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We study the generalized entanglement entropy in the higher-dimensional two-sided eternal black hole
by double holography. By introducing an end of the world ETW brane, which defines the time-dependent
effective Hawking radiation region, we find a new type of Ryu-Takayanagi surface besides the Hartman-
Maldacena surface and the island Ryu-Takayanagi surface known previously. We study the phase transition
among the three Ryu-Takayanagi surfaces at different temperatures and obtain the phase diagram as well as
the Page curve.
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I. INTRODUCTION

The calculations of Hawking showed that black holes
have thermodynamic properties like temperature and
entropy. The idea is that a pair production that occurs near
the horizon could lead to one particle to fall into the black
hole and the other to escape to infinity, this leads to the well
known Hawking radiation [1,2]. Since a black hole is
formed from a pure state, this state should evolve in a way
that it ends up in a final state that is also pure if the
evolution were to obey unitarity. However, as the black hole
evaporates completely, all that is left is thermal radiation so
that the final state is in a mixed state. Apparently, the
information that fell into the black hole vanishes. This leads
to the black hole information paradox and violates unitarity
which is one of the fundamental principle of quantum
mechanics.
Don Page showed that if a black hole is formed from a

pure state and evaporates unitarily then the von Neumann
entropy of Hawking radiation should initially rise until the
so-called Page time when it starts to drop down to zero as
the black hole completely vanishes. This corresponds to the
process where information can leak out from the black hole
and is encoded in the Hawking radiation. However, this can

only happen at late times past the Page time when the black
hole has evaporated around half of its original state. This
trend followed by the Hawking radiation is called the Page
curve [3]. Over the years, there were many proposals in
addressing the black hole information paradox [4–21]. It
was believed that the Page curve can only be obtained in the
quantum gravity theory.
It has been shown by Bekenstein and Hawking that the

entropy of a black hole is proportional to its horizon area
which is the so-called Bekenstein-Hawking (BH) formula
[22,23]. This is a clear demonstration of the connection
between a quantum-mechanical quantity and a geometric
quantity. This connection was later generalized by Ryu and
Takayanagi (RT) through the AdS/CFT correspondence,
where they proposed a prescription connecting the entan-
glement entropy of a regionA in a field theory to an area of a
codimension-twominimal surfaceEA, called theRT surface,
in its static dual bulk spacetime [24,25]. This prescription
was subsequently generalized by Hubeny, Rangamani and
Takayanagi (HRT) to the HRT surface in a time dependent
bulk spacetime [26]. The entanglement entropy calculated in
this way is called the holographic entanglement entropy.
To include the quantum correction, the generalized

entropy (fine-grained or von Neumann entropy) in a
CFT was proposed in [27]. Soon after, the holographic
prescription for the generalized entropy was proposed by
including the bulk entropy and finding a quantum extremal
surface (QES) [28,29]. Remarkably, based on the entan-
glement wedge reconstruction [30], the authors in [31,32]
showed that the Page curve can be obtained in the semi-
classical calculation of the generalized entropy by holo-
graphic correspondence.
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The QES in the context of a two-dimensional Jackiw-
Teitelboim (JT) gravity theory coupled to nongravitational
conformal matter, i.e., the so-called thermal bath, has been
studied in [33,34]. The bulk entropy was calculated by the
double holography scheme. It was found that in order for
the Hawking radiation to follow the Page curve for an
evaporating black hole, an island should emerge along with
a QES inside the horizon at late times to account for
unitarity. While for the eternal black hole, it was shown that
the QES could be outside the horizon [35–38].
The island formula has soon been extended to higher-

dimensional spacetime [39–79]. Using the Randall-
Sandrum (RS) brane scenario to study the QES in a
higher-dimensional thermofield double state has been
discussed pioneeringly in [40,43]. Later on, to combine
both the RS brane scenario and Dvali-Gabadadze-Porrati
(DGP) gravity [80], the intrinsic curvature of the branes is
added in the action of the modified braneworld theory [44].
Several works which studied the Page curve more

closely and the validity of the island formula can be found
in [81–96]. A study which showed the possible existence of
quantum extremal surfaces and entanglement wedges in flat
space can be found in [97]. Also, the calculation of a Page
curve consistent with unitarity that relied on semiclassical
calculations and did not need the island formulation can be
found in [98]. A review of the information loss paradox and
its resolution using the island formulation can be found
in [99–101].
Later on, coupling the JT gravity theory to a thermal bath

at a finite temperature has been studied in [102–106], where
the doubly-holographic bulk spacetime is a black hole
instead of a pure anti–de Sitter (AdS) spacetime. However,
coupling a higher-dimensional gravity theory to a thermal
bath at a finite temperature is still not clear.
On the other hand, boundary conformal field theory

(BCFT) is a conformal field theory defined on a manifold
with boundaries where suitable boundary conditions are
imposed [107]. Early studies of holographic dual of defect
or interface CFT can be found in [108,109]. The holo-
graphic dual of BCFT by including extra boundaries in the
gravity dual was proposed in [110–112]. In other words, a
holographic construction of conformal field theories with
boundaries can be established with some appropriate
boundary conditions [113,114]. The holographic entangle-
ment entropy has been studied in [113–115]. Using holo-
graphic BCFT to study the Page curve has been addressed in
[39,40,47].
In the previous studies, the radiation region was con-

sidered to be the half-infinite space, i.e., the thermal bath,
and the entanglement entropy between the radiation region
and the gravitational region including the black hole was
computed. However, we cannot practically measure the full
information in a half-infinite space. In fact, before a black
hole couples to a thermal bath, the radiation from the black
hole reflects back at the boundary of the gravitational

region. The radiation starts to enter the radiation region
when a thermal bath is coupled, and travels to infinity at the
speed of light. The radiation front forms a moving surface
in the thermal bath. The actual radiation region should be
the time-dependent finite region between the boundary and
the moving surface.
In this paper, we use the modified braneworld theory to

study the holographic entanglement entropy of a (dþ 1)-
dimensional BCFT at finite temperatures, whose dual bulk
spacetime is an asymptotically AdSdþ2 black hole. We
introduce an end of the world (ETW) brane which is the
hypersurface representing the Hawking radiation front. This
ETW brane defines a time-dependent effective radiation
region, which supports a new type of RT surface instead of
the two known ones, see the sketch in Fig. 1. The two black
circles on the two ends represent the entanglement surfaces.
There are three possible RT surfaces that may appear. One is
the two disconnected blue hemispheres that anchors on the
entanglement surfaces. Another is the green inner cylinder
which connects the entanglement surfaces directly. In
addition, there is a third one, the two red hatlike surfaces,
if there exists an ETW brane represented by the outer
cylinder. This RT surface anchors on both the entanglement
surfaces and the ETW brane. We examine the competition
among the three RT surfaces that may appear in the course
of the evolution of the Page curve by studying the phase
transitions among them and the phase diagram.
This paper is organized as follows. In Sec. II we review

the basics of holographic entanglement entropy and discuss
our setup including the purification, double holography,
and BCFT that will be used in our work. In Sec. III we
calculate the holographic entanglement entropy for the
three RT surfaces. In Sec. IV we examine the phase
transitions among the RT surfaces then discuss the phase
diagram and the Page curve at different temperatures. We
conclude our results in Sec. V.

