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In this work we derive the Bekenstein-Hawking entropy formula, S ¼ A
4l2p
, from the following minimal

assumptions: (i) there is a minimum area, Amin, proportional to l2p; (ii) the event horizon area, A, is
tessellated by N ¼ A=Amin distinguishable units; and (iii) the internal structure of these units is that of an
infinite tower of internal levels. Although our results are model independent, this internal structure can be
realized as the excitations of more fundamental entities such as, for instance, strings or loop quantum
gravity spin networks. Even more, once the microstates of the black hole are taken to be singlets formed
within the infinite tower of states describing the whole event horizon, the correction term − 3

2
logA emerges

from our model. Finally, some comments regarding the applicability of the present model to extremal black
holes, as well as possible relationships with spectral geometry and other approaches are pointed out. Our
results are independent of the dimension of the black hole and whether it is rotating or not.
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I. INTRODUCTION

Identifying the physical degrees of freedom underlying
the Schwarzschild black hole prototype and counting its
quantum microstates is a major problem of theoretical
physics since the early 1970s [1,2]. Although various
attempts to address this issue beyond general relativity
have come from string theory [3], loop quantum gravity
(LQG) [4], and the AdS-CFT correspondence [5], a definite
answer is still lacking.
The discovery of Hawking radiation, together with the

whole black hole thermodynamics, paved the way toward a
new understanding of space and time. In particular, and
following Boltzmann’s dictum, “If you can heat it, it has a
microstructure,” the mere existence of Hawking radiation
implies that black holes must have an internal structure.
The quest for this structure is supposed to reach to and end
when a full quantum gravity theory will be uncovered.
Meanwhile, the emergent approach, which can be stated

going from thermodynamics (continuum) to statistical
mechanics (emergence of molecules as a first discretization)
to finally uncover some internal structure (molecular energy
levels as a second discretization), when applied to gravity,
shows us some light in order to deepen our knowledge of
space and time. Specifically, Padmanabhan’s holographic

equipartition [6,7], shows the emergence of the so-called
holographic degrees of freedom, which are important
because they have a clear thermodynamic meaning. The
Komar energy of a spherically symmetric black hole
spacetime, E, is given by [6,7] E ¼ 1

2
NT, where T stands

for the local Hawking temperature and N ¼ A
l2p
, being A the

area of the event horizon. Even more, both the variables E
and T have valid interpretations in the continuum, thermo-
dynamic limit, but theN has no meaning in the same limit. In
fact, the N spacetime atoms [6,7] count the microscopic
degrees of freedom and, therefore, holographic equipartition
provides a direct link between the macroscopic and micro-
scopic descriptions. Even more, it is possible to fully
reconstruct AdS black hole thermodynamics starting from
statistical mechanics principles applied to the aforemen-
tioned N spacetime atoms introducing some ad hoc postu-
lates [8,9]. In this sense, N can be considered as the
Avogadro number of the spacetime (for a recent account
of the emergent paradigm program and related issues see,
for example, [10]).
In essence, these holographic degrees of freedom

correspond to some bits of information encoded in each
Planck area on the horizon, which is a realization of
Wheeler’s “it from bit” proposal [11]. This, together
with the Bekenstein-Mukhanov area spectrum [12], has
inspired a large number of quantum black hole models
(see, for example, [13]).
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Having gone one step further in the intimate description
of spacetime, now the question is to complete the emergent
approach toward a microscopic understanding of black
hole entropy. Specifically, we would like to know how to
descend from black hole thermodynamics (continuum) to
the picture of spacetime atoms (holographic equipartition
as a first discretization) to (hopefully) finally reach some
internal structure describing spacetime, following the
thermodynamic analogy.
Then, what is the internal structure (if any) of these

holographic degrees of freedom? This question will keep us
busy throughout the whole manuscript. In particular, we
look for a minimal model which could summarize the main
features of such an internal structure without having to
choose a particular candidate for quantum gravity.
As commented in the introduction, the ideal candidate in

order to prove our ideas is the elusive Bekenstein-Hawking
entropy, namely

S ¼ A
4l2p

; ð1Þ

which is expected to hold within a semiclassical quantum
gravity regime when macroscopic black holes (A ≫ l2p)
are considered.

