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The entanglement between momentum modes of a quantum field theory at different scales is not as well
studied as its counterpart in real space, despite the natural connection with the Wilsonian idea of integrating
out the high-momentum degrees of freedom. Here, we push such a connection further by developing a
novel method to calculate the Rényi and entanglement entropies between slow and fast modes, which is
based on theWilsonian effective action at a given scale. This procedure is applied to the perturbative regime
of some scalar theories, comparing the lowest-order results with those from the literature and interpreting
them in terms of Feynman diagrams. This method is easily generalized to higher-order or nonperturbative
calculations. It has the advantage of avoiding matrix diagonalizations of other techniques.
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I. INTRODUCTION

The application of information concepts to the study
of quantum field theories (QFTs) is nowadays a well-
established and fruitful line of research; from investigations
on the connection between entanglement of regions of
space and black hole entropy [1,2] to applications in
holography [3,4], passing through derivations of emergent
symmetries in low-energy scattering [5,6], understanding
the entanglement structure of field theories has brought new
insight to the properties of these systems. In particular,
entanglement is increasingly seen as being of key relevance
to quantum phase transitions [7], conformal field theories
(CFTs) in general [8,9], and even as a way to characterize
topological phases [10,11].
Most of these studies have the common feature that they

mainly focus on the properties of real-space entanglement,
i.e., on the entanglement between a region of space and its
complement or between separate regions. Such a prefer-
ence for entanglement in configuration space is often
justified by arguing that observables typically measured
in a QFT are local (effectively supported in a bounded
region), and thus spatial correlations are directly accessible,
having a straightforward physical interpretation. This is of
course correct, but does not take into account the fact that

actual measurements made in the lab have a finite reso-
lution, so that they only detect modes up to a certain
momentum scale. This is associated with the physics
behind the idea of renormalization [12,13]. Furthermore,
since renormalization (more specifically, Wilsonian
renormalization) is naturally formulated in terms of
momenta above and below a certain scale, there may be
a lot to learn about QFTs and the previously mentioned
topics by studying momentum-space entanglement and its
connection to the renormalization group (RG). After all,
RG trajectories are of paramount importance to the modern
understanding of the phase structure of field theories.
It is important to note that there are studies of renorm-

alization in the context of entanglement of spatial regions,
see, for example, Refs. [14,15], Refs. [16,17] which make
connections with the Wilsonian effective action (still in a
real-space context), and Sec. VIII of Ref. [4]. There are
also explorations of entanglement in momentum space
such as [18–20], the first being one of the main references
in this paper, Refs. [21,22] (both for fermions at finite
density, with the latter using a Gaussian approximation),
Ref. [23] (application to theories in a noncommutative
space), Refs. [24,25] for connections with particle scatter-
ing and the numerical analyses in [26,27]. This partition
was also investigated in relation to holography in [28] and
the recent work [29], where a generalization—the so-
called “entanglement wedge”—was proposed for momen-
tum space. Nevertheless, this line of research is still in its
(relative) infancy and the connection between renormal-
ization and momentum-space entanglement is far from
fully understood.
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A first step towards such understanding was given in
Ref. [18], where it was pointed out that a reduced density
matrix for low-momentum degrees of freedom at a scale μ
in the vacuum of a QFT is naturally associated with the
Wilsonian effective action Sμ½ϕk� (obtained from the bare
action S½ϕk� of the theory by integrating out all field modes
with momentum k such that jkj ≥ μ [12]), with matrix
elements given by the path integral in the zero-temperature
limit,

hφkjρμjφ̃ki ¼ lim
β→∞

1

ZðβÞ
Z

ϕkðβÞ¼φ̃k

ϕkð0Þ¼φk

DϕkðτÞe−S
β
μ : ð1Þ

However, the relation above was actually not used in
Ref. [18] to obtain the entanglement entropy between low
and high momentum degrees of freedom, relying instead on
a Hamiltonian formalism valid only in the perturbative
regime and whose connection to the Wilsonian renormal-
ization is not obvious.
With this, our goal in this paper is to develop a new

method for deriving the entanglement and Rényi entropies
directly from the effective action and which has also the
advantage of being well defined nonperturbatively. The
structure of the paper is, then, as follows. In Sec. II we
review how the reduced density matrix ρμ is obtained from
the restriction of observables to a low-momentum sector
and how this automatically connects ρμ to Sμ½ϕk�. Then we
proceed to constructing our method for calculating Trρnμ for
n integer (valid entanglement measures on their own) based
on Eq. (1), obtaining in this way the Rényi entropies
HnðρμÞ≡ 1

1−n log Trρ
n
μ for any n, as well as the entangle-

ment entropy SEE ≡ −Trρμ log ρμ via the replica trick [4,8].
This novel technique depends on the fact that the Wilsonian
integration of fast modes generate effective actions non-
local in time (this will be made more precise later on). This
turns out to be an intuitive property which usually does not
need to be taken into account when calculating correlation
functions, but becomes crucial when deriving the entan-
glement properties of the theory. Thus, part of Sec. II is also
dedicated to discussing how this nonlocality is a necessary
requirement to obtaining nonzero entropy.
In Sec. III we apply the method to calculate entangle-

ment measures in cases for which analytical calculations
are mostly possible, and whose details are found in
Appendixes A, B, and C. As a first application of the
method, we calculate the entanglement between coupled
harmonic oscillators in the perturbative regime (Sec. III A),
in which case we find an agreement with [4]. Then, we
move on to more complex examples and calculate the
momentum-space entanglement for the scalarϕ3 (Sec. III B)
and ϕ4 (Sec. III C) theories up to the lowest nontrivial order
in perturbation theory, and reproduce the results from [18].
In doing so we are also able to connect these entropies to
specific Feynman diagrams, which suggests that Feynman

rules for entanglement may be defined at all orders, a
possibility left for further study. Section III D concludes
the paper by explaining how the n → 1 limit of the replica
trick must be dealt with in perturbation theory in order to get
the correct results for the entanglement entropy.

II. DENSITY MATRIX AND THE REPLICA TRICK
IN MOMENTUM SPACE

The idea of restricting observables of a QFT to a low-
momentum sector which extends only up to a cutoff μ has a
very natural realization within the path-integral formalism,
which we will use in this section to define density matrices
in momentum space, and from these calculate entanglement
entropies.
Note, however, that the technique developed here is very

general and can be applied to other contexts as long as a
path integral definition of a density matrix is available; in
other cases a strict connection with the RG is not
guaranteed.

A. Reduced density matrix for low-momentum
degrees of freedom

The usual construction of the path integral, reviewed
in Ref. [4], naturally defines a way of representing the
matrix elements of a density operator ρ, since those are
transition amplitudes and thus susceptible to Feynman’s
technique.
In particular, given a QFTwith Euclidean action S½ϕ� and

field operators collectively denoted by ϕ̂ðxÞ, whose Fourier
transforms are ϕ̂k, the matrix elements of the vacuum
density operator ρ in the momentum representation are
given by [4,18],

hφkjρjφ̃ki ¼ lim
β→∞

1

ZðβÞ
Z

ϕkðβÞ¼φ̃k

ϕkð0Þ¼φk

DϕkðτÞe−Sβ : ð2Þ

This leads to the usual expression for calculating the
ground state expectation value of any observable O, which
is given in momentum space by some function O ¼
Oðϕk; i

δ
δϕk

Þ (see Ref. [30]),

hOi ¼ 1

Z

Z
DϕkO

�
ϕk; i

δ

δϕk

�
e−S½ϕ�: ð3Þ

Now, since any measuring device that can be built in a
lab is only able to resolve phenomena up to a certain
momentum scale, denoted here by μ, the corresponding
observables are described only by functionals of ϕk such
that jkj ≤ μ.
Consequently, the expectation value of such a low-

momentum observable is
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hOi ¼ 1

Z

Z
DϕkO

�
ϕk;

δ

δϕk

�
e−S½ϕk�

¼ 1

Z

Z Y
jkj≤μ

DϕkO

�
ϕk;

δ

δϕk

�
e−Sμ½ϕjkj≤μ�; ð4Þ

where the Wilsonian effective action at scale μ, denoted by
Sμ½ϕjkj≤μ�, is defined as usual [12] by

e−Sμ½ϕjkj≤μ� ≡
Z Y

jkj>μ
Dϕke−S½ϕk�; ð5Þ

and is automatically obtained, since the observable has no
dependence on the field modes ϕk with jkj > μ.
From a quantum information point of view, Eq. (5) is

exactly the identity hOi¼TrðρAOAÞ¼TrðρOA ⊗ IÞ which
characterizes completely the reduced density operator ρA of
a subsystem A [31,32]. Thus, the path integral written in
terms of the Fourier-transformed fields ϕk reveals that the
Hilbert space of a QFT has the tensor product structure
H ¼⊗k Hk and so entanglement between momentum
modes can be characterized.
This means that the Wilsonian effective action Sμ½ϕjkj≤μ�

naturally defines a reduced density operator ρμ for
momentum modes with jkj ≤ μ, with matrix elements
given by Eq. (1). This allows for the calculation of
entanglement measures between scales below and above
μ (as ρμ is the partial trace of a pure state, any entropy is
due to entanglement in momentum space). Furthermore,
we can conclude that an effective action contains all the
required information to define the density matrix asso-
ciated with a state or subsystem, even when talking about
tensor product partitions which are not in momentum
space [18].
Before moving forward, some comments are in order.

