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Boundary conformal field theory (BCFT) and interface conformal field theory (ICFT) attract attention in
the context of the information paradox problem. On this background, we develop the idea of the reflected
entropy in BCFT/ICFT. We first introduce the left-right reflected entropy in BCFT and show that its
holographic dual is given by the area of the entanglement wedge cross section through AdS/BCFT. We also
present how to evaluate the reflected entropy in ICFT. By using this technique, we can show the universal
behavior of the reflected entropy in some special classes.
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I. INTRODUCTION

The entanglement entropy (EE) plays a significant role in
quantum information, condensed matter, and quantum
gravity [1]. This quantity captures the bipartite entangle-
ment between a subsystem A and its complement Ā. The
EE is defined by the von-Neumann entropy for the reduced
density matrix ρA ≡ trĀρ as SðAÞ ¼ −trρA log ρA.
One interesting direction to develop this idea is finding a

tripartite entanglement measure. Recently, as one of them,
the reflected entropy is introduced by [2]. This quantity is
applied to various ð1þ 1Þ-d setups [2–8], ð2þ 1Þ-d setups
[9–11], and arbitrary dimensional setups [12,13]. One of the
significant features of the reflected entropy is that this
quantity has a nice bulk dual, the minimal area of the cross
section in the entanglement wedge [2]. It means that like the
EE, one can probe the entanglement structure of quantum
gravity by a simple calculation of the area. Another feature is
that mostly bipartite entanglement patterns imply that the
difference between the reflected entropy and the mutual
information is close to zero, SR − I ≃ 0 [14–16]. Inspired by
this sensitivity to tripartite entanglement, the difference SR −
I is studied in [7,12,13,17], called the Markov gap.
In this article, we develop the idea of the reflected

entropy in boundary conformal field theory (BCFT) and
interface CFT (ICFT). BCFT is introduced in [18] and
developed in many works. In this article, we particularly

focus on the left-right entanglement, which is mainly
explored in BCFT [19–21]. Interface CFT (ICFT) is a class
of CFTs where two (possibly different) CFTs are connected
along an interface [22–24]. The entanglement entropy in
ICFT is studied in various ð1þ 1Þ-d CFT setups [25–29]. If
one considers the reflected entropy in BCFT/ICFT, one may
have several questions, for example, can we directly extract
the entanglement wedge cross section between the subsys-
tem and the island (see Fig. 5)? how can we evaluate the
reflected entropy in ICFTs? We answer these questions.
Regarding the first question,wewill introduce a newquantity
“left-right reflected entropy (LRRE)” and show its holo-
graphic dual. In regards to the second question, we will
introduce a new technique to evaluate reflected entropy in
ICFT/BCFT. This has a wide range of applications. For
example, the analysis in [9] is based on numerical calculation
because of a technical reason. We can now overcome this
problem by the method developed in this article [30].
There is another motivation to investigate the reflected

entropy in BCFT/ICFT. Recent progress on the information
paradox problem is provided in a class of toy models where
the black hole and a nongravitational bath CFT are glued
along the (asymptotic) boundary, which is called the island
model [31–33]. Thismodel is related to BCFT/ICFT through
the AdS/BCFT and the braneworld holography [34–50].
There are several works about the reflected entropy in the

island model [17,51–54]. In this context, our new measure
in BCFT and new technique in ICFT have the potential to
provide a new understanding of the island model.

II. LEFT-RIGHT MUTUAL INFORMATION

The left-right entanglement entropy (LREE) is defined
by a reduced density matrix obtained by tracing over the
right moving sector [19–21],

*ykusuki@caltech.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 106, 066009 (2022)

2470-0010=2022=106(6)=066009(7) 066009-1 Published by the American Physical Society

https://orcid.org/0000-0002-9784-0975
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.066009&domain=pdf&date_stamp=2022-09-12
https://doi.org/10.1103/PhysRevD.106.066009
https://doi.org/10.1103/PhysRevD.106.066009
https://doi.org/10.1103/PhysRevD.106.066009
https://doi.org/10.1103/PhysRevD.106.066009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Sðl=rÞ ≡ −trρðLÞ log ρðLÞ; ð1Þ

where ρðLÞ ≡ trRρ. One can generalize this quantity by
considering a reduced density matrix obtained by tracing
over the right moving sector and a part of the left moving
sector,

