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We present a complete nonlinear action for the dynamical system of nearly coincident multiple
D0-branes (mD0) which possesses, besides manifest spacetime (target superspace) supersymmetry, also the
worldline supersymmetry, a counterpart of the local fermionic κ symmetry of single D0-brane (Dirichlet
superparticle). The action contains an arbitrary nonvanishing function MðHÞ of the relative motion
HamiltonianH. The ten-dimensional (D ¼ 10) mD0 model with particular form ofMðHÞ can be obtained
by dimensional reduction from the action of the D ¼ 11 multiple M-wave (mM0) system.
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I. INTRODUCTION

Dirichlet p-branes or Dp- branes [1] are the super-
symmetric extended objects on which the fundamental
D ¼ 10 superstring can have its ends attached [2,3]. Their
especially important role in string theory [4] was appre-
ciated after the famous paper by Polchinski [5], where it
was shown that they carry nontrivial charges with respect to
Ramond-Ramond (RR) fields (see [6] for a comprehensive
review).
The worldvolume action for a single super-Dp-brane is

known [7–13] to be given by the sum of the supersymme-
trized Dirac-Born-Infeld (DBI) term and a Wess-Zumino
term describing the coupling to RR fields. Both terms
contain the field strength of d ¼ ðpþ 1Þ dimensional
worldvolume gauge field and in the weak field limit, after
fixing the static gauge the first DBI term reduces to the
action of the supersymmetric Abelian gauge field theory.
Also the Wess-Zumino term in this gauge is expressed
through the fields of the Abelian super-Yang-Mills
multiplet.
The quest for an effective action for the multiple

Dp-brane system, i.e., the system of N nearly coincident
Dp-branes and strings ending on these Dp-branes, can be
followed back to the seminal paper byWitten [14] where he
argued that the gauge fixed description of its weak field
limit is given by the non-Abelian U(N) super-Yang-Mills
(SYM) action. Despite a number of very interesting results
obtained during the past 26 years [15–29], the complete

nonlinear supersymmetric action for the dynamical system
of multiple Dp-branes (mDp) is not known presently even
for the simplest case of p ¼ 0 [30].
In this paper we present a nonlinear action which

possesses several properties expected from the action of
the mD0 system. Particularly, it is manifestly invariant
under Poincaré symmetry, SU(N) gauge symmetry, and
spacetime (type IIA target superspace) supersymmetry, and
also possesses local worldline supersymmetry generalizing
the κ symmetry of single D0-brane (massive type IID ¼ 10
superparticle) action [31]. This latter fact is especially
important because it guarantees that the ground state of this
dynamical system is supersymmetric which is expected in
the case of multiple D0-brane systems.
The rest of the paper is organized as follows. In Sec. II

we present the complete supersymmetric and nonlinear
candidate action for multiple D0-brane systems. The rigid
spacetime supersymmetry and local worldsheet supersym-
metry transformations leaving this action invariant are
described in Sec. III. The technical details on the derivation
of these results can be found in Appendix D which uses the
approach and ingredients described in Appendixes A–C.
Sec. IV contains our conclusions and discussion of the
results.

II. SUPERSYMMETRIC NONLINEAR ACTION

The nonlinear action which we have found is written in
terms of center of energy variables of an mD0 system, which
are the same as in the case of a single D0-brane, and matrix
variables describing the relativemotion ofmD0 constituents.
The set of center of energy variables contains coordinate
functions describing the embedding of the center of energy
worldline in flat type IIA superspace, bosonic 10-vector, and
two fermionic Majorana-Weyl spinors
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ZMðτÞ ¼ ðxμðτÞ; θ1αðτÞ; θ2αðτÞÞ; ð1Þ

μ ¼ 0;…; 9, α ¼ 1;…; 16, as well as the spinor moving
frame variables which we will describe below. The relative
motion variables are matrix fields from the 1d extended
(N ¼ 16) SUðNÞ SYM multiplet, the set of which can be
split on matter fields, 9þ 9 bosonic and 16 fermionic
Hermitean traceless N × N matrix fields

XiðτÞ; PiðτÞ; ΨqðτÞ; ð2Þ

i ¼ 1;…; 9, q ¼ 1;…; 16, and the bosonic anti-Hermitean
traceless N × N matrix 1-form

A ¼ dτAτðτÞ ð3Þ

containing the suðNÞ valued worldline gauge field AτðτÞ.
Besides SUðNÞ gauge transformations, the matrix fields are
transformed by local SO(9) transformations according to
their vector and spinor indices i ¼ 1;…; 9 andq ¼ 1;…; 16.
Thesewill also act on spinor framevariables and describe the
gauge symmetry of the mD0 action.
The action has the form

