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We present a complete nonlinear action for the dynamical system of nearly coincident multiple
DO-branes (mDOQ) which possesses, besides manifest spacetime (target superspace) supersymmetry, also the
worldline supersymmetry, a counterpart of the local fermionic x symmetry of single DO-brane (Dirichlet
superparticle). The action contains an arbitrary nonvanishing function M(H) of the relative motion
Hamiltonian . The ten-dimensional (D = 10) mDO model with particular form of M (H) can be obtained

by dimensional reduction from the action of the D = 11 multiple M-wave (mMO) system.

DOI: 10.1103/PhysRevD.106.066004

I. INTRODUCTION

Dirichlet p-branes or Dp- branes [1] are the super-
symmetric extended objects on which the fundamental
D = 10 superstring can have its ends attached [2,3]. Their
especially important role in string theory [4] was appre-
ciated after the famous paper by Polchinski [5], where it
was shown that they carry nontrivial charges with respect to
Ramond-Ramond (RR) fields (see [6] for a comprehensive
review).

The worldvolume action for a single super-D p-brane is
known [7-13] to be given by the sum of the supersymme-
trized Dirac-Born-Infeld (DBI) term and a Wess-Zumino
term describing the coupling to RR fields. Both terms
contain the field strength of d = (p + 1) dimensional
worldvolume gauge field and in the weak field limit, after
fixing the static gauge the first DBI term reduces to the
action of the supersymmetric Abelian gauge field theory.
Also the Wess-Zumino term in this gauge is expressed
through the fields of the Abelian super-Yang-Mills
multiplet.

The quest for an effective action for the multiple
Dp-brane system, i.e., the system of N nearly coincident
Dp-branes and strings ending on these D p-branes, can be
followed back to the seminal paper by Witten [14] where he
argued that the gauge fixed description of its weak field
limit is given by the non-Abelian U(N) super-Yang-Mills
(SYM) action. Despite a number of very interesting results
obtained during the past 26 years [15-29], the complete
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nonlinear supersymmetric action for the dynamical system
of multiple D p-branes (mDp) is not known presently even
for the simplest case of p = 0 [30].

In this paper we present a nonlinear action which
possesses several properties expected from the action of
the mDO system. Particularly, it is manifestly invariant
under Poincaré symmetry, SU(N) gauge symmetry, and
spacetime (type IIA target superspace) supersymmetry, and
also possesses local worldline supersymmetry generalizing
the x symmetry of single DO-brane (massive type Il D = 10
superparticle) action [31]. This latter fact is especially
important because it guarantees that the ground state of this
dynamical system is supersymmetric which is expected in
the case of multiple DO-brane systems.

The rest of the paper is organized as follows. In Sec. II
we present the complete supersymmetric and nonlinear
candidate action for multiple DO-brane systems. The rigid
spacetime supersymmetry and local worldsheet supersym-
metry transformations leaving this action invariant are
described in Sec. III. The technical details on the derivation
of these results can be found in Appendix D which uses the
approach and ingredients described in Appendixes A—C.
Sec. IV contains our conclusions and discussion of the
results.

II. SUPERSYMMETRIC NONLINEAR ACTION

The nonlinear action which we have found is written in
terms of center of energy variables of an mDO system, which
are the same as in the case of a single D0O-brane, and matrix
variables describing the relative motion of mDO constituents.
The set of center of energy variables contains coordinate
functions describing the embedding of the center of energy
worldline in flat type IIA superspace, bosonic 10-vector, and
two fermionic Majorana-Weyl spinors

Published by the American Physical Society
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ZM(7) = (x(2).0'(). 04(7)). (1)

u=0,...,9, a=1,...,16, as well as the spinor moving
frame variables which we will describe below. The relative
motion variables are matrix fields from the 1d extended
(N =16) SU(N) SYM multiplet, the set of which can be
split on matter fields, 9 +9 bosonic and 16 fermionic
Hermitean traceless N x N matrix fields

Xi(z),  Pe), ¥, (2)
i=1,...,9,g=1,...,16, and the bosonic anti-Hermitean
traceless N x N matrix 1-form

A = dzA (1) (3)

containing the su(N) valued worldline gauge field A (7).
Besides SU(N) gauge transformations, the matrix fields are
transformed by local SO(9) transformations according to
their vector and spinorindicesi = 1,...,9andg =1, ..., 16.
These will also act on spinor frame variables and describe the
gauge symmetry of the mDO action.

