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A deformation of the Abelian Higgs Kibble model induced by a dimension-six derivative operator is
studied. A novel differential equation is established fixing the dependence of the vertex functional on the
coupling z of the dimension-six operator in terms of amplitudes at z ¼ 0 (those of the power-counting
renormalizable Higgs-Kibble model). The latter equation holds in a formalism where the physical mode is
described by a gauge-invariant field. The functional identities of the theory in this formalism are studied.
In particular, we show that the Slavnov-Taylor identities separately hold true at each order in the number of
internal propagators of the gauge-invariant scalar. Despite being nonpower-counting renormalizable, the
model at z ≠ 0 depends on a finite number of physical parameters.
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I. INTRODUCTION

The experimental program at High-Luminosity and
High-Energy LHC [1] will provide a unique opportunity
to explore the Higgs sector of the electroweak theory, thus
elucidating the electroweak spontaneous symmetry break-
ing (EWSSB) mechanism. To be sure, while the Standard
Model’s requirement of gauge invariance and power-
counting renormalizability uniquely predicts the quartic
Higgs potential as the source of EWSSB, many other
alternatives exist in Beyond the Standard Model theories,
where either new particles are introduced while preserving
power-counting renormalizability (e.g., in the case of the
two-Higgs doublet model or the minimal supersymmetric
Standard Model) or additional power-counting violating
interactions are switched on in the spirit of effective field
theories [2–4].
In the latter case, the higher-dimensional operators

introduced must fulfill the relevant symmetries of the speci-
fic theory considered, e.g., gauge symmetry, Lorentz
covariance, and further possible discrete symmetries. The
couplings of such operators are otherwise unconstrained
additional physical parameters that must be fixed by
suitable normalization conditions. Their number increases

order by order in the loop expansion, since more and more
ultraviolet (UV) divergences arise in those effective
models, as a consequence of the lack of power-counting
renormalizability.
It sometimes happens that in a nonpower-counting

renormalizable theory some of the coefficients of the
higher-dimensional operators can be reduced to a smaller
number of independent ones. This is what happens, for
instance, in the reduction of couplings approach [5,6], since
reduced couplings are functions of a primary one, satisfy-
ing a set of differential equations compatible with the
renormalization group flow. Additionally, it is well known
that the appropriate choice of field coordinates can greatly
simplify the task of identifying the independent couplings
of the model. For instance, one can obtain an equivalent
theory with nonrenormalizable couplings from a power-
counting renormalizable one by applying an invertible
nonlinear field transformation. Provided that a suitable
prescription is adopted when quantizing the former theory,
physical observables in the two models do not differ, as
stated by the so-called equivalence theorem [7–9]. In the
case of spontaneously broken gauge theories, field-
theoretic properties of the Higgs mechanism in different
field representations, including those based on gauge-
invariant variables, are discussed in Ref. [10].
As a preliminary study for the treatment of the full

electroweak model, in this paper we consider a specific
extension of the power-counting renormalizable Abelian
Higgs-Kibble theory quantized in the simplest linear
representation of the physical Higgs scalar via a gauge-
invariant variable X2, reducing on shell to the gauge-
invariant combination [11–20]
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X2 ∼
1

v

�
ϕ†ϕ −

v2

2

�
; ð1:1Þ

where ϕ is the complex Higgs field

ϕ ¼ 1ffiffiffi
2

p ðσ þ vþ iχÞ; ð1:2Þ

with v as the (gauge-invariant) minimum of the classical
potential, σ as the field describing the physical scalar mode,
and χ as the Goldstone field.
Within this framework, we find that there is a unique

deformation of the power-counting renormalizable model
that preserves at the quantum level the defining functional
identities of the Abelian Higgs-Kibble model; more specifi-
cally, this deformation is induced by a modified kinetic term

−
z
2
X2□X2; ð1:3Þ

which corresponds, after the identification (1.1), to the
dimension-six derivative operator