FIG. 1. The three-dimensional illustration of the BCFT model
where different RT surfaces are displayed. The green inner
cylinder is the Hartman-Maldacena surface, the red hat-like
surfaces are the boundary RT surfaces, and the blue hemispheres
are the island RT surfaces. The boundary/ETW brane of the CFT
is represented by the outer cylinder, while the Planck brane is the
axis in the middle of the cylinder.
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II. BACKGROUND AND SETUP

A. Generalized entanglement entropy

Consider a Hilbert spaceH of a quantum field theory on
a Cauchy time slice and divideH into two regionsA and its
complement Ac. We denote the density matrix of the states
in H by ρ. The entanglement entropy between the states in
A and Ac is defined as

SA ¼ −Tr½ρA ln ρA�; ð1Þ

where

ρA ¼ TrAcρ; ð2Þ

is the reduced density matrix of the region A.
Assuming the quantum field theory has a dual gravity

theory living in a higher-dimensional asymptotic AdS bulk
spacetime M through the holographic correspondence
[116,117], the entanglement entropy between A and Ac

can be calculated by the Ryu-Takayanagi (RT) formula
[24,26],

SclassA ¼ min
EA

AreaðEAÞ
4GN

; ð3Þ

whereGN is the Newton constant and EA is a codimension-
two RT surface in the bulk spacetimeMwhich is anchored
on the boundary ∂A of the entangling region A. It is
important that the RT surface EA is homologous to A. The
presence of the boundaries Q in the BCFT spacetime
allows the RT surface EA to reach the boundaryQ as shown
in Fig. 2.
To include the quantum correction, we need to consider

the generalized holographic entanglement entropy [27],

SgenA ðEAÞ ¼
AreaðEAÞ

4GN
þ SbulkðEAÞ; ð4Þ

where SbulkðEAÞ is the bulk entropy between the entangle-
ment wedge RA bounded by A ∪ EA, and its complemen-
tary region in the bulk space.

The fine-grained entanglement entropy is defined as the
minimal value of the generalized entanglement entropy,

SA ¼ min
X

½SgenA ðXÞ� ¼ min
X

�
AreaðXÞ
4GN

þ SbulkðXÞ
�
; ð5Þ

where X is the QES that minimizes the generalized
entanglement entropy SgenA ðXÞ.

B. Black hole coupled to thermal bath

In the papers of AEM4Z [32,33], a 2d Jackiw-Teitelboim
(JT) gravity on AdS2 is coupled to a matter CFT2. This 2d
system is holographically dual to a 1d quantum mechanical
system. If this 2d theory containing a black hole is coupled
to a bath which consists of the same CFT2 but now living
on a flat space, then the black hole is permitted to evaporate
into the bath.
To study the Hawking radiation for an evaporating black

hole, one has to deal with a time-dependent spacetime.
Alternatively, one can consider a thermofield double state
(TFD) that is dual to a two-sided eternal black hole [35].
The Penrose diagram of the eternal black hole system is
shown in Fig. 3. There are two copies of the CFT, CFTL,
and CFTR, living on the boundaries of two copies of the
exterior region (shaded in lighter blue color), which are
connected by a wormhole (shaded in darker blue color).
The bifurcation dashed lines are the event horizons of the
eternal black hole.
The system is time invariant as time evolves forward on

one side while backwards on the other side. However, one
can consider time evolving forward on both sides to
introduce the time dependence in this system [118].
In addition, in order to allow the eternal black hole to

radiate, we couple two copies of an auxiliary thermal bath
[119] (shaded in light yellow color) at the boundaries of the
two exterior regions. The two copies of the thermal bath are
in flat spacetime and have the same finite temperature T
with the black hole. The eternal black hole together with the
two copies of the thermal bath comprises a pure system.
We are going to calculate the entanglement entropy of

the CFTs on the boundaries of the exterior regions using the
generalized entanglement entropy in Eq. (5). To do so, we

(c)(a) (b)

FIG. 2. Three possible RT surfaces EA of an entangling region A extending to the bulk spacetime M where the holographic dual
gravity theory lives. The colored regions represent the entanglement wedges in different configurations. The definition of the notation
can be found in Sec. II D. (a) Sunset, (b) rainbow, and (c) sky.
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introduce a cutoff at x ¼ bL;R which is slightly inside the
left or right bath regions. The cutoff separates the whole
system into two regions; the gravitational region that
includes the black hole with its boundaries, and the
radiation region where the Hawking radiation escapes.
The entanglement region is thus the surface at the cut-
off x ¼ bL;R.
Through the holographic correspondence, the entangle-

ment entropy of the CFTs can be obtained by finding a
minimal area surface in the bulk gravity spacetime that is
homologous to the entanglement region. Classically, the
minimal surface is the union of the two horizons, i.e., the
classical RT surface, which is a time-independent constant.
The classical RT surface gives the coarse-grained entropy
that sets the upper bound of the entanglement entropy of the
Hawking radiation.
Including quantum corrections, the QES is the surface

that minimizes the generalized entanglement entropy
Eq. (5). The location of the QES on a Cauchy slice is
generically different at different slices, so the fine-grained
entropy of the eternal black hole is time dependent.
Furthermore, there could be more than one QES that
minimize the entanglement entropy locally. The dominant
QES should be the one which globally minimizes the
entanglement entropy. This implies the possible phase
transitions between different QES.
Having the basic picture in mind, let us now consider

the radiation region in more detail. We couple the bath to
the eternal black hole at a certain time t ¼ th. We assign the

bath to have the same temperature as that in the eternal
black hole. As the Hawking radiation from the black hole
escapes to the thermal bath, there is the same amount of
energy that goes back to the black hole from the bath so that
the whole system is in thermodynamic equilibrium.
To decode the information inside the black hole, we need

to measure the Hawking radiation from the black hole
traveling to the thermal bath. Once the Hawking radiation
has entered the bath, it then travels along the outgoing null
surface at the speed of light as shown in Fig. 3. At time
t ¼ tb, the earliest Hawking radiation reaches the cutoff at
bL;R ¼ cðtb − thÞ and enters into the radiation region. We
then start to measure the Hawking radiation from the time
tb and set it as our initial time.
At a later time t > tb, the earliest radiation will reach a

surface at

xL;R ¼ bL;R þ cðt − tbÞ ¼ cðt − thÞ; ð6Þ

which behaves as an ETW brane.1 Since there is no
radiation beyond the ETW brane, the effective radiation
region is just the spacelike region between the cutoff and
the ETW brane, namely ½bL; xL� ∪ ½bR; xR�, which increases
with time.
As we have mentioned, the whole system including both

the eternal black hole and the thermal bath is a pure system,
so that the bulk entanglement entropy in Eq. (5) equals

FIG. 3. The Penrose diagram of the two-sided eternal black hole. The violet dashed lines represent the event horizon of the black hole
(z ¼ zh), which separates the black hole into interior (darker blue) and exterior (lighter blue) regions. Two copies of the CFT live on the
two boundaries of the eternal black hole. Two copies of the bath (light yellow) are coupled to the boundaries of the black hole. The
vertical dashed curves are the cutoff at x ¼ bL;R. The black arrow represents the time-dependent ETW braneQE. The horizontal curves
are Cauchy slices at different boundary times with the red, green, and blue fragments representing the entanglement regions of the
Hawking radiation.

