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For the case of two light flavors, we propose the stringy description of the system made of one heavy and
one light quark-antiquark pair, with the aim of exploring the two lower-lying Born-Oppenheimer potentials
as a function of a separation of the heavy quark-antiquark pair. Our analysis reveals three critical
separations related to the processes of string reconnection, breaking and junction annihilation. In particular,
for the ground-state potential, only the process of string reconnection matters. We find that a tetraquark
state makes the dominant contribution to the potential of the first excited state at small separations, and this
is the big difference with the QQq̄q̄-quark system where it does so to the ground state potential. Another
big difference is the emergence of the full diquark picture ½Qq�½Q̄q̄� rather than the partial picture QQ½q̄q̄�
for the tetraquark state. On the other hand, the scales of string junction annihilation, below which the
systems can be thought of mainly as the compact tetraquarks, are very close for both cases and become
almost the same if the phenomenological rule EQQ ¼ 1

2
EQQ̄ holds. The same is also true for the screening

lengths whose values are in agreement with lattice QCD.
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I. INTRODUCTION

The renaissance in hadron spectroscopy came from
the discovery of a new state Xð3872Þ by the Belle
Collaboration [1]. In the two decades since then, more
than 50 new hadrons have been observed at high statistical
significance. Most of them are potentially exotic states such
as tetraquarks, pentaquarks, hybrid mesons, and glueballs.1

One class of those exotic states includes four-quark
hadrons made of one heavy and one light quark-antiquark
pair. The most known example is the Zb states [4], whose
quark content is bb̄qq̄ with q ∈ fu; dg. Because of the
large ratio of the quark masses, one of the frameworks for
dealing with such a class is the Born-Oppenheimer (B-O)
approximation borrowed from atomic and molecular phys-
ics [5].2 In that case, the corresponding B-O potentials are
defined as the energies of stationary configurations of the
gluon and light quark fields in the presence of the static Q

and Q̄ sources. The spectrum is then calculated by solving
the Schrödinger equation in these potentials.
Lattice gauge theory is a well-established nonperturba-

tive approach to solving QCD. It has a long history of
studying four-quark systems [7] and, in particular, the B-O
potentials in theQQ̄qq̄-quark system [8,9]. But it still has a
significant disadvantage in regards to the last problem. The
available data are limited, which makes it difficult to
understand the physics behind them. On the other hand,
the gauge/string duality [10] provides new theoretical tools
for studying strongly coupled gauge theories and therefore
may be used as an alternative method to gain important
physical insights into this problem. Within this framework,
the string configurations for tetraquarks were qualitatively
discussed in Refs. [11,12]. Making it more precise for the
case of the QQ̄qq̄-quark system will be one of our goals.
This paper continues our study on the doubly heavy

quark systems started in Refs. [13] and [14]. The rest of the
paper is organized as follows. We begin in Sec. II by
recalling some preliminary results and setting the frame-
work. Then, in Sec. III, we construct and analyze a set of
string configurations in five dimensions which provide a
dual description of the QQ̄qq̄ system. Among those, we
find the configurations relevant to the two lower-lying
Born-Oppenheimer potentials. In addition, we comment on
some other configurations and introduce three scales. These
length scales characterize transitions between different
dominant configurations and, in fact, are related to three
types of interactions between strings: reconnection,
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1For more details, see the recent review article [2] and the
book [3].

2For the further development of these ideas in the context of
QCD, see Ref. [6] and references therein.
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breaking, and junction (baryon vertex) annihilation. We go
on in Sec. IV to compare our results with those in lattice
QCD and to discuss the construction of the potentials. We
conclude in Sec. V with a few important points. To make
the paper more self-contained, additional technical details
are included in the Appendixes.

II. PRELIMINARIES

A. General procedure

For QCD with light quarks, the B-O potentials can be
defined along the line of lattice QCD. This implies that a
mixing analysis based on a correlation matrix is needed
[15]. Its diagonal elements are given by the energies of
stationary configurations, whereas the off-diagonal ones
describe transitions between those configurations. The
potentials correspond to the eigenvalues of the correlation
matrix.
Now, consider the string configurations for the QQ̄qq̄-

quark system from the standard viewpoint in four dimen-
sions [16]. We do so for Nf ¼ 2, two dynamical flavors of
equal mass, but the extension to Nf ¼ 2þ 1 is straightfor-
ward. For a first orientation, consider the simplest con-
figurations. These are the mesonic configurations shown in
Figs. 1(a) and 1(b). Each consists of the valence quarks and
antiquarks joined by the strings and looks like a pair of
mesons. Here, all the strings are in the ground state, and the
light quark-antiquark pair has zero momentum. Further, we
can assume that other configurations are constructed by
adding extra string junctions and virtual (light) quark-
antiquark pairs.3 Intuitively, it is clear that such a procedure
will result in configurations of higher energy. And so to
some extent, junctions and pairs can be thought of as kinds
of elementary excitations. It turns out that for our purposes

we would only need relatively simple configurations. The
first one is obtained by adding two junctions that leads to
the tetraquark configuration of Fig. 1(c). The other two
are obtained by adding a virtual pair. This is a simple
modification of the meson configurations which gives rise
to configurations (d) and (e), each having the three mesons.
Before going on, it is worth making a few comments.

First, the spatial positions of quarks are not significant for
what follows. The only thing which matters is a separation
between the heavy quark-antiquark pair. Second, apart
from string junctions and virtual pairs, other elementary
excitations may be involved, but these are not relevant here.
For example, these are some gluonic excitations: excited
strings and glueball states, as sketched in Fig. 2. Finally,
adding both elementary excitations together, we can get a
baryon configuration as that of Fig. 2(h).
The possible transitions between the configurations arise

from three type of string interactions: (a) reconnection,
(b) breaking, and (c) junction annihilation (creation), as
sketched in Fig. 3. All those are part of the big picture of
QCD strings [16]. For each interaction, one can introduce a
notion of a critical separation (between the heavy quark-
antiquark pair), which characterizes the system.

B. Key features of a five-dimensional framework

In our study of the QQ̄qq̄ system, we will use the
formalism recently developed in a series of papers
[13,14,19].Althoughwe illustrate it using one of the simplest
AdS/QCD models, the formalism is applicable to other
models as well.

(b)(a) (c) (e)(d)

FIG. 1. Various string configurations for the QQ̄qq̄ system.

(g)(f) (h)

FIG. 2. Some other configurations. The wavy line denotes an excited string and the closed string (circle) a glueball.

3Though the notion of a string junction is as old as string
theory itself [17], it took several decades to find evidence for it
within lattice QCD [18].
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We consider a five-dimensional space with metric tensor

ds2 ¼ esr
2 R2

r2
ðdt2 þ dx⃗2 þ dr2Þ: ð2:1Þ

Such a space represents a deformation of the Euclidean
AdS5 space of radius R, with a deformation parameter s.
There is a boundary at r ¼ 0 and a soft wall at r ¼ 1=

ffiffiffi
s

p
.