The action has the form

SmDozm/ EO—im/ (d0'6% — 01d6?)
% %

1 i 2
+— / (tr(P’DX’ + 4¥,D¥,) + — EOH>
B Jw!

M
1 dM . 1 1
—— [ HMypix +/ —__(EM_E2
5 o r(P'X) 2 o TM( 2)
X tr (—4i(yi‘l‘)qﬂ3’i + % (y/\P),[X, X-f]), (4)

where m and p are constants of dimension of mass and
1 L 1 i L
H= Etr([P”[P”) - atr[xl, X)F = 2tr(X'Py' W) (5)

has the meaning of the relative motion Hamiltonian.

Actually the first line of (4) formally coincides with the
action of a single DO-brane, i.e., a massive D = 10 type IIA
superparticle in its moving frame formulation [28,37] (see
below for the description of E° in it and Appendix B for
some details). In this case m plays the role of the super-
particle mass. In contrast, the constant y characterizes the
interaction of the center of energy and relative motion
sector as well as the self-interaction of this latter. Notice
that to simplify and to make more transparent the depend-
ence of the action on this parameter we have chosen
noncanonical dimensions for the matrix matter fields (2).
In particular, with this choice of dimensions of matrix
fields, the relative motion Hamiltonian H (5) is u inde-
pendent. However its dimension becomes (mass®) so that
H/u® is dimensionless.

M in (4) is an arbitrary nonvanishing function of
this dimensionless combination of the relative motion
Hamiltonian and coupling constant,

M = M(H/uO). (6)
A particular case of the action (4) with

m2+
4

M:E—’_ (7)

2

can be obtained by dimensional reduction of the 11D
multiple M-wave (multiple MO-branes or mMO) system
action from [38,39] similar to dimensional reduction of its
D = 4 counterpart described in [29]. Another representa-
tive of the family (4) with M = m was studied in [28]
where it was noticed that it cannot be obtained by dimen-
sional reduction from 11D mMO action.

Coming back to the first line of (4), in it E° is the
projection of (the pull back of) 10D Volkov-Akulov 1-form
E° = T1*u), " = dx* — id0'6"0' — id0*6#6>  (8)
to one of the vector fields, u)(7), of moving frame attached
to the worldline. That is described by a Lorentz group
valued 10 x 10 matrix

(ug, u;) € S0(1,9) 9)
composed of the moving frame vectors which obey

u"oug =1, u"ou;, =0, uht ,’, = =57,  (10)
The spinor moving frame described by Spin(1,9) valued
matrix

147 € Spin(1,9) (11)

provides a kind of square root of the above described
moving frame in the sense of Cartan-Penrose-like relations
(see Appendix A for more details)

0 — p.dpad
ua’;ﬂ—va 49,

o ”LGZ/J = v, 7gpvp”s  (12)

vgézﬂvg = uS,, +ulyl,. (13)
In distinction to their D = 4 counterparts (described in [40]
and, e.g., [29]) Egs. (12) impose strong constraints on the
spinor moving frame field v,7 = v,%(z) reducing the
number of its components from the original 16 x 16 =
256 to 45 = dim(SO(1,9)).
This spinor frame matrix field v,%(z) and its inverse
v%(7) are used to construct the fermionic forms E'7 and E

q
which enter the last term of the action (4),
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E'Y =d0'v,9,  E2=d62v,". (14)

The covariant derivatives in the second line of (4)

DX' := dzD, X/ == dXi — QUXJ/ 4+ [A, X/, (15)

1
D¥, := dD,¥, := d¥, - ZQ”quP\PP +[AY,].  (16)

contain, beside the SU(N) gauge field (3), also the
composite SO(9) connection (Cartan form)

Qi = uridu,. (17)