II. A MINIMAL MODEL

The following minimal model suffices to obtain the
Bekenstein-Hawking entropy formula. We consider N cells
which tessellate any event horizon, such that

N ¼ A
Amin

ð2Þ

Therefore, a minimum area is assumed to exist.
Then, we associate to each one of these cells a (quantum

or classical) system such that its corresponding phase space
volume is finite. This occurs for compact phase spaces
(see the next section for more comments about it).
Let ν be the volume of this phase space. If the N cells are

taken as distinguishable, then the total phase space volume
will be

νN: ð3Þ

Finally, the entropy ascribed to the horizon will be

S ¼ log νN ¼ A
Amin

log ν: ð4Þ

If

Amin ¼ αl2p; ð5Þ

being α an arbitrary constant which, in principle, should be
determined by any specific quantum gravity model we are
working with, we obtain

S ¼ log ν
α

A
l2p
: ð6Þ

Therefore, after an appropriate choice of both the phase
space volume and the proportionality factor, α, is done, the
Bekenstein-Hawking entropy formula is recovered.
At this point, let us remind the reader the main

ingredients of this minimal model: (i) there is a minimum
area proportional to l2p; (ii) the horizon is tessellated by
N ¼ A=Amin units; (iii) these units are distinguishable; and
(iv) to each one of these units we associate a compact phase
space. Interestingly, a direct consequence of (i) and (ii) is
that the area is quantized to be an integer multiple of the
minimal area. This remarkable feature of area quantization
has observational consequences which include differences
between the usual Hawking behavior from that of LQG
[14], a distorted ringdown signal, or the presence of late–
time echoes. Indeed, the ringdown signal from the merger
of a binary black hole, as computed from general relativity,
is described very well by the quasinormal modes of the
final Kerr black hole (see, for example, [15–17]).

III. A NATURALLY COMPACT PHASE SPACE

As described in [18], both IR and UV cutoffs can be
realized from globally deformed Hamiltonian systems that
are defined on compact symplectic manifolds, concluding
that quantum gravity cutoffs are global (topological) proper-
ties of the corresponding symplectic manifolds. In fact, the
expectation is that compact phase space extension of general
relativity may resolve the problem of singularities [19].
Although a phase space with finite volume can be

obtained by appropriate compactification of either position
or momentum (or both) spaces, here we will consider
that only internal degrees of freedom are relevant in the
description of the N cells. We would like to emphasize that
we have not specified (and, indeed, we do not need it) the
nature of such an internal degrees of freedom but the only
requirement is that their phase space must be finite. Indeed,
our proposal is model–independent but it resembles well–
established models for quantum gravity. For example, our
construction is somewhat similar to the extended LQG
approach by Rovelli and Vidotto [20]. The idea put forward
by them is to generalize the theory with suð2Þ × SUð2Þ
phase space per link of the spin network, where only the
part of the phase space associated with the SUð2Þ holon-
omies, is already compact, to the compact phase space
SUð2Þ × SUð2Þ.
Specifically, in this section we will be interested in the

α ¼ 4π case, which corresponds to ν ¼ eπ . As it will be
clear, in this case, microstate counting can be interpreted in
terms of the dimensions of complex projective space, which
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acts as the quantum phase space of k-level systems, which
we assume to be a plausible description of the internal
structure of the N holographic degrees of freedom.
Let us begin with some mathematical preliminaries.

Complex projective space, CPn, is defined as the set of
lines in Cnþ1, i.e.,

CPn ¼ S2nþ1

S1
¼ S2nþ1

Uð1Þ

¼ Uðnþ 1Þ
Uð1Þ ×UðnÞ ¼

SUðnþ 1Þ
Uð1Þ : ð7Þ

We define the volume of CPn as the quotient

Vol ðCPnÞ ¼ VolðS2nþ1Þ
VolðS1Þ ð8Þ

and, therefore,

Vol ðCPnÞ ¼
2πnþ1

n!