Two features make it especially attractive: computational
simplicity and phenomenological applications. Among
those, let us only mention the model of Ref. [20] for the
heavy quark potential, which yields a very good fit to the
lattice data [21].4

To construct the configurations of Figs. 1 and 2 in five
dimensions, we need the building blocks. The first is a
Nambu-Goto string governed by the action

SNG ¼ 1

2πα0

Z
d2ξ

ffiffiffiffiffiffiffi
γð2Þ

q
: ð2:2Þ

Here, γ is an induced metric, α0 is a string parameter, and ξi

are world sheet coordinates. The second is a pair of string
junctions, nowadays called the baryon vertices, at which
three strings meet. In the AdS=CFT correspondence, the
baryon vertex is supposed to be a dynamic object living in
ten dimensions. It is a five brane wrapped on an internal
space X [24], and correspondingly the antibaryon vertex is
an antibrane. Both objects look pointlike in five dimen-
sions. In Ref. [23], it was observed that the action for the
baryon vertex, written in the static gauge,

Sv ¼ τv

Z
dt

e−2sr
2

r
; ð2:3Þ

yields very satisfactory results, when compared to the
lattice calculations of the three-quark potential. Notice that
Sv is given by the world volume of the brane if
τv ¼ T 5R volðXÞ, with T 5 a brane tension. Unlike
AdS=CFT, we treat τv as a free parameter to somehow
account for α0 corrections as well as possible impact of the

other background fields.5 In the case of zero baryon
chemical potential, it is natural to take the action (2.3)
for the antibaryon vertex so that Sv̄ ¼ Sv.
In addition to the background metric (2.1), we introduce

a background scalar field TðrÞ which describes light quarks
[25]. In the present context, those are at string end points in
the interior of five-dimensional space. For our purposes, it
will suffice to restrict ourselves to a single scalar field
(tachyon), as we are interested in the case of two light
flavors of equal mass.6 The scalar field couples to the world
sheet boundary as an open string tachyon Sq ¼

R
dτeT,

where τ is a coordinate on the boundary and e is a boundary
metric. In what follows, we consider only a constant field
T0 and world sheets whose boundaries are lines in the t
direction. In that case, the action written in the static gauge
is simply

Sq ¼ T0R
Z

dt
e
1
2
sr2

r
: ð2:4Þ

It is nothing else but the action of a point particle of mass T0

at rest. Clearly, at zero baryon chemical potential, the same
action also describes the light antiquarks, and hence
Sq̄ ¼ Sq.

III. QQ̄qq̄-QUARK SYSTEM VIA
GAUGE/STRING DUALITY

Now, we will begin our discussion of the QQ̄qq̄ system
in the five-dimensional framework. We approach this
problem from a hadro-quarkonium point of view [26]
and hence think of the light quarks (antiquarks) as clouds.
So, it makes sense to speak about their average positions or,
equivalently, the centers of the clouds. The heavy quark and
antiquark are thought of as pointlike objects inside the
clouds. Our goal is to determine the potentials as a function
of the separation between the heavy quark-antiquark pair.
An intuitive way to see the string configurations in five

dimensions is to place the configurations of Figs. 1 and 2 on
the boundary of five-dimensional space. A gravitational
force pulls the light quarks, antiquarks, and strings into the
interior, whereas the heavy quark and antiquark remain at
rest. We start by describing configurations (a) and (b).
Then, we add a pair of baryon vertices or correspondingly
a pair of light quarks to those to construct configurations
(c)–(e). This is a good starting point for understanding the
energies of the ground and first excited states, as we will
see soon.

(b) (c)(a)

FIG. 3. Some string interactions.

4For more examples, see Refs. [22,23].

5Like in AdS=CFT, one expects an analog of the Ramond-
Ramond fields living on the internal space X.

6The use of the term tachyon seems particularly appropriate in
virtue of instability of a QCD string and the world sheet coupling
to the tachyon.
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A. Disconnected configurations (a)–(b)
First consider configuration (a). It can be interpreted as a

pair of mesons. One of which is a pion, whereas the other is
a quarkonium state realized by the static quark-antiquark
pair connected by a string. For infinitely separated mesons,
the total energy is just the sum of their masses (rest
energies). It is surprising that this also holds for finite
separations if one takes the average over the pion (cloud)
position [8,9]. In what follows, we consider the configu-
rations with pions only in the sense of averaging over all
possible pion positions.
From the five-dimensional perspective, the configuration

looks like that shown in Fig. 4(a). It consists of two parts: the
string connecting the heavy quark-antiquark pair and the
light quark pair. The first was discussed in Ref. [20], where
the relation between the string energy EQQ̄ and separation l
was described in parametric form.7 The second,which can be
interpreted as a pion, is unknown in the literature. This part
requires some explanation. In the static limit, the only
possible configuration is that shown in the figure. The
intuitive idea is that nothing prevents a string connecting
the light quark-antiquark pair from collapsing into a point.
So, the action is twice the action Sq. Explicitly,

S ¼ 2gnT
e
1
2
sr2

2q

r2q
; ð3:1Þ

with g ¼ R2

2πα0, n¼ T0R
g , and T ¼ R

dt. By varying it with
respect to r2q, we get

1 − sr22q ¼ 0: ð3:2Þ

This equation determines the position of the light quarks in
the bulk. It has a single solution, which is r2q ¼ 1=

ffiffiffi
s

p
. This

implies that the light quark pair is located on the soft wall.
The rest energy is then

Eqq̄ ¼ 2n
ffiffiffiffiffiffi
gσ

p
: ð3:3Þ

Here, σ is the physical string tension defined by (C4). Finally,
the energy of configuration (a) will be

EðaÞ ¼ EQQ̄ þ Eqq̄: ð3:4Þ

Now, consider configuration (b). It represents a pair of
noninteracting heavy-light mesons so that the total energy
is just twice that of the meson

EðbÞ ¼ 2EQq̄: ð3:5Þ

In the static limit, EQq̄ was calculated in Ref. [27] with the
result

EQq̄ ¼ g
ffiffiffi
s

p �
QðqÞ þ n

e
1
2
qffiffiffi
q

p
�
þ c: ð3:6Þ

Here, the function Q is defined in Appendix A, c is a
normalization constant, and q ¼ sr2q is a solution to the
equation

e
q
2 þ nðq − 1Þ ¼ 0; ð3:7Þ

which is nothing else but the force balance equation in the r
direction. It is obtained by varying the action S ¼ SNG þ Sq
with respect to rq.

B. Connected configuration (c)

It is natural to expect that if the connected configuration
contributes to the ground state, or at least to the first excited
state, its shape is dictated by symmetry. If so, there are the
two most symmetric cases: (1) The light quarks are in the
middle between the heavy quarks. (2) The light quark
(antiquark) sits on top of the heavy quark (antiquark).8

(a) (b)

FIG. 4. Configurations (a) and (b) in five dimensions. The heavy quark and antiquark are separated by distance l.

7For more details on this relation, see Eq. (C1) in Appendix C.

8This is the diquark picture often used to describe the four-
quark systems.
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In our situation, aswewill see, the former takes place at small
enough separations between the heavy quark-antiquark pair,
whereas the latter takes place at larger separations.

1. Small l

For this case, the corresponding string configuration is
depicted in Fig. 5, which shows that the light quarks are
indeed in the middle between the heavy ones. Here, rq and
rv are assumed to satisfy the following condition: rq > rv.

