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In this paper, for a variety of types of regular black hole solutions, we investigate the entropy products of
inner and outer horizons. Similar to singular black holes, for the regular ones we find that universality (mass
independence) of the entropy product is true for some solutions, and it fails for some others. In the case of
regular black holes that respect the universality, we read central charges of the dual CFTs from the entropy
product, according to the thermodynamics method introduced in chen et al. [ J. High Energy Phys. 03
(2013) 102]. For these solutions, we also calculate central charges, using the asymptotic symmetry group
formalism. The results of these two approaches are the same, which means that universality of the entropy
product provides a simple method to find central charges of the dual CFTs.
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I. INTRODUCTION

According to the singularity theorem [1], the formation
of singularities is unavoidable (under some circumstances) in
general relativity. The existence of singularities represents
the failure of general relativity, and to protect against it,
Penrose proposed that singularities are covered by horizons
(the weak cosmic censorship conjecture). It is believed that
singularities appear in the classical theory of gravity, and by
taking into account the quantum effects, they can be avoided
[2,3]. Inspired by this idea, Bardeen proposed [4] a regular
black hole (RBH) solution in which the singularity is
replaced by a de Sitter core. After the seminal work of
Bardeen, a large number of RBHs have been constructed
[5–19]. Recently, some models for RBHs with a Minkowski
core have also been proposed [13,14,20,21]. However, a
main concern with RBHs is the violation of energy con-
ditions. In fact, it has been shown [17,22,23] that the energy
conditions do not hold for many RBH solutions.
Black holes (BHs) are good locations to explore the

relation of gravity and quantum mechanics. It has been
observed [24–36] that the horizons’ entropy product for
many BH solutions is universal (mass independent), as
SþS− ¼ 4π2N, where N is related to the quantized charges
of the solution, like angular momentum and electric/

magnetic charge. It has been shown [30] that the condition
TþSþ ¼ T−S−, where Tþ (T−) is the Hawking temperature
of the outer (inner) horizon, is equivalent to the mass
independence of SþS−. This condition also implies that the
central charges of the left-moving and right-moving sectors
in the dual conformal field theory (CFT) are the same
(cL ¼ cR). It is discussed in Ref. [37] that for the solutions
with a universal entropy product, one can read the central
charge(s) of the dual CFT(s) as

ci ¼
6

4π2
∂ðSþS−Þ
∂Ni

; ð1Þ

which is the thermodynamics method for finding the central
charge.
There are also BH solutions in which the entropy product

is not universal. For instance, it has been observed [38] that
the universality of the entropy product fails for some BH
solutions of higher-curvature gravity. The entropy product is
also mass dependent for the BHs with Newman-Unti-
Tamburino (NUT) charge [39,40]. Although in the case of
5D Myers-Perry and the BTZ black hole the universality is
true, it fails for the Myers-Perry BHs inD ≥ 6 and for Kerr-
AdS BHs in D ≥ 4 [30].
In the case of RBHs, it has been shown [41] that

universality fails for the ABG (Ayón-Beato and García)
BH. In Ref. [17], it is shown that for RBHs of Einstein
gravity coupled to extended nonlinear electrodynamics, by
choosing adequate parameters, SþS− can be mass inde-
pendent. However, for a large number of RBHs (maybe
because of the complex form of the metric), the entropy
product has not yet been studied.
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This paper is organized as follows: In Sec. II, we briefly
review the thermodynamics method for finding central
charge(s) of the dual CFT(s). Then, we investigate the
entropy product for RBHs where the universality fails for
some of them (solutions in Sec. III), and it works for some
others (Sec. IV). In Sec. V, using the thermodynamics
method, we find the central charges of the dual CFTs for
RBHs with a universal entropy product, studied in Sec. IV.
We then recalculate the central charges using the asymp-
totic symmetry group formalism to check the result of the
thermodynamics method. We conclude the paper with a
discussion on the universality of the entropy product and its
importance in the BH solutions.
Throughout the paper, we set Newton’s gravitational

constant to unity—i.e., G ¼ 1.

II. UNIVERSALITY OF ENTROPY PRODUCT
AND DUAL CFTs

In this section, we review some BH solutions with a
universal entropy product. For these solutions, it is possible
to find central charges of the dual CFTs using the
thermodynamics method.