1We will set c ¼ 1 in the remainder of the paper.
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the entanglement entropy of the Hawking radiation in the
effective radiation region R as shown in the Fig. 3. The
entanglement entropy of the radiation region R can be
calculated using the island formula [33,44],

SEEðRÞ ¼ min

�
ext

�
SðR ∪ IÞ þ Areað∂IÞ

4Gðdþ1Þ
N

��
: ð7Þ

It can be shown that, at early times, the entanglement
entropy of the effective radiation region is always domi-
nated by the vanishing island I ¼ ∅ with Areað∂IÞ ¼ 0.
The bulk entropy SðR ∪ ∅Þ corresponding to the vanishing
island, monotonically increases from zero and will even-
tually exceed the coarse grained entropy implying the
information paradox.
Remarkably, there exists a nontrivial QES outside of the

horizon for the eternal black hole [118] that implies a
nonvanishing island I between the two nontrivial QES.
The bulk entropy corresponding to this nonvanishing island
equals the entanglement entropy of the union of the
radiation region with the island and will dominate at late
times as shown in the Fig. 3.
Since the QES is outside of the horizon, the generalized

entanglement entropy for the nonvanishing island is a
constant. At a later time, e.g., t ¼ tI in Fig. 3, the
nonvanishing island case will dominate the system. The
time at which the phase transition between the vanishing
and nonvanishing island takes place is called the Page time.
The phase transition of the generalized entanglement
entropy leads to the well-known Page curve for the eternal
black hole.
The eternal black hole in two dimensions has been

studied in [35]. Extension to higher dimensions was
previously considered in [40,43,44]. The main difficulty
in obtaining the generalized entanglement entropy is
calculating the bulk entropy in curved spacetime. In two
dimensions, the replica trick is used to compute the
entanglement entropy through the path integral approach.
However, this trick is difficult to be generalized to higher
dimensions.
In Sec. II C, we will use the idea of double holography to

calculate the bulk entanglement entropy [33]. It has been
shown that combining double holography with BCFT is a
powerful method to calculate the bulk entanglement
entropy and can be generalized to higher dimensions [50].

C. Double holography

To calculate the bulk entanglement entropy in JT gravity,
the authors of [33,34] introduced a 3d spacetime that is
holographically dual to the 2d matter CFTs and the baths,
i.e., the double holographic duality. The 3d double holo-
graphic bulk metric is locally an AdS3 spacetime with a
boundary on which the 2d theory is living. This is similar to
the RS model, where the boundary is called the Planck
brane [108,120,121].

Extending the RS brane scenario to a higher-dimensional
thermofield double state has been discussed pioneeringly in
[40,43]. Later on in [44], the intrinsic curvature term of the
branes is added in the action that combines the features of
both the RS brane scenario and the DGP gravity [80].
As shown in [43], there are three equivalent perspectives

to describe the system. In the boundary perspective, a pair of
(dþ 1)-dimensional CFTs live on a region ½0; xL;R� with a
d-dimensionalCFT living on its boundary at x ¼ 0 indicated
by the green square dots as shown in Fig. 4(a), where x ¼
bL;R is the cutoff and the other boundary is at x ¼ xL;R. The
effective Hawking radiation region is ½bL; xL� ∪ ½bR; xR�.
The brane perspective can be realized by using holo-

graphic correspondence to replace the CFTd by a Planck
brane on which an asymptotically AdSdþ1 eternal black
hole lives, as shown in Fig. 4(b). We assign the radial
direction of the eternal black hole as z with the CFTd sitting
at z ¼ 0. The horizons of the eternal black hole are
indicated by the two purple square dots. As argued in
[43,108,122–128], the transparent boundary condition
between the gravitational and the radiation regions imply
that the stress tensor in CFTd is not conserved and will
generate an anomalous dimension, so that the dual graviton
gets a mass. However, if the central charge of the CFTd is
large, the effect from the mass can be negligible.
In the bulk perspective, we use the holographic corre-

spondence again to replace the CFTdþ1 by an asymptoti-
cally AdSdþ2 black hole bulk spacetime. This geometry can
be properly described by a holographic BCFT setup, as
shown in Fig. 4(c). The (dþ 1)-dimensional BCFT is dual
to an AdSdþ2 black hole bulk spacetime. The boundary
x ¼ 0 extends to the bulk spacetime as a Plank brane and
the other boundary x ¼ xL;R extends to the bulk spacetime
as an ETW brane. The embedding of the branes into the
bulk spacetime is determined by solving the holographic
BCFT system. The purple dashed lines represent the two
horizons in the bulk black hole. In the bulk perspective, the
bulk entanglement entropy in Eq. (4) can be calculated by a
classical RT surface in the bulk spacetime anchored on the
entangling surface at x ¼ bL;R.
In summary, our setup consists of two boundaries. One is

the boundary on the left at x ¼ 0 which corresponds to the
Planck brane, the other is the boundary on the right at
x ¼ xL;R which corresponds to the ETW brane. The
effective radiation region is ½bL; xL� ∪ ½bR; xR�.

D. Brief review of black hole solution in BCFT

In this subsection, we will briefly review a black hole
solution in the holographic BCFT that we will use in
this work.
The (dþ 2)-dimensional bulk spacetime M is holo-

graphically dual to a (dþ 1)-dimensional CFT defined on
the conformal boundary ∂M. ∂M has a d-dimensional
boundary P, which has a (dþ 1)-dimensional hypersurface
dual Q in M anchored at P, see Fig. 2.
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The action of the gravitational theory in the bulk is

S ¼ SM þ SGHY þ SQ þ S∂M þ SP ; ð8Þ

where

SM ¼
Z
M

ffiffiffiffiffiffi
−g

p ðR − 2ΛMÞ; ð9Þ

SQ ¼
Z
Q

ffiffiffiffiffiffi
−h

p
ðRQ − 2ΛQ þ 2KÞ; ð10Þ

S∂M ¼ 2

Z
∂M

ffiffiffiffiffiffi
−γ

p
K0; ð11Þ

SP ¼ 2

Z
P

ffiffiffiffiffiffi
−σ

p
θ: ð12Þ

SM is the Einstein-Hilbert action of M with R and ΛM
being the intrinsic Ricci curvature and the cosmological
constant ofM, respectively. SGHY is the Gibbons-Hawking-
York boundary term. SQ is the action of the (dþ 1)-
dimensional hypersurface Q with the induced metric
hab ¼ gab − nQa n