III. LOCAL WORLDLINE SUPERSYMMETRY

The action (4) is manifestly invariant under the rigid
super-Poincaré supergroup transformations, including
spacetime (target 10D IIA superspace) supersymmetry
with constant fermionic parameters €*' and e, acting
nontrivially only on the center of energy variables,

la _ Lal 2 __ .2 q _
0.0 = €™, 0.05; =€,°, O0.vq =0,

S.xt = i0'ote! + 075" €%. (18)

It is also invariant under the SU(N) gauge symmetry acting
on the matrix matter fields by its adjoint representation,
provided the su(N) valued 1-form A transforms as SU(N)
connection, as well as under the SO(9) symmetry acting by
vector representation on index i of u,, X/, P’ and by its
spinor representation on index g of ¥, and ve.
Furthermore the action is invariant under local fermionic
worldline supersymmetry parametrized by fermionic func-
tion k7 (7) carrying spinor index of SO(9). It acts on the center
of energy variables exactly in the same manner as irreducible
k symmetry of a single DO-brane in its spinor moving frame
formulation [28,37] [hence the notation x7(7)],

80" = k1v%/V/2, 805 = —Kk1v,9/V/2,

S5 x* = i5,.0'6"0" + i5,.6°6+6,

S04 =0 = su) =0=5.ul. (19)
The action of worldline SUSY on the matrix fields includes
essentially nonlinear terms, some of which are proportional

to the derivative of the function M with respect to its
argument and, hence to additional power of #,

SM(H /) = %M’(H/mm

The worldline supersymmetry transformations of the matrix
matter fields are (see Appendix D for their derivation by
method described in Appendix C)

4 M 1M '
5. X = W SHX — T ALK, (21
B WK}’ +/,t6./\/l «H wM" 1)
i y 1M ;
O =~ ey M. X — 5T 6P
1 M Ui sl sl — o
g S (Gl 0 )
(22)
1 NI i) I, X0
5W, = ——— (ky') P — )gl XX
q ) /_M<KJ/)q 16\/./\—/1(’(7/ )q{ ]
i M i i
= 0 A AKX (23)
Here
1 tr(Kq‘I‘ ([Xi,ﬂ:bi] —4l{\P ¥ }))
5H = ’ . @)
JM L+5509
with

o 1 S o
9 = tr(PIP) + Btr[X’, X2 20 (XY 'W)  (25)

is the worldline supersymmetry variation of the relative
motion Hamiltonian (5) and

1 tw(4i(ky™P)P + 3 (ky VW) [XT, X))

AK]C — 7
2V M L+.557 9

(26)

This latter is related to the worldline supersymmetry variation
of K = tr(X'P') by

AL = 5 (tr(X'PY)) +

1

ikly,, 27
VM 27)
where

v, =1r (—4i(yi‘l’)q[l3’i + % (yij‘l’)q[Xi, Xj]>. (28)

In terms of the above blocks the worldline supersym-
metry variation of the SU(N) connection 1-form (gauge
field) can be written as (see Appendix D for its derivation)
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_LM']-O
SA = -2 )7’”4
MVM Y1+ 550 9)
1 o
+W(E1q - E)(r') X!
(51— 1M 1

KOVIME (1 + 53 9)

o 5 o
x kP tr(4i(y"P) )P +§(y”‘l‘)p) X, X]). (29)

IV. CONCLUSION AND DISCUSSION

Thus, we have found that the action (4) is invariant,
besides the manifest spacetime (target superspace type IIA)
supersymmetry (18), also under 16-parametric local world-
line supersymmetry transformations (19), (21)-(23), and
(29). Its counterpart in the case of single p-branes, local
fermionic x symmetry, is considered as an exclusive
property of the supersymmetric extended objects of
string/M theory. It guarantees that the ground state of
the dynamical system preserves a part (one-half) of the
spacetime supersymmetry.

The form of this worldline supersymmetry depends
strongly on the choice of the function M (H/u®) in the
action (4). This is restricted by the requirement of non-
singularity M # O but otherwise is arbitrary [41].

The simplest model obtained by setting M = m = const
was studied earlier in [28]. In this case M’ = 0 and worldline
supersymmetry transformations of the matrix fields
(21)~(23), (29) simplify drastically and provide the local
supersymmetry generalization of the rigid d =1 N =
supersymmetry of 10D SU(N) SYM model reduced to
d = 1. The local supersymmetry of the action is provided
by coupling of this 1d SYM to the composed worldline
supergravity on the worldline induced by the center of energy
motion. This is described by 1d graviton 1-form (einbein) E°
and 16 1d gravitini 1-forms E' — EZ constructed from the
center of energy variables according to (8) and (14).