A. The Kerr-Newman BH

The Kerr-Newman BH [42] is determined by three
conserved charges: M (mass), J (angular momentum),
and Q (electric charge). In Ref. [26], it has been shown
that the entropy product of the inner and outer horizons for
this solution is universal, as

SþS− ¼ π2ð4J2 þQ4Þ: ð2Þ

The dual CFT for this solution is studied in Refs. [43,44],
where it is shown that the J-picture central charge cJ and
the Q-picture central charge cQ are given by

cJ ¼ 12 J; cQ ¼ 6Q3: ð3Þ

Due to the universality of the entropy product, one can also
find these central charges by using the thermodynamics
method [Eq. (1)]:

cJ ¼ 3

2

∂

∂J
ð4J2 þQ4Þ ¼ 12 J;

cQ ¼ 3

2

∂

∂Q
ð4J2 þQ4Þ ¼ 6Q3; ð4Þ

which are in agreement with Eq. (3).

B. The Myers-Perry BH

The Myers-Perry BH [45] in five dimensions is charac-
terized by its two angular momenta Jϕ, Jψ and mass M.
Applying the Kerr/CFT analysis, it is shown [46–48] that
for the Myers-Perry BH, there are two dual CFT

descriptions associated with the rotations along the ϕ
and ψ directions. The central charges of these dual
CFTs are

cϕ ¼ 6Jψ ; cψ ¼ 6Jϕ: ð5Þ

It is also shown [24,30] that the horizons’ entropy product
for this solution is universal—i.e.,

SþS− ¼ 4π2JϕJψ : ð6Þ

Now, using the thermodynamics method [Eq. (1)], one can
easily find the central charges [Eq. (5)] from the above
entropy product.
There are also more examples for the relation between

the entropy product and central charges; we refer the reader
to Refs. [30,36,37,49]. These examples tell us that the
universality of the entropy product implies the existence of
dual CFTs. In the following, we check the validity of the
thermodynamics method in the case of RBH solutions. To
this end, we should find solutions with a universal entropy
product, so in the following sections we investigate the
universality for RBHs.

III. RBHs WITH A NONUNIVERSAL
ENTROPY PRODUCT

As we mentioned, the product of horizon entropies is
mass independent if the condition TþSþ ¼ T−S− is sat-
isfied [30]. In this section and the next one, by explicit
calculations we investigate this universality condition for
RBHs. We consider a variety of types of regular solutions in
four and higher dimensions, both with and without angular
momentum and charge. We also consider RBHs with both
de Sitter and Minkowski cores. We find BH horizons by
solving grr ¼ 0, which may have negative or complex
roots. By the outer (inner) horizon, we mean the largest
(smallest) positive real root.

A. The Bardeen BH

The Bardeen BH is the first known RBH solution [4].
The matter source which supplies this solution was
unknown for many years till Ayón-Beato and Garsía
showed that the Bardeen BH is a magnetic solution of
Einstein equations coupled to a nonlinear electrodynamics
[5,6]. The metric of a Bardeen BH is in the form

ds2 ¼ −fdt2 þ dr2

f
þ r2ðdθ2 þ sin2 θdϕ2Þ;

f ¼ 1 −
2Mr2

ðr2 þ q2Þ3=2 ; ð7Þ

where M is the mass and q is the magnetic monopole
charge. In a Bardeen BH, the singularity at r ¼ 0 is
replaced by a de Sitter core. For this solution, there are
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three horizons (roots of f ¼ 0) which are too long to be
written here. We denote the outer and inner horizons by rþ
and r−, respectively. The entropy and temperature of
Bardeen BH on the outer and inner horizons are

S� ¼ πr2�; T� ¼ �Mr�ðr�2 − 2q2Þ
2πðq2 þ r�2Þ5=2 : ð8Þ

It is straightforward to check that TþSþ ≠ T−S−, which
means that entropy product is not universal for the
Bardeen BH.

B. The Hayward BH

Another RBH solution with a de Sitter core is the
Hayward BH [7]. For this solution, the metric is in
the static spherically symmetric form of Eq. (7) with the
function

f ¼ 1 −
2Mr2

r3 þ q3
: ð9Þ

Similarly to the Bardeen BH, we find the entropy and
temperature on the outer and inner horizons as

S� ¼ πr2�; T� ¼ �Mr�ðr3� − 2q3Þ
2πðr3� þ q3Þ : ð10Þ

One can check that the condition TþSþ ¼ T−S− is not
satisfied here, so the universality of the entropy product is
not valid for the Hayward BH.