9

The total action is the sum of the Nambu-Goto actions
plus the actions for the vertices and light quarks

S ¼
X4
i¼1

SðiÞNG þ 2Svert þ 2Sq: ð3:8Þ

Picking the static gauge ξ1 ¼ t and ξ2 ¼ r for the
Nambu-Goto actions, we can write the boundary conditions
for xðrÞ as follows:

xð1;2Þð0Þ ¼ ∓ 1

2
l; xðiÞðrvÞ ¼ xð3;4ÞðrqÞ ¼ 0: ð3:9Þ

The action is then10

S ¼ 2gT
�Z

rv

0

dr
r2

esr
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂rxÞ2

q

þ
Z

rq

rv

dr
r2

esr
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂rxÞ2

q
þ 3k

e−2sr
2
v

rv
þ n

e
1
2
sr2q

rq

�
;

ð3:10Þ

with k ¼ τv
3g and ∂rx ¼ ∂x

∂r.

To find a stable configuration, one has to extremize S
with respect to the functions xðrÞ describing the string
profiles and, in addition, with respect to rv and rq
describing the locations of the baryon vertices and light
quarks. As explained in Appendix B, varying with respect
to xð1Þ yields

l ¼ 2ffiffiffi
s

p Lþðα; vÞ; ð3:11Þ

and the energy of the configuration can be written in the
form

EQQ̄qq̄ ¼ 2g
ffiffiffi
s

p �
Eþðα; vÞ þQðqÞ −QðvÞ

þ 3k
e−2vffiffiffi
v

p þ n
e
1
2
qffiffiffi
q

p
�
þ 2c: ð3:12Þ

Here, the functions Lþ and Eþ are defined in Appendix A.
In addition, we introduced the dimensionless variable
v ¼ sr2v. Varying the action with respect to rq leads to
Eq. (3.7) and with respect to rv leads to

sin α − 1 − 3kð1þ 4vÞe−3v ¼ 0: ð3:13Þ

Both are the force balance equations in the r direction at
r ¼ rq and r ¼ rv, respectively.
Finally, the energy of the configuration is given para-

metrically by EQQ̄qq̄ ¼ EQQ̄qq̄ðvÞ and l ¼ lðvÞ with the
parameter taking values on a subinterval of the interval
[0, 1]. Importantly, the region around v ¼ 0 belongs to this
subinterval. This enables us to take the limit v → 0 that
results in Lþ → 0, as follows from (A1). Thus, such a
configuration does describe small values of l. We will
return to this issue in later subsections.

2. Larger l

A simple numerical analysis shows that l is an increas-
ing function of v. Therefore, increasing the separation
between the quark-antiquark pair will lead to a situation
where the vertices reach the light quarks. In this case, the
configuration looks like two string meeting at a pointlike
defect made of the vertices and light quarks. We can
continue in this way until we approach infinite separation.
Why do we need to be concerned with such a configura-
tion? The reason is that from the string theory perspective it
is natural to expect that the brane-antibrane annihilation or,
in other words, the string junction annihilation occurs if the
positions of the vertices coincide or close enough to each
other. This could lead to instability. A way out is that for
these values of l there is another configuration in which the
vertices are spatially separated, as depicted in Fig. 6. It can
be obtained from the configuration shown in Fig. 5 first by

FIG. 5. A static string configuration for small l. The light quark
(antiquark) and baryon vertices are placed on the r axis,
respectively, at r ¼ rq and r ¼ rv. α indicates the tangent angle
at the end point of the first string.

9It indeed holds for the parameter values we are using.
10We drop the subscript (i) when it does not cause confusion.

TOWARD A STRINGY DESCRIPTION FOR THE QQ̄qq̄ PHYS. REV. D 106, 066002 (2022)

066002-5



splitting the baryon vertices and then by stretching a string
between them.
The configuration is governed by the action

S ¼
X5
i¼1

SðiÞNG þ 2Svert þ 2Sq: ð3:14Þ

In the static gauge, the boundary conditions (3.9) are
replaced by

xð1;2Þð0Þ ¼∓1

2
l; xð1;2ÞðrvÞ ¼∓xv;

xð3;4ÞðrvÞ ¼ xð3;4ÞðrqÞ ¼∓xv; xð5ÞðrvÞ ¼ �xv ð3:15Þ

so that the action now reads

S ¼ gT
�Z

rv

0

dr
r2

esr
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂rxÞ2

q
þ
Z

rq

rv

dr
r2

esr
2

þ
Z

r0

rv

dr
r2

esr
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂rxÞ2

q
þ 3k

e−2sr
2
v

rv
þn

e
1
2
sr2q

rq

�

þ ðx → −xÞ: ð3:16Þ

Here, the integrals correspond, respectively, to the contri-
butions of strings (1), (3), and (5). Because of the reflection
symmetry of the configuration, only the x < 0 part of the
action is written explicitly in (3.16).
Varying the action with respect to xv gives11

cos α1 − cos α5 ¼ 0: ð3:17Þ

The equation has a trivial solution α1 ¼ α5 which implies
that strings (1) and (5) are smoothly glued together to form
a single string. Another consequence of this solution is that
variation with respect to rv results in

1þ 3kð1þ 4vÞe−3v ¼ 0: ð3:18Þ

It is worth making a couple of points on this equation. First,
in Ref. [13]. we found that in the interval (0, 1) it has
solutions if k is restricted to the range − e3

15
< k ≤ − 1

4
e
1
4. In

particular, there exists a single solution v ¼ 1
12
at k ¼ − 1

4
e
1
4.

Second, in our analysis, we have assumed that v ≤ q. While
this assumption does not hold for all possible parameter
values, it holds for the ones we have in mind to use.
Now, it is straightforward to write down the energy of the

configuration. It is

EQQ̄qq̄¼EQQ̄þ2g
ffiffiffi
s

p �
QðqÞ−Qðv⋆Þþn

e
1
2
qffiffiffi
q

p þ3k
e−2v⋆ffiffiffiffiffi
v⋆

p
�
;

ð3:19Þ

with q a solution to Eq. (3.7) and v⋆ a solution to
Eq. (3.18). In the process, we combined the contributions
from strings (1), (2), and (5), to get EQQ̄ (see Appendix C).
Then, we performed the remaining integrals corresponding
to strings (3) and (4). An important point, which applies to
this expression, is that the parameter v runs from v⋆ to 1.
Thus, such a configuration does not exist for l smaller
than lðv⋆Þ.
It is particularly useful to formally write (3.19) as

EQQ̄qq̄ ¼ EQQ̄ þ 2ðEQqq − EQq̄Þ; ð3:20Þ

where EQq̄ and EQqq are defined in (3.6) and (3.37). These
formulas imply the occurrence of the diquark picture for the
QQ̄qq̄ system. Furthermore, it is noteworthy that the
constant term in (3.20) is consistent with string breaking.
The main conclusions of our analysis are twofold. First

of all, EQQ̄qq̄ is a piecewise function of l, or, in other words,
the shape of the configuration depends on the separation
between the heavy quarks. Second, the diquark picture
occurs for l ≥ lðv⋆Þ.

3. Gluing the two pieces together

Now, let us discuss the gluing of the two branches of
EQQ̄qq̄. For this, we need to specify the model parameters.
We will use one of the two parameter sets suggested in
Ref. [27], which is mainly a result of fitting the lattice QCD
data to the string model we are considering. The value of s
is fixed from the slope of the Regge trajectory of ρðnÞ
mesons in the soft wall model with the geometry (2.1), and
as a result, one gets s ¼ 0.45 GeV2 [28]. Then, fitting the
value of the string tension σ defined in (C4) to its value in
Ref. [29] gives g ¼ 0.176.12 The parameter n is adjusted to

FIG. 6. A static string configuration for larger l. The forces
exerted on the baryon vertex are depicted by the arrows. r0 is a
turning point.