Q
b , where nQ is the unit normal vector of

Q, and RQ, ΛQ, K being the intrinsic Ricci curvature, the
cosmological constant, and the trace of the extrinsic curva-
ture of Q in M, respectively. S∂M is the action of the
conformal boundary ∂M with the induced metric
γab ¼ gab − n∂Ma n∂Mb , where n∂M is the unit normal vector
of ∂M, andK0 is the trace of the extrinsic curvature of ∂M.
SP is the boundary term of Q and ∂M with σab being the

metric of P and θ ¼ cos−1 ðnQ · n∂MÞ being the supple-
mentary angle between Q and ∂M, which makes a well-
defined variational principle on P.
Comparing the above BCFT system with the Penrose

diagram in Fig. 3,Q represents the Planck brane containing
the eternal black hole (blue region), ∂M represents the
thermal baths (light yellow region), and P is the boundary
of the eternal black hole at x ¼ 0 where the CFTs live.
A simple asymptotic AdSdþ2 black hole solution of the

above system has been obtained in [115],

ds2M¼ l2AdS
z2

�
−fðzÞdt2þ dz2

fðzÞþdx2þ
Xd−1
i¼1

ðdxiÞ2
�
; ð13Þ

where lAdS is the AdS radius and

fðzÞ ¼ 1 −
zdþ1

zdþ1
h

; ð14Þ

with zh the horizon of the black hole. The (dþ 1)-dimen-
sional conformal boundary ∂M is at z ¼ 0. The temper-
ature of the BCFT is given by the Bekenstein-Hawking
temperature of the black hole,

T ¼ dþ 1

4πzh
: ð15Þ

By varying SQ with hab we get the equations of motion
for Q,

(a) (b) (c)

FIG. 4. Three different perspectives of the gravity system, Hawking radiation system, and the holographic dual of these systems.
(a) Boundary perspective, (b) brane perspective, and (c) bulk perspective.
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RQab þ 2Kab −
�
1

2
RQ þ K − ΛQ

�
hab ¼ 0; ð16Þ

which is the Neumann boundary condition proposed by
Takayanagi in [110]. However, the condition (16) is too
strong which gives more constraint equations than the
degrees of freedom. In [113,114], Chu et al proposed the
following mixed boundary condition,

ðd − 1ÞðRQ þ 2KÞ − 2ðdþ 1ÞΛQ ¼ 0: ð17Þ

In our double holographic setup, we will use two
simple solutions of the (dþ 1)-dimensional hypersurface,
namely the Planck brane QP and the ETW brane QE. The
Planck brane QP is time independent and has an embed-
ding equation x ¼ 0, while the ETW brane QE is time-
dependent and described by the equation t ¼ x, these are
shown in Fig. 5. It is straightforward to show that the
intrinsic curvature, trace of the extrinsic curvature, and
the cosmological constant for the Planck brane QP and the
ETW brane QE are

RQP
¼−

dðdþ1Þ
l2AdS

; K¼0; ΛQP
¼−

dðd−1Þ
2l2AdS

; ð18Þ

and

RQE
¼−

dðdþ1Þ
3l2AdS

; K¼0; ΛQE
¼−

dðd−1Þ
6l2AdS

; ð19Þ

which satisfy the mixed boundary condition Eq. (17).
We would like to remark that the ETW braneQE has the

characteristics of a null cone only at z ¼ 0, while away
from z ¼ 0 this is not necessarily true. Nevertheless, a
sketch of the BCFT setup is shown in Fig. 5.

III. HOLOGRAPHIC ENTANGLEMENT ENTROPY
OF HAWKING RADIATION

As we have explained in Sec. II C, we are going to
calculate the entanglement entropy with the effective
radiation region ½bL; xL� ∪ ½bR; xR� as the entanglement
region. By holographic correspondence, it is proportional
to the area of the RT surface in the doubly holographic bulk
spacetime. The RT surface is anchored at the entanglement
surface x ¼ bL;R and is homologous to the effective
radiation region ½bL; xL� ∪ ½bR; xR�. At the leading order,
we only need to consider the classical RT surface. The area
of the surface is given by the Nambu-Goto string action,

S ¼
Z

ddþ1ξL ¼
Z

ddþ1ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detGab

p
; ð20Þ

where the induced metric is defined by

Gab ¼ gμν∂aXμ
∂bXν; ð21Þ

and the bulk metric gμν is given in Eq. (13).
Generically, there could be more than one locally mini-

mum surface. In the following of this section, we will find
that there are three minimum surfaces in our system. One is
the Hartman-Maldacena (HM) surface, which penetrates
the horizon and connects the cutoff at x ¼ bL;R. Another
one is the boundary RT (BRT) surface, which is anchored
not only on the cutoffs at x ¼ bL;R but also on the ETW
brane QE. The third one is the island RT surface (IRT) that
is anchored on the cutoff x ¼ bL;R and on the Planck brane
QP at the QES z ¼ zQES.
The RT surfaces at different times are shown in Fig. 6.

The red/green/blue line represents the BRT/HM/IRT sur-
face. At time t ¼ th, as shown in Fig. 6(a), the Hawking
radiation from the black hole reaches the boundary z ¼ 0
and enters into the thermal bath at x ¼ 0. At the initial time
t ¼ tb, as shown in Fig. 6(b), the Hawking radiation
reaches the cutoff x ¼ bL;R and enters into the effective

FIG. 5. The embedding of the Planck brane QP and the ETW brane QE whereQP is described by x ¼ 0, while the ETW brane QE is
described by t ¼ x.
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radiation region. Since the ETW brane locates at x ¼ bL;R
at the initial time t ¼ tb, the BRT surface vanishes, while
only the HM and the IRT surfaces are present as shown in
Fig. 6(b).
The BRT surface dominates the system at the early time

with the red region being the entanglement wedge as shown
in Fig. 6(c). As time evolves, the stretching of the interior of
the black hole causes the growth of the HM surface.
However, at the same time, the increase of the location
of the ETW brane allows the BRT surface to increase faster
than the HM surface. At a certain time, the BRT surface will
exceed the HM surface and the latter becomes dominant
with the green region being the entanglement wedge as
shown in Fig. 6(d).
Finally, after a critical time, both the BRT and HM

surfaces will exceed the IRT surface so that the IRT
becomes dominant with the blue region being the entan-
glement wedge as shown in Fig. 6(e). When the IRT surface
dominates, the entanglement wedge includes the part
between the QESs on the Planck brane, i.e., the island.
Since the QES is outside of the horizon in the eternal black
hole, the island contains the whole interior of the black
hole. Based on the entanglement wedge reconstruction,
after the critical time, we are able to reconstruct all the
information inside the black hole from the data observed in
the effective radiation region. The critical time is called the
Page time tP.
In the following calculations, we are going to denote the