SðLÞðAÞ≡ −trρðLÞA log ρðLÞA ; ð2Þ

where ρðLÞA ≡ trĀ∪Rρ. This quantity can be calculated by the
replica trick in the same way as in [19–21]. One can also
calculate it by a correlation function with chiral twist
operators [55]. With this quantity, one can introduce an
interesting quantum information quantity, which we call the
left-right mutual information (LRMI),

Iðl=rÞðAÞ≡ SðLÞðAÞ þ SðRÞðAÞ − SðAÞ: ð3Þ

The physical interpretation is in the following. Let us
consider a local excitation that creates a pair of left and
right movers. The LRMI increases if both of them are
included in the subsystem A. That is, the LRMI counts the
number of such pairs (see Fig. 1).
In CFTs with timelike boundary, the LRMI has a nice

picture. Let us consider the LRMI on a half-plane ℜz > 0

(see the left of Fig. 2). In a similar way to the state-operator
correspondence, a conformal boundary can be described by
a linear combination of the Ishibashi states [18],

jBi ¼
X

i

biji⟫: ð4Þ

The explicit form of the Ishibashi state is

ji⟫≡X

N

ji;Ni ⊗ Uji;Ni; ð5Þ

where ji;Ni is a state in the Verma module i labeled by N,
andU is an antiunitary operator. By unfolding the Ishibashi
states (which we will denote by kik≡P

N ji;Ni⊗Uhi;Nj),
we obtain an interface-like CFT where the interface-like
operator IðBÞ ¼ P

i bikik is inserted along the line z ¼ 0
(see the right of Fig. 2). In this picture, the LRMI is just the
mutual information between A1 and A2 (Ai is defined in the
right of Fig. 2) in this interface-like CFT.
For later use, we first show the calculation of the

LREE for the whole system in our language. The LREE
for a system in a strip with size L can be evaluated by
the boundary primary correlator with two chiral twist
operators,

Sðl=rÞ ¼ lim
n→1

1

1 − n
log

hσbnð0Þσ̄bnðLÞistrip
hIinstrip

; ð6Þ

where we denote the boundary primary by the superscript
b. The coefficient of the two-point function can be
evaluated by the conformal map to a cylinder [20] as

ασbn ≡
P

ijbij2nSi0
ðPijbij2Si0Þn

; ð7Þ

where Sij is the modular S matrix and hn is the conformal
dimension of the twist operator hn ≡ c

24
ðn − 1

nÞ. While one
sometimes includes the cutoff parameter ϵ2hn into the
coefficient, we split this contribution from the coefficient
in this article. For example, in a diagonal Rational
Conformal Field Theory (RCFT), we obtain

Sðl=rÞ ¼ c
6
log

L
ϵ
−
�X

i

S2ai log
S2ai
S0i

�
; ð8Þ

where we label the Cardy state by a. The constant term is
called the topological entanglement entropy. For special
boundary states, the same constant term can also be found
in (2þ 1)-d Topological Quantum Field Theories
(TQFTs) as the topological entanglement entropy [20].
Let us move on to the LREE for a subsystem A ¼ ½a; b�,

that is, the LRMI. Except for some special models, the
calculation of the LRMI is difficult. To show a concrete
calculation of the LRMI, we focus on the holographic
CFT. The entropy SðAÞ can be evaluated by a correlation

FIG. 1. To give an interpretation of the LRMI, it would be nice
to consider the time dependence of the LRMI after a local quench
in an integrable system. In the phase ①, both the left and right
mover are in the subsystem A. This entanglement pair increases
the LRMI. In the phase ②, there is no such pair in the subsystem
A. Consequently, the LRMI vanishes.

FIG. 2. The unfolding process of the boundary state. The
kinematics can be fixed by the conformal symmetry of the full
plane, called the doubling trick [18].
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function of four chiral twist operators with the interface-
like operator IðBÞ,

hσ̄nðz̄1Þσnðz̄2ÞIðBÞσnðz1Þσ̄nðz2Þi: ð9Þ

This correlation function can be expanded as

gn
X

P

C2
σnP

FVir
P ð1 − zÞ; ð10Þ

where the sum runs over boundary primaries and FVir
P ðzÞ

is the Virasoro block with the cross ratio z≡ z12z34
z13z24

. The
g-function represents a disk partition function [58]. In this
holographic CFT, the sum can be approximated by just the
vacuum block if z is enough large. The bulk-boundary
operator product expansion (OPE) coefficient C2

σnI
can be

evaluated by the unwrapping procedure [56]. Note that the
unwrapping procedure does not change the profile of

the boundary [43]. The entropy SðLÞA is completely fixed
by the conformal symmetry. As a result, we obtain

Iðl=rÞðAÞ ¼ max

�
c
6
log

ðb − aÞ2
4ab

− 2 log g; 0

�
: ð11Þ

The trivial case, Iðl=rÞðAÞ ¼ 0, is given by the vacuum block
approximation of the dual channel.