11To derive it, one has to take into account the boundary
conditions.

12Note that this value is smaller than the value g ¼ 0.196
obtained by fitting the lattice data for the heavy quark-antiquark
potential in Ref. [21] but the discrepancy between these two
values is not significant.
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reproduce the lattice result for the string breaking distance
in the QQ̄ system. With lQQ̄ ¼ 1.22 fm for the u and d
quarks [29], this results in n ¼ 3.057.
In principle, the value of k could be adjusted to fit the

lattice data for the three-quark potential, as done in
Ref. [30] for pure SUð3Þ gauge theory, but there are no
lattice data available for QCD with two light quarks. There
are still two special options: k ¼ −0.102 motivated by
phenomenology13 and k ¼ −0.087 obtained from the
lattice data for pure gauge theory [30]. However, both
are out of the range of allowed values for k as follows from
the analysis of Eq. (3.18). In this situation, it seems natural
to pick k ¼ − 1

4
e
1
4, which is closest to those.

Having fixed the parameters, we can immediately
perform some simple calculations. From (3.7) and
(3.18), we get q ¼ 0.566 and v⋆ ¼ 1

12
. Thus, our construc-

tion of the connected configuration makes sense for these
values as q > v⋆. With this value of v, we find that
lðv⋆Þ ¼ 0.106 fm. It is quite surprising that the diquark
picture emerges at such small separations.
Given the parametric equations we derived above, it is

straightforward to plot EQQ̄qq̄ vs l. The result is presented
in Fig. 7. We see that the two pieces of the function EQQ̄qq̄

are smoothly glued together at l ¼ 0.106 fm, as expected.
Also, we will see shortly that it does behave as 1=l for
small l and linearly for large l.

4. Limiting cases

We are ready to analyze the behavior of EQQ̄qq̄ for small
and large l. We begin with the case of small l. In that case,

the relevant configuration is that of Fig. 5. The reason for
this is that Lþ (and equally l) is an increasing function of v
which vanishes at v ¼ 0. Taking the limit v → 0 in
Eqs. (3.11) and (3.12), we find

l ¼
ffiffiffi
v
s

r
ðl0 þ l1vÞ þ oðv3

2Þ;

EQQ̄qq̄ ¼ g

ffiffiffi
s
v

r
ðE0 þ E1vÞ þ 2EQq̄ þ oðv1

2Þ: ð3:21Þ

The coefficients are given by

l0 ¼
1

2
τ−

1
2B

�
τ2;

3

4
;
1

2

�
;

l1 ¼
1

2
τ−

3
2

��
τ − 3ð1þ 3kÞ k

τ

�
B

�
τ2;

3

4
;−

1

2

�

− B

�
τ2;

5

4
;−

1

2

��
; ð3:22Þ

E0 ¼ 2ð1þ 3kÞ þ 1

2
τ
1
2B

�
τ2;−

1

4
;
1

2

�
;

E1 ¼
3

2
ð1þ 2kÞ

�
−

12k
1þ 3k

þ τ
1
2

2þ 3k
B

�
τ2;

3

4
;−

1

2

�

−
τ−

1
2

1þ 2k
B

�
τ2;−

5

4
;−

1

2

��
: ð3:23Þ

Here, τ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3kð3kþ 2Þp

and Bðz; a; bÞ is the incomplete
beta function. This makes it possible to eliminate the
parameter and thereby to get a simple result for the energy

EQQ̄qq̄ ¼ −
αQQ̄qq̄
l

þ 2EQq̄ þ σQQ̄qq̄lþ oðlÞ; ð3:24Þ

with

αQQ̄qq̄ ¼ −gE0l0; σQQ̄qq̄ ¼
1

l0

�
E1 þ

l1

l0

E1

�
gs:

ð3:25Þ

For completeness, let us estimate these coefficients. Using
(C3) and (C4), we get αQQ̄qq̄=αQQ̄ ¼ 0.939, σQQ̄qq̄=σ ¼
1.406, with k as before.
To find the behavior for large l, we combine Eq. (3.20)

with Eq. (C4). So,

EQQ̄qq̄ðlÞ ¼ σlþ 2ðEQqq − EQq̄ − g
ffiffiffi
s

p
I0Þ þ 2cþ oð1Þ:

ð3:26Þ

This is one more indication of the universality of the string
tension σ. It is the same in all the known cases: QQ̄ [20],
QQq [13], QQqq [14], and QQQ [11].

FIG. 7. EQQ̄qq̄ as a function of l. The dashed curve corresponds
to the configuration of Fig. 5 with the center pion cloud between
the heavy quarks, whereas the solid curve corresponds to the
configuration of Fig. 6 for which the diquark picture holds. Here
and later, c ¼ 0.623 GeV.

13Note that k ¼ −0.102 is a solution to the equation
αQQðkÞ ¼ 1

2
αQQ̄, which follows from the phenomenological rule

EQQðlÞ ¼ 1
2
EQQ̄ðlÞ in the limit l → 0.
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C. More disconnected configurations

Consider configurations (d) and (e). These are obtained
from configurations (a) and (b) by adding a light quark-
antiquark pair (pion). In this case, the analogy with Fig. 4 is
clear: one needs to add qq̄ at position r ¼ r2q in the bulk.
The resulting configurations are shown schematically in
Fig. 8. Although there are no calculations on the lattice for
those, in the following, wewill assume that by analogy with
the case of configuration (a) adding a pion, with averaging
over its position, leads to an energy increase by Eqq̄. If so,
then the energies can be read from the corresponding
expressions for configurations (a) and (b). We have

EðdÞ ¼ EQQ̄ þ 2Eqq̄ ð3:27Þ

and

EðeÞ ¼ 2EQq̄ þ Eqq̄: ð3:28Þ

Clearly, these formulas also hold for noninteracting
mesons.

D. What we have learned

It is instructive to see concretely how the energies of the
configurations depend on the separation between the heavy
quark-antiquark pair. In Fig. 9, we plot those for our
parameter values. These plots show that the energies of
the ground state and first excited state are determined only by
the contributions from configurations (a)–(c) and (e): V0 ¼
minfEQQ̄ þ Eqq̄; 2EQq̄g and V1 ¼ minfEQQ̄qq̄; 2EQq̄; EQQ̄ þ
Eqq̄; 2EQq̄ þ Eqq̄g.14 The first one has to take a minimum
to get V0 and then, with that in mind, V1.
An interesting consequence of the pattern of Fig. 9 is the

emergence of three scales which separate different con-
figurations, or in other words different descriptions. The

first of those is a scale which refers to the process of string
reconnection. It is QQ̄þ qq̄ → Qq̄þ qQ̄ for V0 and vice
versa for V1, if l is increased. In the case of V0, the physical
meaning of this scale is that the system can be though of as
a heavy quark-antiquark pair in a pion cloud for smaller
quark separations and, respectively, as a pair of heavy-light
meson for large ones. To make this more quantitative, we
define a critical separation distance lQq by

EQQ̄ðlQqÞ þ Eqq̄ ¼ 2EQq̄: ð3:29Þ

If reconnection occurs at small l (as in Fig. 9), then by
using (3.6) and (C2), one gets15

(d) (e)

FIG. 8. Configurations (d) and (e) in five dimensions.

FIG. 9. Various E vs l plots. The curves relevant for V0 and V1

are depicted in solid black. Here, we set kd ¼ 2000, as
in Ref. [22].