Thus the nonlinearity of the previously proposed candi-
date action with M = m = const [28] does not go beyond
that of the non-Abelian Yang-Mills theory. In contrast, the
action (4) with a generic function M (H/u®), particularly the
one with (7), which can be obtained by dimensional
reduction from 11D mMO action of [38], shows essential
nonlinearity beyond the level of the SYM one, as it has been
expected for the multiple DO-system. It is impressive that
such a nonlinearity can be reached with preserving the local
worldline supersymmetry characteristic for an mDO system,
and that this can be done for essentially arbitrary function
M(H/u®). Also, the above mentioned connection with an
11D mMO system, the details of which will be published in a
forthcoming paper [42], is another important advantage of
the functional (4) as a candidate mDQ action.

The problem of what choice of the function M (H/u®)
leads to the true mDO-brane action requires additional
study. A natural way to make this choice through using T
duality (which was the main argument for construction of
bosonic actions in [15]) requires as a first step to construct
the candidate action for type IIB multiple DI1-branes
(mD1), the problem we are planning to address in the
future. A more detailed study of the properties of the model
(4) with arbitrary function M (H/u%), including the sol-
ution of its equations of motion and describing its BPS
states, can be also useful to single out the true mDO-brane
action or to clarify why so big set of models possesses the
expected properties.

For a moment, an especially interesting in a string/
M-theoretic perspective looks at the model (4) with
function M(H/u®) given in (7) because, as we will show
in the forthcoming paper [42], this can be obtained by
dimensional reduction of the action for multiple MO-branes
(multiple M wave or mMO) constructed in [38]. However,
this argument implies the uniqueness of the action [38] as
the one having the properties expected for an mMO system.
On the other hand, in light of the found multiplicity of the
10D actions with the properties expected for mDO systems,
it is tempting to search for possible essentially nonlinear
generalizations of the 11D mMO action of [38].

Also the generalization of the action (4) for the case of
multiple D p-brane systems with 1 < p <9 and for the case
of curved target IIA supergravity superspace are intriguing
and important problems.
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APPENDIX A: 10D SPINOR MOVING
FRAME VARIABLES

The multiple DO-brane action, presented in the main text,
is presently known only in its spinor moving frame
formulation involving the auxiliary variables which we
are going to describe in some detail.

The Spin(1,9)/Spin(9) spinor moving frame variables
and their moving frame vector companions appropriate to
the description of DO brane and multiple DO (mDO) systems
are elements of, respectively, 16 x 16 and 10 x 10 matrices
(11) and (9) (see [28,37])

v,? € Spin(1,9) and (uo u, )e SO(1,9). (A1)
Here i=1,...,9 and ¢ =1, ..., 16 are vector and spinor
indices of SO(9) group while p,v=0,1,...,9 and
a,fp=1,2,...,16 are 10-vector and 10D Majorana-Weyl
spinor indices.
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The condition that moving frame variables form the SO
(1,9) valued matrix implies (10) and

0

ubud — ulul =n,, = diag(l,—1,....,—1). (A2)

The spinor moving frame variables obey the constraints

¥) ~ap qzap, p

M},y)oﬂ q () p Uy G(I/) = U(ldﬂ ﬁ’

s = Valqp g, (A3)
which express the SO(1,9) Lorentz invariance of the 10D
generalization of the relativistic Pauli matrices o, ap = o"/;a

and 55 = &4°,

(05" +0*6"),) = 6.l (Ad)

| =

o—g;a—V)r/f’ =

and also makes the spinor frame matrix to describe double
covering of the Lorentz group element represented by the
moving frame matrix (see [40,43,44]). Roughly speaking,
this statement can be formulated by saying that spinor
frame variables (also called Lorentz harmonics [40,43,441])
are square roots of the moving frame variables (also called
vector harmonics [45]).
Choosing the SO(9) invariant representation