SmD0 ¼ m
Z
W1

E0 − im
Z
W1

ðdθ1θ2 − θ1dθ2Þ

þ 1

μ6

Z
W1

�
trðPiDXi þ 4iΨqDΨqÞ þ

2

M
E0H

�

−
1

μ6

Z
W1

dM
M

trðPiXiÞ þ 1

μ6

Z
W1

1ffiffiffiffiffiffiffiffiffi
2M

p ðE1q − E2
qÞ

× tr

�
−4iðγiΨÞqPi þ 1

2
ðγijΨÞq½Xi;Xj�

�
; ð4Þ

where m and μ are constants of dimension of mass and

H ¼ 1

2
trðPiPiÞ − 1

64
tr½Xi;Xj�2 − 2trðXiΨγiΨÞ ð5Þ

has the meaning of the relative motion Hamiltonian.
Actually the first line of (4) formally coincides with the

action of a single D0-brane, i.e., a massiveD ¼ 10 type IIA
superparticle in its moving frame formulation [28,37] (see
below for the description of E0 in it and Appendix B for
some details). In this case m plays the role of the super-
particle mass. In contrast, the constant μ characterizes the
interaction of the center of energy and relative motion
sector as well as the self-interaction of this latter. Notice
that to simplify and to make more transparent the depend-
ence of the action on this parameter we have chosen
noncanonical dimensions for the matrix matter fields (2).
In particular, with this choice of dimensions of matrix
fields, the relative motion Hamiltonian H (5) is μ inde-
pendent. However its dimension becomes (mass6) so that
H=μ6 is dimensionless.

M in (4) is an arbitrary nonvanishing function of
this dimensionless combination of the relative motion
Hamiltonian and coupling constant,

M ¼ MðH=μ6Þ: ð6Þ

A particular case of the action (4) with

M ¼ m
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

4
þ H
μ6

s
ð7Þ

can be obtained by dimensional reduction of the 11D
multiple M-wave (multiple M0-branes or mM0) system
action from [38,39] similar to dimensional reduction of its
D ¼ 4 counterpart described in [29]. Another representa-
tive of the family (4) with M ¼ m was studied in [28]
where it was noticed that it cannot be obtained by dimen-
sional reduction from 11D mM0 action.
Coming back to the first line of (4), in it E0 is the

projection of (the pull back of) 10D Volkov-Akulov 1-form

E0 ¼ Πμu0μ; Πμ ¼ dxμ − idθ1σμθ1 − idθ2σ̃μθ2 ð8Þ

to one of the vector fields, u0μðτÞ, of moving frame attached
to the worldline. That is described by a Lorentz group
valued 10 × 10 matrix

ðu0μ; uiμÞ ∈ SOð1; 9Þ ð9Þ

composed of the moving frame vectors which obey

uμ0u0μ ¼ 1; uμ0uiμ ¼ 0; uμiujμ ¼ −δij: ð10Þ

The spinor moving frame described by Spin(1,9) valued
matrix

vαq ∈ Spinð1; 9Þ ð11Þ

provides a kind of square root of the above described
moving frame in the sense of Cartan-Penrose-like relations
(see Appendix A for more details)

u0μσ
μ
αβ ¼ vαqvβq; uiμσ

μ
αβ ¼ vαqγiqpvβp; ð12Þ

vqασ̃
αβ
μ vpβ ¼ u0μδqp þ uiμγiqp: ð13Þ

In distinction to theirD ¼ 4 counterparts (described in [40]
and, e.g., [29]) Eqs. (12) impose strong constraints on the
spinor moving frame field vαq ¼ vαqðτÞ reducing the
number of its components from the original 16 × 16 ¼
256 to 45 ¼ dimðSOð1; 9ÞÞ.
This spinor frame matrix field vαqðτÞ and its inverse

vαqðτÞ are used to construct the fermionic forms E1q and Eq
2

which enter the last term of the action (4),
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E1q ¼ dθ1αvαq; E2
q ¼ dθ2αvqα: ð14Þ

The covariant derivatives in the second line of (4)

DXi ≔ dτDτXi ≔ dXi − ΩijXj þ ½A;Xi�; ð15Þ

DΨq ≔ dτDτΨq ≔ dΨq −
1

4
ΩijγijqpΨp þ ½A;Ψq�; ð16Þ

contain, beside the SUðNÞ gauge field (3), also the
composite SO(9) connection (Cartan form)

Ωij ¼ uμidujμ: ð17Þ

III. LOCAL WORLDLINE SUPERSYMMETRY

The action (4) is manifestly invariant under the rigid
super-Poincaré supergroup transformations, including
spacetime (target 10D IIA superspace) supersymmetry
with constant fermionic parameters ϵα1 and ϵα

2 acting
nontrivially only on the center of energy variables,

δϵθ
1α ¼ ϵα1; δϵθ

2
α ¼ ϵα

2; δϵv
q
α ¼ 0;

δϵxμ ¼ iθ1σμϵ1 þ iθ2σ̃μϵ2: ð18Þ

It is also invariant under the SUðNÞ gauge symmetry acting
on the matrix matter fields by its adjoint representation,
provided the suðNÞ valued 1-form A transforms as SUðNÞ
connection, as well as under the SO(9) symmetry acting by
vector representation on index i of uiμ, Xi, Pi and by its
spinor representation on index q of Ψq and vqα.
Furthermore the action is invariant under local fermionic

worldline supersymmetry parametrized by fermionic func-
tion κqðτÞ carrying spinor index of SO(9). It acts on the center
of energy variables exactly in the samemanner as irreducible
κ symmetry of a single D0-brane in its spinor moving frame
formulation [28,37] [hence the notation κqðτÞ],

δκθ
1α ¼ κqvαq=

ffiffiffi
2

p
; δκθ

2
α ¼ −κqvαq=

ffiffiffi
2

p
;

δκxμ ¼ iδκθ1σμθ1 þ iδκθ2σ̃μθ2;