−
z
2v2

�
ϕ†ϕ −

v2

2

�
□

�
ϕ†ϕ −

v2

2

�
: ð1:4Þ

Thus, z represents a parameter controlling the nonpower-
counting renormalizable deformation induced by the
dimension-six operator (1.4). At z ¼ 0 one recovers the
power-counting renormalizable Higgs-Kibble model,
whereas at z ≠ 0 power-counting renormalizability is lost;
nevertheless, one can write a z-differential equation con-
necting the dependence of the one-particle irreducible (1-PI)
amplitudes on the coefficient z and the mass M of the
physical scalar. Then, under some reasonable assumptions on
the boundary conditions, a unique solution exists for the 1-PI
vertex functional (the generating functional of the 1-PI
amplitudes) of the deformed theory, fulfilling the z-differential
equation and all the remaining symmetries of the theory. Such
vertex functional at z ≠ 0 is constructed out of the Feynman
amplitudes of the power-counting renormalizable theory at
z ¼ 0; most notably, each subsector of the theory at z ¼ 0,
labeled by the number l of internal lines of the physical scalar
X2 propagating inside loops, can be lifted in a unique way to
the corresponding subsector at z ≠ 0.

The consistency of the solutions to the z-differential
equation we will construct comes from the property that, at
variance with the conventional representation of the scalar
Higgs field ϕ, the l subsectors of the theory are separately
Slavnov-Taylor invariant. Hence, despite not being power-
counting renormalizable, the theory at z ≠ 0 can still be
defined in terms of a finite number of physical parameters
(those of the power-counting renormalizable theory and z).
Thus, once extended to the electroweak gauge group, the
distinct phenomenological implications of such a theory
can be identified and, in principle, tested against the
available experimental results.
The present paper is organized as follows. In Sec. II, we

introduce the model and set our notations. Next, in Sec. III,
we derive the differential equation controlling the depend-
ence of the theory on the deformation parameter z.
Renormalization of the z-differential equation and the
ensuing constraints on the 1-PI amplitudes are derived in
Sec. IV; the corresponding Slavnov-Taylor (ST) identity is
then studied in Sec. V, together with its decomposition in a
tower of relations among 1-PI Green’s functions at fixed
order in the number of internal X2 lines. The compatibility
of the z-differential equation with different renormalization
schemes is studied in Sec. VI, and our conclusions and
outlook are finally presented in Sec. VII.

II. EXTENSION OF THE ABELIAN
HIGGS-KIBBLE MODEL

We will consider the Abelian Higgs-Kibble (HK) model
[21,22] extended with the dimension-six operator in
Eq. (1.4) as a useful playground in view of the treatment
of the full SUð2Þ × Uð1Þ electroweak theory with mass
generation à la Higgs. In particular, we will use a gauge-
invariant coordinate in order to describe the physical scalar
model, in accord with the formalism of [13,23,24]; in fact,
it is only within such an approach that one can obtain
the differential equation constraining the dependence of the
1-PI amplitudes on z and, with it, all the results discussed in
the following sections.
To this end, one introduces the field X2 together with a

Lagrange multiplier X1 to obtain the vertex functional1

Γð0Þ ¼
Z

d4x

�
−
1

4
FμνFμν þ ðDμϕÞ†ðDμϕÞ −

M2 −m2

2
X2
2 −

m2

2v2

�
ϕ†ϕ −

v2

2

�
2

þ z
2
∂
μX2∂μX2 − c̄ð□þm2Þcþ 1

v
ðX1 þ X2Þð□þm2Þ

�
ϕ†ϕ −

v2

2
− vX2

�

þ ξb2

2
− bð∂Aþ ξevχÞ þ ω̄ð□ωþ ξe2vðσ þ vÞωÞ þ c̄�

�
ϕ†ϕ −

v2

2
− vX2

�
þ σ�ð−eωχÞ þ χ�eωðσ þ vÞ

�
: ð2:1Þ

1That the extension of the scalar sector via the fields X1;2 does not introduce additional physical degrees of freedom is shown
in Appendix A.
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In the above equation, Dμ is the covariant derivative

Dμ ¼ ∂μ − ieAμ: ð2:2Þ
Aμ is the Abelian gauge connection, Fμν ¼ ∂μAν − ∂νAμ is
the field strength, and ϕ is the complex Higgs field
introduced in Eq. (1.2).
The model in Eq. (2.1) contains an enlarged scalar sector

with respect to the usual ϕ formalism controlled by the
fields X1;2. X1 enforces on shell the condition2

X2 ∼
1

v

�
ϕ†ϕ −

v2

2

�
: ð2:3Þ

Consequently, X2 can be thought of as a field coordinate
parametrizing the scalar gauge-invariant combination
ϕ†ϕ − v2

2
; in particular, at the linearized level, X2 ∼ σ.