() _

Sip = (84psVip) = 5'21:)’ (AS)
where 7., =y}, are d =9 gamma matrices,
}’Zp = J/fm,» V(iifj) = 5in16><16’ (A6)
we find that Eqgs. (A3) acquire the form of (12) and
vaazﬂvﬂ = us,, +ulyl,. (A7)
Similarly, we find
uhoh? = v, P ul ' = —v %yl v, f. (A8)
Notice that
vl = vée"Pul, obeyingugo’;ﬂvqﬂ =09, (A9)

is the inverse spinor moving frame matrix v,¢ € Spin(1,9):

v,%v,P = 6,7 & v, v, =6,F.

q Ya q a Yq (AIO)

The derivatives of the moving frame and of the spinor
moving frame variables are expressed in terms of Cartan
forms

Q' = uddut, QY = ul du, (A11)

Dul = dul = ul Q. Dul,:=dul, + uj Q' = uQ  (A12)
and
Doy .4 == dp 4 IQU pif_li pQI Al3
Vo = AUy +Z Va7V pq _Equva ( )
(1 a 1 ij 1 i
= Do, % :==dy, _ZQ yqpv —Evpypqﬂ . (A14)

Taking exterior derivatives of Eqs. (A12) (see Appendix C
for definitions) we can find the Maurer-Cartan equations

DQ = dQ/ + Qi A QJf =

dQU + Qik A Qli = —Qi A Q. (Al5)

APPENDIX B: SINGLE D0-BRANE IN SPINOR
MOVING FRAME FORMULATION AND ITS «
SYMMETRY

The action of the moving frame formulation of the 10D
DO-brane in flat type IIA superspace, which also appears as
a part of the multiple DO-brane action (4) describing the
center of mass dynamics of this system, reads [37]

Spo = / Lpy = m / E°—im / (d6'*62 — 6'*d62).
w! wh w!
(B1)

Here, d = drd/dr=:dzd,, 7 is proper time variable para-
metrizing the DO-brane worldline W' defined as a line in
target D = 10 type ITA superspace 132 with 10 bosonic
and 16 4 16 = 32 fermionic coordinates

M = (x*,6'%,02) (B2)

by corresponding coordinate functions
ZM(7) = (x(1).0'(1). 04(7)), (B3)
W ez, zZM — zM(q), (B4)

The constant m entering both terms of (B1) is the mass of
the DO-brane and E? is the contraction

E® = I*u) (B5)

of the pull back to the worldline of the 10D Volkov-Akulov
1-form

" = dx* — id0'6"0' — id6*6+6* (B6)
with the vector field u$ = ul(z). The pull back of a

differential form on target superspace is obtained by
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substituting the coordinate functions for the coordinates; so
that Eq. (B5) actually includes

[# = deIl} = dx*(7) — id6' (7)6#0' () — id6*(1)6" 6% (7).
(B7)

Notice that, to simplify the notation, below and below, as
well as in the main text, we use the same symbols for the
differential forms on the target superspace and their pull
backs to the worldline W!'. The same applies to the
superspace coordinates (B2) and the coordinate functions
(B3). Particularly, in the second term of (B1) 6'* and 62
denote 0'*(z) and 62(z).

A very important property of the action (B1) is that,
besides manifest D =10 N =2 spacetime supersym-
metry, it is also invariant under the following local
fermionic x-symmetry transformations

5.0' = kg, 5,602 = —kv,9,
S x* = i6,0'640" + i5.0%6"6,

50,1 =0 = Sul, = Sul) =0, (B8)
where k¢ = x9(z) with g = 1, ..., 16 are arbitrary fermionic
functions.

To prove the x-invariance of the single DO-brane action
and also the invariance of multiple DO-brane action under
its generalization, the worldline supersymmetry, we have
used the formalism of generalized Lie derivatives based on
formal exterior derivatives of differential forms which we
are going to describe in Appendix C.