δκv
q
α ¼ 0 ⇒ δκu0μ ¼ 0 ¼ δκuiμ: ð19Þ

The action of worldline SUSYon the matrix fields includes
essentially nonlinear terms, some of which are proportional
to the derivative of the function M with respect to its
argument and, hence to additional power of 1

μ6
,

δMðH=μ6Þ ¼ 1

μ6
M0ðH=μ6ÞδH; M0ðyÞ ¼ d

dy
MðyÞ:

ð20Þ

The worldline supersymmetry transformations of the matrix
matter fields are (see Appendix D for their derivation by
method described in Appendix C)

δκXi ¼ 4iffiffiffiffiffiffi
M

p κγiΨþ 1

μ6
M0

M
δκHXi −

1

μ6
M0

M
ΔκKPi; ð21Þ

δκPi ¼ −
1ffiffiffiffiffiffi
M

p ½κγijΨ;Xj� − 1

μ6
M0

M
δκHPi

þ 1

μ6
M0

M
ΔκK

�
1

16
½½Xi;Xj�;Xj� − γipqfΨp;Ψqg

�
;

ð22Þ

δκΨq ¼ −
1

2
ffiffiffiffiffiffi
M

p ðκγiÞqPi −
i

16
ffiffiffiffiffiffi
M

p ðκγijÞq½Xi;Xj�

−
i

4μ6
M0

M
ΔκK½ðγiΨÞq;Xi�: ð23Þ

Here

δκH ¼ 1ffiffiffiffiffiffi
M

p trðκqΨqð½Xi;Pi� − 4ifΨq;ΨqgÞÞ
1þ 1

μ6
M0
M H

ð24Þ

with

H ≔ trðPiPiÞ þ 1

16
tr½Xi;Xj�2 þ 2trðXiΨγiΨÞ ð25Þ

is the worldline supersymmetry variation of the relative
motion Hamiltonian (5) and

ΔκK ¼ 1

2
ffiffiffiffiffiffi
M

p trð4iðκγiΨÞPi þ 5
2
ðκγijΨÞ½Xi;Xj�Þ

1þ 1
μ6

M0
M H

: ð26Þ

This latter is related to theworldline supersymmetryvariation
of K ¼ trðXiPiÞ by

ΔκK ¼ δκðtrðXiPiÞÞ þ 1

2
ffiffiffiffiffiffi
M

p iκqνq; ð27Þ

where

iνq ≔ tr

�
−4iðγiΨÞqPi þ 1

2
ðγijΨÞq½Xi;Xj�

�
: ð28Þ

In terms of the above blocks the worldline supersym-
metry variation of the SUðNÞ connection 1-form (gauge
field) can be written as (see Appendix D for its derivation)
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δκA ¼ −
2

M
ffiffiffiffiffiffi
M

p E0ðκqΨqÞ
ð1 − 1

μ6
M0
M HÞ

ð1þ 1
μ6

M0
M HÞ

þ 1ffiffiffi
2

p
M

ðE1q − E2
qÞðγiκÞqXi

− ðE1q − E2
qÞ

1

μ6
M0ffiffiffi
2

p
M2

1

ð1þ 1
μ6

M0
M HÞ

× κpΨðqtrð4iðγiΨÞpÞPi þ 5

2
ðγijΨÞpÞ½Xi;Xj�Þ: ð29Þ

IV. CONCLUSION AND DISCUSSION

Thus, we have found that the action (4) is invariant,
besides the manifest spacetime (target superspace type IIA)
supersymmetry (18), also under 16-parametric local world-
line supersymmetry transformations (19), (21)–(23), and
(29). Its counterpart in the case of single p-branes, local
fermionic κ symmetry, is considered as an exclusive
property of the supersymmetric extended objects of
string/M theory. It guarantees that the ground state of
the dynamical system preserves a part (one-half) of the
spacetime supersymmetry.
The form of this worldline supersymmetry depends

strongly on the choice of the function MðH=μ6Þ in the
action (4). This is restricted by the requirement of non-
singularity M ≠ 0 but otherwise is arbitrary [41].
The simplest model obtained by settingM ¼ m ¼ const

was studied earlier in [28]. In this caseM0 ¼ 0 andworldline
supersymmetry transformations of the matrix fields
(21)–(23), (29) simplify drastically and provide the local
supersymmetry generalization of the rigid d ¼ 1 N ¼ 16
supersymmetry of 10D SUðNÞ SYM model reduced to
d ¼ 1. The local supersymmetry of the action is provided
by coupling of this 1d SYM to the composed worldline
supergravity on theworldline induced by the center of energy
motion. This is described by 1d graviton 1-form (einbein)E0

and 16 1d gravitini 1-forms E1q − E2
q constructed from the

center of energy variables according to (8) and (14).
Thus the nonlinearity of the previously proposed candi-

date action with M ¼ m ¼ const [28] does not go beyond
that of the non-Abelian Yang-Mills theory. In contrast, the
action (4)with a generic functionMðH=μ6Þ, particularly the
one with (7), which can be obtained by dimensional
reduction from 11D mM0 action of [38], shows essential
nonlinearity beyond the level of the SYM one, as it has been
expected for the multiple D0-system. It is impressive that
such a nonlinearity can be reached with preserving the local
worldline supersymmetry characteristic for an mD0 system,
and that this can be done for essentially arbitrary function
MðH=μ6Þ. Also, the above mentioned connection with an
11DmM0 system, the details of which will be published in a
forthcoming paper [42], is another important advantage of
the functional (4) as a candidate mD0 action.

