisés Bravo-Gaete
Facultad de Ciencias Bdsicas, Universidad Catdlica del Maule, Casilla 617, Talca, Chile

Fabiano F. Santos®" and Henrique Boschi-Filho

*

Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21.941-972, Rio de Janeiro, RJ, Brazil

® (Received 24 January 2022; accepted 30 August 2022; published 12 September 2022)

In higher dimensions, we study degenerate-higher-order-scalar-tensor theories and we derive solutions
that resemble the Schwarzschild anti—de Sitter black holes. We compute their thermodynamic quantities
following the Wald formalism, satisfying the first law of thermodynamics and a higher dimensional Smarr
relation. Constructing a Noether charge with a suitable choice of a spacelike Killing vector, we obtain the
shear viscosity of the nongravitational dual field theory, where for a suitable choice of the couplings
functions, the Kovtun-Son-Starinets bound is violated. These results are corroborated by the calculation of

the Green’s functions following the Kubo formalism.
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I. INTRODUCTION

General relativity (GR) provides the standard description
of gravity. Extensions of GR have been considered in the
literature as gravitational alternatives, for instance, for
unified descriptions of inflation and cosmic acceleration.
Various proposals include F(R) gravity, scalar-tensor
theories, and string-inspired and Gauss-Bonnet theories
[1-7]. Some of these models might be consistent with local
tests, and the occurrence of finite-time future singularities
in modified gravity may be cured by the addition of higher-
derivative terms. For a review, see, e.g., [8]. In particular,
in the 1970s, Horndeski constructed a four-dimensional
scalar-tensor theory wherein the equations of motions are at
most of the second order in the derivatives of the field
functions [9]. Motivated with the above, in recent years a
new class of scalar-tensor theories of gravity that extend
Horndeski, or “generalized Galileon,” models have been
proposed. Despite possessing equations of motion of
higher-order derivatives, the propagating degrees of free-
dom satisfy second-order equations of motion and are thus
free from Ostrogradski instabilities [10].
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Astrophysical implications [11-13] have yielded
further motivation to study theories of gravity
beyond Horndeski proposal, channeling in a model
denominated as degenerate-higher-order-scalar-tensor
(DHOST) theory, also avoiding Ostrogradsky instability
due to its degeneracy property [14,15]. It is important
to note that these degenerate theories have allowed the
exploration of four-dimensional regular black holes
[16,17], rotating black holes stealth [18], and three-
dimensional spinning configurations [19]. As far as
we know, the extension of these solutions for higher-
dimensional theories is still an open problem, which we
address in this work.

On the other hand, the AdS/CFT correspondence
[20-22] is a relation between a gravitational theory in
D-spacetime dimensions and a field theory in flat (D — 1)
dimensions (without gravity). In its most general form, it is
known as a gauge/gravity duality. One nice property of this
duality is that when the field theory is strongly coupled the
gravitational dual is weakly coupled and vice versa. This
property opens a large window of applications in many
different areas. In particular, it gives support to study the
dynamics of tightly coupled systems, especially the
transport coefficients from condensed matter and hydro-
dynamics to the quark-gluon plasma formed at relativistic
heavy-ion collisions [23—-31]. One of these coefficients is
the well-known shear viscosity 5 [27,28], calculated from
holographic bottom-up models. Under this scenario, it is
possible to compute the ratio between # and the entropy
density s, arising a conjecture about a universal bound,
known as the Kovtun-Son-Starinets (KSS) bound, which
reads [27,28,32,33]
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being a support in a variety of gravity dual models [34-37].

On the contrary, for some examples—which include
unconventional superconducting systems [25,27], the
Einstein-Hilbert Gauss-Bonnet action in five dimensions
[38,39], the Horndeski theory [40-44], as well as the
DHOST theories in four dimensions [45]—the KSS bound
is violated, at least for some choices of the relevant
parameters of these models.