C. The rotating Bardeen and Hayward BHs

The extension of the Bardeen and Hayward RBHs to the
solutions containing angular momentum is done in Ref. [8].
The line element for these solutions is

ds2 ¼ −Fðr; θÞdt2 þ dr2

Gðr; θÞ þ Σðr; θÞdθ2

þHðr; θÞdϕ2 − 2Kðr; θÞdtdϕ; ð11Þ

with the functions

Fðr; θÞ ¼ ΠðrÞ − a2sin2θ
Σðr; θÞ ; Gðr; θÞ ¼ ΠðrÞ

Σðr; θÞ ;

Σðr; θÞ ¼ r2 þ a2cos2θ; Kðr; θÞ ¼ 2rmðrÞa sin2θ
Σðr; θÞ ;

Hðr; θÞ ¼ ðr2 þ a2Þ2 − ΠðrÞa2sin2θ
Σðr; θÞ sin2θ: ð12Þ

The function ΠðrÞ in the above is introduced as ΠðrÞ ¼
r2 þ a2 − 2rmðrÞ, wherea is the rotation parameter. In order
to remove the singularity, mðrÞ is given in the form

mðrÞ ¼ M

�
rp

rp þ rp0

�
3=p

: ð13Þ

The rotating Bardeen and Hayward BHs are constructed by
setting p ¼ 2 and p ¼ 3 in Eq. (13), respectively. Note that
for r ≫ r0, the above mass reaches the Kerr BH mass M.
Moreover, in the case of r0 ¼ 0, one finds mðrÞ ¼ M and
Eq. (11) reduces to the Kerr solution; in other words, one can
interpret r0 as the deviation parameter from the Kerr BH.
Horizons of the solution are roots of ΠðrÞ ¼ 0. In order to
find entropy and temperature on the inner and outer horizons,
it is more convenient to solve ΠðrþÞ ¼ 0, Πðr−Þ ¼ 0 and
find a, M in terms of r− and rþ. Noticing this point, we
calculate entropy and temperature for the rotating Hayward
BH (p ¼ 3). The result is

Sþ ¼ πrþ4ðr− þ rþÞðr03 þ r−3Þ
ðr− þ rþÞðr−2 þ rþ2Þr03 þ r−3rþ3

; S− ¼ πr−4ðr− þ rþÞðr03 þ rþ3Þ
ðr− þ rþÞðr−2 þ rþ2Þr03 þ r−3rþ3

;

Tþ ¼ ðr− − rþÞ½2r60ðrþ þ r−Þ2 − r30r
2þð4r3− þ 4r2−rþ þ 2r−r2þ þ r3þÞ − r3−r5þ�

4πr3þðrþ þ r−Þðr30 þ r3−Þðr30 þ r3þÞ
;

T− ¼ ðr− − rþÞ½2r60ðrþ þ r−Þ2 − r30r
2
−ð4r3þ þ 4r2þr− þ 2rþr2− þ r3−Þ − r3þr5−�

4πr3−ðrþ þ r−Þðr30 þ r3−Þðr30 þ r3þÞ
: ð14Þ

In the case of a rotating Bardeen BH (p ¼ 2), S� are messy
and we do not show them here. We check that for both
rotating Bardeen and Hayward solutions TþSþ ≠ T−S−,
which means that the entropy product is not universal

for them. In the case of small values for the deviation
parameter r0, by keeping the first order in Taylor expansion
around r0 ¼ 0, it is possible to find the perturbed (around
the Kerr) solution and then calculate the entropy and
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temperature. For instance, we find the entropy and temper-
ature for the Bardeen BH with small r0 to be

Sþ ¼ πr−ðr− þ rþÞð3r20 − 2r2þÞ
3r20 þ 2r−rþ

;

S− ¼ πrþðr− þ rþÞð3r20 − 2r2−Þ
3r20 þ 2r−rþ

;

Tþ ¼ ðrþ − r−Þ½r20ðr− þ 2rþÞ þ 2
3
r−r2þ�

4πrþr−ðrþ þ r−Þðr20 − 2
3
r2þÞ

;

T− ¼ ðrþ − r−Þ½r20ðrþ þ 2r−Þ þ 2
3
rþr2−�

4πrþr−ðrþ þ r−Þðr20 − 2
3
r2−Þ

: ð15Þ

It is straightforward to check that, due to violation of
TþSþ ¼ T−S−, the entropy product of the rotating Bardeen
solution with small r0 is not universal. In other words,
adding rotation to the Bardeen and Hayward BHs does not
lead to the universality of the entropy product.