14We will discuss configurations (f) and (h) shortly. 15For future reference, we keep track of Eqq̄.
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lQq ¼
g

ffiffiffi
s

p
σQQ̄

�
QðqÞ þ n

e
1
2
qffiffiffi
q

p −
Eqq̄

2g
ffiffiffi
s

p
�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αQQ̄

σQQ̄

þ g2s
σ2QQ̄

�
QðqÞ þ n

e
1
2
qffiffiffi
q

p −
Eqq̄

2g
ffiffiffi
s

p
�
2

s
: ð3:30Þ

It is interesting to estimate lQq. For the pion mass defined
by (3.3), the result is lQq ¼ 0.219 fm.
The second scale is related to the process of string

junction annihilation which occurs at the level of the first
excited state of the system. More specifically, it is
QQ̄qq̄ → Qq̄þ qQ̄, if l is increased. In this case, we
define a critical separation distance by

EQQ̄qq̄ðlQQ̄qq̄Þ ¼ 2EQq̄: ð3:31Þ

An important observation one can make from the plots of
EQQ̄qq̄ and 2EQq̄ is that lQQ̄qq̄ is of order 0.2 fm. From this,
it follows that in (3.31) EQQ̄qq̄ is defined by (3.20) (also see
Fig. 7). Since lQQ̄qq̄ is small, the equation can be solved
approximately by using (C2). So, we get

lQQ̄qq̄ ¼
g

ffiffiffi
s

p
σQQ̄

�
Qðv⋆Þ − 3k

e−2v⋆ffiffiffiffiffi
v⋆

p
�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αQQ̄

σQQ̄

þ g2s
σ2QQ̄

�
Qðv⋆Þ − 3k

e−2v⋆ffiffiffiffiffi
v⋆

p
�
2

s
; ð3:32Þ

where in the last step we used (3.6) and (3.37). It is worth
noting that such defined critical distance is finite and
scheme independent. The normalization constant c drops
out of (3.32). Moreover, it depends on v⋆, which describes
the position of the baryon vertices in the bulk, rather than q,
which describes the position of the light quarks. This
suggests that lQQ̄qq̄ is indeed related to gluonic degrees of
freedom, as expected from annihilation of string junctions
made of gluons.
Let us make a simple estimate of lQQ̄qq̄. For the

parameter values we use, it gives

lQQ̄qq̄ ≈ 0.196 fm: ð3:33Þ

This value is only slightly above the value lQQq̄q̄ ¼
0.184 fm obtained for the QQq̄q̄ system in Ref. [14].
Thus, our estimate provides further evidence that, unlike
the process of string breaking, the process of string junction
annihilation takes place at relatively small scales, of order
0.2 fm. Of course, the question arises as to whether this
scale is universal. We will return to this question in Sec. V,
after making comparison with the lattice and gaining some
information about the screening lengths.
The third scale is due to string breakingwhichoccurs at the

level of the first excited state.Here,QQ̄þ qq̄ → Qq̄þ qQ̄þ
qq̄, as seen from Fig. 9. The corresponding equation
EQQ̄ðlQQ̄Þ þ Eqq̄ ¼ 2EQq̄ þ Eqq̄ reduces to Eq. (C5) whose
solution at large l is given by (C6). Numerically, it is lQQ̄ ¼
1.22 fm [29].We used this value to fix the parameter n above
in Sec. III B.

E. Comments on configurations (f)–(h)
Let us briefly discuss the role of configurations (f)–(h).

The five-dimensional counterparts of configurations (f) and
(h) are depicted in Fig. 10. In the configuration of Fig. 10(f)
the excited string is in the Σ−

u state that corresponds to the
Σ−
u hybrid potential for the QQ̄ system [31]. In the current

model, such a potential was constructed from two strings
meeting at a defect D in the bulk [22]. The configuration in
Fig. 10(h) represents a pair of noninteracting heavy-light
baryons.
For case (f), we assume that similarly to configuration

(a) its energy is the sum of two energies

EðfÞ ¼ EΣ−
u
þ Eqq̄: ð3:34Þ

Here, EΣ−
u
is the hybrid potential, and Eqq̄ is the pion mass

defined as before. The potential is given in parametric form
by [22]

(f) (h)

FIG. 10. Configurations (f) and (h) in five dimensions.

TOWARD A STRINGY DESCRIPTION FOR THE QQ̄qq̄ PHYS. REV. D 106, 066002 (2022)

066002-9



l ¼ 2ffiffiffi
s

p Lþðα; vÞ;

EΣ−
u
¼ 2g

ffiffiffi
s

p �
Eþðα; vÞ þ kd

e−2vffiffiffi
v

p
�
þ 2c; ð3:35Þ

with sin α ¼ kdð1þ 4vÞe−3v. The parameter v takes values
on the interval ½v0; v1�, where v0 is a solution to cos α ¼ 0

and v1 to cos α ¼ ve1−v. kd is a model parameter which
characterizes the defect.
It makes no sense to consider configuration (g) in detail.

The basic reason that it is irrelevant for our purpose is that,
even for the scalar glueball, lattice calculations yield a
glueball mass in the range 1.5–1.7 GeV [32] that is larger
than the physical pion mass and also Eqq̄, as we will see
shortly.
For case (h), the energy is simply

EðhÞ ¼ 2EQqq: ð3:36Þ

Here, EQqq is given by [27]

EQqq ¼ g
ffiffiffi
s

p �
2QðqÞ −Qðv⋆Þ þ 2n

e
1
2
qffiffiffi
q

p þ 3k
e−2v⋆ffiffiffiffiffi
v⋆

p
�
þ c;

ð3:37Þ

with q a solution to (3.7) and v⋆ to (3.18).
Given the formulas we have just described, it is

straightforward to plot the corresponding energies as a
function of the separation between the heavy quark-
antiquark pair. The result is presented in Fig. 9. It is seen
that these configurations contribute to neither V0 nor V1, as
expected.
To complete the story, let us look at the decay channel

QQ̄qq̄ → Qqqþ Q̄q̄q̄. Here, we define a characteristic
scale by

EQQ̄qq̄ðlÞ ¼ 2EQqq: ð3:38Þ

It is natural to expect that a solution to this equation is large
enough. If so, then using (3.20), we can reduce this
equation to Eq. (C5), whose solution is known. It is given
by lQQ̄ and describes the process of string breaking. In the
current case, this process takes place in context of a string
stretched between a diquark and an antidiquark.

IV. MORE ON THE POTENTIALS
V0 AND V1

A. Issue of Eqq̄

With the help of (3.3), it is straightforward to make a
simple estimate of the pion mass. Using the parameter
values of Sec. III, one finds that Eqq̄ ¼ 1.190 GeV. This
value is considerably larger than the value 280 MeV in the
lattice calculations of Ref. [29]. The problem is that the

current model is not suitable for describing light hadrons,
as it was originally developed for hadrons with heavy
quarks. What this means in practice is that at least one
quark is needed to be placed on the boundary of five-
dimensional space.
A possible way out is to treat Eqq̄ as a model parameter.