In this work, we consider DHOST theories in higher
dimensions (D > 3). We construct hairy black hole sol-
utions with planar geometry under this scenario and study
their thermodynamic properties. Together with the above,
in order to obtain the shear viscosity of the dual gauge
theories living in lower-dimensional flat spaces, we employ
two different methods for D > 3. The first one is performed
via the Wald formalism, with the construction of a Noether
charge and an election for the spacelike Killing vector [46].
For the second, we use the more traditional methods present
in [33,39], with the calculation of Green’s functions and the
use of the Kubo formula. The two formalisms generate the
same expression for the shear viscosity of the dual gauge
field theories, allowing violation of the KSS bound.

This paper is organized as follows: In Sec. II, we
consider DHOST theories in higher dimensions (D > 3)
and obtain hairy black hole solutions with planar base
manifolds in these spacetimes. In Sec. III, through the Wald
formalism [47,48] the thermodynamics of that solutions are
explored, and in Sec. IV we obtain the viscosity/entropy
density ratio of the corresponding dual field theories for
D > 3, showing that the KSS bound could be violated in
these theories. Some details of the equations of motion
are presented in Appendix A. Further, in Appendix B, we
reobtain the viscosity/entropy density ratio using Green’s
functions and the Kubo formula, corroborating the results
of Sec. I'V. Finally, Sec. V is devoted to our conclusions and
discussions.

II. DHOST THEORIES AND HAIRY BLACK HOLE
SOLUTIONS IN HIGHER DIMENSIONS

To our knowledge, DHOST theories in D =3 and
D =4 spacetime dimensions have been studied in
Refs. [7,10,14-19]. Here we generalize these previous
approaches to the D-dimensional case (D > 3) defining
the action as

Slg ) = / Pxy/GL. @)

where the Lagrangian £ reads

c:%am+u+Mamm+ipﬁmmh@)
i=2

with X := 9,¢0"¢ being the kinetic term of the scalar
field ¢, and

‘C'Z = (D¢)2 - ¢ﬂb¢”y7
£'4 = ¢M¢uu¢w)¢p’

‘C3 = D¢¢M¢/w¢y7 (4)
‘CS = (¢”¢/Au¢y)2' (5)

Here R is the scalar curvature, 4,,, with m € {0,1,2,3,
4,5}, are convenient parameters to control the couplings
between the functions Z(X), G(X), and A;(X), with
i€{2,3,4,5}, while we have defined ¢, :=V,¢$ and
¢ = V,V,¢. For later convenience, we also define the
derivative with respect to X, Fy := dF/dX, so that, for
instance, Zy:=dZ/dX, Gy := dG/dX, and A;y := dA;/dX.
The equations of motions with respect to the metric g, and
the scalar field ¢ are given by

5 .
Ew =G+ 95+ > G =0, (6)
i=2

0= =5V si4) | =0 )

where the expressions given in £,, and J* are reported
in the Appendix A.
For the generalized scalar-tensor configuration

Egs. (2)—(5), we consider the following higher-dimensional
metric ansatz:

2 D-2

52 = —h(r)di* dar 2 X2
d Mﬁh+ﬂﬂ+ Zﬁ,, (8)
o(t.r) =y(r), 9)

where only a radial dependence for the scalar field ¢ is
required, given that we are working on a planar base
manifold. In order to simplify our computations, we also
suppose that the kinetic term X is a constant. This
hypothesis implies that

X=g"W') (10)

and the square of the derivative of the scalar field ¢ can be
cast as

WP =7 (1)

where (') denotes the derivative with respect to the radial
coordinate r. Following the steps performed in [19,45], we
fix the function A5 as

A'SAS —

(245 + XAsAs +40Gx)®  (25As + Ay
2X(1 + 4,G + hXAy) X ’
(12a)
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AsAs = % (% - zg(x)), (12b)

defining the functions
Z1(X) = 14 4 G(X) + XAy (X), (12¢)
Z,(X) = 2,A5(X) + 3 XA5(X) + 44,Gy(X),  (12d)
Z3(X) = A3A5(X) + A4A4(X). (12¢)