First, the Fourier-transformed field considered is labeled by
the spatial momentum k without mention of the component
associated with the time variable. This is because the actual
degrees of freedom in a QFT are spread in space with time
indicating their dynamics instead of introducing new
variables. Another way of seeing this is through the use
of the Euclidean path integral, where the imaginary time
and corresponding momentum component are present
merely as a trick to projecting states into the vacuum
and are thus unrestricted in their corresponding integrals.
Second, our focus here is on the ground state for a simple
reason; it is well known that all states of a QFT can be
generated by linear combinations of local operators acting
on the vacuum [33] and it is the state which determines the
thermodynamic phase of the system (at zero temperature as
is the case here). Thus, studying entanglement in the
ground state potentially reveals information about the
theory in general.

B. Entanglement measures from the effective action

In this subsection we will derive one of the main results
of this paper; the construction of a new method for
determining entanglement measures associated with the
reduced density matrix given by Eq. (1).
First, we can modify Eq. (1) so that all terms relate only

to the low-momentum degrees of freedom (more generally,
only to the subsystem variables), as in the current formu-
lation the partition function ZðβÞ in that expression is still
the one corresponding to the full system. When the partial
trace is taken, the generated effective action contains a term
at zeroth order in the low-momentum fields. By discarding
this term, we can define

Zðμ; βÞ ≔
Z
β
DϕkðτÞe−S

β
μ½ϕk�; ð6Þ

and from now on Sμ½ϕk� is understood as an action not
containing any terms independent of the fields. The
subindex β in the integral sign indicates that integration
is taken over paths with time periodicity β. This in turn
adjusts the path integral representation of the matrix
elements to

hφkjρμjφ̃ki ¼ lim
β→∞

1

Zðμ; βÞ
Z

ϕkðβÞ¼φ̃k

ϕkð0Þ¼φk

Dϕke−S
β
μ : ð7Þ

Such a formulation is more practical, being often used
implicitly in ordinary renormalization calculations (effec-
tive action formalism), where the field-independent free-
energy term generated by the RG flow is ignored.
Now, with Eq. (7) at hand, we can write a formal

expression for Trρnμ, where n is an integer. These are
themselves valid entanglement measures, generalizations
of the so-called purity [31], and also allow for the
calculation of the entanglement entropy via the replica
trick. Thus, after performing the matrix multiplication and
trace, we obtain

Trρnμ ¼ lim
β→∞

1

½Zðμ; βÞ�n
Z

Dφ1…

Z
Dφn

×
Z

φkðβÞ¼φ2

φkð0Þ¼φ1

Dϕke−S
β
μ…

Z
φkðβÞ¼φ1

φkð0Þ¼φn

Dϕke−S
β
μ : ð8Þ

By writing the effective action as the integral of an effective
Lagrangian, Sβμ ¼

R β
0 dτLβ

μ, we perform the following
manipulation. In Eq. (8), we shift the limits of integration
in τ of the (uþ 1)th path integral (u being an integer in
f0;…; n − 1g) from ½0; β� to ½uβ; ðuþ 1Þβ�. This allows the
path integrals to be combined into a single one over fields
periodic in ½0; nβ� (it can be seen that due to the trace and
operator multiplication, the boundary conditions at multi-
ples of β match perfectly and are integrated over). These
shifts and subsequent recombination are the main reason
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why a representation of the density matrices employing a
finite temperature formalism is used, as at the moment it is
not clear how to construct a concrete method directly at
zero temperature.
Thus, by combining the effective actions with shifted

time variables into a single exponent,

Trρnμ ¼ lim
β→∞

1

½Zðμ; βÞ�n
Z
nβ
Dφke

−
P

u

R ðuþ1Þβ
uβ

dτLβ
μ ; ð9Þ

and defining the modified partition function,

Znðμ; βÞ ≔
Z
nβ
DφkðτÞe−

P
n−1
u¼0

R ðuþ1Þβ
uβ

dτLβ
μ ; ð10Þ

the trace can be rewritten as

Trρnμ ¼ lim
β→∞

Znðμ; βÞ
½Zðμ; βÞ�n : ð11Þ

Note the similarities with the expression for real-space
entanglement in a QFT given by Eq. (8) of Ref. [8]. The
difference is that in the momentum-space scenario, there is
an effective action allowing the partial trace to be per-
formed, and the high-momenta degrees of freedom are
completely ignored.
It is also important to point out clearly that this path

integral method involves a difference in the inverse temper-
ature β associated to the degrees of freedom that were
traced out, thus defining the effective action and the
temperature nβ for the remaining variables. This difference
is key for obtaining the correct results through our method
and also appears naturally in other techniques, such as the
one derived in [22].
At first glance it might be tempting to assumeP
n−1
u¼0

R ðuþ1Þβ
uβ dτLβ

μ ¼
R nβ
0 Lβ

μ. However, this is not correct.
As will be shown in detail in the next section, the effective
action has the general form,

Sβμ ¼
Z

β

0

dτLlocalðτÞ þ
Z

β

0

dτ
Z

β

0

dτ0L̃ðτ; τ0Þ þ…; ð12Þ

where LlocalðτÞ indicates that it is part of a Lagrangian local
in time, composed of differential operators d

dτ, while terms
like L̃ðτ; τ0Þ involve nonlocal integral kernels. The latter are
essential to ensure that the effective action generates a
mixed state density matrix (they are also ubiquitous in the
study of open quantum systems [34] described by mixed
states).
Given such a structure for the effective action, and the

fact that any nonlocal terms appear as functions of τ − τ0, it
follows that

P
n−1
u¼0

R ðuþ1Þβ
uβ dτLβ

μ can be written as

Xn−1
u¼0

Z ðuþ1Þβ

uβ
dτLβ

μ

¼
Z

nβ

0

dτLlocalðτÞ þ
Xn−1
u¼0

Z ðuþ1Þβ

uβ
dτ

Z ðuþ1Þβ

uβ
dτ0L̃ðτ; τ0Þ

þ…; ð13Þ

so that the part of the action that is local in time is
associated to an integral from 0 to nβ. On the other hand,
the nonlocal one inherits a more complicated structure,
which does not simply correspond to a double integral in
½0; nβ�. In the next section it will be shown that this fact
leads to a nonzero entropy.
For convenience, we may simplify the notation for the

sum of double integrals in Eqs. (10) and (13) by defining

Θnðτ; τ0Þ ≔
Xn−1
u¼0

Θðτ − uβÞΘðτ0 − uβÞ

× Θ½ðuþ 1Þβ − τ�Θ½ðuþ 1Þβ − τ0�; ð14Þ

where ΘðτÞ is the step function. With this, we have

Xn−1
u¼0

Z ðuþ1Þβ

uβ
dτ

Z ðuþ1Þβ

uβ
dτ0L̃ðτ − τ0Þ

¼
Z

nβ

0

dτ
Z

nβ

0

dτ0Θnðτ; τ0ÞL̃ðτ − τ0Þ: ð15Þ

In this form it is also easy to see how to generalize the
expressions in case the effective action involves integrals
over three or more time variables.
Finally, once Trρnμ is obtained, the Rényi entropies are

given by

HnðμÞ ¼
1

n − 1
lim
β→∞

ðn logZðμ; βÞ − logZnðμ; βÞÞ; ð16Þ

and, as usual, the entanglement entropy is derived through
the formal limit SEEðρμÞ ¼ limn→1HnðμÞ, meaning that
calculating Znðμ; βÞ is the key step in deriving entangle-
ment measures from an effective action.
To show that nonlocal terms are indeed crucial in

obtaining the entropy, consider that under some approxi-
mation scheme the effective action Sβμ is taken to contain
only local terms in time, that is, Sβμ ¼

R β
0 dτLlocalðτÞ. Via

the Legendre transform, we may obtain an associated
Hamiltonian H̃ with the thermal partition function given
(via the usual path integral construction) by

Tre−βH̃ ¼
Z
β
Dϕke

−
R

β

0
dτLlocalðτÞ; ð17Þ

and therefore, Trρnμ is
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Trρnμ ¼ lim
β→∞

R
nβ Dϕke

−
R

nβ

0
dτLlocalðτÞ

½Rβ Dϕke
−
R

β

0
dτLlocalðτÞ�n

¼ lim
β→∞

Tre−nβH̃

ðTre−βH̃Þn ¼ 1: ð18Þ

The last equality comes from diagonalizing H̃ to calculate
the traces. It is basically the well-known statement that
thermal states of a Hamiltonian approach the vacuum, a
pure state with no entropy, as the temperature goes to zero.
With this, we see that, as claimed, the nonlocal (in
Euclidean time) terms of the effective action are essential
for the entanglement entropy not to vanish.
The role of this Euclidean time nonlocality in describing

mixed states (and thus entanglement in our case) has been
studied in Ref. [19] in the operator formalism as a
consequence of the non-Hamiltonian evolution of open
quantum systems. There a similar conclusion is reached by
deriving the Kraus operators for the time evolution of the
low-momentum degrees of freedom under perturbation
theory and certain conditions.