2π
¼ πn

n!
: ð9Þ

We note that

ν≡X∞
n¼0

Vol ðCPnÞ ¼ eπ: ð10Þ

Even more, the quantity defined as S ¼ log νN (N ¼ 1)
is given by

S ¼ log ν ¼ π ¼ Vol ðCP1Þ ¼ Vol ðS2Þ
4

: ð11Þ

At this point, a couple of comments are in order: (i) we
note that pure states are given by vectors in a Hilbert space,
H. If a finite dimensional Hilbert space is considered, then
H ¼ Cn equipped with a scalar product (a Hermitian form).
However, given that two states are related by multiplication
by any complex number, it is not the space of physical
spaces. Therefore, the true quantum phase space (the space
of pure states) is the space of rays in the Hilbet space,
namely, for the special case in which H is Cnþ1, the space
of rays is CPn (the so-called projective Hilbert space,HP .)
[21]; (ii) n ¼ k − 1, where k is the number of relevant
(energy, spin,…) levels which are needed to describe the
physics under study; (iii) if we define a quantum state, jσi,
such that its quantum phase space is ν, then its statistical
entropy satisfies an area law. This is somehow reminiscent
of the so-called black hole-qubit correspondence (see
Ref. [22] for a review), which links the structure of the
Bekenstein-Hawking entropy of certain black hole solu-
tions in string theory with certain multipartite entanglement
measures in quantum information.

Interestingly, this jσi state can be written as

ð12Þ

where jki stands for a k-level system. Note that jσi is a
separable state.
Although we have emphasized that our approach is

model independent, we can try to interpret our results in the
framework of other models. Among all possible interpre-
tations of jσi, particularly appealing is either a tower of
string or LQG spin network excitations.
Regarding the string case, let us note that the string

functional is a composite of all possible string configura-
tions, which we consider here for simplicity a tower on
increasing k-level systems. A possible drawback regarding
this realization is that string kinetic levels are not consid-
ered. Although this could be surpassed by considering a
Bose-Einstein condensation of strings, we think that this
argument, which is essentially ad hoc, opens the window
for an alternative interpretation via LQG.
In the LQG case, “the quanta (the modes of the spin

network) carry no quantum number such as momentum or
position. Rather, they carry quantum numbers that define
a quantized geometry” [23]. Therefore, a minimal model
compatible with the main ideas of LQG (but independent of
the full LQG machinery) is to consider the full projective
Hilbert space of this toy model as the sum

HP ¼ HP
1 ⊕ HP

2 ⊕ HP
3 � � �

¼ CP0 ⊕ CP1 ⊕ CP2 ⊕ � � � ð13Þ

A consequence of the appearance of the aforementioned
tower of states, ν ¼ Vol ðHPÞ ¼ eπ and, therefore, the
minimum area is fixed as Amin ¼ 4πl2p in order to recover
the Bekenstein-Hawking formula using Eq. (6). Although
this feature contrasts with the usual LQG findings, where
Amin ¼ 4π

ffiffiffi
3

p
γl2p, where γ is the Barbero-Immirzi prameter,

it is interesting to note that LQG predicts the Bekenstein-
Hawking entropy when γ ¼ γ0 ¼ 0.274067… for different
kind of (macroscopic) black holes and, in the same spirit,
the approach here introduced predicts the Bekenstein-
Hawking formula when α ¼ 4π for all (macroscopic)
black holes. Specifically, the entropy is given in the
LQG framework by

S ¼ γ0
γ

A
4l2p

; ð14Þ

where γ is the Barbero-Immirzi parameter and γ0 takes an
order one numerical value depending on the specific model
considered. For our minimal model, we have

MINIMAL MODEL FOR THE BEKENSTEIN-HAWKING ENTROPY PHYS. REV. D 106, 066001 (2022)

066001-3



S ¼ 4π

α

A
4l2p

ð15Þ

and, therefore, the simplest way to make our result
compatible with the Bekenstein-Hawking entropy is by
choosing α ¼ 4π. However, we could relax the above
constraint by relating α with the Barbero-Immirzi param-
eter through Eqs. (14) and (15) from where