The problem of what choice of the function MðH=μ6Þ
leads to the true mD0-brane action requires additional
study. A natural way to make this choice through using T
duality (which was the main argument for construction of
bosonic actions in [15]) requires as a first step to construct
the candidate action for type IIB multiple D1-branes
(mD1), the problem we are planning to address in the
future. A more detailed study of the properties of the model
(4) with arbitrary function MðH=μ6Þ, including the sol-
ution of its equations of motion and describing its BPS
states, can be also useful to single out the true mD0-brane
action or to clarify why so big set of models possesses the
expected properties.
For a moment, an especially interesting in a string/

M-theoretic perspective looks at the model (4) with
function MðH=μ6Þ given in (7) because, as we will show
in the forthcoming paper [42], this can be obtained by
dimensional reduction of the action for multiple M0-branes
(multiple M wave or mM0) constructed in [38]. However,
this argument implies the uniqueness of the action [38] as
the one having the properties expected for an mM0 system.
On the other hand, in light of the found multiplicity of the
10D actions with the properties expected for mD0 systems,
it is tempting to search for possible essentially nonlinear
generalizations of the 11D mM0 action of [38].
Also the generalization of the action (4) for the case of

multiple Dp-brane systems with 1 < p ≤ 9 and for the case
of curved target IIA supergravity superspace are intriguing
and important problems.
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APPENDIX A: 10D SPINOR MOVING
FRAME VARIABLES

The multiple D0-brane action, presented in the main text,
is presently known only in its spinor moving frame
formulation involving the auxiliary variables which we
are going to describe in some detail.
The Spin(1,9)/Spin(9) spinor moving frame variables

and their moving frame vector companions appropriate to
the description of D0 brane and multiple D0 (mD0) systems
are elements of, respectively, 16 × 16 and 10 × 10matrices
(11) and (9) (see [28,37])

vαq ∈ Spinð1; 9Þ and ðu0μ; uiμÞ ∈ SOð1; 9Þ: ðA1Þ

Here i ¼ 1;…; 9 and q ¼ 1;…; 16 are vector and spinor
indices of SO(9) group while μ; ν ¼ 0; 1;…; 9 and
α; β ¼ 1; 2;…; 16 are 10-vector and 10D Majorana-Weyl
spinor indices.
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The condition that moving frame variables form the SO
(1,9) valued matrix implies (10) and

u0μu0ν − uiμuiν ¼ ημν ¼ diagð1;−1;…;−1Þ: ðA2Þ

The spinor moving frame variables obey the constraints

uðνÞμ σμαβ ¼ vqασ
ðνÞ
qpv

p
β ; uðνÞμ σ̃qpðνÞ ¼ vqασ̃

αβ
μ vpβ ; ðA3Þ

which express the SO(1,9) Lorentz invariance of the 10D
generalization of the relativistic Pauli matrices σμαβ ¼ σμβα
and σ̃αβμ ¼ σ̃βαμ ,

σðμαγσ̃νÞγβ ≔
1

2
ðσμσ̃ν þ σνσ̃μÞαβ ¼ ημνδα

β; ðA4Þ

and also makes the spinor frame matrix to describe double
covering of the Lorentz group element represented by the
moving frame matrix (see [40,43,44]). Roughly speaking,
this statement can be formulated by saying that spinor
frame variables (also called Lorentz harmonics [40,43,44])
are square roots of the moving frame variables (also called
vector harmonics [45]).
Choosing the SO(9) invariant representation

σðμÞqp ¼ ðδqp; γiqpÞ ¼ σ̃qpðμÞ; ðA5Þ

where γiqp ¼ γipq are d ¼ 9 gamma matrices,

γiqp ¼ γipq; γðiγjÞ ¼ δijI16×16; ðA6Þ

we find that Eqs. (A3) acquire the form of (12) and

vqασ̃
αβ
μ vpβ ¼ u0μδqp þ uiμγiqp: ðA7Þ

Similarly, we find

u0μσ̃μαβ ¼ vqαvqβ; uiμσ̃μαβ ¼ −vqαγiqpvpβ: ðA8Þ

Notice that

vqβ ¼ vqασ̃μαβu0μ; obeyingu0μσ
μ
αβvq

β ¼ vαq; ðA9Þ

is the inverse spinor moving frame matrix vαq ∈ Spin(1,9):

vqαvαp ¼ δq
p ⇔ vαqvqβ ¼ δα

β: ðA10Þ

The derivatives of the moving frame and of the spinor
moving frame variables are expressed in terms of Cartan
forms

Ωi ¼ u0μduμi;Ωij ¼ uiμduμj; ðA11Þ

by

Du0μ ≔ du0μ ¼ uiμΩi; Duiμ ≔ duiμ þ ujμΩji ¼ u0μΩi ðA12Þ

and

Dvαq ≔ dvαq þ
1

4
Ωijvαpγ

ij
pq ¼ 1

2
γiqpvαpΩi ðA13Þ

⇒ Dvqα ≔ dvqα −
1

4
Ωijγijqpvαp ¼ −

1

2
vαpγipqΩi: ðA14Þ

Taking exterior derivatives of Eqs. (A12) (see Appendix C
for definitions) we can find the Maurer-Cartan equations