III. APPLICATIONS OF THE METHOD

With the method developed in the previous section, we
can in principle calculate the entropies associated with any
density operator ρ whose matrix elements are generated by
a path integral of some effective action Seff in Euclidean
time, with the corresponding calculation being roughly that
of a partition function. Note that this technique is applicable
even if the entropy of ρ is not associated with momentum-
space variables or is not due to entanglement at all. Thus, in
this section, we will first calculate the entanglement
entropy of two coupled quantum harmonic oscillators in
perturbation theory. Since this entropy has already been
found by other means [4], this calculation offers a bench-
mark for checking the validity of the method. We will then
move to the main topic of interest in this paper and calculate
entanglement measures in momentum space of QFTs
where the used low-momentum effective action is obtained
via the Wilsonian procedure of integrating out fast modes.
The theories studied in this paper feature real scalar fields
with ϕ3 and ϕ4 interactions in the perturbative regime, and
the momentum space entropies will be calculated only up to
the lowest order in the coupling, which already leads to a
nonzero result.

A. Coupled harmonic oscillators

The review in Ref. [4] considers a quantum system with
two particles, with positions denoted xA and xB, moving in
one dimension inside a quadratic potential and linearly
coupled to each other, and calculates exactly the entangle-
ment entropy between the particles in the ground state. This
is done by taking the wave function of this state, tracing

over xB and diagonalizing exactly the resulting reduced
density matrix ρA.
Thus, having a known result to compare to, we now

apply our method to the ground state of this system. The
Euclidean Lagrangian of the model is given by

L ¼ 1

2

�
−

d2

dτ2
þM2

�
ðxAðτÞ2 þ xBðτÞ2Þ − lxAxB; ð19Þ

whereM2 can be related to the parameters used in Ref. [4].
Applying the technique consists of performing the path

integral over xB to generate an effective action for xA alone
(discarding any terms independent of xA which may
appear) and, from this effective action, calculate at finite
temperature the associated ZnðA; βÞ and ZðA; βÞ.
The path integral over xB can be easily performed by

going to frequency space and it leads to the effective action,

Seff ¼
1

2

Z
dω
2π

�
ω2 þM2 −

l2

ω2 þM2

�
jxAðωÞj2: ð20Þ

Returning to imaginary time, Seff becomes

Seff ¼
1

2

Z
dτdτ0xAðτÞAðτ; τ0ÞxAðτ0Þ; ð21Þ

where

Aðτ; τ0Þ ¼
�
−

d2

dτ2
þM2

�
δðτ − τ0Þ − l2

2M
e−Mjτ−τ0j; ð22Þ

with, as argued previously, a term exhibiting nonlocality in
time appearing in the effective action.
Since all calculations must be done at finite temperature,

the nonlocal kernel is actually

1

β

X
n

e−iωnðτ−τ0Þ

ω2
n þM2

¼ e−Mjτ−τ0j

2M
þ coshðMjτ − τ0jÞ

MðeβM − 1Þ : ð23Þ

As shown in Appendix A, due to the eβM factor in the
denominator, the second term goes to zero exponentially as
β → ∞, thus not affecting the zero-temperature entropy.
Hence, it can be ignored in this calculation (this is not the
case when the effective action is non-Gaussian, as we will
see in the next subsections).
In order to calculate ZðA; βÞ, we use the finite temper-

ature effective action given by

Seff ½xj� ¼
1

2

X
j

�
ω2
j þM2 −

l2

ω2
j þM2

�
x�jxj; ð24Þ

with ωj ¼ 2πj
β the Matsubara frequencies. The Gaussian

path integral over all xj is straightforward and leads to the
expression
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logZðA; βÞ ¼ −
1

2

X
j

log

�
ω2
j þM2 −

l2

ω2
j þM2

�
; ð25Þ

which, after employing simple algebraic manipulations and
known Matsubara sums, becomes

ZðA; βÞ ¼ sinhðβM
2
Þ

2 sinhðβ
ffiffiffiffiffiffiffiffiffi
M2þl

p
2

Þ sinhðβ
ffiffiffiffiffiffiffiffi
M2−l

p
2

Þ
: ð26Þ

For the next step, which is calculating ZnðA; βÞ, it is
necessary to perform the particular sum

P
n−1
u¼0

R ðuþ1Þβ
uβ dτLβ

μ.
As shown previously, the local terms simply add up to an
ordinary integral from 0 to nβ, so the focus now is on

Z
nβ

0

dτ
Z

nβ

0

dτ0Θnðτ; τ0Þe−Mjτ−τ0jxAðτÞxAðτ0Þ: ð27Þ

The calculations from this point on are quite extensive and
the details are relegated to Appendix A. Ultimately, up to
order Oðl2Þ in the perturbative regime, we find

TrρnA ¼ 1 − n
l2

16M4
: ð28Þ

In Ref. [4] this trace is calculated exactly and is given by

TrρnA ¼ ð1−ξÞn
1−ξn , with ξ ¼ ððM2þlÞ14−ðM2−lÞ14

ðM2þlÞ14þðM2þlÞ14
Þ2 in our notation.

Expanding the exact result up to order l2, the same result is
obtained.

B. Perturbative calculation in ϕ3 theory

In this and the next subsections, we will calculate the
entanglement between the degrees of freedom at different
momentum scales of perturbative scalar theories (as
always, in the ground state). From the discussion in the
previous section, this entanglement will be directly related
to the Wilsonian effective action and also be given a
diagrammatic interpretation.
The first step of the calculation is splitting the field

variable as a sum of high- and low-momentum parts (the
separation being determined by a chosen scale μ) and
integrate the high-momentum modes perturbatively, intro-
ducing at first an overall UV cutoff Λ, in order to find the
effective action Sμ½ϕjkj≤μ�. The chosen order of perturbation
theory will the lowest one in which a nonlocal term in time
appears. After this, we apply the method constructed earlier
to calculate the nth order Rényi entropies.
Integrating out modes with spatial momentum obeying

jkj > μ, the perturbative corrections to the effective action
are obtained by the usual connected Feynman diagrams
under the condition that all internal lines have momentum
above the scale μ [12].
For the ϕ3 theory in spacetime dimension d, we begin

with the Euclidean bare action,

S½ϕ� ¼
Z

ddx

�
1

2
ð∇ϕÞ2 þ 1

2
m2ϕ2 þ λ

3!
ϕ3

�
: ð29Þ

At order λ the only contribution to Sμ besides the already
existing λϕ3 comes from the tadpole diagram. However,
this only shifts the expectation value of ϕ and is local in τ,
so in view of the discussion in Sec. II this yields
Trρnμ ¼ 1þOðλ2Þ, and the first-order generation of entan-
glement is zero.
Now we will begin to use Feynman diagrams in earnest

and since we are performing the Wilsonian integration of
fast modes, we will use solid lines to denote momenta k
such that jkj < μ, and dashed lines for jkj > μ. As usual, all
internal lines must be dashed while all external ones must
be solid.
In the ϕ3 theory, the diagrams with two vertices for the

effective action have the form given by,

corresponding to a ϕ4 term in the effective action given at
finite temperature by

λ2

8

ϕj1;k1ϕj2;k2ϕj3;k3ϕ−j1−j2−j3;−k1−k2−k3
ðωj1 þ ωj2Þ2 þ ðk1 þ k2Þ2 þm2

: ð30Þ

We also get the one-loop diagram,

translating to

1

2
×
λ2

2

1

ω2
j0 þ q2 þm2

ϕj;kϕ−j;−k

ðωj þ ωj0 Þ2 þ ðk − qÞ2 þm2
: ð31Þ

Here attention has to be paid to the extra factor of 1=2; it
arises because it is not the mass renormalization per se that
is being calculated, which would eliminate this factor in
view of the structure of the Lagrangian. Rather, we are
working with the full numerical factor of the Feynman
diagram.
The effective action includes the sums over Matsubara

frequencies (with the field normalized as ϕðτÞ ¼
1ffiffi
β

p P
j e

iωjτϕj to give the correct number of β−1 factors)

and integrals over appropriate momentum regions as
defined by the rules of the Wilson RG.
Taking the Fourier transform of the time component of the

fields these diagrams indeed lead to nonlocal terms. For
illustration we show the respective zero-temperature kernels,
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as those are simpler (the finite-temperature ones we need to
actually use in our method are discussed in Appendix B),