(d − 1)-dimensional volume asZ
dd−1x ¼ Vd−1: ð22Þ

A. Hartman-Maldacena surface

The HM surface is a locally minimum surface penetrat-
ing the horizon and connecting the two cutoffs at x ¼ bL;R.
To describe the interior region behind the horizon, we make
the following coordinate transformation,

t ¼ vþ
Z

dz
fðzÞ ⇒ dt ¼ dvþ dz

fðzÞ : ð23Þ

The metric Eq. (13) then becomes

ds2 ¼ l2AdS
z2

�
−fðzÞdv2 − 2dvdzþ dx2 þ

Xd−1
i¼1

dx2i

�
; ð24Þ

where the HM surface is described by x ¼ bL;R
and v ¼ vðzÞ.
The string action Eq. (20) on the t–z plane (or the v–z

plane) after the coordinate transformation Eq. (23), can be
calculated as

SHM¼ ldAdSVd−1

4Gðdþ2Þ
N

Z
dz

1

zd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
dv
dz

��
fðzÞ

�
dv
dz

�
þ2

�s
:

ð25Þ

The conjugate momentum of v is

∂L
∂v0

¼ Cv ¼
fðzÞv0 þ 1

zd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−v0ðfðzÞv0 þ 2Þp ; ð26Þ

where v0 ¼ dv=dz. From Eq. (26) we can solve for v0 as

(a) (b) (c) (d) (e)

FIG. 6. The time evolution of the RT surfaces in the BCFT system. The red/green/blue line represents the BRT/HM/IRT surface. The
color of the shaded region represents the entanglement wedge whose entanglement entropy is dominant at that time.QP andQE label the
Planck brane and the ETW brane, respectively.
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v0 ¼ 1

fðzÞ
�
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
vz2d

fðzÞ þ C2
vz2d

s �
: ð27Þ

We choose the solution with the negative square root and
integrate it on z to get

v ¼
Z

zM

0

dz
fðzÞ

�
−1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
vz2d

fðzÞ þ C2
vz2d

s �
; ð28Þ

where zM is the turning point of the HM surface with the
boundary time t as shown in Fig. 7. Substituting Eq. (28)
back into Eq. (23), we obtain the expression of the
boundary time,

t ¼ −
Z

zM

0

Cvzddz

fðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞ þ C2

vz2d
p : ð29Þ

The turning point of the HM surface can be found by
imposing a boundary condition at z ¼ zM,

dz
dv

				
z¼zM

¼ fðzMÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzMÞ þ C2

vz2dM
−fðzMÞ

s
¼ 0; ð30Þ

which leads to the following expression of the conjugate
momentum Cv in terms of zM,

C2
v ¼ −

fðzMÞ
z2dM

: ð31Þ

As we have mentioned above, we will use

th ¼ −
Z

zh

0

ffiffiffiffiffiffiffiffiffiffiffi
fðzhÞ

p
zddz

fðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzhÞz2d − fðzÞz2dh

q ; ð32Þ

as the reference time as shown in Fig. 7.
Plugging Eqs. (27) and (31) into Eq. (25), we finally

obtain the entanglement entropy corresponding to the HM
surface,

SHM ¼ ldAdSVd−1

4Gðdþ2Þ
N

Z
zM

0

zdMdz

zd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞz2dM − fðzMÞz2d

p : ð33Þ

B. Boundary RT surface

It was argued that for a time-dependent background
the Hubeny-Rangamanni-Takayanagi (HRT) prescription
must be used instead of the RT prescription so that the
minimal surface can extend into the time direction [26]. In
our setup, the bulk spacetime is static, although the ETW
brane is time dependent. The time dependence in our setup
enters only through the location of where the HRT surface
ends on the ETW brane. Since the bulk spacetime is static
and enjoys the time-reversal symmetry, we expect that the
minimal surface obtained by using the HRT prescription is
identical to the RT surface in a constant time slice as
shown in Fig. 8. In the following, we will show that this is
true by the concrete calculation of the boundary effect.
Some works utilizing a time-dependent brane in the
braneworld model with the similar conclusion can be
seen in [129,130].
The effective Hawking radiation region at a fixed time is2

R ¼ fx ∈ ðbR; xRÞ;xd−1 ∈ Rd−1g; ð34Þ

which preserves (d − 1)-dimensional translation invariance.
Therefore, we can describe the BRT surface by t ¼ tðxÞ and
z ¼ zðxÞ, that leads to the following induced metric of the
BRT surface,

ds2 ¼ l2AdS
z2

��
−fðzÞt02 þ z02

fðzÞ þ 1

�
dx2 þ

Xd−1
i¼1

dx2i

�
; ð35Þ

where the prime in this subsection denotes the derivative
with respect to x.
Then the string action Eq. (20) becomes

SBRT ¼ ldAdSVd−1

4Gðdþ2Þ
N

Z
xR

0

dxLðt0; z; z0Þ; ð36Þ

where xR is the location in x direction where the BRT
surface ends on the ETW brane, and the Lagrangian is

Lðt0; z; z0Þ ¼ 1

zd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðzÞt02 þ z02

fðzÞ þ 1

s
: ð37Þ

For convenience, we define tR ¼ tðxRÞ and zR ¼ zðxRÞ in
the following.
To study the boundary effect, we first reparametrize the

BRT surface as ðtðτÞ; zðτÞ; xðτÞÞ, with 0 < τ < 1 as the
parameter, where 0 indicates the point on the entangling

FIG. 7. The Hartman-Maldacena surface at time t.

2Due to the symmetry between the left and right sides, we will
only consider the right side as the example in the following
calculations. The left side is exactly the same. The complete
description of the entanglement entropy is the sum of that from
both sides.
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subregion while 1 indicates the point on the ETW brane.
The action then reads

SBRT ¼ ldAdSVd−1

4Gðdþ2Þ
N

Z
1

0

dτ
zd

Lð_t; z; _z; _xÞ; ð38Þ

where the Lagrangian is

Lð_t; z; _z; _xÞ ¼ 1

zd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðzÞ_t2 þ _z2

fðzÞ þ _x2

s
; ð39Þ

and the dot denotes the derivative with respect to τ. Varying
the action Eq. (38) we find (we drop the prefactor of the
integral in the mean time to declutter the expression),

0¼δSBRT

¼
Z

1

0

dτ
zd
ð−fðzÞ_tδ_tþ _z

fðzÞδ_zþ _xδ_xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðzÞ_t2þ _z2

fðzÞþ _x2
q þ

Z
1

0

∂L
∂z

δzdτ

¼
−fðzÞ_tδtþ _z

fðzÞδzþ _xδx

zd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðzÞ_t2þ _z2

fðzÞþ _x2
q 				1

0

−
Z

1

0

ΣiðEOMÞiδridτ; ð40Þ

where ri ¼ ft; z; xg and ðEOMÞi are the corresponding
Euler-Lagrange equations. The boundary condition
imposed on the entangling subregion indicated by τ ¼ 0
follows the standard procedure, e.g., Dirichlet condition,
and we will not repeat it here. The important boundary
condition that we will consider is the one on the ETW
brane. In order for the boundary variation to vanish, we
must have

−fðzÞ_tδtþ _z
fðzÞ δzþ _xδx

				brane ¼ 0: ð41Þ

The extremization in the context of the RT proposal for a
static boundary leads to the boundary condition _z ¼ 0 on

the ETW brane. In our setup, the boundary, i.e., the ETW
brane, is time dependent. Nevertheless, this would not
change the boundary condition in the z direction. So we
have