Then, a solution in higher dimensions D > 3 reads

/1027'2 M
(D-1)(D-2)2, P (13)

£(r) = h(r) =

where M is a positive integration constant, as long as the
coupling functions are related in the following form
2(D-2)(ZZ))y =(D—-1)2,Z, (14)

and the scalar field from (11) can be obtained as

paf T r? M
TtV ET S

(15)

p(t,r) =y(r)

1)\/)_(ln

2
:iCJ_
D—

Many commentaries can be carried out with respect to the
solution (13)—(15). First, the metric function & = f resem-
bles the well-known Schwarzschild-AdS (anti—de Sitter)
black hole in D-spacetime dimensions. Second, Eq. (14)
represents the extension of the particular cases found

previously in four [45] and three dimensions [19], where
the scalar field is well defined on the location of the event
horizon r, = (MI2)= and in order to have a real and
nontrivial expression for ¢, we need X > 0 for r > ry,.
Finally, in order to have an asymptotically AdS black hole
configuration, we will define the AdS radius [ as

D-1)(D-2)Z,

P!
MoZ ’

(16)

and impose the constraint

Z
Wz >0,

to have a real expression for [ Summarizing—with the
DHOST theory, Egs. (2)—(5), together with a constant kinetic
term X and the coupling functions Z, G, and the A;s satisfying
the relation (14)—we can obtain a higher-dimensional hairy
solution with a planar base manifold given in Eqgs. (11)—(13).
In the following section, we will derive the thermodynamic
quantities corresponding to this solution.

III. THERMODYNAMICS OF THE HAIRY
SOLUTION FROM THE WALD FORMALISM

Given the hairy higher-dimensional black hole solution,
found in the previous section, to compute extensive
thermodynamic quantities (these are the mass M and
the entropy Sy), we will consider the Wald formalism
[47,48]. We start through the variation of the action (2)—(5)
with respect to all the dynamical fields, which is

65 = V=IE,

where, as before, EW and 5¢ are the equations of motions
with respect to the metric and the scalar field. The surface
term J* reads

LG + Eybp -V, JH (8. 6¢)],

T = /=g | 2P 6,4~ &MVPWW>+Jm¢+4zn<@>
3" e 35 e 354 ) "
with J# reported in Appendix A. Further, in our case:
prer = 2L (14 2,6 (X)) g7~ #rg), (18)

Hvop

while
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o
oy

= 220Zx " 4+ 20 GxRP* + 22,4540 (D) — b, ™) + 223 Asx* pp* s, " + 243 A300¢pep ,

+ 204A4x ' P oy i + 2aAs(X) [P, 1 + ¢ Py ] + 205455 (¢ 0y )

+ 22545 (X) (@7 Popd” ) (#" D5 + $™ ;)

and

oL

(19)

—— =20 A (g = P) + LA (G it + Dpd ) + MA(X) (P D7, + 7P oY) + 205A5(X) @ o BB

6¢/w

Defining a 1-form J;) =J,dx* and its corresponding
Hodge dual ©p_;) = (—1)P*! « J;), together with con-
sidering a variation induced by an infinitesimal diffeo-
morphism 6x* = &#, and making use of the equations of
motions (6)—(7), we have that J(p_y) = O(p_y) — iz(xL) =
d(*J(2)), where i; is a contraction of the vector & with the
first index of £, and in our notations the subindex “(p)”
corresponds to the fact that we are working with p-forms.
The above allows the definition of a (D — 2)-form
Q(p-2) = *J(9) such that Jp_) = dQp_s), where

— v
= €qyay-ap_uv Qﬂ ’