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1þk2Þ2þm2

p
jτ−τ0j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ k2Þ2 þm2

p ϕk1ðτÞϕk2ðτÞϕk3ðτ0Þϕk4ðτ0Þ; ð32Þ

for the generated ϕ4 term, and

e−ð
ffiffiffiffiffiffiffiffiffiffi
q2þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk−qÞ2þm2

p
Þjτ−τ0j

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − qÞ2 þm2

p ϕkðτÞϕ−kðτ0Þ; ð33Þ

for the correction to the ϕ2 term.
In both cases (and in general) the nonlocality appears

because at least one external momentum k appears in one of
the propagators, thus leading to the above kernels when the
Fourier transforms are performed. This is the reason why
tadpoles like the OðlÞ diagram are local in time.
The exponential structure of the nonlocal kernel of

Eqs. (32) and (33) allows many of the calculations made
for the system of coupled harmonic oscillators to be
adapted to this case. More generally, this is a direct
consequence of perturbation theory, since diagrams gen-
erate products and convolutions of propagators, whose
Fourier transforms, before performing the spatial momen-
tum integrals, are exponential functions.
Now, referring to Appendix B for details of the main

calculation, we calculate the logarithm of the modified
partition function logZnðμ; βÞ (as usual for field theories, the
logarithm ismore practical) following the same strategy as in
the previous case. By expanding the exponential of the
action up toOðλ2Þ and usingWick’s theoremon the products
of fields which appear, the nonlocal terms are averaged over
the original free action at temperature nβ and their con-
tributions are summed. In particular, this means that each
term of the Rényi entropy can be interpreted as coming from
the connected vacuum bubbles derived from the nonlocal
diagrams via contractions of their free legs. This interpre-
tation is possible because the field contractions via theWick
theorem are represented by connecting the free legs of the
diagrams associated with nonlocal terms. Therefore, for the
two-legged diagram in ϕ3 theory we have,

while the diagram with four legs has the possible
contractions,

In this last case, the difference in the structures of the
bubbles is very important. The internal line on the second
diagram above must have, by definition, spatial momentum
with magnitude greater than μ. However, momentum
conservation imposed at the vertices forces it to vanish,
and the impossibility of fulfilling both conditions at the
same time implies that this diagram automatically vanishes.
Hence, only the basketball diagram contributes to the
entropy. We will see that a similar behavior also occurs
in the ϕ4 case.
At the end of all calculations we find that the Wick

contractions generate delta functions for the spatial
momenta such that the nth Rényi entropy will always be
an extensive quantity, a result also obtained in Ref. [18]
(this makes sense, as the momentum degrees of freedom are
uniformly spread throughout space and so the total entropy
should be proportional to the volume of the system).
Furthermore, the entropy density resulting from the sum
of terms associated with the bubble diagrams discussed
above is

HnðμÞ
V

¼ n
n − 1

λ2

8

Z � dd−1k
ð2πÞd−1

dd−1q
ð2πÞd−1 Iðk; qÞ; ð34Þ

with

Iðk;qÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þm2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk−qÞ2þm2

p
×

1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk−qÞ2þm2

p
Þ2
;

ð35Þ

where the spatial components of the momenta are inte-
grated over the region such that, given k; q, and k − q, at
least one of them is below the scale μ, at least one is above
it, and no set of momenta is repeated in the integration.
Such a specific region is a direct consequence of the
structure of basketball Feynman diagrams; as mentioned
earlier, the number of solid and dashed lines in each bubble
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indicates how many momenta are integrated over magni-
tudes smaller and greater than μ, respectively. Furthermore,
the repetition of lines of a same type in a diagram means we
can multiply the associated expression by a symmetry
factor at the cost of forbidding repeating sets of momenta in
the integration region.
The reason for this specific manipulation is that it

simplifies the final analytical expression and allows us
to compare directly Eq. (34) to the results from Ref. [18].
Before moving on, note that while the ϕ3 theory is

obviously problematic as the energy is not bounded from
below, the perturbative result we find above is actually
associated with a ϕ3 vertex in any theory containing such
term in the Lagrangian, and so it is still of value in the
actual physically relevant model.
A more important point is that our result reproduces

exactly the one from Ref. [18] (for the lowest-order Rényi
entropy which can be derived through their method), but it
was now obtained directly employing the Wilsonian point
of view, and it also gives a diagrammatic interpretation that
arises naturally from the calculation. Furthermore, we can
in addition postulate the following Feynman rules for Rényi
entropy,

ð36Þ

ð37Þ

with solid or dashed lines, depending on whether they
represent slow or fast modes.
By applying these rules to the bubble diagrams shown

previously, integrating momenta over the specific region
discussed and including n=ðn − 1Þ as a prefactor, the
lowest-order result is reproduced correctly. Note that by
the rules given every diagram will produce a factor of
ð2πÞd−1δd−1ð0Þ, which becomes the total volume when
defining the theory in a finite box; thus, we have extensive
entropies as expected from physical intuition and the direct
calculation done in the appendixes.
So far only the Rényi entropies were discussed.

However, the entanglement entropy at lowest order is
proportional to them. As a consequence, all conclusions
in this subsection apply to that entanglement measure as
well. This will be proven in Sec. III D, but first we will do a
similar study for the case of a ϕ4 interaction.

C. Results for ϕ4 theory

Drawing from the lessons of the previous sections, we
can now proceed and calculate the momentum-space
entanglement for λϕ4 theory. This QFT has, as the bare
action,

S½ϕ� ¼
Z

ddx

�
1

2
ð∇ϕÞ2 þ 1

2
m2ϕ2 þ λ

4!
ϕ4

�
: ð38Þ

Integrating out modes with momentum k such that
jkj > μ perturbatively, the discussion of Sec. III B made
clear that in order to get a finite entropy only diagrams
which have external momenta in an internal line contribute
at lowest order.
At order λ the only Feynman diagram is the tadpole,

which yields a mass renormalization without generating a
nonlocal term in time. At order λ2 three diagrams will lead
to nonlocality in time;

these lead to the respective terms (written at zero temper-
ature for simplicity),

1

2
×
λ2

6

1

q2 þm2

1

p2 þm2

1

ðk − q − pÞ2 þm2
ϕ�
kϕk; ð39Þ

λ2

16

1

q2 þm2

ð2πÞdδðPikiÞ
ðk1 þ k2 − qÞ2 þm2

ϕk1ϕk2ϕk3ϕk4 ; ð40Þ

λ2

72

ð2πÞdδðP6
i¼1 kiÞ

ðk1 þ k2 þ k3Þ2 þm2
ϕk1ϕk2ϕk3ϕk4ϕk5ϕk6 ; ð41Þ

with the inclusion of integrals over specific momentum
regions arising from tracing out high-momentum modes.
Once again we have an extra 1=2 factor in the two-point
contribution like the one discussed for the ϕ3 theory. This
can also be seen directly in Eqs. (4.9) and (4.20)
of Ref. [12].
The next step is to find how exactly these new expressions

are nonlocal in imaginary time. Following Appendix C, we
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have exponential kernels of the form (suppressing some
terms for simplicity),

e−ð
ffiffiffiffiffiffiffiffiffiffi
q2þm2

p
þ

ffiffiffiffiffiffiffiffiffiffi
p2þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk−q−pÞ2þm2

p
Þjτ−τ0j

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − q − pÞ2 þm2

p ; ð42Þ

e−ð
ffiffiffiffiffiffiffiffiffiffi
q2þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1þk2−qÞ2þm2

p
Þjτ−τ0j

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ k2 − qÞ2 þm2

p ; ð43Þ

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1þk2þk3Þ2þm2

p
jτ−τ0j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ k2 þ k3Þ2 þm2

p : ð44Þ

Similarly to the ϕ3 theory, in the lowest-order calculation
each of the terms above will contribute to the entropy
independently of the other, so that the end result will simply
be their sum. Furthermore, the structure of the end results
can be associated with the possible vacuum bubbles
obtained by contracting the legs of the diagrams, namely,

from the sunrise diagram, and from

the one-loop correction of the coupling, along with,

from the new ϕ6 term.
In the last two cases we are faced again with both

basketball and cactus vacuum bubbles and here, too, we

find that the latter type of diagram is canceled and does not
contribute to the entropy.
The cancellation for the cactus diagram associated with

the four-field term is explained in Appendix C along with
the remaining steps of the overall calculation. As for the
cactus diagram arising from ϕ6, the reason for it to vanish is
simple; momentum conservation and the structure of the
diagram imply that each individual loop must have the
same value of momentum throughout its extension.
However, in this case the middle loop is a half solid and
a half-dashed line, while no momentum can be a fast and
slow mode at the same time, so there will be at least one
unsatisfied delta function and this sends the whole expres-
sion to zero.
After all the calculations, we again use the permutation

symmetry of lines of the same type in each vacuum diagram
to combine all contributions into a single analytical
expression (with an intricate momentum integration region
as before), leading to the nth Rényi entropy density,

HnðμÞ
V

¼ n
n − 1

λ2

16

Z �Y3
i¼1

dd−1ki
ð2πÞd−1 Iðk1; k2; k3Þ; ð45Þ

with

Iðk1;k2;k3Þ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP3

i¼1kiÞ2þm2
q Y3

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2i þm2

p

×
1

ðP3
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2i þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP3

i¼1kiÞ2þm2
q

Þ2
;

ð46Þ

and where the integration limits, like in the ϕ3 case, are
such that at least one momentum is below μ, at least one is
above it, and no set of momenta is repeated.
We recover once more the same Rényi entropy obtained

from the method employed in Ref. [18] and, once again, the
expression could also be obtained by postulating Feynman
rules with the propagator line defined as in Eq. (36), along
with the vertex,

ð47Þ

which leads to the correct result by incorporating the
prefactor n

n−1 and integrating over the specific set of
momenta as discussed (and, again, we gain an overall
volume factor from the extra delta functions present in each
diagram).