DΩi ¼ dΩi þ Ωj ∧ Ωji ¼ 0;

dΩij þ Ωik ∧ Ωkj ¼ −Ωi ∧ Ωj: ðA15Þ

APPENDIX B: SINGLE D0-BRANE IN SPINOR
MOVING FRAME FORMULATION AND ITS κ

SYMMETRY

The action of the moving frame formulation of the 10D
D0-brane in flat type IIA superspace, which also appears as
a part of the multiple D0-brane action (4) describing the
center of mass dynamics of this system, reads [37]

SD0 ¼
Z
W1

LD0 ¼ m
Z
W1

E0 − im
Z
W1

ðdθ1αθ2α − θ1αdθ2αÞ:

ðB1Þ

Here, d ¼ dτ∂=∂τ≕ dτ∂τ, τ is proper time variable para-
metrizing the D0-brane worldline W1 defined as a line in
target D ¼ 10 type IIA superspace Σð10j32Þ with 10 bosonic
and 16þ 16 ¼ 32 fermionic coordinates

ZM ¼ ðxμ; θ1α; θ2αÞ ðB2Þ

by corresponding coordinate functions

ZMðτÞ ¼ ðxμðτÞ; θ1αðτÞ; θ2αðτÞÞ; ðB3Þ

W1 ∈ Σð10j32Þ∶ ZM ¼ ZMðτÞ: ðB4Þ

The constant m entering both terms of (B1) is the mass of
the D0-brane and E0 is the contraction

E0 ¼ Πμu0μ ðB5Þ

of the pull back to the worldline of the 10D Volkov-Akulov
1-form

Πμ ¼ dxμ − idθ1σμθ1 − idθ2σ̃μθ2 ðB6Þ

with the vector field u0μ ¼ u0μðτÞ. The pull back of a
differential form on target superspace is obtained by

COMPLETE NONLINEAR ACTION FOR SUPERSYMMETRIC … PHYS. REV. D 106, 066004 (2022)

066004-5



substituting the coordinate functions for the coordinates; so
that Eq. (B5) actually includes

Πμ ¼ dτΠμ
τ ¼ dxμðτÞ − idθ1ðτÞσμθ1ðτÞ − idθ2ðτÞσ̃μθ2ðτÞ:

ðB7Þ

Notice that, to simplify the notation, below and below, as
well as in the main text, we use the same symbols for the
differential forms on the target superspace and their pull
backs to the worldline W1. The same applies to the
superspace coordinates (B2) and the coordinate functions
(B3). Particularly, in the second term of (B1) θ1α and θ2α
denote θ1αðτÞ and θ2αðτÞ.
A very important property of the action (B1) is that,

besides manifest D ¼ 10 N ¼ 2 spacetime supersym-
metry, it is also invariant under the following local
fermionic κ-symmetry transformations

δκθ
1α ¼ κqvαq; δκθ

2
α ¼ −κqvαq;

δκxμ ¼ iδκθ1σμθ1 þ iδκθ2σ̃μθ2;

δκvαq ¼ 0 ⇒ δκuiμ ¼ δκu0μ ¼ 0; ðB8Þ

where κq ¼ κqðτÞwith q ¼ 1;…; 16 are arbitrary fermionic
functions.
To prove the κ-invariance of the single D0-brane action

and also the invariance of multiple D0-brane action under
its generalization, the worldline supersymmetry, we have
used the formalism of generalized Lie derivatives based on
formal exterior derivatives of differential forms which we
are going to describe in Appendix C.

APPENDIX C: DIFFERENTIAL FORMS AND
VARIATIONS

Let Ξq be differential q form in a superspace with
coordinates ZM,

Ξq ¼
1

q!
dZMq ∧ … ∧ dZM1ΞM1…Mq

ðZÞ; ðC1Þ

where ∧ is the exterior product of the differential forms. In
the simplest case of basic 1-forms given by differentials of
the superspace coordinates,

dZM ∧ dZN ¼ −ð−1ÞϵðMÞϵðNÞdZN ∧ dZM; ðC2Þ

where ϵðMÞ≡ ϵðZMÞ is the so-called Grassmann parity of
ZM defined by

ϵðxμÞ ¼ 0; ϵðθ1αÞ ¼ 1; ϵðθ2αÞ ¼ 1 ðC3Þ

in the case ofD ¼ 10 type IIA superspace with coordinates
ZM ¼ ðxμ; θα1; θ2αÞ. For any bosonic p and q forms

Ξq ∧ ϒp ¼ ð−1Þqpϒp ∧ Ξq; ðC4Þ

in particular,

dxμ ∧ dxν ¼ −dxν ∧ dxμ: ðC5Þ

In the case of the forms which can be also fermionic

Ξq ∧ ϒp ¼ ð−1ÞqpþϵðΞqÞϵðϒpÞϒp ∧ Ξq: ðC6Þ

In particular, (C2) implies that all products of the super-
coordinate differentials are antisymmetric but

dθ1α ∧ dθβ1 ¼ dθβ1 ∧ dθ1α; dθ2α ∧ dθ2β ¼ dθ2β ∧ dθ2α;

dθ1α ∧ dθ2β ¼ dθ2β ∧ dθ1α:

The exterior derivative of the differential forms, which
maps q forms into (qþ 1) forms, is defined by

dΞq ¼
1

q!
dZMq ∧ … ∧ dZM1 ∧ dZM0∂M0

ΞM1…Mq
ðZÞ

≡ 1

ðqþ 1Þ! dZ
Mqþ1 ∧ … ∧ dZM1

× ðqþ 1Þ∂½M1
ΞM1…Mqþ1gðZÞ;

where ∂N ¼ ∂

∂ZN and ½…g denotes graded antisymmetriza-
tion over the enclosed indices, in particular,

Ξ½MNg ¼
1

2
ðΞMN − ð−ÞϵðMÞϵðNÞΞNMÞ: ðC7Þ

The exterior derivative operator d obeys the nilpotency
condition and the (generalized) Leibniz rule

dd ¼ 0; dðΞq ∧ ΞpÞ ¼ Ξq ∧ dΞp þ ð−1ÞpdΞq ∧ Ξp:

ðC8Þ

The variation of differential forms under generic trans-
formations of coordinates can be calculated using the so-
called Lie derivative formula,

δΞq ¼ iδðdΞqÞ þ dðiδΞqÞ; ðC9Þ

where iδ is the contraction with variation symbol defined by

iδΞq ¼
1

ðq − 1Þ! dZ
Mq ∧ … ∧ dZM2δZM1ΞM1…Mq

ðZÞ:

ðC10Þ

Notice that this implies
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iδdZM ¼ δZM: ðC11Þ

The contraction iδ maps differential q forms into (q − 1)
forms and obeys its own counterpart of the Leibnitz rule:

iδðΞq ∧ ΞpÞ ¼ Ξq ∧ iδΞp þ ð−1ÞpiδΞq ∧ Ξp: ðC12Þ

The variation of the Lagrangian D form L of a D-
dimensional field theory can be calculated using the Lie
derivative formula with formal exterior derivative [46]

δL ¼ iδðdLÞ þ dðiδLÞ: ðC13Þ

The total derivative term dðiδLÞ is not essential when we
derive the equations of motion and can be conventionally
omitted if one does not study effects of boundary
contributions.
In the models with manifest gauge symmetry it is more

convenient to define the variations of differential forms
given by covariant Lie derivative

δΞA
q ¼ iδðDΞA

q Þ þ DðiδΞA
q Þ; ðC14Þ

where D is covariant derivative including the connection of
the gauge symmetry group and A is an index (or multi-
index including the index) of a representation of the gauge
group carried by the differential q form. Clearly for the
Lagrangian D form, which is invariant under the gauge
symmetry, DL ¼ dL and the covariant Lie derivative
prescription coincides with the standard Lie derivative
one (C13).
As a warm-up exercise let us apply this method to vary

the Lagrangian 1-form of the action (B1) of a single D0-
brane in flat 10D type IIA superspace [37]:

LD0 ¼ mE0 − imðdθ1θ2 − θ1dθ2Þ

with constant m.
The formal exterior derivative of E0 ¼ Πμu0μ in the first

term of the Lagrangian form is given by

dE0 ¼ Ei ∧ Ωi − iðE1q ∧ E1q þ E2
q ∧ E2

qÞ; ðC15Þ

where

Ei ¼ Πμuiμ; E1q ¼ dθ1αvαq; E2
q ¼ dθ2αvqα: ðC16Þ

To find that we have used

dΠμ ¼ −idθ1σμ ∧ dθ1 − idθ2σ̃μ ∧ dθ2 ðC17Þ

as well as Eqs. (12) and (A12).
The derivative of the second, Wess-Zumino term of the

D0-brane action is

−2imdθ1α ∧ dθ2α ¼ −2imE1q ∧ E2
q: ðC18Þ

Now after an elementary algebra we find that the
formal exterior derivative of the Lagrangian form of single
D0-brane can be written as

dLD0 ¼ mEi ∧ Ωi − imðE1q þ E2
qÞ ∧ ðE1q þ E2

qÞ; ðC19Þ
where Ωi is the covariant Cartan form defined in (A11).
Then, using the Lie derivative formula (C13), we find

δLD0 ¼ mðEiiδΩi − iδEiΩiÞ
− 2imðE1q þ E2

qÞðiδE1q þ iδE2
qÞ; ðC20Þ

where iδΩi defines essential variation of the spinor frame
variable by δvαq ¼ iδDvαq ¼ 1

2
γiqpvαpiδΩi. This equation

can be obtained from the iδ contraction of (A13) by
setting iδΩij ¼ 0.
To conclude, let us note that in this formalism the local

fermionic κ-symmetry transformations δκ (B8) leaving
invariant the D0-brane action (B1) can be described by
(iκd ≔ δκ)

iκΠμ ¼ δκxμ − iδκθ1σμθ1 − iδκθ2σ̃μθ2 ¼ 0 ⇒ iκE0 ¼ 0;

iκEi ¼ 0; iκΩi ¼ 0; iκΩij ¼ 0;

iκE1q ¼ −iκE2
q ¼ κq ⇒ iκðE1q þ E2

qÞ ¼ 0: ðC21Þ

Indeed substituting the above iκ for iδ in (C20), we
find δκLD0 ¼ 0.