By eliminating in Eq. (2.1) both X1 and X2 via their
equations of motion, one recovers the usual vertex func-
tional of the Abelian Higgs-Kibble model with the dimen-
sion-six derivative operator

z
2
∂
μX2∂μX2 ∼

1

2v2
∂
μ

�
ϕ†ϕ −

v2

2

�
∂μ

�
ϕ†ϕ −

v2

2

�
ð2:4Þ

in the usual ϕ formalism. In particular, the two mass
parameters m andM in the first line of Eq. (2.1) are chosen
in such a way that by going on shell with the Lagrange
multiplier X1 one recovers the usual quartic Higgs potential
− M2

2v2 ðϕ†ϕ − v2
2
Þ2. The only physical parameter is thusM. In

fact, it can be checked that the correlators of physical
observables after going on shell with the fields X1;2 do not
depend on m [13]. Nevertheless, m must be introduced, as
the power-counting renormalizable m ¼ 0, z ¼ 0 model
would be unstable under radiative corrections.
The second line of Eq. (2.1) contains the deformation of

the X2-kinetic term controlled by the parameter z. When
such term is switched off (z ¼ 0), we recover the power-
counting renormalizable Higgs-Kibble model; on the other
hand, at z ≠ 0, the theory becomes nonrenormalizable and
is defined by solving the z-differential equation (3.12) with
appropriate boundary conditions as discussed in Sec. IV.
The main advantage of the X representation of the

physical scalar mode is twofold. On the one hand, the full
dependence on the additional parameter z is contained in

the quadratic part of the classical vertex functional, so that
in the perturbative expansion using the mass eigenstate
basis (leading to the diagonal propagators) the coupling z
will enter in the X2 propagator but not in the interaction
vertices, contrary to what happens in the conventional ϕ
representation of Eq. (1.4). On the other hand, since X2 is
gauge-invariant, the projection of the ST identity valid for
the 1-PI amplitudes yields an additional set of relations that
isolate separately invariant subsectors of the theory accord-
ing to the number of internal X2 lines (with the lowest order
reproducing the Stückelberg theory, namely, no internal
X2 lines).

III. DIFFERENTIAL EQUATION FOR z

In the mass eigenstate basis, the dependence on the
parameter z only arises via the X2 propagator, see Eq. (2.1);
indeed, an X2 line circulating inside a general n-loop
diagram will be characterized by a propagator ΔX2X2

given
by, see Eq. (B1),

ΔX2X2
ðk2;M2Þ ¼ i

ð1þ zÞk2 −M2
: ð3:1Þ

Introducing then the differential operator

DM2

z ¼ ð1þ zÞ∂z þM2
∂M2 ; ð3:2Þ

one finds that ΔX2X2
is an eigenvector of DM2

z with
eigenvalue −1,

DM2

z ΔX2X2
ðk2;M2Þ ¼ −ΔX2X2

ðk2;M2Þ: ð3:3Þ
Next, let us collectively denote with Φ the set of fields

and external sources of the theory, and let us indicate with
pi (with i ¼ 1;…; r) the external momenta, with Φi ¼
ΦðpiÞ and pr ¼ −

P
r−1
1 pi; in this way, an n-loop 1-PI

Green’s function ΓðnÞ
Φ1���Φr

with r Φi insertions can be
decomposed as the sum of all diagrams with (amputated)
external legs Φ1 � � �Φr with 0, 1, 2,..., l internal X2

propagators, i.e.,

ΓðnÞ
Φ1���Φr

¼
X
l≥0

Γðn;lÞ
Φ1���Φr

: ð3:4Þ

Then, clearly,

DM2

z Γðn;lÞ
Φ1���Φr

¼ −lΓðn;lÞ
Φ1���Φr

;⇒DM2

z ΓðnÞ
Φ1���Φr

¼ −
X
l≥0

lΓðn;lÞ
Φ1���Φr

:

ð3:5Þ
The most general solution of this equation reads (indicating
explicitly only the dependence on the parameters z andM2)

Γðn;lÞ
Φ1���Φr

ðz;M2Þ ¼ 1

ð1þ zÞl Γ
ðn;lÞ
Φ1���Φr

ð0;M2=1þ zÞ: ð3:6Þ

2Going on shell with X1 yields a Klein-Gordon equation

ð□þm2Þ
�
ϕ†ϕ −

v2

2
− vX2

�
¼ 0;

so that the most general solution is X2 ¼ 1
v

�
ϕ†ϕ − v2

2

�
þ η, η

being a scalar field of mass m. However, in perturbation theory,
the correlators of the mode η with any gauge-invariant operators
vanish [14], so that one can safely set η ¼ 0.
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Thus, amplitudes at z ≠ 0 in each l sector are obtained
from those at z ¼ 0 by dividing them by the ð1þ zÞl factor
and rescaling by (1þ z) the square of the Higgs mass M2.
This constitutes already a powerful result. For example,

consider the theory’s β functions

βi ¼ ð4πÞ2 d
d log μ2

C̄i ¼ ð4πÞ2C̄i; ð3:7Þ

where C̄i is the residue of the pole in 1=ϵ of the coefficient
Ci of the corresponding one-loop ST invariant. Then the
z dependence is recovered by making the replacement
M2 → M2

1þz and the rescaling 1=ð1þ zÞl in the z ¼ 0

coefficients derived in [15] (with the corresponding results
reported for convenience in Appendix D). Additionally, the
one-loop β functions will also inherit the grading according
to the number of internal X2 lines via the grading of the Ci
coefficients.
Now, since the combinatorial coefficient on the rhs of

Eq. (3.5) depends on the number of internal X2 lines, the
rhs cannot be expressed in closed form as a function of

ΓðnÞ
Φ1���Φr

; yet, it is possible to derive a differential equation
for an extension of the full vertex functional Γ that takes
appropriately into account these factors. To this end, let us
define a modified 1-PI Green’s function that depends on an
auxiliary parameter t in such a way that

ΓðnÞ
Φ1���Φr

ðtÞ ¼ Γðn;0Þ
Φ1���Φr

þ
X
l≥1

tl−1Γðn;lÞ
Φ1���Φr

;

ΓðnÞ
Φ1���Φr

ð1Þ ¼ ΓðnÞ
Φ1���Φr

: ð3:8Þ
The sum on the rhs of the first of Eq. (3.8) runs over the

amplitudes Γðn;lÞ
Φ1���Φr

after the simultaneous rescaling of both
M2 and 1þ z by the parameter t, given by

ð1þ zÞ → t−1ð1þ zÞ; M2 → t−1M2: ð3:9Þ
Therefore, up to a common t−1 overall prefactor, t counts
the number of internal X2 lines. The normalization is
chosen in such a way that, by applying the differential
operator DM2

z on the left-hand side of the equation above,

using the fact that DM2

z Γðn;0Þ
Φ1���Φr

¼ 0, and integrating over t
between 0 and 1, we find

DM2

z

Z
1

0

dtΓðnÞ
Φ1���Φr

ðtÞ ¼
X
l≥1

Z
1

0

dt tl−1DM2

z Γðn;lÞ
Φ1���Φr

¼ −
X
l≥1

Z
1

0

dtltl−1Γðn;lÞ
Φ1���Φr

¼ −
X
l≥1

Γðn;lÞ
Φ1���Φr

¼ −ΓðnÞ
Φ1���Φr

þ Γðn;0Þ
Φ1���Φr

;

ð3:10Þ
where in the last step we have used the definition (3.8).
Collecting finally the Green’s functions in the t-dependent
generating functional