α ¼ 4πγ

γ0
: ð16Þ

However, we would like to emphasize that as our result is
model–independent, the relation between α and γ is not
compulsory (the interested reader find a detailed discussion
on the role of the Barbero-Immirzi parameter in Sec. 8
of [24]).
In any case, we would like to mention that the minimal

model here proposed cannot be directly applied to LQG (at
least in the standard formulation which does not support a
compact phase space). However, Ref. [19] considers a two-
dimensional minisuperspace model of compact phase space
gravity which is a two-sphere. Since S2 ∼ CP1, we could
interpret the internal structure of the N cells as described
by two-level systems, which corresponds to Makela’s
approach [25], where the only allowed values of the
quantum numbers at the punctures of the spin network
on the spacelike two-surfaces of spacetime are 0 and 1=2.
The compactness of CPn, in addition to providing an

efficient mechanism for getting a finite phase space
volume, implies discreteness for the spectrum of the
Laplacian which is, in some way, a desirable feature in
the quantum realm. Even more, Vol ðCPnÞ can be spec-
trally determined via the Laplacian on scalars by the well-
known Minakshisundaram-Pleijel formula [26]. Therefore,
as the spectra only depend on the Riemannian structure,
black hole microstates would be easily identified as some
set of eigenvalues and, therefore, their dynamics and
quantization would be, in principle, free of difficulties [27].
Similar spectral-geometric techniques have been very
recently employed [28] in order to show that the intro-
duction of an appropriate cutoff in the spectra of the
Laplacian on a spherically symmetric and static black hole
reveals an equivalence between shape degrees of freedom
[29] and the number of holographic degrees of freedom).
In addition, we would like to mention that, although

other choices for specific microscopic degrees of freedom
describing the N cells partitioning the horizon are certainly
possible (see, for example, a graph-theoretic model recently
proposed by Davidson [30], a mapping to the equivalent
statistical mechanical problem of counting of conforma-
tions of a closed polymer chain [31] or the previously
mentioned Makela’s two-level system of LQG punctures
[25]), the model here proposed only assumes the mere
existence of an infinite tower of discrete levels describing,

with more depth, holographic degrees of freedom.
Although we have shown that a toy model based on
LQG can accommodate the aforementioned tower, it would
be interesting to look for other realizations.

IV. EXTREMAL BLACK HOLES AND
LOGARITHMIC CORRECTIONS

Regarding the applicability and scope of our approach, a
couple of words are in order: (i) the present model does not
predict any corrections to the Bekenstein-Hawking entropy
and (ii) what about extremal black holes?
Let us remind the reader that extremal black holes are

topologically disconnected from the nonextremal ones [32].
In particular, there is an interesting connection between
topology and entropy for gravitational instantons [33],
which reads

S ¼ χA
8
; ð17Þ

where χ is the Euler characteristic of the (Riemannian,
compact) gravitational instanton (including boundaries if
necessary). By using Eqs. (6) and (17) implies an interesting
connection between topology and microscopic physics
through

χ ¼ 8 log ν
α

: ð18Þ

This expression gives S ¼ 0 for extremal BHs, as
expected. Even more, it recovers the Bekenstein-Hawking
entropy because the Euler number is χ ¼ 2 in most of
standard black hole solutions such as, for example, in the
Schwarzschild and Kerr cases.
Now, let us assume a finite α (which makes sense

because Amin ¼ αl2p). Then, for an extremal black hole
we have that S ¼ χ ¼ 0, implying that ν ¼ 1. Therefore,
remembering that ν ¼ P∞

n¼0 Vol ðCPnÞ any holographic
degree of freedom is described by CP0, which implies
k ¼ 1, i.e., the first excited state of the infinite tower. On the
contrary, a nonextremal black hole is described by N
holographic degrees of freedom, each one described by
an infinite tower of states, ranging from k ¼ 2 to ∞.
Intriguingly, the role played by the vacuum state remains to
be explored.
Interestingly, our minimal model can be extended to

include corrections to the Bekenstein-Hawking entropy as
we shall explain in what follows. It is now accepted that
the semiclassical Bekenstein-Hawking area acquires a
fully quantum correction which, interestingly, seems to
be model-independent, and reads − 3