III. LEFT-RIGHT REFLECTED ENTROPY

In a similar way to the LRMI, one can introduce another
related quantity, left-right reflected entropy (LRRE), which
is a generalization of reflected entropy introduced in [2]
(a similar notion was introduced in Chern-Simons theories
[11]). To define the LRRE, we consider a canonical
purification of a state ρA in a doubled Hilbert space
HA ⊗ H�

A. The LRRE is defined by the reduced density
matrix obtained from the purified state j ffiffiffiffiffi

ρA
p i by tracing

over the right moving sector,

Sðl=rÞR ðAÞ≡ −trρðLÞAA� log ρ
ðLÞ
AA� ; ð12Þ

where ρðLÞAA� is the reduced density matrix of ρAA� ¼
j ffiffiffiffiffi

ρA
p ih ffiffiffiffiffi

ρA
p j after tracing over the right moving sector.

The physical interpretation of the LRRE is similar to the
LRMI. For example, if one evaluates the LRRE in an
integrable system, the LRRE behaves in the same way as
the LRMI shown in Fig. 1. Nevertheless, if one focuses on a
nonequilibrium process in a chaotic system where the
quasiparticle picture breaks down, the LRRE shows a
behavior different from the LRMI (see [3–6]).
Let us focus on CFTs with timelike boundary at z ¼ 0.

To calculate the LRRE, we can employ the replica trick in
the path integral formalism as in [59]. In the same way as
the LRMI, we define the corresponding replica manifold in

BCFTs by unfolding (see Fig. 2). This replica manifold is
shown in Fig. 3, The reflected entropy can be evaluated by
the partition function on this replica manifold Zn;m as

Sðl=rÞR ðAÞ ¼ lim
n;m→1

1

1 − n
log

Zn;m

ðZ1;mÞn
; ð13Þ

where the analytic continuation m → 1 is taken for even
integer m. In a similar way to [2], this replica partition
function can be reexpressed as a correlation function with
four chiral twist operators,

Zn;m ¼ hσgAð−bÞσg−1A ð−aÞIðBÞσgBðaÞσg−1B ðbÞiCFT⊗mn ; ð14Þ

where we take the interval B ¼ ½a; b� and its mirror
A ¼ ½−b;−a�. For the same reason as (9), the correlation
function includes the interface-like operator. To avoid
unnecessary technicalities, we do not show the precise
definition of the twist operators σgA and σgB (see [2])
because in this article, we only use the conformal dimen-
sion of the twist operators,

hσgA ¼ hσg−1
A

¼ hσgB ¼ hσg−1
B

¼ cn
24

�
m −

1

m

�
ð¼ nhmÞ;

hσg−1
A

gB
¼ hσg−1

B
gA
¼ c

12

�
n −

1

n

�
ð¼ 2hnÞ; ð15Þ

where hσg−1
A

gB
(hσg−1

B
gA
) appears as the conformal dimension

of the lowest primary operator in the OPE between σg−1A and
σgB (σg−1B and σgA).
The reflected entropy has a nice bulk interpretation. One

can show that the reflected entropy is dual to twice the area
of the entanglement wedge cross section, SR ¼ 2EW [2].
In a similar way, one can find the holographic dual of the
LRRE. In the holographic CFT, the correlation function

FIG. 3. The replica manifold that calculates the reflected
entropy. Edges labeled with the same number get glued together.
The red lines describe the interface-like operators.
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(14) in the limits n → 1 andm → 1 can be approximated by
a single Virasoro block FVirð2hnj1 − zÞ if z is large enough
and then we have