D. The Frolov-Zelnikov BH

In Ref. [9], an evaporating (time-evolving) RBH with a
de Sitter core is introduced. The metric is in the form

ds2 ¼ −fdt2 þ dr2

f
þ r2ðdθ2 þ sin2 θdϕ2Þ;

f ¼ 1 −
2MðtÞr2

r3 þ 2MðtÞl2 þ l3
: ð16Þ

In the static case, this solution differs from the Hayward BH
by an extra term l3 in the denominator of function f. This
term guarantees the metric smoothness at r ¼ 0 in the limit
MðtÞ → 0. For this solution, one can find the horizons by
solving f ¼ 0 [in the static case MðtÞ ¼ M] as

rþ ¼ l
2
þM þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4MðM − lÞ − 3l2

q
;

r− ¼ l
2
þM −

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4MðM − lÞ − 3l2

q
; r0 ¼ −l: ð17Þ

For Hayward and Frolov solutions, l is positive, so the
third root (r0 ¼ −l) is a negative-valued radius, which is
not relevant to our study. Now it is possible to find the
entropy and temperature as

Sþ ¼ π

2
ðlþ 2MÞð2M − lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4MðM − lÞ − 3l2

q
Þ;

S− ¼ π

2
ðlþ 2MÞð2M − l −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4MðM − lÞ − 3l2

q
Þ;

Tþ ¼ Mrþðr
3
þ
2
− l3 − 2Ml2Þ

πðr3þ þ 2l2M þ l3Þ2 ;

T− ¼ Mr−ðr
3
−
2
− l3 − 2Ml2Þ

πðr3− þ 2l2M þ l3Þ2 : ð18Þ

It is easy to check that TþSþ ≠ T−S−, which means that the
entropy product is mass dependent in the case of a Frolov-
Zelnikov BH.

E. Five-dimensional RBHs

In this part, we investigate the entropy product for some
five-dimensional BHs. We consider regular solutions with
both Minkowski and de Sitter cores.

1. Static RBH

A five-dimensional static RBH is introduced in Ref. [12].
The line element is in the form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ
þ r2ðdθ2 þ sin2 θdϕ2 þ cos2 θdψ2Þ;

fðrÞ ¼ 1 −
M
r2

e−k=r
2

: ð19Þ

This solution, which satisfies the equations of motion of 5D
Einstein gravity coupled to nonlinear electrodynamics, is a
RBH with a Minkowski core at r ¼ 0. Here,M is the black
hole mass, and k is related to the magnetic monopole
charge (q) via q2 ¼ Mk. The solution (19) reduces to a 5D
Schwarzschild-Tangherlini BH when k ¼ 0, and one can
also find the Minkowski spacetime by setting M ¼ 0. For
this RBH, the temperatures on the outer and inner horizons
are [12]

Tþ ¼ 1

4πrþ

�
1 −

k
r2þ

�
; T− ¼ −1

4πr−

�
1 −

k
r2−

�
; ð20Þ

and the entropies are

Sþ ¼ π2

2
r3þ; S− ¼ π2

2
r3−: ð21Þ

This solution is not universal, since TþSþ ≠ T−S−.

2. Magnetically charged Myers-Perry solution

Applying the Newman-Janis algorithm on the static
solution of the previous subsection, a 5D rotating RBH
is constructed in Ref. [12]. This solution is a magnetically
charged Myers-Perry BH with a Minkowski core. The
metric is
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ds2 ¼−
�
1−

Me−k=r
2

ρ2

�
dt2þ r2ρ2

Δ
dr2þ ρ2dθ2 −

2Ma sin2θe−k=r
2

ρ2
dtdϕ−

2Mb cos2θe−k=r
2

ρ2
dtdψ

þ sin2θ

�
r2þa2þMa2sin2θe−k=r

2

ρ2

�
dϕ2þ cos2θ

�
r2þb2þMb2cos2θe−k=r

2

ρ2

�
dψ2þ 2Mab sin2θ cos2θe−k=r

2

ρ2
dϕdψ ;

ð22Þ

where ρ and Δ are defined as

ρ2 ¼ r2 þ a2 cos2 θ þ b2 sin2 θ;

Δ ¼ ðr2 þ a2Þðr2 þ b2Þ −Mr2e−k=r
2

: ð23Þ

The above solution, which is a RBH with a Minkowski core
at r ¼ 0, is characterized by four parameters: mass M and
rotation parameters a, b, and k, the latter of which is related
to the magnetic charge. By setting k ¼ 0 in Eq. (22), one
can recover the 5DMyers-Perry BH, so k can be interpreted
as a deviation from the Myers-Perry geometry. Moreover,
by inserting a ¼ b ¼ 0, the solution reduces to a Schwarzs-
child-Tangherlini BH.
Although one may find the horizons by solving Δ ¼ 0, it

is more convenient to find M and a in terms of r�. For the
regular solution with a small charge parameter k, we
calculate the entropy and temperature on the horizons.
The result is

Sþ ¼ π2ðk − r2þÞðb2 þ r2þÞðb2 þ r2−Þ
2rþðkþ b2Þ ;

S− ¼ π2ðk − r2−Þðb2 þ r2þÞðb2 þ r2−Þ
2r−ðkþ b2Þ ;

Tþ ¼ r4þðr2− − b2 − 2kÞ − k2ðb2 þ r2−Þ
2πr3þðb2 þ r2−Þðk − r2þÞ

;

T− ¼ r4−ðr2þ − b2 − 2kÞ − k2ðb2 þ r2þÞ
2πr3−ðb2 þ r2þÞðr2− − kÞ : ð24Þ

Now, it is straightforward to check that the condition
TþSþ ¼ T−S− does not hold, and so the entropy product
for the above solution is not universal.