2
logA. Specifically,

both the CFT-based Cardy formula [34], stringy calcula-
tions [35] based on it and a LQG-based counting [36] give
place to the aforementioned correction. Given the radical
differences between these approaches, one could ask
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whether some underlying model is trying to tell us some-
thing at a, let us say, deep (model-independent) level.
As the key idea is combinatorics (counting microstates),
and having into account that most of calculations require a
large number of these microstates, one could look for a key
asymptotic formula related, for instance, with an specific
integer partition (or other equivalent realizations). We
propose that this formula should read: “when the number
of microstates, nðNÞ, is very large (remember that N is the
number of patches tessellating the horizon), and given
some constraints between these microstates, their asymp-
totic distribution is given by the Catalan numbers”. For us,
the appearance of Catalan numbers is of fundamental
importance [37]. Let us elaborate.
We demand that the entropy of a black hole is ðlp ¼ 1Þ:

S ¼ A
4
−
3

2
logAþ � � � ð19Þ

If a simple horizon partition such as, for example, the one
proposed in our work, is performed, then the number of
cells tilling the horizon is N ¼ A=Amin. Now, instead of
assigning a quantum phase space to any of theseN cells, we
define the number of black holes microstates, n such that

log n ∼
N
4
−
3

2
logN þ � � � ð20Þ

This implies that

nðNÞ ∼ eN=4

N3=2 : ð21Þ

At this point, we note that the n-Catalan number is defined
as (n > 0)

Cn ¼
�
2n
n

�
−
�

2n
nþ 1

�
¼ ð2nÞ!

ðnþ 1Þ!n! : ð22Þ

Even more, the Catalan numbers grow asymptotically as

CN ∼
4Nffiffiffi
π

p
N3=2 : ð23Þ

Therefore,

logCN ∼ N −
3

2
logN ∼ S: ð24Þ

Then, we conclude the following: if black hole microstates
are distributed as Catalan numbers, then their asymptotic
growing is exactly what is needed in order to obtain black
hole entropy including the logarithmic correction. Note
that, at this point, our conclusion does not say anything
about the physical mechanism which makes Catalan
numbers to appear. However, our conclusion is somehow

natural within LQG, as shown explicitly, for example,
by Kaul in [38].
In addition, Carlip shown [34] that the density of states

for a CFTwith central charge c and eigenvalues Δ grows as

ρðΔÞ ∼
�

c
96Δ3

�
1=4

e2π
ffiffiffi
cΔ
6

p
: ð25Þ

Intriguingly, both the application to the Banados,
Teilteilboim and Zanelli case (where a Virasoro algebra
is well known to exist) and also to a generic black holelike
metric in arbitrary dimensions by treating the horizon as a
boundary and considering the behavior of the algebra of
diffeomorphisms of the r − t plane near the horizon [39]
gives place to a generic density of states given by:

ρðΔÞ ∼ c
12

�
A
8π

�
−3=2

eA=4; ð26Þ

which is exactly the asymptotic expansion of the afore-
mentioned Catalan numbers.
Interestingly, we can consider a minimal extension of

our previous model which encodes the Catalan number
as follows. First, let us assume that, besides the tensorial
product of k-level systems associated to each fundamental
cell, we can append a label i ¼ 1, 2 to each jσi, namely

jσi → jσ; ii: ð27Þ

Now, let us assign a fundamental SUð2Þ representation for
each value of i so the whole horizon is tilled by 2n doublets.
Note that the above construction is reminiscent of what we
obtain through the relativistic correction of the Hamiltonian
of an atom where for each electron we assign an internal
two–level system, namely spins up and down. Note that
the number of singlet states that can be formed using
2n doublets is exactly given by:

ð2nÞ!
ðnþ 1Þ!n! ; ð28Þ

which coincides with the definition of the nth Catalan
number. At this point,we define the microstates of the black
hole, gðNÞ, as the SUð2Þ–invariant states, namely the
singlet states formed within the event horizon. Then, it
follows that gðNÞ ¼ CN and, therefore, when N is large,

S ¼ log gðNÞ ¼ log CN ¼ N log 4 −
3

2
log N þ � � � ð29Þ

Finally, if a minimum area

Amin ¼ 4 log 4 l2p ð30Þ

is assumed, then our Eq. (29) gives exactly
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S ¼ log gðNÞ ¼ log CN ¼ A
4
−
3