−fðzÞ_tδtþ _xδx

				brane ¼ 0: ð42Þ

The embedding equation of the ETW brane that the BRT
surface ends on is given by t ¼ x, then we have

δt ¼ δx; ð43Þ

which leads to the boundary condition,

t0jbrane ¼ dt
dx

				brane ¼ _t
_x

				brane ¼ 1

fðzRÞ
: ð44Þ

As will be seen later, imposing this boundary condition will
lead to the relevant quantities to not be defined. So in order
to assure that the boundary variation vanishes, an alter-
native acceptable solution is to fix the point on the ETW
brane along the t–x direction which means,

δt ¼ δx ¼ 0: ð45Þ

Now, going back to Eq. (36), we can solve the equation
of motion and impose the corresponding boundary
conditions.3

The conjugate momenta are defined as

Pt ¼
∂L
∂t0

¼ −fðzÞt0
zd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðzÞt02 þ z02

fðzÞ
q ; ð46Þ

FIG. 8. The red curve is the boundary RT surface ending on the ETW brane QE on a constant time slice in the static bulk spacetime.

3Note that we can always switch from the dot to the primed
system through the chain rule.
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Pz ¼
∂L
∂z0

¼ z0

zdfðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðzÞt02 þ z02

fðzÞ
q : ð47Þ

The Hamiltonian then can be obtained as

H ¼ t0Pt þ z0Pz − L ¼ −1

zd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðzÞt02 þ z02

fðzÞ
q : ð48Þ

Since the Lagrangian [Eq. (37)] does not explicitly
depend on the function tðxÞ, Pt, and H are conserved in
this system, and implies that

−fðzÞt0
zd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðzÞt02 þ z02

fðzÞ
q ¼ −fðzRÞt0R

zdR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðzRÞt02R þ z02R

fðzRÞ

q ; ð49Þ

−1

zd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðzÞt02 þ z02

fðzÞ
q ¼ −1

zdR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðzRÞt02R þ z02R

fðzRÞ

q : ð50Þ

As can be seen, after imposing z0R ¼ 0 the conserved
quantities are only well defined for 1 − fðzRÞt02R > 0 which

rules out the choice of the boundary condition Eq. (44).
Thus we have to use the other boundary condition Eq. (45)
of fixing the point along the t − x direction on the ETW
brane that leads to an allowed solution of the variational
problem.
The corresponding t0 and z0 can be written in terms of the

quantities on the brane,

t0 ¼ fðzRÞ
fðzÞ t0R; z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞ

�
z2dR
z2d

− 1

�
− fðzRÞ2

�
z2dR fðzÞ
z2dfðzRÞ

− 1

�
t02R þ z2dR fðzÞ

z2dfðzRÞ
z02R

s
: ð51Þ

The extremal surface is then obtained to be

SBRT ¼ ldAdSVd−1

4Gðdþ2Þ
N

Z
zR

0

dz

zd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞ



1 − z2d

z2dR

1−fðzRÞ2
fðzÞ t02R

1−fðzRÞt02R

�r : ð52Þ

According to the HRT prescription, given a family of
extremal surfaces, we must pick the one with the minimal
value. The extremal surface has a minimal value at t0R ¼ 0
as can be seen in Fig. 9, this leads to t0ðxÞ ¼ 0 by Eq. (51).
This confirms that the BRT surface is on the constant time
slice, thus the HRT surface is identical to the RT surface.
This is indeed the case since the conjugate momentum Pt is
conserved. Also, since the ETW brane has no backreaction,
it cannot induce any time dependence in the bulk. For a
time dependent boundary, e.g., the ETW brane, the HRT
surface is not necessary to be orthogonal to the boundary as
it should be for a static boundary. The similar conclusion
has been obtained in [129,130].
The corresponding holographic entanglement entropy is

given by

SBRT ¼ ldAdSVd−1

4Gðdþ2Þ
N

Z
zR

0

zdRdz

zd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞðz2dR − z2dÞ

p ; ð53Þ

By integrating z0 in Eq. (51), the length of the effective
radiation region can be calculated,

xR − bR ¼
Z

zR

0

zddzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞðz2dR − z2dÞ

p : ð54Þ

The entanglement entropy defined in Eq. (53) is divergent
near z ¼ 0 and so for the purposes of our numerical
calculations we regularize it as

SBRT−reg ¼
ldAdSVd−1

4Gðdþ2Þ
N

�Z
zR

0

zdRdz

zd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞðz2dR − z2dÞ

p
−
Z

zR

0

zdRdz

zd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2dR − z2dÞ

p �
: ð55Þ

We note that the entanglement entropies corresponding to
the HM surface which we calculated in the last subsection,
and the IRT surface which we will calculate in the next
subsection, have the same divergence structure. Since we
are only concerned with the difference between the
entanglement entropies, the divergences will cancel each
other out so that we do not need to regularize the other
ones. The regularization of the BRT in Eq. (55) is only for
the purpose of numerical plotting.

FIG. 9. Plot of the extremal surface as a function of t0R.
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C. Island RT surface

The entanglement entropy of the IRT surface on the z–x
plane reads,

SIRT¼
ldAdSVd−1

4Gðdþ2Þ
N

�Z
dx

1

zd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

fðzÞ·
�
dz
dx

�
2

s
þ 1

zd−1I

�
; ð56Þ

which is similar to SBRT in Eq. (36) with an extra term
representing the contribution from the QES. Also, zQES ¼
zI is the location of the QES on the Planck brane as shown
in Fig. 3. In a similar way to Sec. III B, we can define a
constant Cσ,

Cσ ¼
−1

zd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

fðzÞ
q ; ð57Þ

and solve for z0 as

z0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞð 1

C2
σ
− z2dÞ

q
zd

: ð58Þ

However, in the presence of the QES, the IRT surface does
not need to be perpendicular to the Planck brane. The
boundary conditions now are given by

zðx ¼ 0Þ ¼ zI; zðx ¼ bRÞ ¼ 0; ð59Þ

With the above boundary conditions, we get,

dz
dx

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞðz2dI − z2d þ z2dI σ2

fðzIÞÞ
q

zd
; ð60Þ

which can be integrated to give

bR ¼
Z

zI

0

zddzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞðz2dI − z2d þ z2dI σ2

fðzIÞÞ
q ; ð61Þ

where σ ¼ dz=dxjx¼0 is the slope as the IRT surface
reaches the Planck brane at x ¼ 0. The slope σ can be
determined by finding the location zI of the QES on the
Planck brane that minimizes SIRT for a fixed cutoff bR.
Without the QES contribution, the minimum condition
implies σ ¼ 0, i.e., the RT surface is perpendicular to the
brane as we have known.
Finally, the entanglement entropy corresponding to the

IRT surface Eq. (56) can be expressed as

SIRT¼
ldAdSVd−1

4Gðdþ2Þ
N

×

2
664
Z

zI

0

zdI
zd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ σ2

fðzIÞÞ
fðzÞðz2dI −z2dþz2dI σ2

fðzIÞÞ

vuuut dzþ 1

zd−1I

3
775: ð62Þ

Now, the condition for the location zI of the QES on the
Planck brane that minimizes SIRT is

dSIRT

dzI
¼ 0: ð63Þ

Combining Eqs. (61) and (63), we can solve for zI as well
as σ for a fixed bR.