3. Electrically charged rotating Bardeen BH

The 5D Bardeen BH with electric charge and its rotating
version are introduced in Refs. [10,11]. The line element
for an electrically charged rotating Bardeen BH is [11]

ds2 ¼ −dt2 þmðrÞ
ρ2

ðdt − a sin2θdϕþ b cos2θdψÞ2

þ r2ρ2

Δ
dr2 þ ρ2dθ2 þ ðr2 þ a2Þsin2θdϕ2

þ ðr2 þ b2Þcos2θdψ2; ð25Þ

where ρ, mðrÞ, and Δ are as follows:

ρ2 ¼ r2 þ a2cos2θþ b2sin2θ; mðrÞ ¼ μ

�
r3

r3 þ q3e

�
4=3

;

Δ¼ ðr2 þ a2Þðr2 þ b2Þ−mðrÞr2: ð26Þ

The above solution is characterized by the four parameters
a, b, μ, and qe, where a and b are rotation parameters
around the ϕ, ψ axes, and μ and qe are related to the mass
and electric charge of the BH, respectively. By setting qe ¼
0 in Eq. (25), the Myers-Perry BH is recovered, so qe
determines the deviation of a charged rotating Bardeen BH
from the Myers-Perry solution.
Horizons of this solution are the roots of Δ ¼ 0, and due

to the complicated form of the metric, one finds messy
terms for the entropies and temperatures on the horizons. In
the following, for the sake of simplicity, we consider a
single rotating Bardeen BH with a small value of charge,
which is obtained by setting b ¼ 0 and performing Taylor
expansion for mðrÞ. Denoting the ranges of angles in this
solution as θ ∈ ½0; π=2� and ϕ;ψ ∈ ½0; 2π�, we calculate the
entropy and temperature on the inner and outer horizons.
The result is

Sþ ¼ π2rþr3−ðr− þ rþÞð4q3e − 3r3þÞ
8q3eðr2− þ r−rþ þ r2þÞ

;

S− ¼ π2r−r3þðr− þ rþÞð4q3e − 3r3−Þ
8q3eðr2− þ r−rþ þ r2þÞ

;

Tþ ¼ −3r4− − 3r3−rþ þ 2r2−r2þ þ 2r−r3þ þ 2r4þ
3πr3−r4þðr− þ rþÞ

q3e;

T− ¼ −3r4þ − 3r3þr− þ 2r2−r2þ þ 2rþr3− þ 2r4−
3πr3þr4−ðr− þ rþÞ

q3e; ð27Þ

and one can easily check that TþSþ ≠ T−S−, which means
the universality of the entropy product fails in this solution.

IV. RBHs WITH A UNIVERSAL ENTROPY
PRODUCT

Until now, we have observed that the universality of the
entropy product fails for many RBHs. However, there are
some regular solutions which respect the universality.
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A. The Kerr-like RBH

References [13,14] have introduced a regularized Kerr
BH with modified mass m → mðrÞ ¼ me−l=r. The metric
is given by

ds2 ¼ −
Δ0

Σ
ðdt − a sin2θdϕÞ2 þ Σ

Δ0 dr
2 þ Σdθ2

þ sin2θ
Σ

½ðr2 þ a2Þdϕ − adt�2;
Σ ¼ r2 þ a2cos2θ; Δ0 ¼ r2 þ a2 − 2mre−l=r: ð28Þ

This RBH is characterized by its mass m, the rotation
parameter a, and the regularization parameter l. Setting
l ¼ 0, Eq. (28) reduces to the Kerr metric, so l can be also
viewed as the deviation form Kerr. This solution at r → ∞
reaches the Kerr BH, while the ring singularity of Kerr is
replaced by an asymptotically Minkowski spacetime [14].
For small values of l, we keep the first order in Taylor
expansion of the metric. We also rewrite a and m in terms
of r�. Now, the entropy and temperature for this perturbed
solution take the following forms:

Sþ ¼ πðrþ þ r−Þðl− rþÞ; S− ¼ πðrþ þ r−Þðl− r−Þ;
Tþ ¼ r− − rþ

4πðr−þ rþÞðl− rþÞ
; T− ¼ r− − rþ

4πðr−þ rþÞðl− r−Þ
:

ð29Þ

It is easy to check that TþSþ ¼ T−S− is satisfied, which
means that the entropy product is universal. We also
calculate the angular momentum for the solution with
small l as

J ¼ 1

2
ðrþ þ r−Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−rþ − lðrþ þ r−Þ

p
¼ ma: ð30Þ

Noticing Eqs. (29) and (30) and ignoring the l2; l3…,
terms, one finds the universality of the entropy product:

SþS− ¼ 4π2J2: ð31Þ

In the next section, we will use this result to find the central
charge of the dual CFT for the regular Kerr-like BH.

B. Reissner-Nordström outside a de Sitter core

In Ref. [15], a regular solution is constructed by
connecting a de Sitter space to the core of a Reissner-
Nordström BH. The metric is written in the static, spheri-
cally symmetric form

ds2 ¼ −BðrÞdt2 þ AðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð32Þ

In order to remove the singularity at r ¼ 0, we suppose a
sphere with radius r0, centered at r ¼ 0, which is filled by a
static charged perfect fluid distribution with spherical

symmetry. Solving the equations of motion, the functions
AðrÞ and BðrÞ are obtained as [15]

BðrÞ ¼ A−1ðrÞ ¼
(
1 − r2

R2 ; r ≤ r0;

1 − 2m
r þ q2

r2 ; r ≥ r0:
ð33Þ

The above solution is determined by its mass (m), charge
(q), the radius of de Sitter space at the core (R), and the
radius of matter distribution (r0). In the region r > r0, the
solution is given by the Reissner-Nordström metric, which
has two horizons at r� ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
. It has been

shown in Ref. [15] that r0 ≤ r−; in other words, the region
of matter distribution lies inside the inner horizon, and the
spacetime for r ≥ r− is given by the Reissner-Nordström
metric. The entropy and temperature on the inner and outer
horizons for this RBH are just like those of the Reissner-
Nordström BH:

Sþ ¼ πr2þ; S− ¼ πr2−;

Tþ ¼ rþ − r−
4πr2þ

; T− ¼ rþ − r−
4πr2−

: ð34Þ

The universality is true, since the condition TþSþ ¼ T−S−
is satisfied. Moreover, the entropy product for this solution
is mass independent:

SþS− ¼ π2q4: ð35Þ

C. The topological star

The topological star is a solution which is obtained from
dimensional reduction of a 5D solution in Einstein-Maxwell
theory [16]. The starting point is the static, spherically
symmetric metric in five dimensions with a magnetic fluxF:

ds2 ¼ −fSðrÞdt2 þ fBðrÞdy2 þ
dr2

fSðrÞfBðrÞ
þ r2dθ2

þ r2sin2θdϕ2; F ¼ P sin θdθ ∧ dϕ: ð36Þ
Coordinate y in the above equation parametrizes a circle of
perimeter 2πRy, and the functions fSðrÞ, fBðrÞ, and P are
given by

fBðrÞ ¼ 1 −
rB
r
; fSðrÞ ¼ 1 −

rS
r
;

P ¼ � 1

κ25

ffiffiffiffiffiffiffiffiffiffiffiffi
3rSrB
2

r
; ð37Þ

where κ5 is the gravitational coupling. By Kaluza-Klein
reduction along y, one finds the following solution:

ds25 ¼ e2Φds24 þ e−4Φdy2; e2Φ ¼ f
−1
2

B ;

ds24 ¼ f
1
2

B

�
−fSdt2 þ

dr2

fBfS
þ r2dθ2 þ r2sin2θdϕ2

�
: ð38Þ
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In the case of rB ¼ 0, the above metric reduces to the
Schwarzschild BH. Note also that the coefficient f1=2B is
imaginary for r < rB, which means that the spacetime ends
at r ¼ rB. In other words, the singularity at r ¼ 0 is
excluded from the four-dimensional BH. There are two
horizons (roots of the term fBfS) for this solution at rB and
rS with the entropy and temperature

SS ¼
πr2S
G

; SB ¼ πr2B
G

;

TS ¼
1

4πrS
; TB ¼ rS

4πr2B
: ð39Þ

The universality is held, since the condition TþSþ ¼ T−S−
is respected. For this solution, the mass and magnetic
charge take to the form

M ¼ 2π

κ24
ð2rS þ rBÞ; Qm ¼ 1

κ4

ffiffiffiffiffiffiffiffiffiffiffiffi
3

2
rBrS

r
; ð40Þ

where κ4 is the 4D gravitational constant, which is
related to κ5 as κ4 ¼ κ5ffiffiffiffiffiffiffiffi