Zn;m

ðZ1;mÞn
¼ C2

σg−1
A
σgBσ

b
gAg

−1
B

�
1þ ffiffiffi

z
p

2
ffiffiffiffiffiffiffiffiffiffi
1 − z

p
�

−4hn
: ð16Þ

The OPE coefficient Cσg−1
A
σgBσ

b
gAg

−1
B

can be evaluated by the

unwrapping trick [56] (see also [2]). Since the unwrapping
procedure does not affect the interface, we have

Cσg−1
A
σgBσ

b
gAg

−1
B

¼ ð2mÞ−2hn ασn ; ð17Þ

where ασn is defined in (7). The reason why we obtain the
coefficient ασn is explained in Fig. 4. Thus, the reflected
entropy is given by

Sðl=rÞR ðAÞ ¼ c
3
log

�
b
a

�
þ const; ð18Þ

which completely matches twice the area of the entangle-
ment wedge cross section defined in Fig. 5 up to constant.
In a similar way, one can also evaluate the LRRE in the

limit of the adjacent intervals 1 − z ¼ 4ab
ðaþbÞ2 ≪ 1. For

example, the LRRE for the Cardy state jai in a diagonal
RCFT in this limit is given by

Sðl=rÞR ðAÞ → c
6
log

ðaþ bÞ2
ab

− 2

�X

i

S2ai log
S2ai
S0i

�
: ð19Þ

The second term comes from the coefficient ασn in (17).
The second term is equal to twice the LREE (8), which is
consistent with the fact SRðA; ĀÞ ¼ 2SðAÞ. In the limit of
the adjacent intervals, one can find that the Markov gap
[17] has the following form:

Sðl=rÞR ðAÞ − Iðl=rÞR ðAÞ ¼ c
3
log 2þ � � � : ð20Þ

This universal term can also be found in a special tri-
partition setup [15]. The additional terms � � � depend on the
details of the boundary.
Note that in the holographic CFT, the LRRE for a finite

subsystem satisfies the inequality (an analog of [17] in
CFTs without boundary),

Sðl=rÞR ðAÞ − Iðl=rÞR ðAÞ ≥ c
6
log 2

× ðnumber of cross section boundariesÞ: ð21Þ

It is claimed that the reflected entropy is more sensitive to
multipartite entanglement [14,15]. The OðcÞ difference
between the reflected entropy and the mutual information
implies that there must be a large amount of tripartite
entanglement in our tripartition setup associated with the
division of the left/right moving sectors.

IV. REFLECTED ENTROPY IN INTERFACE CFT

In a similar way to the LRRE, we can define the reflected
entropy in an interface CFT, i.e., CFT1 ⊗ CFT2 with
central charge c1 and c2 (see our setup in Fig. 6),

FIG. 4. Sketch of how to evaluate the OPE coefficient. We can
unwrap the m-fold branch cut by the conformal transformation
z → z

1
m. This unwrapping leads to a sphere with one interface line

(black line) and the n-fold branch cut (red line), whose edge is
attached to the interface. This is completely the same as the setup
studied in [25,26]. Using the technique in [25,26], one can
evaluate this partition function.

FIG. 5. The holographic dual of the LRRE in BCFTs. This is
given by the entanglement wedge cross section (EWCS), which is
defined in [60,61].

FIG. 6. The setup that we consider. The interface is symmet-
rically located on the two intervals. One can also consider an
asymmetric setup for topological interfaces.
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SRðA; BÞ ¼ lim
n;m→1

1

1 − n
log

Zn;m

ðZ1;mÞn
; ð22Þ

where the partition function is expressed in terms of (not
chiral) twist operators as

Zn;m ¼ hσgAðu1Þσg−1A ðv1ÞIðAÞσgBðu2Þσg−1B ðv2ÞiCFT⊗mn ; ð23Þ

where we take the intervals A ¼ ½u1; v1� and B ¼ ½u2; v2�
with u1 < v1 < u2 < v2. Since the calculation of the
reflected entropy is still difficult in general, we focus on
the case where the correlation function is approximated by
the single block, as in the holographic CFT or in the limit
of the adjacent intervals. In a similar way to the BCFT
case, one may approximate the correlation function in the
holographic CFT as