APPENDIX D: MULTIPLE D0-BRANE ACTION
AND ITS WORLDLINE SUPERSYMMETRY

In this Appendix we present some details of the
derivation of the worldline supersymmetry leaving invari-
ant the candidate mD0 action (4).

1. Formal exterior derivative of the Lagrangian
form of the mD0 action

The first stage is to calculate the formal exterior
derivative of the Lagrangian form of the action (4), this
is to say of 1-form

LmD0 ¼mE0− imðdθ1θ2 − θ1dθ2Þ

þ 1

μ6

�
trðPiDXiþ 4iΨqDΨqÞþ

2

M
E0H

−
dM
M

trðPiXiÞþ 1ffiffiffiffiffiffiffiffiffi
2M

p ðEq1−E2
qÞtrð−4iðγiΨÞqPi

þ 1

2
ðγijΨÞq½Xi;Xj�Þ

�
; ðD1Þ
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where H is given in Eq. (5). The covariant derivatives D of the bosonic and fermionic Hermitian traceless N × N matrix
fields are defined in (15) and (16) with the use of 1d gauge field 1-form A ¼ dτAτ and Cartan forms (A11), so that, when
calculating the exterior derivative of (D1), we have to use the Ricci identities

DDXi ¼ Ωi ∧ ΩjXj þ ½F ;Xi�; DDΨq ¼
1

4
Ωi ∧ ΩjðγijΨÞq þ ½F ;Ψq�: ðD2Þ

Here F ¼ dA −A ∧ A is the formal 2-form field strength of the 1d gauge field A (which is calculated without using
A ¼ dτAτ, with the aim to apply it in the Lie derivative formula for variation of the Lagrangian 1-form). Equations (D2) are
obtained using the Maurer-Cartan equations (A15).
After some algebra, the exterior derivative of the multiple D0-branes Lagrangian form (D1) can be found to be

μ6dLmD0 ¼ μ6mEi ∧ Ωi − iμ6mðE1q þ E2
qÞ ∧ ðE1q þ E2

qÞ þ Ωi ∧ ΩjtrðPiXj þ iΨγijΨÞ
þ trðFð½Xi;Pi� − 4ifΨq;ΨqgÞÞ − trðDPi ∧ DXiÞ − 4itrðDΨq ∧ DΨqÞ

þ 2

M
Ei ∧ ΩiH − i

2

M
ðE1q ∧ E1q þ E2

q ∧ E2
qÞH −

1

2
ffiffiffiffiffiffiffiffiffi
2M

p ðE1q þ E2
qÞγiqpiνp ∧ Ωi

þ 2

M

�
1 −

1

μ6
M0

M
H
�
E0 ∧ dHþ 1ffiffiffiffiffiffiffiffiffi

2M
p ðE1q − E2

qÞ ∧ iDνq þ
1

μ6
M0

M
dK ∧ dH

þ 1

μ6
1

2
ffiffiffiffiffiffiffiffiffi
2M

p M0

M
ðE1q − E2

qÞiνq ∧ dH; ðD3Þ

where K ≔ trðXiPiÞ, νq is defined in (28) and H is the relative motion Hamiltonian (5). The derivatives of these “blocks,”
which also enter (D3), read

dH ¼ tr

�
PiDPi þ 1

16
DXi½½Xi;Xj�;Xj� − DXiγipqfΨp;Ψqg − 2DΨq½ðγiΨÞq;Xi�

�
; ðD4Þ

dK ¼ trðDXiPi þXiDPiÞ; ðD5Þ

iDνq ¼ tr

�
−4iðγiΨÞqDPi − 4iðγiDΨÞqPi − DXi½ðγijΨÞq;Xj� þ 1

2
ðγijDΨÞq½Xi;Xj�

�
: ðD6Þ

2. Worldline supersymmetry (κ-symmetry) transformations of the center of energy variables

The previous experience with lower-dimensional counterparts of the mD0 system [29] suggests to assume that the
worldline supersymmetry acts on the center of energy variables of the mD0 system (i.e., on the superspace coordinate
functions and spinor frame variables) as the κ symmetry of the single D0-brane action (see Sec. B) acts on their single-brane
counterparts. Namely, we set [47]

iκΠμ ¼ 0 ⇒ iκE0 ¼ 0; iκEi ¼ 0;

iκΩi ¼ 0; iκΩij ¼ 0 ⇒ δκu0μ ¼ 0; δκuiμ ¼ 0; δκvαq ¼ 0; ðD7Þ

and

iκE1q ¼ −iκE2
q ¼

κqffiffiffi
2

p ⇒ δκθ
1α ¼ κqffiffiffi

2
p vαq; δκθ

2
α ¼ −

κqffiffiffi
2

p vαq: ðD8Þ

These expressions are equivalent to (19), but they are more convenient to use in our method of calculation of the variation of
Lagrangian form.
Then, using the Lie derivative formula (C13) with (D7), (D8) and furthermore identifying in it

iκD ¼ δκ; iκF ¼ δκA; iκA ¼ 0; ðD9Þ
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we find that, modulo total derivative, the variation δκ of the Lagrangian form LmD0 reduces to