For Eqq̄ ¼ 280 MeV, this does not cause an essential
change of the plots of Fig. 9, as illustrated in Fig. 11.
The most visible effect of change in Eqq̄ is that string

reconnection occurs at much larger l. Thus, to solve the
equation (3.29), one now has to use the asymptotic
expansion (C4). A simple algebra yields

lQq ¼
2g

ffiffiffi
s

p
σ

�
QðqÞ þ n

e
q
2ffiffiffi
q

p þ I0 −
Eqq̄

2g
ffiffiffi
s

p
�
: ð4:1Þ

For Eqq̄ ¼ 280MeV, lQq ¼ 0.964 fm. For Eqq̄ ¼ 496 MeV,
lQq ¼ 0.766 fm, which agrees with the lattice result [8].
An interesting conclusion can be drawn from the

examples given. Our results indicate that the following
scale hierarchy is met:

lQQ̄qq̄ < lQq < lQQ̄: ð4:2Þ

At this point, one may well ask what happens at the physical
value of the pion mass. We expect that at least the string
junction annihilation distance remains the smallest scale,
namely, lQQ̄qq̄ < lQq, lQQ̄. Of course, it is not the whole
answer to this question, but it is certainly an important piece
of it.

B. Comparison with the lattice

The potentials for theQQ̄qq̄ system have been studied in
lattice QCD [8,9]. In this case, those are extracted from the
set of correlators. The data limitation prevents one from
being able to analyze the effects of string breaking and

FIG. 11. The E’s relevant for V0 and V1. Here,
Eqq̄ ¼ 280 MeV.
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reconnection but not the effect of string junction annihi-
lation. In particular, the data extracted from the correlator of
meson operators allow one to gain some insight into the
potential V1 in the quark separation range 0.1–0.7 fm [8].
They are fitted by a single algebraic expression

V1ðlÞ ¼ −
α

l
exp

�
−
lp

dp

�
þ 2EQq̄; ð4:3Þ

with the parameters α, d, and p.
Keeping in mind the fact that lQQ̄qq̄ is 0.196 fm, we

expect that the screening length d is near this value.
Therefore, we use (3.20) for V1 and then solve for the
unknown coefficients in the limit of small l. So, we get

α ¼ αQQ̄; d ¼
ffiffiffiffiffiffiffi
αQQ̄

σQQ̄

r
; p ¼ 2: ð4:4Þ

The parameters are expressed in terms of the coefficients of
the quark-antiquark potential. We can make an estimate of
the screening length. With our parameter set, this gives
d ¼ 0.238 fm. The value is close to the range of lattice
QCD, where d ¼ 0.16þ0.05

−0.02 fm [8,33].
What makes the lattice approach less attractive is that it is

difficult to say whether the system can be thought of as a
compact tetraquark or as a pair of mesons. As we have just
seen, this question can be answered in the framework of the
string model. Now, for completeness, let us show how to
construct the potential V1 in this range of quark separations.
Consider the model Hamiltonian

HðlÞ ¼
�
EQQ̄qq̄ðlÞ Θ

Θ 2EQq̄

�
; ð4:5Þ

where Θ describes the strength of the mixing between the
compact tetraquark state and two mesons. The potential is
given by the smallest eigenvalue of H. Explicitly,

V1 ¼
1

2
ðEQQ̄qq̄ þ 2EQq̄Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðEQQ̄qq̄ − 2EQq̄Þ2 þ Θ2

r
:

ð4:6Þ

In principle, Θ can be computed from a correlator of the
operators corresponding to these two states, but currently this
is out of our reach. So,we treatΘ as a free parameter and find
its value by the best fit of our prediction to the parametriza-
tion suggested from lattice QCD. In Fig. 12 on the left, we
plot V1 vs l. There are two things worth mentioning here.
The first is a visible deviation between the solid and dashed
curves on the interval 0.08≲ l≲ 0.28 fm. In our opinion, it
is early to speak about the real reasons for this, as the lattice
data are very limited. The second is a falloff at large l. It is
power law for (4.6)withΘ ¼ const, but exponential for (4.3).
Of course, one can get the desired exponential falloff by
takingΘ as aGaussian functionwith a pick atl ¼ lQQ̄qq̄, but
it will require one additional parameter (a Gaussian width).

C. Potentials

Having understood the string configurations relevant to
the ground and first excited states of theQQ̄qq̄ system, one
can gain some insight into their energies. One way for
doing so is to consider a model Hamiltonian, similarly to
how it is used in lattice QCD to study the phenomenon of
string breaking [15]. For the problem at hand, it is

HðlÞ¼

0
BBB@
EQQ̄ðlÞþEqq̄

2EQq̄ Θij

Θij EQQ̄qq̄ðlÞ
2EQq̄þEqq̄

1
CCCA;

ð4:7Þ

where the off-diagonal elements describe the strength
of mixing between the four states (string configurations).

FIG. 12. Left: the potential V1 defined by the model Hamiltonian (4.5). Here, Θ ¼ 75 MeV. The dashed curve corresponds to the
lattice parametrization (4.3). Right: the potentials V0 and V1. The relevant E’s are shown in dashed lines. Here, Eqq̄ ¼ 280 MeV.
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The potentials of interest are the two smallest eigenvalues
of the matrix H.
Unlike lattice QCD, where the Hamiltonian could be

extracted from a correlation matrix, it is not clear how to
compute the off-diagonal elements within the string
models. This makes it difficult to see concretely what
the potentials look like. Nevertheless, we can learn from
our experience in the previous subsection (see also
Appendix C) about the order of magnitude of the Θ’s near
the intersection points. With the help of this, the picture will
then look more like what is shown in Fig. 12 on the right. A
compact tetraquark configuration contributes dominantly to
the V1 potential at small quark separations, as we have seen
this before.

V. CONCLUSIONS

We conclude our discussion with some remarks. (1) There
is really a difference between the QQ̄qq̄ and QQq̄q̄-quark
systems. In the former, a compact tetraquark structure shows
up in V1, while in the latter, it shows up in V0. The basic
reason is that a pair QQ̄ being a color singlet enables
configuration (a), which dominates at small heavy quark
separations and hence contributes to V0. Nevertheless, the
estimate of the corresponding scales shows that the value of
lQQ̄qq̄ is small and close to that of lQQq̄q̄; see Eq. (3.33).
Interestingly, these values become almost the same if the
phenomenological ruleEQQ ¼ 1

2
EQQ̄ holds true.

16 To see this,
let us first note that the equationEQQ̄qq̄ðlÞ ¼ 2EQq̄ reduces to
1
2
EQQ̄ðlÞ ¼ 2EQq̄ − EQqq as follows from Eq. (3.20). On the

other hand, the heavy quark-diquark symmetry implies that
the equation EQQq̄q̄ðlÞ ¼ 2EQq̄ for small l becomes
EQQðlÞ ≊ 2EQq̄ − EQqq. Thus,

lQQ̄qq̄ ≊ lQQq̄q̄ ð5:1Þ

if the Lipkin rule holds. The same is true for the screening

lengths. Those are given, respectively, by d ¼
ffiffiffiffiffi
αQQ̄

σQQ̄

q
and d ¼ffiffiffiffiffiffi

αQQ
σQQ

q
[14]. The α’s and σ’s are the coefficients in the small l

expansions ofEQQ̄ andEQQ [see Eq. (C2)]. Clearly, rescaling
of the coefficients by the factor 2 has no effect on the d’s.
(2) An interesting experimental observation is that the Z

states are very close to the corresponding BB̄ thresholds
[34]. Moreover, the mass differences with respect to the
thresholds are positive.17 If so, then there are no binding
energies which bind the mesons in such states. This could
seem puzzling for one who thinks only in terms of V0, but
not for one who also takes into consideration V1 (see the
right panel of Fig. 12). Thus, the story may really and truly

be about the four states contributing to the construction of
V1, one of which is a compact tetraquark.
(3) The diquark picture emerged in the case of configu-

ration (c) gives rise to a naturally defined diquark mass.
Using the l-independent part in Eq. (3.19), we define
it by18

m½Qq� ¼ mQ þ g
ffiffiffi
s

p �
QðqÞ −Qðv⋆Þ þ n

e
1
2
qffiffiffi
q

p þ 3k
e−2v⋆ffiffiffiffiffi
v⋆

p
�
;