Q(D—Z) = Qa1a2~~~aD_2

with
oL oL
Y2 2 ZPMD/)O'V _ 4 v pHvpo v _

0 oo = AV PR S = S P

(21)
and P**? and 6L/6¢,, were given previously in Egs. (18)
and (20), respectively. Concretely, for the action (2)—(5)
and using the fact from (11) that §(¢') = —V/X6f/(2f>/?)
[here we note that 7#6¢ from (17) vanishes after making

use of the equations of motion], we find that i:®p_;) as
well as Qp_y) read

i:Op_1) = rP3[—(D = 2)Z,6f +2(D - 2)5f(1 + 1,G)
+r(1+4G)é(f")]Qp-2,
Q) =’ [r(1+ 4G)f' +2(D -2)
x f(14+24,G = Z)]|Qp_,,
and the variation of Qp_) takes the form
8Q(p-z) = r’7[r(1 + 1,G)8(f")
+2(D=-2)5f(14+14,G - Z))]|Qp_s,

where Q,_, is the finite volume of the (D — 2)-dimensional
compact angular base manifold. Finally, taking & as a

(20)

timelike Killing vector that is null on the location of the
event horizon, denoted as r,, the variation of the
Hamiltonian reads

5H:5/J(D_1)—/d(l§®(D_1))
C C
_5/Cd(Q(D—2))_AdOE@(D—I))y

= />:<02> (6Q(p-2) = ieO(p-1)).

where C and X(°~?) are a Cauchy surface and its boundary,
respectively, which has two components, located at
infinity (H,) and at the horizon (#_,). According to the
Wald formalism [47,48], the first law of black holes
thermodynamics,

oM =TéSy, (22)
is a consequence of 0H, = 6H, , where M and Sy, denote

the mass as well as the entropy, while that the Hawking
temperature 7 reads

K 1 1
= — p— —_— H eV
! 2z r=ry 2”\/ 2 (Vﬂéy)(v 5 ) r:rh,
1 ﬂOZrh (D— l)rh
= - 23
4z (D —-2)Z, dzl> 23)

where « is the surface gravity, r;, is the location of the event
horizon, and the AdS radius / was defined previously in
Eq. (16). With all the above, we have that

8Q(p-2) — ie®Opp_1) = =(D = 2)r"3 Z,5f,

where
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Computing the respective variation of the solution
(11)—(15), at the infinity we can write

Mo =M = (D = 2)Z,Qp_,M (24)

so that the mass M takes the form

(D - Z)erg_

'Qp_,
I ’

M - (D - Z)ZIMQD—Z ==

(25)

Note that the positivity of the physical mass M implies
that Z; > 0. This thermodynamic condition will be
important, as we will see below, at the moment to study
the shear viscosity 7. At the horizon, where from the metric
function (13)

(D - l)rf_zérh
oM = B E—

where /2 is the AdS radius (16), we have
SH, = TéSy = Ts(47Qp_, Z,1P72), (26)
from which the entropy Sy, takes the form
Sw = 4nQp_, Z,rP72. (27)

Note that the condition Z; > 0 from the positivity of
the mass M from Eq. (25) guarantees the positivity of the
entropy Sy. It is worth pointing out that besides the
fulfillment of the first law (22), a higher-dimensional
Smarr relation [49]

M= <D - f) TSy (28)

holds.

IV. THE VISCOSITY/ENTROPY DENSITY RATIO
THROUGH THE WALD FORMALISM

After obtaining the thermodynamic quantities from the
hairy higher-dimensional black hole solution, in particular
for the Wald entropy Sy from (27) we can obtain the
entropy density s in our set up, given by

=d4zrP22Z,. (29)

In order to calculate the shear viscosity #, according to the
procedure performed in [46], we first perform a transverse
and traceless perturbation on the metric (8) for D > 3 with
h = f, which reads

D-2

dr?
ds* = —f(r)di* + T 2P29(t, r)dxidxy + 12y dx?,
i=1

(30)
with the ansatz

W(1.r) = {1+ hyy, (1),

where ( is a constant identified as the gradient of the fluid
velocity along the x; direction. This perturbation yields the
following (x;,x,) component of the linearized Einstein
equations:

[2:(X)rP72f ()] =0, (31)

and by using a spacelike Killing vector o

., = &40, the
charge ,/—gQ'™, constructed through Q" from (21),
becomes an integration constant [46], which reads