D. Perturbation theory and the replica trick

Now, as mentioned in Sec. III B, we only derived
expressions for the Rényi entropies and avoided references
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to the n → 1 analytical continuation of the replica trick,
which gives the entanglement entropy per se. In order to
discuss this in detail, let us consider the general form of the
nth Rényi entropies found throughout this section,

HnðρAÞ ¼
1

1 − n
log TrρnA ¼ n

n − 1
λ2CþOðλ3Þ; ð48Þ

where C is some theory-dependent expression.
Clearly, by taking the limit n → 1, naively we would

arrive at the absurd conclusion that SA ¼ ∞. The reason for
this is that the expansion in the parameter λ is made at fixed
n and terms like λ2n are ignored for being of higher
order than desired. This means that terms which are
important for the entanglement in the limit n → 1 are
thrown away and cannot be recovered via the limiting
procedure. Nevertheless, there is a way of finding the
lowest-order contribution to the entanglement entropy
through this method. Assume that the reduced density
matrix ρA is diagonalized exactly and its eigenvalues (as
functions of λ) are given by piðλÞ. For λ ¼ 0 all but one
of the probabilities must be zero, since the starting point
of the perturbative expansion made here is a separable state
and, as seen throughout this section, the entanglement is
generated only at order λ2 and above. Therefore, these
probabilities may be labeled such that piðλÞ ¼ λ2aiðλÞ for
i ≥ 1 and p0 ¼ 1 − λ2

P
i aiðλÞ. Thus, calculating the

entanglement entropy from these probabilities,

SA ¼ −λ2
X∞
i¼1

aiðλÞ logðλ2aiðλÞÞ

−
�
1 − λ2

X∞
i¼1

aiðλÞ
�
log

�
1 − λ2

X∞
i¼1

aiðλÞ
�
; ð49Þ

and taking the dominant term as λ → 0, we find

SA ¼−
X∞
i¼0

pi logpi ¼−λ2 logλ2
X∞
i

aið0ÞþOðλ2Þ: ð50Þ

The presence of a term −λ2 log λ2 is ubiquitous in the
perturbative regime, see Ref. [18] and the exact result in
Ref. [4], and is particular to the entanglement entropy as the
x log x function is nonanalytical at x ¼ 0.
Following the same procedure to calculate any Rényi

entropy (with a similar discussion made in Appendix C of
Ref. [19]) leads to

HnðρAÞ ¼
1

1 − n
log

�X∞
i¼0

pn
i

�
≈

nλ2

n − 1

X∞
i

aið0Þ: ð51Þ

This means that we may find the entanglement entropy by
making the substitution n

n−1 → log 1
λ2
and the entropies are

really proportional to each other at this first approximation

(keeping in mind that terms of order λ2 or higher are being
discarded and that these must be calculated through more
sophisticated procedures). Finally, we point out that,
strictly speaking, the parameter appearing inside the
logarithms must be the square of the adimensional coupling
constant λ̃ of the coupling constant, currently this distinc-
tion does not affect the results or their interpretation in any
relevant way but it is important to keep it in mind when
proceeding to higher orders of the perturbative expansion.

IV. CONCLUSIONS AND OUTLOOK

We have developed a path integral method to compute
the entanglement between high- and low-momentum scales
which is based on the Wilson RG, where fast momentum
modes are integrated out to obtain an effective theory. As
discussed previously in the literature [18], the Wilson RG
naturally provides a framework where different scales are
entangled, since defining fast and slow modes necessarily
imply that a partition in momentum space has to be made.
We have shown here that strictly adhering to Wilson’s
prescription using a path integral formalism, one can
systematically compute the Rényi entropies, in particular
to any order in perturbation theory. This can be done in a
simpler fashion than with other methods employed in the
literature, since cumbersome matrix diagonalizations are
not needed, though the limiting procedure of the replica
trick to obtain the entanglement entropy must be handled
with care. One reason why this method is appealing and
efficient relies on the fact that a Feynman diagram
technique can be implemented to facilitate the task: the
structure of contractions in the Wilsonian effective action
and partition functions is the same as in the usual
calculations. However, as far as the Feynman rules are
concerned, we have only explicitly shown examples at
lowest nontrivial order. It remains to show that Feynman
rules for the entropies apply equally well at any order of
perturbation theory. In a related vein, it is worth mentioning
that an extension of the method to study QFTs in the
nonperturbative regime is also possible, like for example
the 1=N expansion, where Feynman diagrams occur in
dressed form, thus accounting for an infinite number of
diagrams to be resummed using 1=N as control parameter
rather than the coupling constant.
There are several other avenues to explore using the

method described in detail here. We have only given
examples of calculations for scalar field theories, but the
method should of course apply equally well to theories
involving fermions. However, the application of the
method to gauge theories raises a number of questions
we intend to explore in a further work. The well-known
fact that path integrals for gauge fields include redundant
degrees of freedom that have to be carefully accounted for
may be a source of complications in the implementation.
Furthermore, there is also a difficulty related to the Wilson
RG itself, whose separation of fast and slow modes breaks
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gauge invariance at intermediate steps of the calculation.
Away forward could be connecting methods such as those
in Refs. [35–37], which are gauge invariant by construc-
tion, to the low-momentum reduced density matrix and
from this relation deriving a formula for the entropy.
Conceptually, entanglement of gauge degrees of free-

dom differs from that of other theories even in real space,
where it is currently understood that edge modes must be
considered when studying the entanglement between a
region of space and its complement in order to obtain
sensible results [38–41]. This is because even when
regularizing the theory in a lattice, the physical Hilbert
space does not factorize as a tensor product labeled by
spatial regions; the real lattice gauge theory degrees of
freedom are Wilson loops, as discussed in Ref. [38]. Thus,
moving to momentum-space entanglement we can ques-
tion whether the physical Hilbert space of the theory still
factorizes in momentum space and which degrees of
freedom are involved in case the factorization occurs
(for instance, do edge modes also arise in this case?).
These are interesting subtleties we intend to study in a
future work.
Beyond the practical advantages of the technique devel-

oped in this paper, there are also fundamental questions that
immediately come into focus. For instance, it would be
important to investigate the precise meaning of the entan-
glement between RG scales regarding the fixed point
structure of the theory. Does it reveal something deeper
about entanglement in QFTs and scale invariance? More
precisely, is it possible to have entanglement between
momentum scales in a scale-invariant theory (e.g., a theory
at its IR fixed point)? Answering such a question would be
of paramount importance for quantum information aspects
of QFTs.
Finally, the method developed here also applies to the

study of entanglement in open quantum systems or
between different types of fields, say bosons and fermions
in the Yukawa theory. The technique only requires that the
effective action after integrating out some variables is
nonlocal in time, so there is a priori no reason to restrict it
just to momentum modes.
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APPENDIX A: ENTROPY OF COUPLED
HARMONIC OSCILLATORS

After tracing/integrating out one of the oscillators in
Sec. III A, the effective action of the remaining degree of
freedom is given by

Seff ¼
1

2

Z
β

0

Z
β

0

dτdτ0xAðτÞAðτ; τ0ÞxAðτ0Þ; ðA1Þ

where

Aðτ;τ0Þ ¼
�
−
d2

dτ2
þM2

�
δðτ− τ0Þ

− l2
e−Mjτ−τ0j

2M
− l2

1

eβM−1

coshðMjτ− τ0jÞ
M

: ðA2Þ

In order to calculate ZðA; βÞ, the effective action is given
in terms of the Matsubara modes by the expression
Sβeff ¼ 1

2

P
j ðω2

j þM2 − l2

ω2
jþM2Þx�jxj, and we can perform

another Gaussian integral to arrive at

logZðβÞ ¼ −
1

2

X
j

log

�
ω2
j þM2 −

l2

ω2
j þM2

�
: ðA3Þ

Decomposing the logarithm and using the Matsubara
sum

P
j logðω2

j þ C2Þ ¼ 2 log sinhðβC
2
Þ,

log
�
ω2
j þM2−

l2

ω2
j þM2

�

¼ logðω2
j þM2− lÞþ logðω2

j þM2þ lÞ− logðω2
j þM2Þ;