2
log Aþ � � � ð31Þ

At this point some comments are in order. First, note that
the isolated horizon approach of LQG realizes that the set of
states to be counted must obey the constraint that they are
SUð2Þ singlets [40]. Besides, in Ref. [41] the entropy was
explicitly calculated in terms of the number of spin–valued
punctures on a 2-sphere tessellated by conformal blocks in
the framework of the Wess-Zumino model. More precisely,
under the assumption that the spin of the punctures are all set
to 1=2, then the authors inferred that the contribution from
other spins is negligible and, therefore, under these approx-
imations, they obtain S ¼ log CN (although not explicitly
alluding to the Catalan numbers). In this regard, we think
that the approach followed in [41] should be considered as
an “approximation.” Then, although the counting we are
here performing formally coincides with that reported in
[41], we consider that our result is exact in the precise sense
that the label i is not associated to any “geometrical”
realization. In summary, we arrive to the very same con-
clusion from a different point of view. Second, note that the
minimal area given by (30) is smaller than the previously
obtained for the black hole entropy without the logarithmic
correction. Finally, it is clear that the introduction of the label
i should lead to a modification of the volume of the total
phase space of the form

νN →
νβN

N3=2 ; ð32Þ

which accounts for the logarithmic correction in the entropy
with β ¼ log 4=π.

V. FINAL COMMENTS

In this work we have developed a minimal model which
accounts for the Bekenstein-Hawking entropy starting from
the basic assumption that the area of the black hole horizon
is tessellated by minimal cells (areas of the order of the
Planck length squared). We found that, provided each one
of these cells encodes some internal degrees of freedom
spanning a compact phase space, microstate counting
can be straightforwardly performed to obtain S ¼ A=4l2p.
Although our findings are model-independent, we have
been able to interpret our results in terms of other well-
established approaches such as loop quantum gravity and
string theory. We have also extended our results to include
a logarithmic correction to black hole entropy (including
the − 3

2
factor) by assuming that black hole microstates are

nothing but singlet states formed within the event horizon.
Remarkably, our results are independent of the dimension
of the black hole and whether it is rotating or not. We hope
to report on the computation of Hawking radiation spectra
within our model and on some similarities between our
approach and different Quantum Gravity models in a near
future.

ACKNOWLEDGMENTS

P. B. is funded by the Beatriz Galindo Contract
No. BEAGAL 18/00207 (Ministerio de Universidades,
Spain). P. B. acknowledges Anaís, Lucía, Inés and Ana
for continuous support. Discussions with J. A. Miralles and
J. Pons are gratefully acknowledged. The authors would
like to thank the referee for his/her very valuable comments
and suggestions which have served to improve the quality
of our manuscript.

[1] J. D. Bekenstein, Lett. Nuovo Cimento 4, 737 (1972); Phys.
Rev. D 7, 2333 (1973).

[2] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).
[3] A. Strominger and C. Vafa, Phys. Lett. B 379, 99 (1996);

S. D. Mathure, Fortschr. Phys. 53, 793 (2005); A. Sen,
Gen. Relativ. Gravit. 46, 1711 (2014).

[4] A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, Phys.
Rev. Lett. 80, 904 (1998); A. Ghosh, K. Noui, and A. Perez,
Phys. Rev. D 89, 084069 (2014); A. Perez, Rep. Prog. Phys.
80, 126901 (2017).

[5] J. M. Maldacena, Theor. Phys. 38, 1113 (1999); S. S.
Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett.
B 428, 105 (1998); E. Witten, Adv. Theor. Math. Phys. 2,
253 (1998).

[6] T. Padmanabhan, Mod. Phys. Lett. A 25, 1129 (2010).
[7] T. Padmanabhan, Phys. Rev. D 81, 124040 (2010).

[8] A. F. Vargas, E. Contreras, and P. Bargueno, Gen. Relativ.
Gravit. 50, 117 (2018).

[9] F. D Villalba, A. F. Vargas, E. Contreras, and P. Bargueño,
Gen. Relativ. Gravit. 52, 87 (2020).