IV. PHASE TRANSITIONS AND PAGE CURVE

As we have seen in the last section, there are three RT
surfaces in the eternal black hole system, i.e., the HM, BRT,
and IRT surfaces, whose corresponding entanglement
entropies have been calculated in Eqs. (33), (53), and
(62). The dominant one is the minimum among them,

S ¼ minðSHM;SBRT;SIRTÞ: ð64Þ

Among the three entanglement entropies, SIRT is a constant
at a fixed temperature, while the other two increase with
time. At the initial time t ¼ tb, SBRT ¼ 0 dominates. At a
later time, there could be phase transitions between each
pair of the three entanglement entropies. In this section, we
will investigate the phase transitions in detail and obtain the
Page curve for the entanglement entropy of the eternal
black hole.

A. Phase transitions

To be concrete in this subsection, we set the cutoff
bL ¼ bR ¼ b ¼ 0.1, and the black hole horizon zh ¼ 10
which corresponds to the temperature T ¼ 0.032.
Since the entanglement entropy corresponding to the IRT

surface is a time-independent constant, we will first
consider the phase transitions between the IRT surface
and the other two surfaces. The phase transition between
SBRT and SIRT can be obtained from

ΔSBRT−IRT ¼ SBRT − SIRT ¼ 0; ð65Þ

where SBRT and SIRT are given in Eqs. (53) and (62).
The regularized4 entanglement entropy corresponding to

the BRT and IRT surfaces are plotted in Fig. 10(a). SBRT
(red line) starts from zero at t ¼ tb and increases almost

4We regularize the entanglement entropy using Eq. (55) to plot
it numerically. However, we should note that the exact phase
transition time is determined from Eq. (65) without regularization.
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linearly. It dominates until t − tb ¼ tBRT−IRT ≃ 12.01 when
the phase transition between SBRT and SIRT (blue line)
takes place, then SIRT will dominate for t − tb > tBRT−IRT.
Similarly, the phase transition between SHM and SIRT

can be obtained from

ΔSHM−IRT ¼ SHM − SIRT ¼ 0; ð66Þ

where SHM and SIRT are given in Eqs. (33) and (62).
The regularized entanglement entropy corresponding to

the HM and IRT surfaces are plotted in Fig. 10(b). SHM
(green line) starts from a finite value at t ¼ tb and increases.
It dominates until t − tb ¼ tHM−IRT ≃ 15.95when the phase
transition between SHM and SIRT takes place, then SIRT will
dominate for t − tb > tHM−IRT.
Finally, there is also a phase transition between SBRT and

SHM that can be obtained from

ΔSBRT−HM ¼ SBRT − SHM ¼ 0; ð67Þ

where SBRT and SHM are given in Eqs. (53) and (33).
The regularized entanglement entropy corresponding to

the BRT and HM surfaces are plotted in Fig. 10(c). Both
SBRT and SHM increases with time. Among the two, SBRT
dominates until t − tb ¼ tBRT−HM ≃ 6.47 when the phase
transition between SBRT and SHM takes place, then SHM
will dominate for t − tb > tBRT−HM.
We have obtained the phase transitions of every pair of the

three entanglement entropies corresponding to the BRT,
HM, and IRT surfaces for the black hole horizon zh ¼ 10 or
T ¼ 0.032. Nowwe put them together in Fig. 11(a) with the
red/green/blue line representingSBRT=SHM=SIRT. The three
critical points are labeled by black, orange, and violet dots.
At early times, SBRT dominates the system. Later on, at

t − tb ≃ 6.47, the phase transition between SBRT and SHM
takes place, and SHM becomes dominant. Then, at
t − tb ≃ 15.95, the phase transition between SHM and
SIRT occurs, and SIRT becomes dominant. In addition,
there is another phase transition between SBRT and SIRT
that occurs between the above two phase transitions at

t − tb ≃ 12.01. However, this phase transition is irrelevant
since it will not occur in the real physical process as shown
in Fig. 11(a).
Having obtained the phase diagram of the entanglement

entropy at zh ¼ 10 or T ¼ 0.032, let us consider the phase
diagrams at other temperatures. Figure 11(b) shows the
entanglement entropies for the black hole horizon zh ¼ 0.5,
which corresponds to a higher temperature T ¼ 0.637. As in
the case of zh ¼ 10, there are three phase transitions in this
case. The phase transitions of SBRT ∼ SHM, SBRT ∼ SIRT,
and SHM ∼ SIRT takes place at t − tb ≃ 0.444, t − tb≃
0.636, and t − tb ≃ 0.759, respectively.
The phase structure for zh ¼ 0.5 is similar to that for

zh ¼ 10. Nevertheless, we have an important observation
that the three critical points become closer for a smaller
horizon or a higher temperature, so that the duration of SHM
domination shrinks. Therefore, an interesting question is
whether or not the duration of SHM would shrink to zero if
the temperature continuously increases? We found that the
answer is yes.
Figure 11(c) shows the entanglement entropies for

the black hole horizon zh ¼ 0.1355, which corresponds
to the critical temperature Tc ¼ 2.349. At this temperature,
the three phase transitions coincide at the same point at
t − tb ≃ 0.236 when the time duration of SHM shrinks to
zero, and SBRT transit to SIRT directly at this critical point.
For T ≥ Tc, for example, in the case of the black hole

horizon zh ¼ 0.1, which corresponds to the temperature
T ¼ 3.183 ≥ Tc, the entanglement entropies are shown in
Fig. 11(d). The phase transitions of SBRT ∼ SHM,
SBRT ∼ SIRT, and SHM ∼ SIRT take place at t − tb ≃ 0.217,
t − tb ≃ 0.200, and t − tb ≃ 0.190, respectively. We notice
that the order of the three phase transitions reverses. Because
the phase transition between SBRT and SHM occurs after that
betweenSBRT andSIRT, the dominant entanglement entropy
SBRT will transit directly to SIRT.

B. Page curve

Now we are ready to plot the Page curve from the phase
transitions among the three RT surfaces obtained in Sec. IV
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FIG. 10. The phase transitions between BRT (red), HM (green), and IRT (blue) surfaces for zh ¼ 10. (a) SBRT and SIRT. (b) SHM and
SIRT. (c) SBRT and SHM.