2πRy

p . One can check that the

entropy product for this regular solution is mass indepen-
dent as [50]

SSSB ¼ π2Q4
m: ð41Þ

D. BHs in Einstein gravity coupled to extended
nonlinear electrodynamics

A physical source for the RBHs is nonlinear electrody-
namics [5,6]. For the Einstein gravity coupled to the
nonlinear electrodynamics

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − LðF Þ�; ð42Þ

where Fμν ¼ dAν is the field strength tensor, F ¼ FμνFμν,
and Lagrangian density L is a function of F , it has been
shown [17] that one can construct a variety of classes of
RBHs by choosing different forms of LðF Þ. In the
following, we review three classes of these RBHs.

1. Bardeen class

Considering the Lagrangian density

L ¼ 4μðαF Þ5=4
αð1þ ffiffiffiffiffiffiffi

αF
p Þ1þμ=2

; ð43Þ

where μ > 0 and α > 0 are some constants, the general
form for the two-parameter (mass and magnetic charge) BH
solutions is

ds2 ¼ −fdt2 þ dr2

f
þ r2ðdθ2 þ sin2 θdϕ2Þ;

f ¼ 1 −
2M
r

−
2α−1q3rμ−1

ðr2 þ q2Þμ=2 ; ð44Þ

in the above, q is related to the black hole magnetic charge,
and the ADM mass can be read off from the asymptotic
behavior of the metric

f ¼ 1 −
2ðM þ α−1q3Þ

r
þ � � � ; ð45Þ

which implies thatMADM¼MþMem, whereMem¼α−1q3.
In other words, the BH mass receives contributions from
the Schwarzschild massM and the nonlinear effects that are
denoted by Mem. Since by setting M ¼ 0 and μ ¼ 3 the
Bardeen BH [Eq. (7)] is recovered, Eq. (44) is called
the “Bardeen class.” It has been observed [17] that for a
solution with M ¼ 0 and μ ¼ 2, the entropy product is
universal, as

SþS− ¼ π2q4: ð46Þ
In the next section, we will use the above result to find the
central charge of dual CFT.

2. Hayward class

The nonsingular BHs of the Hayward class are solutions
to Einstein gravity coupled to a nonlinear electrodynamics
with Lagrangian density [17]

L ¼ 4μðαF Þðμþ3Þ=4

α½1þ ðαF Þμ=4�2 : ð47Þ

Similarly to the Bardeen class, for these BHs, the metric is
in the static, spherically symmetric form [Eq. (44)] with the
function

f ¼ 1 −
2M
r

−
2α−1q3rμ−1

rμ þ qμ
: ð48Þ

By setting M ¼ 0 and μ ¼ 3, one finds the Hayward
solution; for this reason it is called the “Hayward class.”
It has been found [17] that in the case of vanishing
Schwarzschild mass (M ¼ 0) and μ ¼ 2, the entropy
product is universal, as

SþS− ¼ π2q4: ð49Þ

3. New class

By choosing the Lagrangian density [17]

L ¼ 4μF
½1þ ðαF Þ1=4�μþ1

; ð50Þ
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a “new class” of RBHs can be obtained. The metric is given
by Eq. (44) with the new function

f ¼ 1 −
2M
r

−
2α−1q3rμ−1

ðrþ qÞμ : ð51Þ

For a solution with M ¼ 0 and μ ¼ 2, the entropy product
is universal, as with Eq. (49).

V. CENTRAL CHARGES AND THE
ENTROPY PRODUCT

In Secs. III and IV, we studied the universality of the
entropy product in the case of RBHs. We found that
universality is true for some of them and it fails for
some others. According to the thermodynamics method
(reviewed in Sec. II), when the entropy product is universal,
one can easily read the central charge of the dual CFT from
Eq. (1). In the following, for RBHs in Sec. IV which respect
universality, we find central charges using Eq. (1). Then we
compare this result with the central charge calculated from
the asymptotic symmetry group (ASG) method [51,52] to
check the validity of the thermodynamics method.