[10] T. Padmanabhan, Int. J. Mod. Phys. D 29, 2030001 (2020).
[11] J. Wheeler, Proceedings of the 3rd International Symposium

on Foundations of Quantum Mechanics (Phys. Soc. Japan
(1990), Tokyo, 1989), p. 354.

[12] J. D. Bekenstein and V. F. Mukhanov, Phys. Lett. B 360, 7
(1995).

[13] S. Hod, Phys. Rev. Lett. 81, 4293 (1998); O. Dreyer, Phys.
Rev. Lett. 90, 081301 (2003); D. Oriti, D. Pranzetti, and L.
Sindoni, Phys. Rev. Lett. 116, 211301 (2016); S.-WWei and
Y.-X Liu, Phys. Rev. Lett. 115, 111302 (2015).

[14] A. Barrau, T. Cailleteau, X. Cao, J. Diaz-Polo, and J. Grain,
Phys. Rev. Lett. 107, 251301 (2011).

PEDRO BARGUEÑO and ERNESTO CONTRERAS PHYS. REV. D 106, 066001 (2022)

066001-6

https://doi.org/10.1007/BF02757029
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1007/BF02345020
https://doi.org/10.1016/0370-2693(96)00345-0
https://doi.org/10.1002/prop.200410203
https://doi.org/10.1007/s10714-014-1711-5
https://doi.org/10.1103/PhysRevLett.80.904
https://doi.org/10.1103/PhysRevLett.80.904
https://doi.org/10.1103/PhysRevD.89.084069
https://doi.org/10.1088/1361-6633/aa7e14
https://doi.org/10.1088/1361-6633/aa7e14
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1142/S021773231003313X
https://doi.org/10.1103/PhysRevD.81.124040
https://doi.org/10.1007/s10714-018-2442-9
https://doi.org/10.1007/s10714-018-2442-9
https://doi.org/10.1007/s10714-020-02739-2
https://doi.org/10.1142/S0218271820300013
https://doi.org/10.1016/0370-2693(95)01148-J
https://doi.org/10.1016/0370-2693(95)01148-J
https://doi.org/10.1103/PhysRevLett.81.4293
https://doi.org/10.1103/PhysRevLett.90.081301
https://doi.org/10.1103/PhysRevLett.90.081301
https://doi.org/10.1103/PhysRevLett.116.211301
https://doi.org/10.1103/PhysRevLett.115.111302
https://doi.org/10.1103/PhysRevLett.107.251301


[15] V. Cardoso, V. F. Foit, and M. Kleban, J. Cosmol. Astropart.
Phys. 08 (2019) 006.

[16] I. Agullo, V. Cardoso, A. del Rio, M. Maggiore, and J.
Pullin, Phys. Rev. Lett. 126, 041302 (2021).

[17] Sayak Datta and Khun Sang Phukon, Phys. Rev. D 104,
124062 (2021).

[18] K. Nozari, M. A. Gorji, V. Hosseinzadeh, and B. Vakili,
Classical Quantum Gravity 33, 025009 (2016).

[19] D. Artigas, J. Mielczarek, and C. Rovelli, Phys. Rev. D 100,
043533 (2019).

[20] C. Rovelli and F. Vidotto, Phys. Rev. D 91, 084037 (2015).
[21] I. Bengtsson and P. Zyczkowski, Geometry of Quantum

States, An Introduction to Quantum Entanglement, 2nd ed.
(Cambridge University Press, Cambridge, England, 2017).

[22] L. Borsten, M. J. Duff, and P. Lévay, Classical Quantum
Gravity 29, 224008 (2012).

[23] C. Rovelli, Classical Quantum Gravity 28, 153002 (2011).
[24] J. Diaz-Polo and D. Pranzetti, SIGMA 8, 048 (2012).
[25] J. Makela, Int. J. Mod. Phys. D 28, 1950129 (2019).
[26] S. Tanno, Koday Math. J. 5, 230 (1982).
[27] G. Landi and C. Rovelli, Phys. Rev. Lett. 78, 3051 (1997).
[28] P. Bargueno and E. Contreras, Phys. Rev. D 105, 046003

(2022).
[29] D. Aasen, T. Bhamre, and A. Kempf, Phys. Rev. Lett. 110,

121301 (2013).