PAGE CURVE OF EFFECTIVE HAWKING RADIATION PHYS. REV. D 106, 066008 (2022)

066008-13



A. The Page curves for different temperatures are plotted
in Fig. 12.
At low temperature T < Tc, e.g., zh ¼ 0.5 or T ¼ 0.637,

the Page curve is plotted in Fig. 12(a). At early times, the
entanglement entropy is dominated by SBRT which
increases from zero at t ¼ tb. After the first phase transition
between SBRT and SHM takes place at t − tb ≃ 0.444, SHM
becomes dominant until the second phase transition
between SHM and SIRT takes place at t − tb ≃ 0.759 when
SIRT becomes dominant. In this case, the Page time is

determined by the phase transition between SHM and SIRT
labeled by the violet dot.
As the temperature grows, the duration ofSHM shrinks.At

the critical temperature Tc ¼ 2.349 or zh ¼ 0.1355, the
Page curve is plotted in Fig. 12(b). The contribution from the
HM surface completely vanishes, and SBRT transits to SIRT
directly. The Page time now is determined by the phase
transition between SBRT and SIRT labeled by the orange dot.
As we go beyond the critical temperature as shown in

Fig. 12(c) for the case of T ¼ 3.183 or zh ¼ 0.1, SBRT
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FIG. 11. The behavior of the entanglement entropies, SBRT (red), SHM (green), and SIRT (blue), at different temperatures or black hole
horizons. The black, orange, and violet dots indicate the phase transitions of SBRT ∼ SHM, SBRT ∼ SIRT, and SHM ∼ SIRT, respectively.
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always transits to SIRT directly. The other two phase
transitions are irrelevant. The Page time is determined
by the phase transition between SBRT and SIRT labeled by
the orange dot.
We conclude that the Page time decreases as the temper-

ature grows. Among the three RT surfaces, only the IRT
surface intersects with the Planck brane, and its entangle-
ment wedge includes the interior of the eternal black hole.
According to the entanglement wedge reconstruction, we
can reconstruct the interior of the black hole when SIRT is
dominant. The decrease of the Page time as the temperature
grows implies that one can reconstruct the interior of the
black hole earlier for a higher temperature black hole. This
is consistent with the intuitive expectations since higher
temperature black holes evaporate faster.

C. Phase diagram

The phase diagram in temperature versus time plane is
plotted in Fig. 13(a). The red region in the lower left part
is dominated by SBRT, the blue region in the upper right part
is dominated by SIRT, and the green region in between is
dominated by SHM. The black, orange, and violent lines are
the phase boundaries between different phases. The solid
parts represent the phase boundaries in the real physical
process. There is a triple point at Tc ¼ 2.349 and t − tb ¼
0.236 (in the case of b ¼ 0.1) labeled by a black dot, where
the three phases meet together. Below the critical temper-
ature Tc, the system undergoes three phases, SBRT, SHM,
and SIRT as time evolves, with the violet line indicating the
Page time. While above the critical temperature, the system
undergoes only two phases, SBRT and SIRT, with the orange
line indicating the Page time.
This behavior of the phase diagram is consistent with our

intuitive expectation; as the temperature grows it becomes
easier to decode the information inside the black hole due

to the earlier Page time since the black hole radiates faster
at higher temperatures.
So far we have only considered the system with a fixed

cutoff b ¼ 0.1. In the following, we will show how the
phase diagram is affected by the variation of the cutoff. By
using the simple relation in Eq. (15), the phase diagram can
be plotted in the black hole horizon versus time plane in
Fig. 13(b), which will be used to illustrate the effect from
varying the cutoff b.
The phase diagrams in the black hole horizon versus time

plane for three different cutoffs are plotted in Fig. 14. We
can see that, as the cutoff b increases, the triple point moves
to a new location with a larger black hole horizon (or lower
temperature) and a later Page time. Remarkably, numerical
calculations show that the path of the triple point is a
straight line shown as the black line in Fig. 14. However,
the physical interpretation of this linear behavior of the
triple point is not obvious to us and we will investigate it in
the future.

FIG. 14. Different slices of the phase diagram as the cutoff b
is varied.

FIG. 13. Phase diagram of the Hawking radiation entanglement entropy. The red/green/blue region represents the region where
SBRT=SHM=SIRT dominates. The black, orange, and violet lines represent the phase transitions of SBRT ∼ SHM, SBRT ∼ SIRT, and
SHM ∼ SIRT. The dashed parts do not occur in the real physical process. The black dot labels the triple point where the three phases meet
together. (a) Phase diagram in the temperature T and time t − tb plane. (b) Phase diagram in the black hole horizon zh and time t − tb plane.
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V. CONCLUSION

In this work, we studied the entanglement entropy in a
(dþ 1)-dimensional two-sided eternal black hole system.
We calculated the generalized entanglement entropy Eq. (5)
by utilizing the doubly-holographic correspondence. Our
concrete setup is given by a holographic BCFTas discussed
in Sec. II C.
In our setup, we introduced two branes embedded as the

boundaries of the bulk spacetime in BCFT. One is the
Planck brane QP described by x ¼ 0, which represents the
gravitational region of a radiating black hole in the doubly-
holographic setup. The other is the time-dependent ETW
brane QE described by x ¼ ct, which is the hypersurface
of the earliest Hawking radiation and defines a time-
dependent effective radiation region ½bL; xL� ∪ ½bR; xR�.
There are three RT surfaces associated with the holo-

graphic entanglement entropy. One is the HM surface
which penetrates the horizon and connects the cutoffs bL
and bR directly. The HM surface increases with time due to
the stretching of the interior of the black hole. The second
one is the BRT surface which intersects the ETW braneQE.
The BRT surface increases with time due to the time
dependence of the ETW brane. The third one is the IRT
surface which intersects the Planck brane QP and supports
an island. The IRT surface is time independent.
We investigated the phase transitions among the three RT

surfaces in Sec. IVA. The phase transition time for each
pair of the RT surfaces was determined by comparing their
corresponding entanglement entropies. Putting all the
phase transitions together, we obtained the phase diagram
of the entanglement entropy as shown in Fig. 13.
We found a critical temperature Tc for the Page curves at

different temperatures. When the temperature is lower than
the critical temperature, i.e., T < Tc, there are three

durations for the entanglement entropy as shown in
Fig. 12(a). SBRT starts from zero at the initial time
t ¼ tb and increases until the first phase transition, when
SHM takes over and continuously increases. After the
second phase transition, SIRT becomes dominant and
remains as a constant. On the other hand, when the
temperature is higher than the critical temperature, i.e.,
T ≥ Tc, the duration of SHM disappears, and SBRT transits
to SIRT directly as shown in Figs. 12(b) and 12(c).
In summary, our main achievement in this work is

to introduce an ETW brane QE which defines a time-
dependent finite effective radiation region. The ETW brane
supports a new type of RT surface, the BRT surface as
discussed in Sec. III A, which has not been considered in
the previous literature. With the BRT surface, there exists a
critical temperature Tc as shown in the phase diagram
Fig. 13. At low temperature T < Tc, the Page time is
determined by the SHM ∼ SIRT transition; while at the high
temperature T ≥ Tc, the Page time is determined by the
SBRT ∼ SIRT transition. Therefore, for a high temperature
eternal black hole, the true Page time is much later than that
without considering the ETW brane. In this work, we only
consider the eternal black hole at fixed temperatures. In the
real black hole evaporation, the temperature changes with
time. It is thus important to consider this temperature-
dependent phase transition to determine the Page curve. We
leave this temperature-dependent effect in the real black
hole evaporation for the future work.
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