Zn;m

ðZ1;mÞn
¼ C2

σg−1
A
σgBσ

b
gAg

−1
B

jFVirð2h0nj1 − zÞj2; ð24Þ

where h0n ≡ ceff
24
ðn − 1

nÞ [62] and

Cσg−1
A
σgBσ

b
gAg

−1
B

¼ ð2mÞ−4hn α2σn ; ð25Þ

where the twist operator is not a chiral twist operator unlike
that in (6). This is true for topological defects but in general,
could not be true. This is because one cannot organize the
descendant contributions in the same way as CFT without
defects. One thing we can say for sure is that the leading
contribution in the limit of the adjacent intervals z → 1 is
given by

Zn;m

ðZ1;mÞn
¼ C2

σg−1
A
σgBσ

b
gAg

−1
B

jð1 − zÞ2h0n j2: ð26Þ

The effective central charge ceff ∈ ½0;minðc1; c2Þ� depends
on a profile of the interface (see [25]). Consequently, the
reflected entropy in the limit of the adjacent intervals 1 −
z ¼ 4ab

ðaþbÞ2 ≪ 1 is given by

SRðA;BÞ ¼
ceff
3

log
ðaþ bÞ2

ab
þ const: ð27Þ

The OPE coefficient can be obtained by the unwrapping
procedure (see Fig. 4). For the same reason as the
entanglement entropy, it is difficult to evaluate the OPE
coefficient (more precisely, an analog of ασbn) in generic
interface CFTs. Nevertheless, in a specific case, topological
interface, we can give the explicit form of the constant
part as

−4
X

i

pA
i log

pA
i

p0
i
: ð28Þ

The probability is defined by pA
i ¼ jdAi j2jSi0j2=N A

0A,
where dAi is the coefficient of the interface operator
IðAÞ≡P

i d
i
Akik. N A

0A is the multiplicity of the vacuum
representation in the closed string sector of the partition
function. We denote the trivial (identity) interface operator
by Ið0Þ. (See [27] for its derivation and interpretation.) For
topological interfaces, the Markov gap is given by

SRðA;BÞ − IðA; BÞ ¼ 2c
3
log 2þ � � � : ð29Þ

The additional terms � � � depend on the details of the
interface. This universal term is completely consistent with
[15]. In general interfaces, the Markov has a complicated
form. We provide further analysis in [30].
Let us focus on the holographic interface. One natural

realization of the holographic dual of the interface CFT is
given by the so-called Janus solution [24,63,64]. The
entanglement entropy in this holographic interface is
evaluated in various setups [65–67]. In a similar way to
[65–67], the entanglement wedge cross section can be
evaluated. In the case considered in [67] (also in [65,66]),
the reflected entropy is given by

SRðA; BÞ ¼
2ceff
3

log

�
b
a

�
þ const: ð30Þ

The effective central charge is the same as that found
in [66].
There is another realization by simply connecting two

geometries by a thin brane [65,67–73], which is a gener-
alization of the bottom-up AdS/BCFT [74,75]. Although
there is limited knowledge about the CFT dual of this
model, this model is interesting for two reasons. Unlike the
top-down model, the thin-brane model is a minimal gravity
dual of ICFT. This is an analog of pure gravity. Another
reason comes from the island model [31–33]. One can think
of the thin brane as a gravity theory coupled to a non-
gravitational bath CFT, called the braneworld holography
[76]. Through this holography, one can investigate the
island model by the ICFT dual to the thin-brane model. In
the thin-brane model, the minimal cross section of the
entanglement wedge is given by

SRðA;BÞ ¼
2minðc1; c2Þ

3
log

�
b
a

�
þ const: ð31Þ

This form of the reflected entropy is nontrivial as we
mentioned below (24). This may strongly constrain the
profile of the holographic interface.

V. DISCUSSIONS

In this article, we develop the idea of reflected entropy
in BCFT/ICFT. We propose some remaining questions
and interesting future works. It would be interesting to
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investigate the reflected entropy in various setups with
boundaries or interfaces, which would tell us about the
multipartite entanglement between bulk and boundary/inter-
face. In the holographic CFT, one can explicitly evaluate the
reflected entropy in BCFT/ICFT, which has the potential to
identify the profile of the holographic interface in the CFT
language. An interesting future work is to apply our analysis
to the island model, which is essentially a special class of
BCFT/ICFT. From such an analysis, one may be able to
understand the multipartite entanglement structure of the

island model. It is known that the LREE in ð1þ 1Þ-d CFT
has a nice interpretation in ð2þ 1Þ-d TQFT [11,20,77]. It
would be interesting to find the TQFT picture of the LRRE.
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