ðA4Þ

and so

ZðA; βÞ ¼ sinhðβM
2
Þ

2 sinhðβ
ffiffiffiffiffiffiffiffiffi
M2þl

p
2

Þ sinhðβ
ffiffiffiffiffiffiffiffi
M2−l

p
2

Þ
: ðA5Þ

The extra factor of 2 in the denominator does not change
any physical expectation value, but it allows the reduced
density matrix to be properly normalized.
Now, as shown in Sec. II B, for calculating ZnðA; βÞ the

local terms of the Seff in
P

n−1
u¼0

R ðuþ1Þβ
uβ dτLβ

μ simply add up
to the same expression at inverse temperature nβ, so the
focus now is on the nonlocal part after taking the variables
as periodic in β,
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1

nβ

X
j;j0

xjxj0
Z

nβ

0

dτ
Z

nβ

0

dτ0Θnðτ; τ0Þeiωjτþiωj0 τ
0

× l2
�
e−Mjτ−τ0j

2M
þ 1

eβM − 1

coshðMjτ − τ0jÞ
M

�
: ðA6Þ

Here, it is important to make clear that the Fourier
coefficients of the variables are normalized as xAðτÞ ¼
1ffiffiffiffi
nβ

p P
j e

iωjτxj (the same choice will be maintained in the

field theory case). Furthermore, ωj ¼ 2πj
nβ .

For the next step, given the definition of the hyperbolic
functions, the integrals over τ0 and τ in Eq. (A6) only
involve exponentials. So, for the factors with e−Mjτ−τ0j, they
result in

1

nβ

Xn−1
u¼0

e2πi
jþj0
n u

�
2M

M2 þ ω2
j0

e2πi
jþj0
n − 1

iðωj þ ωj0 Þ

þ e−βMþ2πijn − 1

ðM þ iωj0 ÞðM − iωjÞ
þ e−βMþ2πij

0
n − e2πi

jþj0
n

ðM − iωj0 ÞðM þ iωjÞ
�
:

ðA7Þ

The corresponding expression obtained from the eMjτ−τ0j
term appearing in the hyperbolic cosine is obviously
derived from the equation above by changing the sign ofM.

Using the identities
P

n−1
u¼0 e

2πijþj0
n u ¼ n

P
ν δ

nν
jþj0 and

δnνjþj0
e2πi

jþj0
n −1

ijþj0
n

¼ δ0jþj0 , Eq. (A7) is further simplified to

δ0jþj0
2M

M2þω2
j0
þ 1

nβ
n
X
ν

δnνjþj0

×

�
e−βMþ2πijn−1

ðMþ iωj0 ÞðM− iωjÞ
þ e−βMþ2πij

0
n −1

ðM− iωj0 ÞðMþ iωjÞ
�
: ðA8Þ

Collecting the other factors from Eq. (A6), there will be
two main components in the new action which serves to
define the modified partition function ZnðA; βÞ; those
derived from e−Mjτ−τ0j and those from eMjτ−τ0j. In the first
case, we simply get Eq. (A8) multiplied by l2

2M ð1þ
1

eβM−1Þxjxj0 and with a sum over Matsubara frequencies j
and j0. Our interest is in the zero-temperature limit, so in
this component the term 1

eβM−1 can be safely ignored as it is
exponentially suppressed when β → ∞, and so all its
contributions vanish; the same can be said about the other
e−βM terms inside the sum. This means that the contribution
of this component is

1

2

X
j

l2

M2 þ ω2
j
x�jxj − n

l2

2M
1

nβ

×
X
j;ν

Re
1

ðM þ iωnν − iωjÞðM − iωjÞ
xjxnν−j: ðA9Þ

Note that the first term is exactly the same as in the
calculation of ZðA; βÞ for inverse temperature nβ. Later we
will show it is responsible for canceling the denominator in
the equation for TrρnA.
Now, moving to the second component, derived from

eMjτ−τ0j, the change in sign means that its corresponding
version of (A8) will have exponentially increasing terms
eβM. This combined with the overall ðeβM − 1Þ−1 multi-
plying it means that the only terms which may be relevant
as β → ∞ are given by

n
l2

2M
1

nβ

X
j;j0

X
ν

δnνjþj0xjxj0

×
e2πi

j
n

ðM þ iωj0 ÞðM − iωjÞ
þ e2πi

j0
n

ðM − iωj0 ÞðM þ iωjÞ
:

ðA10Þ

We are doing only a lowest-order perturbative calculation.
Thus, in order to see how this component contributes to
ZnðA; βÞ, we can expand the exponential containing it and
calculate the simple path integral,

− n
l2

2M
1

nβ

X
j;j0;ν

δnνjþj0

Z
Dxje−S

nβ
0 xjxj0

×
e2πi

j
n

ðM þ iωj0 ÞðM − iωjÞ
þ e2πi

j0
n

ðM − iωj0 ÞðM þ iωjÞ
;

ðA11Þ

with the focus on the lowest order, allowing us to use the
free action in the exponential, since all corrections are of
higher power in l. For the discussion regarding this
particular contribution we only need the sums over
Matsubara frequencies and the fact that the Gaussian

integral gives hxjxj0 i ¼
δ0
jþj0

ω2
jþM2. Thus, ignoring all multipli-

cative factors, we have

1

nβ

X
j

e2πi
j
n

ðω2
j þM2Þ2 ¼ −

d
dM2

1

nβ

X
j

e2πi
j
n

ω2
j þM2

: ðA12Þ

Note that the Matsubara sum on the right-hand side is
the same as in Eq. (23), but evaluated at time difference
jτ − τ0j ¼ β and done over frequencies associated with
periodicity nβ, meaning we are left with the expression
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−
d

dM2

�
e−Mβ

2M
þ 1

enβM − 1

coshðMβÞ
M

�
: ðA13Þ

Therefore, in the β → ∞ limit this entire contribution goes
to zero and is irrelevant for the entanglement at this order.
Note, however, that this limit only vanishes because the
sum was evaluated at time β, while the frequencies were
those at inverse temperature nβ. Thus, the replica aspect
of the method, with this discrepancy in the periodicity
of the traced out and remaining degrees of freedom, was
essential. Importantly, note that if there was some condition
on Eq. (A12) forcing the imaginary exponential to be
unity, it would be a common Matsubara sum whose zero-
temperature limit does not vanish and so would contribute
to TrρnA as a positive term. We will see in the field theory
cases that some components of this form [arising from the
coshðMjτ − τ0jÞ=ðeβM − 1Þ part of the nonlocal kernel] will
be such that this scenario is realized, being crucial to
obtaining the correct results.
With this, we can finally return to the contribution from

Eq. (A9). As before, we perform a perturbative expansion
of the exponential and take the lowest-order term. Knowing
that all other contributions vanish, the modified partition
function of the replica trick is

ZnðA;βÞ¼
Z

Dxje
−Snβeff

�
1−n

l2

2M
1

nβ

×
X
j;ν

Re
1

ðMþ iωnν− iωjÞðM− iωjÞ
xjxnν−j

�
:

ðA14Þ

As mentioned before, the effective action at inverse
temperature nβ is automatically reproduced, so the order
Oðl0Þ part of ZnðA; βÞ is equal to ZðA; nβÞ. Thus, using
limβ→∞

ZðA;nβÞ
½ZðA;βÞ�n ¼ 1, we arrive at the trace,

TrρnA ¼ 1 − n
l2

2M
lim
β→∞

1

nβ

X
j;ν

hxjxnν−ji

× Re
1

ðM þ iωnν − iωjÞðM − iωjÞ
: ðA15Þ

By Wick’s theorem with average taken with respect to the
effective action, hxjxnν−ji ¼ δ0νðω2 þM2 − l2

ω2þM2Þ−1, so
the sum over ν can be performed easily and the term
inside the final Matsubara sum can be written as

4M2

ðM2 þ ω2
jÞðM2 þ ω2

j þ lÞðM2 þ ω2
j − lÞ

−
2

ðM2 þ ω2
j þ lÞðM2 þ ω2

j − lÞ : ðA16Þ

By using partial fraction identities, expanding the denom-
inators in l at lowest order, performing the usual Matsubara
sums and taking the zero-temperature limit, we obtain

TrρnA ¼ 1 − n
l2

16M4
: ðA17Þ

APPENDIX B: MOMENTUM-SPACE ENTROPY
IN ϕ3 THEORY

As explained in Sec. III B in terms of Feynman diagrams,
the Wilsonian integration of fast modes in the ϕ3 theory
leads to nonlocal terms at order Oðλ2Þ given by

1

ω2
j0 þ q2 þm2

1

ðωj þ ωj0 Þ2 þ ðk − qÞ2 þm2
jϕj;kj2; ðB1Þ

with jkj < μ, a Matsubara sum over j0 and an integral over q
such that jqj; jk − qj > μ. Furthermore, the other nonlocal
term is