APPENDIX C: DIFFERENTIAL FORMS AND
VARIATIONS

Let E, be differential ¢ form in a superspace with
coordinates Z¥,
U om M=

[1]

(C1)

q

where A is the exterior product of the differential forms. In
the simplest case of basic 1-forms given by differentials of
the superspace coordinates,

dzM A dZN = —(=1)sMeMdzN A dZM,  (C2)
where (M) = e(ZM) is the so-called Grassmann parity of
ZM defined by

e(x*) =0, €(0'%) =1, e(@)=1 (C3)
in the case of D = 10 type IIA superspace with coordinates
ZM = (x*,6%',62). For any bosonic p and g forms

AT, =(=1)"T, NE,, (C4)

in particular,

dx* A dx? = —dx? A dx*. (C5)

In the case of the forms which can be also fermionic

,= (=1)arte@E)e()y A 2 (C6)

P q°

In particular, (C2) implies that all products of the super-
coordinate differentials are antisymmetric but

do'® A doP' = de’' A do'e,
la 2 __ 2 la
do'« A do3 = d6} A do'“

d62 A d63 = do3 A d62,

The exterior derivative of the differential forms, which
maps ¢ forms into (g + 1) forms, is defined by

1
dg, = adZMq Ao AAZM A dZM00y By, (Z)

ELdZMq+l A ... AdZM
(g+ 1)!

x (g + l)a[M]EMI...MqH}(Z)’

where dy = =% and |...} denotes graded antisymmetriza-
tion over the enclosed indices, in particular,

- |y c(M)e(N) =
SMNY = E(EMN — (=) MME ). (C7)
The exterior derivative operator d obeys the nilpotency
condition and the (generalized) Leibniz rule

dd =0, d(E ANdE, + (=1)PdE, A E

=g P

(C8)
The variation of differential forms under generic trans-

formations of coordinates can be calculated using the so-
called Lie derivative formula,

02, = is(d=,) + d(is8,). (C9)

where i is the contraction with variation symbol defined by

- 1 =
15‘:‘11 — deMq VANV dZMQCSZMIE'MIMq(Z>

(C10)

Notice that this implies
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isdZM = 57ZM. (C11)

The contraction iz maps differential ¢ forms into (g — 1)
forms and obeys its own counterpart of the Leibnitz rule:

[1]
[1]

i5(Eg NE,) =B, ANisE, + (=1)PisE, AE,. (Cl2)

The variation of the Lagrangian D form £ of a D-
dimensional field theory can be calculated using the Lie
derivative formula with formal exterior derivative [46]
The total derivative term d(i5£) is not essential when we
derive the equations of motion and can be conventionally
omitted if one does not study effects of boundary
contributions.

In the models with manifest gauge symmetry it is more
convenient to define the variations of differential forms
given by covariant Lie derivative

8B = is(DEZ') + D(isE7). (C14)
where D is covariant derivative including the connection of
the gauge symmetry group and 4 is an index (or multi-
index including the index) of a representation of the gauge
group carried by the differential g form. Clearly for the
Lagrangian D form, which is invariant under the gauge
symmetry, DL =d£ and the covariant Lie derivative
prescription coincides with the standard Lie derivative
one (C13).

As a warm-up exercise let us apply this method to vary
the Lagrangian 1-form of the action (B1) of a single DO-
brane in flat 10D type IIA superspace [37]:

Lpo = mE® — im(d6"92 — 91d92)
with constant m.

The formal exterior derivative of E* = IT*u) in the first
term of the Lagrangian form is given by

dE® = E' A Q' —i(E'Y A EY + E2 AN E2),  (CIS)
where
E'=TlMu,,  EY=d0"p,9,  Ej=dfu," (C16)

To find that we have used

dI* = —id@'c* A dO' — id6*6* A dO? (C17)
as well as Eqgs. (12) and (A12).

The derivative of the second, Wess-Zumino term of the
DO-brane action is

—2imdd'* A d03 = —2imE'Y A EZ. (C18)

Now after an elementary algebra we find that the
formal exterior derivative of the Lagrangian form of single
DO-brane can be written as

dlpy = mE A Q' —im(E' + E2) A (EM + E2), (C19)

where Q' is the covariant Cartan form defined in (A11).
Then, using the Lie derivative formula (C13), we find

5’CD0 == m(Eii(;Qi - i(;EiQi)

- 2im(E'" + E3)(i;E' + i5E7), (C20)

where isQ' defines essential variation of the spinor frame
variable by 6v,9 = isDv,? =1yl v,"i;Q" This equation
can be obtained from the is contraction of (A13) by
setting i;QY = 0.