ð5:2Þ

with q and v⋆ as in (3.19). The square brackets mean that a
diquark has zero spin. It is interesting to see what results
come out of this definition and how those agree or disagree
with phenomenological values. There is a problem here.
Though the masses of the light quarks in our model are
known (see the discussion below), we can say nothing
specific about the masses of the heavy quarks because of
the lack of lattice data [29]. This makes it impossible to
directly estimate diquark masses via the above formula. But
what we can do is check the prediction that the mass
difference between a diquark and a heavy quark is
independent of the mass of the latter. To this end, we
consider some phenomenological models [35–37]. The
results are presented in Table I. Although there is a visible
discrepancy in the case of Ref. [35], it is about 3% in
Ref. [36] and 0.6% in Ref. [37].
(4) For the parameter values used here, the masses of the

light quarks can be found by fitting the string breaking
distance (C6) to the lattice data of Ref. [29]. It leads to the
resultmu=d ¼ 46.6 MeV [38]. Thus, the value falls between
the usual values of the current and constituent quark masses.
This, however, requires some caveats. First, the lattice
calculations were done at unphysical pion mass mπ ¼
280 MeV. Second, the main assumption of Ref. [38] is that
T0 ¼ m,withT0 a constant. This is a simplified version of the
assumption of Ref. [25], which does not include the effect of
the chiral condensate. Finally, it is worth mentioning that the
use of the more phenomenologically motivated parameter
values yields mu=d¼23.5MeV [38].
(5) Actually, our discussion has been so general that it

makes sense with or without spin. But the neglect of spin-
dependent effects is not good in making contact with the
real world. In particular, we ran into trouble with qq̄, where

TABLE I. The mass difference m½Qq� −mQ (in MeV).

Diquark [35] [36] [37]

½cq� 423 387 471
½bq� 479 374 474

16In the literature, it is sometimes called the Lipkin rule.
17This requires a caveat because the errors in the mass

determination are not small enough.

18For this definition to make sense, the separation between
diquarks must be larger than lðv⋆Þ.
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one expects such effects. Also including spin will be crucial
in predicting the masses of spin-1 diquarks.
(6) Intuitively, one expects the probability of reconnec-

tion between the strings connecting quarks inQQ̄ and qq̄ to
increase with increasing a separation of the heavy quark-
antiquark pair. But it is not clear at what separation the
probability reaches a maximum.19 Let us assume that this
happens at the maximum possible separation of the QQ̄
pair inside the pion cloud, as sketched in Fig. 13. If so, then

lQq ¼ 2rπ: ð5:3Þ
For mπ ¼ 265 MeV, which is quite close to the value in
Ref. [29], the (charge) pion radius is hr2πi ¼ 0.232 fm2

[39]. So, we immediately obtain lQq ¼ 0.963 fm. Although
there is no satisfactory explanation of why our assumption
is correct, it is interesting that it results in approximately the
same value of lQq as Eq. (4.1) evaluated atmπ ¼ 280 MeV.
Equation (5.3), if taken literally, gives lQq ¼ 1.318 fm at

hr2πi ¼ 0.434 fm2 quoted by Particle Data Group [40]. This
then implies that, in the real world, one might expect
lQQ̄ < lQq. So the hierarchy of scales in (4.2) has to be
modified, but we will omit this from the discussion.
(7) The QQ̄qq̄-quark system has a rich complexity of

physics and a number of unanswered, pressing questions.
Making further progress in theoretical understanding and
applications to hadron phenomenology will require a joint
effort by the high-energy community.We hope that our study
provides a useful starting point for a stringy approach to this
system.
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APPENDIX A: NOTATION AND DEFINITIONS

In all figures throughout the paper, heavy and light quarks
(antiquarks) are denoted by QðQ̄Þ and qðq̄Þ, and baryon
(antibaryon) vertices are denoted by VðV̄Þ. Strings are
represented by smooth curves without self-intersections.
When not otherwise noted, we usually set light quarks
(antiquarks) at r ¼ rqðrq̄Þ and vertices at r ¼ rvðrv̄Þ.
For convenience, we introduce dimensionless variables:
q ¼ sr2q, q̄ ¼ sr2q̄, v ¼ sr2v, and v̄ ¼ sr2v̄. They take values
on the interval [0, 1] and show how far from the soft-wall
these objects are.20 To classify the critical separations related
to the string interactions of Fig. 3, the notation l is used for
(a), l is used for (b), and l is used for (c).
To present the formulas in a general simplified form, we

use the set of basic functions [38]:

Lþðα; xÞ ¼ cos α
ffiffiffi
x

p Z
1

0

du u2

× exð1−u2Þ½1 − cos2α u4e2xð1−u2Þ�−1
2;

0 ≤ α ≤
π

2
; 0 ≤ x ≤ 1: ðA1Þ

It is a non-negative function which vanishes if α ¼ π
2
or

x ¼ 0 and has a singular point at (0, 1);

Eþðα; xÞ ¼ 1ffiffiffi
x

p
Z

1

0

du
u2

× ðexu2 ½1 − cos2α u4e2xð1−u2Þ�−1
2 − 1 − u2Þ;

0 ≤ α ≤
π

2
; 0 ≤ x ≤ 1: ðA2Þ

This function is singular at x ¼ 0 and (0, 1);

QðxÞ ¼ ffiffiffi
π

p
erfið ffiffiffi

x
p Þ − exffiffiffi

x
p ; ðA3Þ

which is the special case of Eþ obtained by setting α ¼ π
2
.

Here, erfiðxÞ denotes the imaginary error function. A useful
fact is that the small x behavior is

QðxÞ ¼ −
1ffiffiffi
x

p þ ffiffiffi
x

p þOðx3
2Þ; ðA4Þ

IðxÞ ¼ I0 −
Z

1ffiffi
x

p
du
u2

eu
2 ½1 − u4e2ð1−u2Þ�12;

I0 ¼
Z

1

0

du
u2

ð1þ u2 − eu
2 ½1 − u4e2ð1−u2Þ�12Þ;

0 < x ≤ 1: ðA5Þ

Numerically, I0 ≈ 0.751.

FIG. 13. A heavy quark-antiquark pair inside a pion cloud of
radius rπ .