ΓðtÞ ¼
X
n;Φ;r

Z
dDp1…dDprwΦ1���Φr

ΓðnÞ
Φ1���Φr

ðtÞΦ1 � � �Φr;

ð3:11Þ
where wΦ1���Φr

are suitable combinatorial weights (e.g., if
all Φ’s are the same field wΦ1���Φr

¼ 1=r!), we obtain the
announced z-differential equation,Z

1

0

dtDM2

z ΓðtÞ ¼ −Γð1Þ þ Γ0: ð3:12Þ

In the equation above, Γ0 represents the generating func-
tional of the 1-PI amplitudes without internal X2 lines
(l ¼ 0),

Γ0 ¼
X
n;Φ;r

Z
dDp1…dDprwΦ1���Φr

Γðn;0Þ
Φ1���Φr

Φ1 � � �Φr; ð3:13Þ

which coincides with that of the Stückelberg sector of the
theory; finally, Γð1Þ is the vertex functional of the complete
theory we are interested in.
Now let us assume z to be small (notice that in the SM

this assumption would be natural, as z represents the
parameter controlling the SM nonpower-counting renor-
malizable deformation). This will allow us, in turn, to
expand the functional ΓðtÞ in powers of z,

ΓðtÞ ¼
X
k

zkΓ½k�ðtÞ; ð3:14Þ

with Γ½k�ðtÞ independent of z. Notice that Γ½0� is the power-
counting renormalizable theory at z ¼ 0; and that, since
Eq. (3.14) holds true to all orders in the loop expansion,
each Γ½k�ðtÞ receives contributions from all the different
loop orders.
Plugging Eq. (3.14) into Eq. (3.12) and projecting at

different orders in z, we find

Oð1Þ∶
Z

1

0

dt½Γ½1�ðtÞ þM2
∂M2Γ½0�ðtÞ� ¼ −Γ½0�ð1Þ þ Γ0;

ð3:15aÞ

OðzÞ∶
Z

1

0

dt½2Γ½2�ðtÞþΓ½1�ðtÞþM2
∂M2Γ½1�ðtÞ� ¼−Γ½1�ð1Þ;

ð3:15bÞ

Oðz2Þ∶
Z

1

0

dt½3Γ½3�ðtÞþ2Γ½2�ðtÞþM2
∂M2Γ½2�ðtÞ�¼−Γ½2�ð1Þ;

ð3:15cÞ
..
. ..

.

OðzkÞ∶
Z

1

0

dt½ðkþ 1ÞΓ½kþ1�ðtÞ þ kΓ½k�ðtÞ þM2
∂M2Γ½k�ðtÞ�

¼ −Γ½k�ð1Þ: ð3:15dÞ
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As before, each functional Γ½k�ðtÞ can be expanded
according to the double grading with respect to the loop
number n and the l sector; and the tower of Eqs. (3.15)
yields a set of relations among the amplitudes of the
nonrenormalizable theory at z ≠ 0. At the lowest order,
they depend on the amplitudes of the power-counting
renormalizable theory at z ¼ 0 through the term Γ½0�ð1Þ
on the rhs of Eq. (3.15a) and on those of the Stückelberg
subsector Γ0. Explicit examples are provided in the next
subsection.

A. Explicit checks

Let us carry out some explicit checks that the
z-differential equation is indeed satisfied by the regularized
one-loop 1-PI amplitudes. Constraints on the finite counter-
terms arising from the equation will be discussed later on,
in Sec. IV.