V=90 = Z1(X)rP72 f () (32)

Imposing the ingoing horizon boundary condition

1+ 4,Glog(r—ry)
h f— [P
b C\/ Z, 47T T

as well as a Taylor expansion in the near horizon region 7y,

h=f=4zT(r—r,) +---,

where T is the Hawking temperature given previously

in (23), we have
¢ 1 [1+4G
- s .
471' Zl

1+14,G
V90" = L2 [ =
1

where s was given in (29). Following the steps from [46],
the shear viscosity # can be obtained in the following way

_()(\/—_gerz)_ 1 1+ 4G
n= 7@4’ = E Z, S. (33)

Since the shear viscosity 7 is real and non-negative, and the
fact that Z, > 0, from the positivity of the mass M (25) as
well as the entropy Sy, (27), we conclude that 1 + 4,G > 0.
Then, the viscosity/entropy density ratio takes the form

1+z1 1+/11G X) 34

or
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n_ 1 [Z21(X)],-
s 4r zl(;;) - (35)

Here, we note that there is no a presence of the location
of the event horizon r;, on the 7/s ratio, and although the
dimension of the space-time D is not present in (34) [or
(35)], this expression appears actively from the relation of
the coupling functions (14). Together with the above,
since

Z1(X) = 1+ LG(X) + hXA(X) > 0. (36)

from the positivity of the mass M (and the entropy Sy),
and since

1+ 4,G(X) >0, (37)

from the reality and non-negativity of the shear viscosity
1, we conclude that 1, XA,(X) > —(1 4+ 1,G(X)) <0.1tis
worth pointing out that the above conditions are not new,
in fact, according to [50], the condition (36) together with
the strict inequality from (37) allow us to obtain neces-
sary conditions of stability in four-dimensional spherical
symmetric solutions. Curiously enough, the above is
consistent with the stability conditions for linear cosmo-
logical perturbations, guaranteeing that both the effective
gravitational constant and the squared propagation speed
of the tensor modes are positive [51], without the
requirement on the sign of 4,XA,(X). For our particular
situation, and given the explicit expression for the scalar
field ¢ found in (15), where X > 0, only the possibilities
of study are performed by analyzing 1,A,(X). First, if
A,A5(X) > 0, then the KSS bound would be violated even
in the limit 4, — 0. On the other hand, if 1,4,(X) <0,
and still obeying the condition (36), then one recovers
the usual KSS bound where /s > 1/(4z). Finally, if
A, (X) = 0, which can be achieved in the limit 4, — 0,
then the KSS bound is saturated [1/s = 1/(4x)].

As concrete examples from the cases showed before,
we can see that the Einstein-Hilbert case, together with a
cosmological constant (this is for 4; = 0 for i = {1,2,3,
4,5 }, and Z = —2A/J), is naturally recovered, where we
can see that /s = 1/(4x). Together with the above, for
example, for

Ay(X) = Gy = jX!,

where j is a positive constant, while that Z and Z, satisfy
the condition (14), we obtain

1+ 44X 1

0o<—m——— <—,
1 + (ﬁl +]12)Xj 471'

as long as 1, > 0.

In resume, with all this information we can to
conclude that, for a higher-dimensional scalar-tensor
theory (2)-(5) with specific coupling functions, repre-
sented via Z, G and the A;s, the explicit expression for
the kinetic term X can be obtained through (14), and the
solution takes the form (13)—(16). Moreover, in particu-
lar, there exists an active presence of the functions G
and Z, in the 5/s ratio, providing a new example of the
violation of the KSS bound whose Lagrangian is at most
linear in curvature tensor.