19It is natural to expect that such a separation coincides with
the critical separation lQq defined from the energy balance
equation (3.29). 20In these dimensionless units, the soft wall is located at 1.
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APPENDIX B: A STATIC NAMBU-GOTO STRING
WITH FIXED END POINTS

The purpose of this Appendix is to briefly describe some
facts about a static Nambu-Goto string in the curved
geometry (2.1) that may be helpful for understanding the
string configurations of Sec. III. For our purposes, the only
cases we need to consider are presented in Fig. 14. More
details and further results omitted in this Appendix can be
found in Ref. [23].
Consider a string stretched between the two fixed points

Qð0; 0Þ and Vðl; rvÞ in the xr plane as shown in Fig. 14(a).
To get to the desired formulas here as quickly as possible,
we will take as in Ref. [41] the static gauge ξ1 ¼ t and
ξ2 ¼ x. In this case, the string profile is described by the
function rðxÞ subject to the boundary conditions

rð0Þ ¼ 0; rðlÞ ¼ rv: ðB1Þ

The Nambu-Goto action takes the form

S ¼ Tg
Z

l

0

dxwðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂xrÞ2

q
; wðrÞ ¼ esr

2

r2
: ðB2Þ

Here, g ¼ R2

2πα0, T ¼ R
dt, and ∂xr ¼ ∂r

∂x. Since the integrand
does not explicitly depend on x, the corresponding Euler-
Lagrange equation has the first integral

I ¼ wðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂xrÞ2

p : ðB3Þ

After expressing I in terms of α and rv, we get the
differential equation wðrvÞ cos α ¼ wðrÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂xrÞ2

p
,

which can be integrated over the variables x and r. So,
we find

l ¼ 1ffiffiffi
s

p Lþðα; vÞ; ðB4Þ

with v ¼ sr2v. The function Lþ is as defined in
Appendix A.
To compute the energy of the string, we first reduce the

integral over x in S to that over r. This can be done by using
the first integral (B3). Since the resulting integral is
divergent at r ¼ 0, we regularize it by imposing a cutoff ϵ
such that r ≥ ϵ. Finally, the regularized expression is
given by

ER ¼ SR
T

¼ g

ffiffiffi
s
v

r Z
1ffiffi
s
v

p
ϵ

du
u2

evu
2ð1 − cos2α v4e2vð1−u2ÞÞ−1

2:

ðB5Þ

In the limit as ϵ → 0, it behaves like

ER ¼ g
ϵ
þ EþOðϵÞ: ðB6Þ

Subtracting the 1
ϵ term and letting ϵ ¼ 0, we get a finite

result

E ¼ g
ffiffiffi
s

p
Eþðα; vÞ þ c; ðB7Þ

where c is a normalization constant and Eþ is the function
defined in Appendix A.
At α ¼ π

2
, the string becomes straight. In this case, the

expression (B7) reduces to

E ¼ g
ffiffiffi
s

p
QðvÞ þ c; ðB8Þ

with the functionQ given by (A3). From this, it follows that
the energy of the string shown in Fig. 14(b) is simply

E ¼ g
ffiffiffi
s

p ðQðv̄Þ −QðvÞÞ: ðB9Þ

Here, v̄ ¼ sr2v̄.

APPENDIX C: SOME DETAILS ON
THE QUARK-ANTIQUARK POTENTIAL

In this Appendix, we give a brief summary of the basic
results about the heavy quark-antiquark potential (the
ground-state energy of a static quark-antiquark pair) in the
presence of two light flavors of equal mass. These are
relevant for our discussion in Sec. III. For standard explan-
ations, see Refs. [20,27], whose conventions we follow,
unless otherwise stated.
In the problem at hand, there are two static string

configurations: a connected configuration like that at bottom
of Fig. 1(a) and a disconnected configuration similar to that
of Fig. 1(b). In five dimensions, the connected configuration
includes a string attached to the heavy quark sources on the
boundary of five-dimensional space [see Fig. 4(a)]. For a
Nambu-Goto string in the background geometry (2.1), the

(a) (b)

FIG. 14. A static string stretched between two points. α is the
tangent angle. (a) 0 < α < π

2
. (b) α ¼ π

2
.
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relation between the string energy andquark separation along
the x axis is written in parametric form

l ¼ 2ffiffiffi
s

p Lþð0; vÞ; EQQ̄ ¼ 2g
ffiffiffi
s

p
Eþð0; vÞ þ 2c; ðC1Þ

where c is a normalization constant and v is a dimensionless
parameter running from 0 to 1. It is given by v ¼ sr20, with r0
a turning point [20].
The behavior of EQQ̄ for small l is given by

EQQ̄ðlÞ ¼ −
αQQ̄

l
þ 2cþ σQQ̄lþ oðlÞ; ðC2Þ

with

αQQ̄¼ð2πÞ3Γ−4
�
1

4

�
g; σQQ̄¼

1

2
ð2πÞ−2Γ4

�
1

4

�
gs: ðC3Þ

On the other hand, for large l, it is

EQQ̄ðlÞ ¼ σl − 2g
ffiffiffi
s

p
I0 þ 2cþ oð1Þ; with σ ¼ egs:

ðC4Þ

Here, σ is the physical string tension, and I0 is defined in
Appendix A. Note that the coefficients σQQ̄ and σ are not
equal to each other. Numerically, σQQ̄=σ ≈ 0.805.
The five-dimensional counterpart of the disconnected

configuration is shown in Fig. 4(b). Since the mesons are
noninteracting, the energy is twice the heavy-meson mass.
The latter is given by Eq. (3.6).
As in lattice gauge theory [29], the critical separation

(string breaking distance) is defined by equating the
energies of the configurations

EQQ̄ðlQQ̄Þ ¼ 2EQq̄: ðC5Þ

The physical meaning of such a distance is that it gives a
condition for determining which configuration is dominant
in the ground state of the system (see Fig. 15). The equation
simplifies for large quark separations, where EQQ̄ðlÞ is
a linear function of l.21 If so, then it follows from
Eqs. (3.6) and (C4) that the string breaking distance is

lQQ̄ ¼ 2

e
ffiffiffi
s

p
�
QðqÞ þ n

e
1
2
qffiffiffi
q

p þ I0

�
: ðC6Þ

Here, q is a solution to Eq. (3.7).
The potential is formally defined by requiring VQQ̄ ¼

minðEQQq; 2EQq̄Þ.22 Thus, it interpolates between EQQ̄ at
small quark separations and 2EQq̄ at large ones. The
problem with this formal definition is that it does not
say precisely what happens at intermediate quark separa-
tions. Away out would be to use the same mixing analysis
as in lattice gauge theory [15,29]. So, consider a model
Hamiltonian of a two-state system

HðlÞ ¼
�
EQQ̄ðlÞ ΘQQ̄

ΘQQ̄ 2EQq̄

�
; ðC7Þ

withΘQQ̄ describing the mixing between the two states. The
potential is given by the smallest eigenvalue of the model
Hamiltonian. Explicitly,

VQQ̄ ¼ 1

2
ðEQQ̄ þ 2EQq̄Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðEQQ̄ − 2EQq̄Þ2 þ Θ2

QQ̄

r
: ðC8Þ

Weconclude bygiving a simple exampleof the potential to
illustrate this construction. For constant ΘQQ̄, the potential is
as shown in Fig. 15. It asymptotically approaches EQQq as l
tends to zero and 2EQq̄ as l tends to infinity. The transition
between these two regimes occurs around l ¼ lQQ̄, as
expected.

FIG. 15. The static quark-antiquark potential determined using
themodelHamiltonian (C7).Here,ΘQQ̄ ¼ 47 MeV, as inRef. [29].

21For the parameter values we use, this is true for l≳ 0.5 fm,
whereas the string breaking distance is about 1 fm.

22Conventionally, V0 is used to denote the potential (ground
state energy), but we reserve this notation for the QQ̄qq̄ system.
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