To conclude, let us note that in this formalism the local
fermionic x-symmetry transformations §, (B8) leaving
invariant the DO-brane action (B1) can be described by
(ixd = 6y)

i =" —i5.0'640" — i5.0°6"6> =0 = i E* =0,
i .E' =0, iQ =0, i Q7 =0,

i E'" = —i E2 =k = i (E"+E2) = 0. (C21)

Indeed substituting the above i, for is in (C20), we
find 5K’CD0 = 0

APPENDIX D: MULTIPLE D0-BRANE ACTION
AND ITS WORLDLINE SUPERSYMMETRY

In this Appendix we present some details of the
derivation of the worldline supersymmetry leaving invari-
ant the candidate mDO action (4).

1. Formal exterior derivative of the Lagrangian
form of the mD0 action

The first stage is to calculate the formal exterior
derivative of the Lagrangian form of the action (4), this
is to say of 1-form

Lonpo = mE® — im(d6'6* — 0'd6?)
1 - 2
+— |tr(P'DX + 4i% DW,) +— FOH
ﬂé[r( ¥, D¥,) M

dM iyl 1 How) i

+3 ()0 . o1)
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where H is given in Eq. (5). The covariant derivatives D of the bosonic and fermionic Hermitian traceless N x N matrix
fields are defined in (15) and (16) with the use of 1d gauge field 1-form A = dzA, and Cartan forms (A11), so that, when
calculating the exterior derivative of (D1), we have to use the Ricci identities

DDX' = Q' A Q/X/ +[F.X].  DD¥, =2Q' A QW) + [F. ¥, (D2)

Here F = dA — A A A is the formal 2-form field strength of the 1d gauge field A (which is calculated without using
A = d7zA,, with the aim to apply it in the Lie derivative formula for variation of the Lagrangian 1-form). Equations (D2) are
obtained using the Maurer-Cartan equations (A15).

After some algebra, the exterior derivative of the multiple DO-branes Lagrangian form (D1) can be found to be

pOdL o = uPmE' A Q' — iu®m(E' + E2) A (E' + E2) + Q' A Qitr(PX + iWy/W)
+ tr(F([X, P'] - 4i{¥,,¥,})) — tr(DP' A DX') — 4itr(D¥, A D¥,)

2 . ) 2 1 . .
+ﬂEl ANQH - iﬂ(Elq ANEY+E2AEDH _W(EW + E2)yl v, A QY

2 1 M 1 1 M

— (1 =-—"—H|E° AdH + —=(E'"" — E2) A iD ——dK A dH
+M< 5 M ) i o) N D+ e

1 1 M

— — (EY - E%)iv, A dH, D3
FEaam M B i, (D3)

where K := tr(X'P'), v, is defined in (28) and H is the relative motion Hamiltonian (5). The derivatives of these “blocks,”
which also enter (D3), read

dH = tr(P’DlP” + EDX![[X!, X7], X/] - DXL, {¥,. ¥, } — 2D¥,[('P),. X’]) : (D4)
dK = tr(DX'P! + X'DP'), (DS)
iDy, = tr <—4i(y"l’)qDP’ —4i(y'D¥), P - DX/[(y'¥),,. X/] + 3 (y/DW),[X", xq) : (D6)

2. Worldline supersymmetry (x-symmetry) transformations of the center of energy variables

The previous experience with lower-dimensional counterparts of the mDO system [29] suggests to assume that the
worldline supersymmetry acts on the center of energy variables of the mDO0 system (i.e., on the superspace coordinate
functions and spinor frame variables) as the k symmetry of the single DO-brane action (see Sec. B) acts on their single-brane
counterparts. Namely, we set [47]

ilh=0 = iE°=0, i E =0,

i Q =0, QU =0 = 5u)=0, Sl =0,5v,7=0, (D7)
and
x4 x4 x4
i E'Y = —iE2=— = §0'%=—1°, 502 = ———=,9. D8
T2 v2 ! V2 %)