μ6δκLmD0 ¼ trðδκAð½Xi;Pi� − 4ifΨq;ΨqgÞÞ þ trðδκPiDXi − DPiδκXi − 8iDΨqδκΨqÞ

− i
2

ffiffiffi
2

p

M
ðE1q − E2

qÞκqHþ 2

M

�
1 −

H
μ6

M0

M

�
E0δκHþ 1

μ6
M0

M
dKδκH

þ 1

μ6
1

2
ffiffiffiffiffiffiffiffiffi
2M

p M0

M
ðE1q − E2

qÞiνqδκH −
1

μ6
M0

M
δκKdH

−
1

μ6
1

2
ffiffiffiffiffiffi
M

p M0

M
κqiνqdH −

1ffiffiffiffiffiffi
M

p κqiDνq þ
1ffiffiffiffiffiffiffiffiffi
2M

p ðE1q − E2
qÞiδκνq: ðD10Þ

The worldline supersymmetry transformation rules of the
matrix fields can be found by requiring this variation to
vanish. As this calculation is a bit subtle, we present below
some details.

3. Worldline supersymmetry transformations of the
matrix matter fields

To find the supersymmetry transformation leaving
invariant SmD0 ¼

R
LmD0, i.e., obeying δκLmD0 ¼ 0 (mod-

ulo total derivative), we have to set equal to zero the
coefficients for all the independent 1-forms in (D10).

Requiring to vanish the terms proportional to DPi, DXi,
and DΨq, we find the set of equations for the worldline
supersymmetry transformations of the matrix “matter”
fields of the form of relations (21), (22) and (23).
We stress that at this stage these are equations because their

right-hand sides contain ΔκK from (27) and δκH which in
their turn are expressed in terms of δκXiXi, δκPi, and δκΨq.
To solve these equations it is convenient to calculate

formally the variations of composite quantities δκH and
ΔκK with (21)–(23). In this way we find the following
equations:

ΔκK ¼ 1

2
ffiffiffiffiffiffi
M

p tr

�
4iðκγiΨÞPi þ 5

2
ðκγijΨÞ½Xi;Xj�

�
−

1

μ6
M0

M
ΔκKH; ðD11Þ

δκH ¼ 1

2
ffiffiffiffiffiffi
M

p trðκqΨqð½Xi;Pi� − 4ifΨp;ΨpgÞÞ −
1

μ6
M0

M
δκHH; ðD12Þ

where H is given in Eq. (25) [48]. These equations are solved by (26) and (24).
Thus, worldline supersymmetry transformations of the matrix matter fields are given by (21)–(23) with (26) and (24).

4. Worldline supersymmetry transformations of the worldvolume gauge field

Taking into account the above results for supersymmetry transformations of the matrix matter fields, we find that the
remaining variation of the Lagrangian form (D10) can be written as

μ6δκLmD0 ¼ trðδκAð½Xi;Pi� − 4ifΨq;ΨqgÞÞ þ
2

M

�
1 −

H
μ6

M0

M

�
E0δκH

þ 1ffiffiffiffiffiffiffiffiffi
2M

p ðE1q − E2
qÞ
�
iδκνq −

4iffiffiffiffiffiffi
M

p κqHþ 1

μ6
1

2

M0

M
iνqδκH

�
: ðD13Þ

To proceed further, we calculate iδκνq, which reads

iδκνq ¼ −
1ffiffiffiffiffiffi
M

p ðκγiÞqtrðXið½Xj;Pj� − 4ifΨr;ΨrgÞÞ þ
4iffiffiffiffiffiffi
M

p κqH

þ 1

μ6
M0

M
trð4iðγiΨÞqPi þ ðγijΨÞq½Xi;Xj�ÞδκH −

1

μ6
M0

M
ΔκKtrðΨqð½Xi;Pi� − 4ifΨq;ΨqgÞÞ ðD14Þ

and substitute it to (D13) arriving at
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μ6δκLmD0 ¼ tr

�
ð½Xi;Pi� − 4ifΨr;ΨrgÞ

�
δκAþ 2

M
ffiffiffiffiffiffi
M

p E0ðκqΨqÞ
ð1 − 1

μ6
M0
M HÞ

ð1þ 1
μ6

M0
M HÞ

−
1ffiffiffi
2

p
M

ðE1q − E2
qÞðγiκÞqXi þþðE1q − E2

qÞ
1

μ6
M0

2M
ffiffiffiffiffiffiffiffiffi
2M

p

×

�
−2ΔκKΨq þ

κpΨpffiffiffiffiffiffi
M

p trð4iðγiΨÞqPi þ 5
2
ðγijΨÞq½Xi;Xj�Þ

ð1þ 1
μ6

M0
M HÞ

���
: ðD15Þ

The above expression vanishes if the SUðNÞ gauge field transforms under worldline supersymmetry as

δκA ¼ −
2

M
ffiffiffiffiffiffi
M

p E0ðκqΨqÞ
ð1 − 1

μ6
M0
M HÞ

ð1þ 1
μ6

M0
M HÞ þ

1ffiffiffi
2

p
M

ðE1q − E2
qÞðγiκÞqXi

þ ðE1q − E2
qÞ

1

μ6
M0

2M
ffiffiffiffiffiffiffiffiffi
2M

p
�
2ΔκKΨq −

κpΨpffiffiffiffiffiffi
M

p trð4iðγiΨÞqPi þ 5
2
ðγijΨÞq½Xi;Xj�Þ

ð1þ 1
μ6

M0
M HÞ

�
:

Substituting (26) in it, we arrive after some algebra at Eq. (29).
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