ð2πÞd−1βδðPikiÞδð
P

ijiÞϕj1;k1ϕj2;k2ϕj3;k3ϕj4;k4

ðωj1 þ ωj2Þ2 þ ðk1 þ k2Þ2 þm2
; ðB2Þ

such that jkij < μ while jk1 þ k2j > μ. Note that in both
cases, as long as the integrals over momenta are left for the
end, we may use the same calculations as in the previous
example of coupled harmonic oscillators. Going from
Matsubara modes of the fields to Euclidean time, we see
that the terms above are indeed nonlocal. In order to show
how this, we must first introduce a well-known Matsubara
sum we will use in the remaining appendixes (see Ref. [42]
for a derivation),

1

β

X
j0

1

ðωj þωj0 Þ2 þE2
1

1

ω2
j0 þE2

2

¼ ð1þ nðE1Þ þ nðE2ÞÞ
E1 þE2

2E1E2

1

ω2
j þ ðE1 þE2Þ2

þ ðnðE1Þ− nðE2ÞÞ
E2 −E1

2E1E2

1

ω2
j þ ðE2 −E1Þ2

; ðB3Þ

where nðEÞ denotes the Bose-Einstein distribution.
In the β → ∞ limit, the Bose-Einstein terms are sup-

pressed exponentially even before the Fourier transform is
performed. Thus, such terms do not contribute to the
entropy and can be safely ignored. Having this point in
mind and using Eq. (23), the relevant nonlocal kernel of the
two-field term obtained by Fourier transforming only the
time components of the fields is

e−Mjτ−τ0j þ ðeβM − 1Þ−1eMjτ−τ0j

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − qÞ2 þm2

p ; ðB4Þ
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where the unimportant terms were excluded and the
new decay rate of the exponentials is M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk − qÞ2 þm2
p

.
In the four-field term, we can prove the nonlocality by

first writing it in a generic form,

1

β2
X

j1;j2;j3

ϕ1;j1ϕ2;j2fðωj1 þ ωj2Þϕ3;j3ϕ4;−j1−j2−j3 ; ðB5Þ

with all multiplicative constants suppressed and the
dependence on spatial momenta is represented by the
numerical indices in the fields. The advantage of writing
the term so generically is that the final result will auto-
matically be valid for the four- and six-field terms in the ϕ4

case with minor modifications.
Writing the fields in Euclidean time, the expression

becomes

1

β2
X

j1;j2;j3

Z
β

0

dτ1dτ2dτ3dτ4ϕ1ðτ1Þϕ2ðτ2Þϕ3ðτ3Þϕ4ðτ4Þ

×eiωj1
ðτ1−τ4Þþiωj2

ðτ2−τ4Þþiωj3
ðτ3−τ4Þfðωj1 þωj2Þ

¼ 1

β

X
j1;j2

Z
β

0

dτ1dτ2dτ3ϕ1ðτ1Þϕ2ðτ2Þϕ3ðτ3Þϕ4ðτ3Þ

×eiðωj1
þωj2

Þðτ1−τ3Þþiωj2
ðτ2−τ1Þfðωj1 þωj2Þ

¼
Z

β

0

dτ
Z

β

0

dτ0ϕ1ðτÞϕ2ðτÞf̃ðτ− τ0Þϕ3ðτ0Þϕ4ðτ0Þ; ðB6Þ

where f̃ðτÞ is the Fourier transform of fðωjÞ.
For our specific case in this Appendix, this means the

nonlocal kernel of the four-field term is given by Eq. (23)
with M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ k2Þ2 þm2

p
. Furthermore, when we

apply the replica trick, the structure of the equation above
is such that calculating the sum of double integrals will
proceed as in the previous section, the only difference being
the replacement of the single Matsubara frequency ωj by
the sum ωj1 þ ωj2 and of ωj0 by ωj3 þ ωj4 in the imaginary
exponents.
The modified partition function Znðμ; βÞ can now be

calculated up to order Oðλ2Þ and since both nonlocal terms
are of the same form as in the case of coupled oscillators,
the sum of double integrals over τ and τ0 can be calculated
by adapting Eq. (A7), taking care to use the new expres-
sions for M and the correct multiplicative factors.
In more detail, the expression in terms of the Matsubara

frequencies for the two- and four-field terms become,
respectively,

X
j

2M
ω2
j þM2

ϕ�
j;kϕj;k−n

1

nβ

×
X
j;ν

2Re
1

ðMþ iωnν− iωjÞðM− iωjÞ
ϕj;kϕnν−j;−k; ðB7Þ

which must be multiplied by 1

4
ffiffiffiffiffiffiffiffiffiffi
q2þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk−qÞ2þm2

p before

including the remaining momentum integrals and numeri-

cal factors and withM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − qÞ2 þm2

p
as

pointed out earlier, and

1

β

X
j1;j2;j3;j4

2MδðPijiÞ
ðωj1 þ ωj2Þ2 þM2

ϕj1;k1ϕj2;k2ϕj3;k3ϕj4;k4

− n
1

ðnβÞ2
X

j1;j2;j3;j4;ν

δnνj1þj2þj3þj4
ϕj1;k1ϕj2;k2ϕj3;k3ϕj4;k4

× 2Re
1

M þ iðωj3 þ ωj4Þ
1

M − iðωj1 þ ωj2Þ
; ðB8Þ

with M¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1þk2Þ2þm2

p
and multiplied by the remain-

ing factors, which include ð2πÞd−1δðP4
i¼1 kiÞ (and, of

course, integrating over the proper momentum regions
indicated each diagram).
Once again there are terms identical to those in Zðμ; nβÞ,

meaning they are canceled in the entropy when taking the
zero-temperature limit (since Zðμ; nβÞ is equivalent to
Zðμ; βÞn as β → ∞). With this, the Rényi entropies are
simply given by the remaining terms divided by a Z0ðμ; βÞn
factor which, again using the equality of partition function
limits, can be replaced by Z0ðμ; nβÞ and leads to expect-
ation values of products of fields.
Thus, the lowest-order Rényi entropy will depend on the

following Matsubara sums,

lim
β→∞

1

nβ

X
j;ν

2Re
hϕj;kϕnν−j;−ki

ðM þ iωnν − iωjÞðM − iωjÞ
; ðB9Þ

lim
β→∞

2

ðnβÞ2
X

j1;j2;j3;j4;ν

hϕj1;k1ϕj2;k2ϕj3;k3ϕj4;k4i

×δnνj1þj2þj3þj4
Re

1

Mþ iðωj3 þωj4Þ
1

M− iðωj1 þωj2Þ
:

ðB10Þ

The field averages are given by Wick’s theorem, so we
have the possible contractions of field products and

for each contraction hϕj;kϕj0;pi ¼ δj
0
j
ð2πÞd−1δðk−pÞ
ω2
jþk2þm2 . Just as

in ordinary free-energy calculations, the contractions
lead to the presence of a delta function δðk − kÞ which
is not well defined. We then consider the theory in a volume
V and have ð2πÞd−1δðk − kÞ ¼ R

dd−1xeixðk−kÞ ¼ V, so the
entropy will be an extensive quantity as discussed
previously.
For the two-field term there is only one possible

contraction and for this contraction we can follow verbatim
the steps made in the previous appendix to show that the

contribution from the eMjτ−τ0 j
eβM−1 term of the nonlocal kernel
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vanishes exponentially in the zero-temperature limit just as
in the coupled harmonic oscillator case. Thus, Eq. (B9) is
the only relevant part of the two-field term and, after a
number of algebraic manipulations and Matsubara sums,
we find that its zero-temperature limit is

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
ðM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
Þ2 ; ðB11Þ

such that M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − qÞ2 þm2

p
.

Likewise, for the four-field term, there are three possible
ways of contracting the product, two of which are equal. As
discussed in Sec. III B, the contraction corresponding to
diagram,

is identically zero due to conflictingmomentum restrictions.
For the remaining possibilities, their structure is such

that, similarly to the two-field term, contributions from
eMjτ−τ0 j
eβM−1 vanish (as can be seen by carrying them throughout
the calculation) and so, after lengthy but simple calcula-
tions, we find that the contribution of the four-field term is

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þm2

p
ðM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þm2

p
Þ2 :

ðB12Þ

with M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ k2Þ2 þm2

p
.