These expressions are equivalent to (19), but they are more convenient to use in our method of calculation of the variation of
Lagrangian form.
Then, using the Lie derivative formula (C13) with (D7), (D8) and furthermore identifying in it

iD=s. iF=68A, iA=0, (D9)
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we find that, modulo total derivative, the variation §, of the Lagrangian form L p, reduces to

U6 Lo = tr(SA([X!, P
2V2

—4i{¥,, ¥

. 2
- lW (Elq - Eé)KqH + m

1 1 M
+_

ué 2/2 M M

1 1
,u 2\/_szqu7'(

S (= B

The worldline supersymmetry transformation rules of the
matrix fields can be found by requiring this variation to
vanish. As this calculation is a bit subtle, we present below
some details.

3. Worldline supersymmetry transformations of the
matrix matter fields

To find the supersymmetry transformation leaving
invariant S,po = [ Liypos i.€., obeying §,Lpo = 0 (mod-
ulo total derivative), we have to set equal to zero the
coefficients for all the independent I-forms in (D10).

.)) + (6, P DX’

——=«1iDy, +

1
VM

- DPi5 X" —
_HM 1 M
T )EO% —
B Erat+ o
1M

8iDW,5,¥,)

dKCo’H

OH ————06,KdH

ue M

(B — E2)ibv,. (D10)

1
V2M

Requiring to vanish the terms proportional to DP, DX/,
and D¥,, we find the set of equations for the worldline
supersymmetry transformations of the matrix “matter”
fields of the form of relations (21), (22) and (23).

We stress that at this stage these are equations because their
right-hand sides contain A K from (27) and §,H which in
their turn are expressed in terms of 5, X'X’, 5", and 5,'¥,.

To solve these equations it is convenient to calculate
formally the variations of composite quantities §,H and
A with (21)—(23). In this way we find the following
equations:

| N S V"
— - 1 l _ 1] 1 J —_
ALK 2\/A_/ltr<4l(1<y ¥)P +2(Ky W)X, X ]) S M AKH, (D11)
5 = u(erw, (X, P — 4w, ®,1) — M s e (D12)
= v T (X p o) = 5 3 BT

where $) is given in Eq. (25) [48]. These equations are solved by (26) and (24).
Thus, worldline supersymmetry transformations of the matrix matter fields are given by (21)—(23) with (26) and (24).

4. Worldline supersymmetry transformations of the worldvolume gauge field

Taking into account the above results for supersymmetry transformations of the matrix matter fields, we find that the
remaining variation of the Lagrangian form (D10) can be written as

;oo . 2 HM
/l6(SK,CmD0 = tr(5KA([X . [P) ] —_ 4l{\Pq,\Ilq})) +m <1 —6ﬂ) EO(S H
1 . 1M
+\/W(E14—E§)<16qu—\//\_/l TH + 62Mw 57’() (D13)
To proceed further, we calculate i6,v,, which reads
6.0, = = (y) (X (X, P] — 4i{W,, W, })) + g
K7q \/./\_/l /4 q ’ ro tr \//\_/l
1 M o , S 1 M o )
+Eﬂtr(4l(y"l’)q[@ + (y”‘P)q[X’,Xf])éKH &M — AKtr (P, ([X’, P —41{‘I’q,‘Pq})) (D14)

and substitute it to (D13) arriving at
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(1 LMH)
8 Lonpy = tr(([xé P = 400, W) |38+ B B
MVM RO )
1 . 1 M
- Elq _ E2 i Xl Elq _ E2
fM( ) (r'<) X! =+ +( Q)5 TN
P tr(4i(y'W) P42 (Y1) [XE, X
x <—2A,JC\Pq+K ¥, r@iGr¥), M(A, JalX D)D. (D15)
VM (14 5% D)
The above expression vanishes if the SU(N) gauge field transforms under worldline supersymmetry as
2 ( - %%’H) 1 o
A=-——"—F'x7¥ Elq—E2 ), X!
/ p (i i 15 (qij i
(- )L 1 M (2AK/C‘I‘q—K ‘I‘ptr(4l(y‘I‘) P!+ (}/I ¥), [X,X])>'
O 2M\2M VM (14557 9)
Substituting (26) in it, we arrive after some algebra at Eq. (29).
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