V. CONCLUSIONS AND DISCUSSIONS

In the present paper we explored the dimensional
continuation of planar hairy black hole solutions found
in [19,45], where the theory is given by a model denomi-
nated as DHOST theory, Egs. (2)-(5), constructed by a
nontrivial scalar field ¢ and its derivatives, the Ricci scalar
R, and coupling functions depending on the kinetic term
X :=0d,¢d¢ Eq. (10), which we suppose to be constant.
In this case, black holes resemble the well-known
Schwarzschild-AdS configurations in arbitrary dimensions,
where the integration constant M is related to the mass, and
the AdS radius depends on the coupling functions present
in the theory, being interpreted as an effective cosmological
constant. With these results, via the Wald formalism, we
compute their thermodynamical parameters, which satisfy
the first law, Eq. (22), as well as a higher-dimensional
Smarr relation, Eq. (28).

Motivated by recent concrete examples presented in the
literature (see [40,41,43-45]), where the bound for the
viscosity/entropy density ratio Eq. (1) can be violated,
we analyzed the shear viscosity # for DHOST theory,
Egs. (2)-(5), following two procedures. The first one,
through the construction of a conserved charge as well
as a suitable election of the Killing vector [46] where in this
case it is not necessary to impose any hydrodynamic limit,
such as the low frequencies, to define the transport
coefficient. On the other hand, in the second one, via
Green’s functions and Kubo formula, given by [33,39],
respectively, and explained in the Appendix B. For both
techniques, we obtain the same expression for the 7/ s ratio.
Here we note that these results are not a surprise, because
the boundary condition to the effective action for the
transverse off-diagonal gravitons /4, ., for the two methods
considers the gravity fluctuations around the metric. For
higher-dimensional planar black holes in DHOST theories,
the presence of the coupling functions G and Z, in the /s
ratio, provides a new example of the violation of the KSS
bound whose Lagrangian is at most linear in curvature
tensor. Note that only with specific coupling functions
(these are Z, G and the A;s), the explicit expression for the
kinetic term X, obtained through (14), and the solution
(13)—(16), are required. In fact, according to the expression
(34) [or (35)], the n/s ratio is controlled by the parameters
A1 and A, as well as the kinetic term X and the coupling
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functions A,(X) together with G(X), allowing us to get
cases where the KSS bound can be violated, fulfilled, or
saturated. It is worth pointing out that although in the
expression (34) there is no explicit presence of the dimension
of the space-time, this quantity appears implicitly in the
relation of the coupling functions obtained in (14).

From this work, some natural extensions can be raised.
For example, to simplify our computations, from the
beginning we suppose that the kinetic term X is a constant.
It would be interesting to explore more general solutions in
arbitrary dimensions, where now from (10) X = X(r),
which allows us to explore the shear viscosity # on
configurations with nonstandard asymptotically behaviors,
as was studied for Lifshitz black holes in [41]. Finally, these
results deserve further investigation both in their own right,
in particular in the context of the AdS/CFT correspondence
and their implications.

|

1
gpzw = Ao <_§Z(X>gm/ + ZX¢}4¢Z/> >
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APPENDIX A: RELEVANT TENSORS AND
VECTORS FOR THE EQUATIONS OF MOTION
For the sake of completeness, in this Appendix we report

the expressions for gfw, gfy, the g},"ﬁs and J* present in
Egs. (6) and (7)

QED = (1 + AIG)GMI/ + llGch,bﬂgbl, - ﬂlvyVﬂG + ﬂlgMDVXV’IG,

gl(l%/) = /12 |:_¢/4 (AZXVDX) D¢ - (AZvaX)¢uD¢ - A2¢UﬂD¢ - ¢uu¢/1 (AZXVJLX) + ¢u¢/m (AZleX) + ¢y¢lb (AZleX)

1
=+ AszébﬂW + AzRMQbuﬁl"l - Azflﬁ/n,léb/1 + EAng(DqS)Z + g, (A VAX)Ogp + Azgﬂpf.b’lfﬁpp 1

1
- AZQ,uuRipqﬁ/lqﬁﬂ + §A29;¢u¢p/l¢ﬂ/1 + A2X¢y¢u((m¢)2 - d)ipqﬁ/l/)) ’