A. Central charge of the Kerr-like RBH

In Sec. IVA, we observed that for the small deviation
parameter l, the entropy product of the Kerr-like RBHs is
universal, as

SþS− ¼ 4π2J2: ð52Þ

Now, using Eq. (1), it is easy to read off the central charge
from this entropy product:

c ¼ 6

4π2
∂ð4π2J2Þ

∂J
¼ 12J

¼ 6ðrþ þ r−Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−rþ − lðrþ þ r−Þ

p
; ð53Þ

where in the second line we use Eq. (30). We are going to
verify the above result by performing the Kerr/CFTanalysis
[52]. The first step is to find the near-horizon metric of the
extremal solution. Remember that we have written param-
eters a and m in the Kerr-like BH [Eq. (28)] in terms of r�,
so one obtains the extremal solution by setting r− ¼ rþ.
Following the procedure as in Refs. [31,49], we find the
near-horizon extremal metric. The result is

ds2 ¼ αðθÞ
�
−r2dt2 þ dr2

r2

�
þ βðθÞdθ2

þ γðθÞðdϕþ fϕrdtÞ2; ð54Þ

where fϕ and the functions αðθÞ, βðθÞ, and γðθÞ are

fϕ ¼ rþðrþ − 2lÞ
l − rþ

; γðθÞ ¼ 4rþðl − rþÞ2sin2θ
rþ − ð2l − rþÞcos2θ

;

αðθÞ ¼ βðθÞ ¼ −2rþ
��

l −
rþ
2

�
cos2θ −

rþ
2

�
: ð55Þ

By choosing the adequate boundary conditions given in
Ref. [52] and performing the calculations, we find the
central charge to be

c¼ 3

2π
fϕ

Z
dθdϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðθÞγðθÞ

p
¼12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3þðrþ−2lÞ

q
¼12Jext;

ð56Þ

where Jext is the angularmomentumof the extremal solution.
To compare the central charges in Eqs. (53) and (56), it is
important to note that in the Kerr/CFT analysis we have
inserted extremality into the solution. Now, applying the
extremality condition r− ¼ rþ to Eq. (53), it is obvious that
the result is in complete agreement with Eq. (56), which
means that the thermodynamics method is valid. It is worth
mentioning that using the thermodynamics method, one
finds the central charge for the generic (nonextremal)
solution, while in the Kerr/CFT analysis, the central charge
is obtained for the extremal solution.

B. Central charge of the charged RBHs

For a regular Reissner-Nordström and topological star in
Secs. IV B and IV C, we find that the entropy product is
universal:

SþS− ¼ π2q4; ð57Þ

where q is the charge (electric or magnetic) of the solution.
The same relation is obtained in the case of RBHs of
Einstein gravity coupled to nonlinear electrodynamics
(Sec. IV D). Now, it is easy to find the central charge of
the dual CFT using the thermodynamics method [Eq. (1)]:

c ¼ 6

4π2
∂ðπ2q4Þ

∂q
¼ 6q3: ð58Þ

One can also find central charges for charged solutions
using the ASG formalism. In fact, this is done in Ref. [53],
and the result is

c ¼ 6q3; ð59Þ
which is in agreement with the result of the thermody-
namics method.

VI. CONCLUSIONS

In order to extend our intuition about the entropy product
law and its relation to dual CFTs of the BHs, we inves-
tigated the entropy product for RBHs. We considered a
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variety of types of regular solutions, including the rotating
Bardeen and Hayward BHs, the Frolov-Zelnikov solution,
the Kerr-like RBH, the regular Reissner-Nordström sol-
ution, topological stars, 5D charged rotating RBHs, and
regular solutions in extended nonlinear electrodynamics.
It seems that there is no rule for the RBHs that makes

their entropy product universal. In other words, regardless
of the charges or asymptotic behavior at the r → 0 limit or
even the theory that RBH satisfies its equations of motion,
the universality of entropy product is true for some RBHs
but fails for some others. A similar pattern is observed for
the singular BHs. For instance, the universality is true for
the Kerr BH and 5D Myers-Perry BH, but it fails for the
Myers-Perry in D ≥ 6. The same situation applies to the
BTZ (which is universal) and Kerr-AdS in D ≥ 4 (non-
universal) BHs. One can deduce from these observations
that in general, the universality is a characteristic for the
“solutions” and not for the “theories” [54].
So, what is the advantage of entropy product universal-

ity? One may find the answer in the relation between the
entropy products and dual CFTs of the BHs. It has been
discussed [37] that when the entropy product is universal,

the central charges of the dual CFTs can be easily read off
from the entropy product according to the thermodynamics
method [Eq. (1)].
In the case of RBHs with a universal entropy product, we

found the central charges using the thermodynamics
method. We then found the central charges from the
ASG method. These two results are the same, which shows
the validity of the thermodynamics method for RBHs. In
other words, universality of the entropy product provides
an easy way to find central charges of the dual CFTs. It is
worth mentioning that in the ASG method, one takes the
extremal limit of the solutions, and so the central charges
are obtained for the extremal BHs, while the thermody-
namics method yields the central charges of the generic
(nonextremal) BH solutions.
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