Finally, the lowest-order entropy is simply the sum of
both contributions with momentum integrals and multipli-
cative factors restored (note that they arise from diagrams
of similar structure and have the same integrands). As
mentioned in the main text, in order to compare our result
with that of Ref. [18], we count the possible permutations
of high and low momenta (and multiply each contribution
by the appropriate factor) and restrict the integration
regions accordingly. Therefore, our final result for the
Rényi entropy at lowest order of the ϕ3 theory is given by

HnðμÞ
V

¼ n
n − 1

λ2

8

Z � dd−1k
ð2πÞd−1

dd−1q
ð2πÞd−1 Iðk; qÞ; ðB13Þ

with

Iðk;qÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þm2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk−qÞ2þm2

p
×

1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk−qÞ2þm2

p
Þ2
;

ðB14Þ

and the integration region being (as a consequence of the
momentum restrictions of the diagrams which contribute
and the elimination of permutations we made) such that no
set of momenta k; q; k − q is repeated and at least one of the
three is above scale μ and at least one is below it.

APPENDIX C: MOMENTUM-SPACE ENTROPY
IN ϕ4 THEORY

For the ϕ4 calculation we can draw a lot from the
derivations made in the previous two appendixes. To do so,
we first write the finite temperature expressions associated
with the relevant diagrams discussed in Sec. III C,

1

β3
X
j;j1;j2

1

ω2
j1
þq2þm2

1

ω2
j2
þp2þm2

×
1

ðωjþωj1 þωj2Þ2þðkþqþpÞ2þm2
jϕj;kj2; ðC1Þ

1

β3
X
j

1

ðωj1 þ ωj2 þ ωjÞ2 þ ðk1 þ k2 − qÞ2 þm2

×
1

ω2
j þ q2 þm2

2πδ

�X4
i¼1

ðkiÞ
�
ϕj1;k1ϕj2;k2ϕj3;k3ϕj4;k4 ;

ðC2Þ

1

β3
ð2πÞd−1δðP6

i¼1 kiÞ
ðωj1 þ ωj2 þ ωj3Þ2 þ ðk1 þ k2 þ k3Þ2 þm2

× δ

�X6
i¼1

ji

�
ϕj1;k1ϕj2;k2ϕj3;k3ϕj4;k4ϕj5;k5ϕj6;k6 ; ðC3Þ

with some factors and integrals suppressed for convenience.
To find how these terms are nonlocal in Euclidean time,

we use Eqs. (23) and (B3) and we also need to employ (and
adapt) the derivation (B6) to see that given the specific
structure of the Feynman diagrams generating such terms,
the four-field term will be of the form,

ϕk1ðτÞϕk2ðτÞfðτ − τ0Þϕk3ðτ0Þϕk4ðτ0Þ; ðC4Þ

and the six-field one will be

ϕk1ðτÞϕk2ðτÞϕk3ðτÞgðτ − τ0Þϕk4ðτ0Þϕk5ðτ0Þϕk6ðτ0Þ: ðC5Þ

In more detail, we have seen that after Matsubara sums and
the Fourier transform, the nonlocal term is (before momen-
tum integrals) an exponential function and will be of the
forms,

e−ð
ffiffiffiffiffiffiffiffiffiffi
q2þm2

p
þ

ffiffiffiffiffiffiffiffiffiffi
p2þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk−q−pÞ2þm2

p
Þjτ−τ0j

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − q − pÞ2 þm2

p ϕkðτÞϕ�
kðτ0Þ;

ðC6Þ
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e−ð
ffiffiffiffiffiffiffiffiffiffi
q2þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1þk2−qÞ2þm2

p
Þjτ−τ0j

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ k2 − qÞ2 þm2

p
× ϕk1ðτÞϕk2ðτÞϕk3ðτ0Þϕk4ðτ0Þ; ðC7Þ

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1þk2þk3Þ2þm2

p
jτ−τ0j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ k2 þ k3Þ2 þm2

p
× ϕk1ðτÞϕk2ðτÞϕk3ðτÞϕk4ðτ0Þϕk5ðτ0Þϕk6ðτ0Þ: ðC8Þ

Thus, to apply the replica trick we have the general form
of the kernel e−Mjτ−τ0j with decay rates M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − q − pÞ2 þm2

p
, M̃¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þm2

p
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk1þk2−qÞ2þm2
p

, and M̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ k2 þ k3Þ2 þm2

p
for terms with two, four, and six terms, respectively. It
is important to remember that besides the expressions
written above, there are also the ones associated with
coshMjτ−τ0j
MðeβM−1Þ which also appear from the Fourier transform.

To obtain the contributions of each nonlocal expression
to the entropy, many of the steps of the ϕ3 calculation can

be followed verbatim. Denoting byHð2Þ
n ðμÞ the contribution

from the two-field term, we just need to use the new
expression for M in Eq. (B11) and arrive at

Hð2Þ
n ðμÞ
V

¼ n
n − 1

λ2

96

Z �Y3
i¼1

dd−1ki
ð2πÞd−1 Iðk1; k2; k3Þ; ðC9Þ

Iðk1;k2;k3Þ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP3

i¼1kiÞ2þm2
q Y3

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2i þm2

p

×
1

ðP3
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2i þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP3

i¼1kiÞ2þm2
q

Þ2
;

ðC10Þ

with jk1j < μ and jk2j; jk3j; jk1 þ k2 þ k3j > μ.
To deal with the four-field term it’s important to calculate

again
P

n−1
u¼0

R ðuþ1Þβ
uβ dτ

R ðuþ1Þβ
uβ dτ0L̃ðτ; τ0Þ. As before, we do

the calculation for an exponential kernel and the result is
easily generalized for actual finite temperature appearing.
Because of the way the imaginary times of the fields are
paired, this sum becomes

1

nβ

X
j1;j2;j3;j4

2M̃δ0j1þj2þj3þj4

M̃2 þ ðωj3 þ ωj4Þ2
ϕj1;k1ϕj2;k2ϕj3;k3ϕj4;k4

−
2n

ðnβÞ2
X

j1;j2;j3;j4

δnνj1þj2þj3þj4
ϕj1;k1ϕj2;k2ϕj3;k3ϕj4;k4

× Re
1

M̃ þ iðωj3 þ ωj4Þ
1

M̃ − iðωj1 þ ωj2Þ
: ðC11Þ

Once again, the contribution from the first term will be
canceled when calculating the entropy and we are left with
the sum,

X
j1;j2;j3;j4

δnνj1þj2þj3þj4

ðnβÞ2 hϕj1;k1ϕj2;k2ϕj3;k3ϕj4;k4i

×Re
1

M̃ þ iðωj3 þ ωj4Þ
1

M̃ − iðωj1 þ ωj2Þ
: ðC12Þ

The average hϕj1;k1ϕj2;k2ϕj3;k3ϕj4;k4i is calculated via
Wick’s theorem and each contraction is given hϕj1;k1ϕj2;k2i¼
δ0j1þj2

ð2πÞd−1δðk1−k2Þ
ω2
jþk2

1
þm2 .

This is the point at which the possible contractions give
rise to the associated basketball and cactus diagrams. The
calculation for the basketball, whose contribution we
denote Hð4Þ

n ðμÞ is a matter of long but straightforward
algebraic manipulations, similar to those of the nonlocal
four-field term in the ϕ3 theory, and it culminates (remem-
bering to use the expression for M̃) in

Hð4Þ
n ðμÞ
V

¼ n
n − 1

λ2

64

Z � Y3
i¼1

dd−1ki
ð2πÞd−1 Iðk1; k2; k3Þ; ðC13Þ

with jk1j; jk2j ≤ μ, μ ≤ jk3j; jk1 þ k2 þ k3j.
Now, note that the analogous of Eq. (A12) appears in the

case of the four-field term but with the replacement
j ¼ j1 þ j2, this means that for the cactus diagram
the field contractions make j1 þ j2 ¼ 0 and so this is the
specific case in which the contributions coming from the
hyperbolic cosine part of the kernel do not vanish by
themselves. Furthermore, it is easy to see from Eqs. (A6),
(A7), and (A12) that this term as exactly same factors
and opposite sign than the cactus contribution from the
decreasing exponential. Thus, by its very structure, this
type of term is automatically canceled when applying the
replica trick and so only basketballs contribute to the
entropy.
Moving to the contractions of the ϕ6 term, again only the

basketballs whose contribution we denote Hð6Þ
n ðμÞ are

relevant. The actual calculation follows along the same
lines shown throughout the previous sections and appen-
dixes and it is mostly busy work involving Matsubara sums
and partial fraction manipulations. At the end of all steps
we arrive at

Hð6Þ
n ðμÞ
V

¼ n
n − 1

λ2

96

Z � Y3
i¼1

dd−1ki
ð2πÞd−1 Iðk1; k2; k3Þ; ðC14Þ

with jk1j; jk2j; jk3j ≤ μ, μ ≤ jk1 þ k2 þ k3j.
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Finally, the complete result is HnðμÞ ¼ Hð2Þ
n ðμÞ þ

Hð4Þ
n ðμÞ þHð6Þ

n ðμÞ and before performing this sum we
restrict the integration regions (which we have been
carrying implicitly throughout the steps) of each term

and multiply them by the number of permutations of lines
of same type (3!, 2 × 2, and 3!, respectively), this makes the
numerical factors are all equal and the overall sum becomes
precisely the expression in Eq. (45), as previously claimed.
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