1 1 1 1 1
g,(;;) =3 [—§A3¢ﬂ¢u(m¢)2 - §¢ﬂ¢y¢A(A3vaX)D¢ + §A3¢ﬂ¢/1u¢lm¢ + §A3¢U¢Ay¢AD¢ - §A3¢ﬂ¢l/¢i¢ppi

1 1 1 1 1
+ §A3Rﬂ/)¢y¢y¢ﬂ¢p - 545/4 (A3XVDX)¢1¢/)/1¢/) - E (A3Xvﬂx)¢1/¢ﬂ¢pﬂ¢ﬂ - §A3¢y¢ﬂ¢plﬂ¢p - §A3¢y¢ﬂ¢/)/1y¢/)

1 1
- A3¢v¢i¢pﬁ¢pﬂ - A3¢ﬂ¢i¢pl¢pv + Eg/wqb/l (A3XVAX)¢p¢op¢0 + EgﬂuA3¢/1¢p¢0'pi¢” + g/wA3¢/1¢p¢op¢0/l

+ A3X¢y¢v (D¢)¢/)¢6/)¢6 ’

G =4 [—A4¢ﬂ¢y¢*¢ppi + As B P’ — By (Aax VA X) P10 — Asdpuy b

1
- §A4g,uy¢/1¢p¢o'/)¢6/1 + A4X¢ﬂ¢y¢ﬂ/)¢ﬂ¢/m¢(; ’

g/(ti) = /15 |:_A5¢y¢v¢ﬂ¢pl¢/)(|:|¢) - ¢y¢y¢/1 (ASXV}LX)W)(ﬁquﬁO— + A5¢y¢ﬂy¢l¢p¢o’p¢6 + A5¢ﬂ¢ly¢ﬂ¢p¢o’p¢6

1
— A5y b ' bopid” — 2450, bu 'V by — EAsgﬂnyﬁpﬂﬁp P beot” + Asx b’ & b1 bes |

while that
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5
T =J5+T6+ ;J’g,.),

with

J7 = 2 Zx¢",

J =24 GxR¢",
Ty = A {240x¢" (Oh)” = ™)
\7?3) = 13{245x " O 0" + 2430094 19

APPENDIX B: SHEAR VISCOSITY FROM
GREEN’S FUNCTIONS AND KUBO FORMULA

In order to corroborate the above computation, we
perform in this section transverse and traceless perturbations
following the steps of [1,41,52-54]. In the gravity side, we
have that the black hole in generalized scalar-tensor theories
in arbitrary dimensions plays the role of the gravitational
dual of a certain fluid. Besides, to compute the shear
viscosity through the holographic correspondence it is
necessary to linearize the field equations, as in [27,28,30],
so that the effective hydrodynamics in the boundary field
theory can be constructed using conserved currents and the
energy-momentum tensor. In this sense, we do not consider
the scalar field perturbations, i.e., 5¢p = 0. Thus, the original
Ricci tensor of the background metric acquires a single
nonvanishing correction at linear order in V¥, as in Eq. (30)

1 1 +ﬂlG 7”2
R, =

z o (—7 P rf'V - (D—2)f‘P>, (B1)

where we can identify that |

- 2vu [AZ (g;w

— )]},

=V [As(¢" b b + O )]}
Tty = 2a{2845x¢" ¢ Popt”' b1 + As(X) 9", 0" b + by ™| = V. [As
Tls) = 25{245x¢" (¢ ¢op#”)? + 2A5(X) (¢ opd”) (b,

(X) ("¢ b, + ¢7P* 5¢")]}

+ 97 hs) = 2V, [As(X)9 gy P $" ]}

RY = —rf —(D-2)f. (B2)

Here, the Eq. (B2) denotes any of the (diagonal) components
of the zeroth-order Ricci tensor of the background metric.
Combining Egs. (B1) and (B2), we have