[30] A. Davidson, Phys. Rev. D 100, 081502(R) (2019).
[31] E. Bianchi, Classical Quantum Gravity 28, 114006 (2011).
[32] S. W. Hawking, G. T. Horowitz, and S. F. Ross, Phys. Rev.

D 51, 4302 (1995); C. Teitelboim, Phys. Rev. D 51, 4315
(1995); 52, 6201(E) (1995).

[33] S. Liberati and G. Pollifrone, Phys. Rev. D 56, 6458 (1997).
[34] S. Carlip, Classical Quantum Gravity 17, 4175 (2000).
[35] A. Strominger and C. Vafa, Phys. Lett. B 379, 99 (1996).
[36] R. Kaul and P. Majumdar, Phys. Rev. Lett. 84, 5255

(2000).
[37] During the writing of this manuscript we learned that A.

Davidson published a nice idea connecting Catalan numbers
and the holographic shell model in A. Davidson, Int. J. Mod.
Phys. D 23, 1450041 (2014). Even more, Davidson recog-
nizes in some of his recent work [30] that if the graphs he
was considering to enumerate black hole microstates were
rooted trees, the − 3

2
logA would have appeared. Here we

note that, within Davidson’s context, rooted trees implies
one of the contexts where the Catalan numbers appear.

[38] R. K. Kaul, SIGMA 8, 005 (2012).
[39] S. Carlip, Phys. Rev. Lett. 82, 2828 (1999).
[40] R. Basu, R. K Kaul, and P. Majumdar, Phys. Rev. D 82,

024007 (2010).
[41] S. Das, R. K. Kaul, and P. Majumdar, Phys. Rev. D 63,

044019 (2001).

MINIMAL MODEL FOR THE BEKENSTEIN-HAWKING ENTROPY PHYS. REV. D 106, 066001 (2022)

066001-7

https://doi.org/10.1088/1475-7516/2019/08/006
https://doi.org/10.1088/1475-7516/2019/08/006
https://doi.org/10.1103/PhysRevLett.126.041302
https://doi.org/10.1103/PhysRevD.104.124062
https://doi.org/10.1103/PhysRevD.104.124062
https://doi.org/10.1088/0264-9381/33/2/025009
https://doi.org/10.1103/PhysRevD.100.043533
https://doi.org/10.1103/PhysRevD.100.043533
https://doi.org/10.1103/PhysRevD.91.084037
https://doi.org/10.1088/0264-9381/29/22/224008
https://doi.org/10.1088/0264-9381/29/22/224008
https://doi.org/10.1088/0264-9381/28/15/153002
https://doi.org/10.1142/S0218271819501293
https://doi.org/10.1103/PhysRevLett.78.3051
https://doi.org/10.1103/PhysRevD.105.046003
https://doi.org/10.1103/PhysRevD.105.046003
https://doi.org/10.1103/PhysRevLett.110.121301
https://doi.org/10.1103/PhysRevLett.110.121301
https://doi.org/10.1103/PhysRevD.100.081502
https://doi.org/10.1088/0264-9381/28/11/114006
https://doi.org/10.1103/PhysRevD.51.4302
https://doi.org/10.1103/PhysRevD.51.4302
https://doi.org/10.1103/PhysRevD.51.4315
https://doi.org/10.1103/PhysRevD.51.4315
https://doi.org/10.1103/PhysRevD.52.6201
https://doi.org/10.1103/PhysRevD.56.6458
https://doi.org/10.1088/0264-9381/17/20/302
https://doi.org/10.1016/0370-2693(96)00345-0
https://doi.org/10.1103/PhysRevLett.84.5255
https://doi.org/10.1103/PhysRevLett.84.5255
https://doi.org/10.1142/S0218271814500412
https://doi.org/10.1142/S0218271814500412
https://doi.org/10.1103/PhysRevLett.82.2828
https://doi.org/10.1103/PhysRevD.82.024007
https://doi.org/10.1103/PhysRevD.82.024007
https://doi.org/10.1103/PhysRevD.63.044019
https://doi.org/10.1103/PhysRevD.63.044019