1+ 4G
Z

2
RV, = (-%D\P + RES)‘P), (B3)

and we can write the perturbed Einstein tensor to first
order as

(1) 1+ 4G r? (0) 1 )
Gyy, = ——O¥Y + RyWY —=-RYY ), B4
142 Z] 2 + 2 ( )
1+ 4G

0wt 60w, (BS)
Z 2
Together with the above and considering the Finstein tensor

as given by Gx = ,(32 /2, we can write Eq. (B5) as

1+ 4G 1 (0) (1) 1+ 4G
OW —— (Tsx + Txx =
Zl ( }"2( + ! 2) Zl

where T,((llg(z = (6T, 1,/69x,x,)09x,x,» With

5
(0) g;w
T v — /1 A E ) /,{l'Al'Li. B7
w--22 (Z 2y (87)
Now, for the component T,(r(;) we have
(0) gxx
Ty = AiAL; AiAL, B8
Z 1 g™ (Z > Z (BE)

[/

14+4G L+4G/ 0 )
Ow- L 9 1.} ) =0, (B6
Zl r Zl < + ! > ( )

and using the Lagrangians (4) and (5) we can see that all

the contributions from £,, L3, £4, and L5 becomes null,

because the kinetic coupling is a function of the radial
(0)

component, namely, ¢ = ¢(r). In this case, Try =

T)g,lz and we can write

(B9)
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where in the metric background (8) with 7 = f, and
considering Eq. (BY), we have

1+ 4G 14+ 4G D-2
Z] + 1 flIl// + Zl + 1 f/ + ( )f lP/
Zl Zl r
LGW
+ Z, = —o. (B10)
f
Now, we consider the following ansatz
d(D_l>k zkx

Here x = (¢,X) and k = (w,q), where as we know in
general for the mass term Eq. (B11) contains contributions
k*> = g> — @*. Nevertheless, considering the case @ — 0
and spatial momentum ¢ =0, we can find that
x(r, k) = y(r). In addition, we can write Eq. (B11) in terms
of a Klein-Gordon-like equation [41,54] as follows

1 1+4G
——0,| Z —gg70,¥ | =0, B12
Ve (1\/ E (B12)

and effective action for Eq. (B12) can be written as

S — _/d(D—l)k(Nér) d)(iir; k) dﬂ;’r_k))’ (B13)

where N(r) = Z,\/(1 +4,G)/Z,,/=gg"". This on-shell

action reduces to the surface term

(5]

S = —/ d<D">k<%N(r);((r, k)o,x(r, —k)) (B14)

T

Following the procedure of [41,54], we can extract the
retarded Green’s function, which reads

G)Iflxz xlxz(w 0 =-2 (Zl \/

L)

This expression for the Green’s function diverges at the
horizon. In order to remove this divergence we implement a
regularity condition such that the derivative of y is given in
terms of y(r;,) at leading order in @ — 0. This low frequency
limit corresponds to the hydrodynamical limit and has
physical importance to define transport coefficients, such
as the shear viscosity, in our case [55]. From Eq. (B15), we
have

)0,x(r,w) (B15)

14+ 4G
Z

1 [1+4G
= —21(0( Z, )s,
where the entropy density s was given in (29). Finally, the
shear viscosity 7 [32,33] is given by

1 1 [1+4,G
= —lim -— ImG® ==
n 1m2 mGy «, x x, (4;1 Z )s

w—0 2@
= -—-=|(— , B17
N <47T Zl ( )

recovering the viscosity/entropy density ratio obtained in
Eq. (34). According to [28], the right-hand side of Eq. (B17)
is related to the absorption cross-section of low-energy
gravitons. From usual theories that consider the low-
frequency regime, the relation 7/s is not violated but has
a universal bound. The main idea behind the computations of
the viscosity/entropy density ratio is to characterize how
close a given fluid is to be perfect. However, in our study we
show that for the generalized scalar-tensor theories in
arbitrary dimensions, Eqs. (2)—(5), this limit is violated,
due to the coupling constants that control the influence of the
kinetic term in this relation.

G§1x2,x1x2 ((0’ 0) - —21a)rh ZZI
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