1. Tadpoles

Consider the one-loop (n ¼ 1) tadpoles of the field σ and
the antifield c̄�. From the vertex functional (2.1), one sees
that both tadpoles decompose at the one-loop order as the
sum of a part with no internal X2 lines and a one diagram
with one (l ¼ 1) internal X2 line. Thus, Eq. (3.8) reads
(Φ ¼ σ; c̄�)

Γð1Þ
Φ ðtÞ ¼ Γð1Þ

Φ ¼ Γð1;0Þ
Φ þ Γð1;1Þ

Φ ; ð3:16Þ

which must be replaced everywhere in the entire tower of
Eqs. (3.15), that is, one has

Γ½����ðtÞ → Γð1Þ
½����Φ ¼ Γð1;0Þ

½����Φ þ Γð1;1Þ
½����Φ: ð3:17Þ

Considering only the UV divergent parts (denoted with a
bar), an explicit calculation gives (in the Feynman gauge
ξ ¼ 1)

Γ̄ð1;0Þ
σ ¼ 1

16π2
M2

A

vϵ
ðm2 þ 6M2

AÞ;

Γ̄ð1;1Þ
σ ¼ 1

16π2
M2

ð1þ zÞ3vϵ ½m
2ð1þ zÞ þ 2M2�; ð3:18aÞ

Γ̄ð1;0Þ
c̄� ¼ −

1

16π2
M2

A

ϵ
; Γ̄ð1;1Þ

c̄� ¼ −
1

16π2
M2

ð1þ zÞ2ϵ : ð3:18bÞ

Expanding around z ¼ 0 yields, up to Oðz2Þ,

Γ̄ð1;1Þ
½0�σ ¼ 1

16π2
M2

vϵ
ðm2 þ 2M2Þ; Γ̄ð1;1Þ

½0�c̄� ¼ −
1

16π2
M2

ϵ
;

ð3:19aÞ

Γ̄ð1;1Þ
½1�σ ¼ −

1

8π2
M2

vϵ
ðm2 þ 3M2Þ; Γ̄ð1;1Þ

½1�c̄� ¼
1

8π2
M2

ϵ
;

ð3:19bÞ

Γ̄ð1;1Þ
½2�σ ¼ 3

16π2
M2

vϵ
ðm2 þ 4M2Þ; Γ̄ð1;1Þ

½2�c̄� ¼ −
3

8π2
M2

ϵ
:

ð3:19cÞ

Then it is immediate to show

Γ̄ð1;1Þ
½1�Φ þM2

∂M2 Γ̄ð1;1Þ
½0�Φ ¼ −Γ̄ð1;1Þ

½0�Φ ; ð3:20aÞ

2Γ̄ð1;1Þ
½2�Φ þ Γ̄ð1;1Þ

½1�Φ þM2
∂M2 Γ̄ð1;1Þ

½1�Φ ¼ −Γ̄ð1;1Þ
½1�Φ : ð3:20bÞ

2. Two-point functions

More interesting is the case of the two-point functions,
as in this case an explicit t dependence can arise from
diagrams involving two internal X2 lines,

Γð1Þ
Φ1Φ2

ðtÞ ¼ Γð1;0Þ
Φ1Φ2

þ Γð1;1Þ
Φ1Φ2

þ tΓð1;2Þ
Φ1Φ2

; ð3:21Þ

with the corresponding replacement in Eqs. (3.15),

Γ½����ðtÞ → Γð1Þ
½����Φ1Φ2

ðtÞ ¼ Γð1;0Þ
½����Φ1Φ2

þ Γð1;1Þ
½����Φ1Φ2

þ tΓð1;2Þ
½����Φ1Φ2

:

ð3:22Þ

This is the case when Φ1Φ2 ¼ c̄�c̄�; c̄�σ, and σσ; instead,
the two-point functions Φ1Φ2 ¼ χχ; χAμ, and AμAν do
not present such diagrams (and therefore the check of the
z-differential equation proceeds as in the tadpole case).
Consider then the c̄�c̄� function, for which an explicit

calculation yields

Γ̄ð1;0Þ
c̄�c̄� ¼ 1

16π2
1

ϵ
; Γ̄ð1;1Þ

c̄�c̄� ¼ 0; Γ̄ð1;2Þ
c̄�c̄� ¼ 1

16π2
1

ð1þ zÞ2
1

ϵ
:

ð3:23Þ

Then, noticing that there is no dependence on M2 and that
the n ¼ 1l ¼ 1 term is convergent, Eq. (3.15a) reads

Z
1

0

dt tΓ̄ð1;2Þ
½1�c̄�c̄� ¼ −Γ̄ð1;2Þ

½0�c̄�c̄� ; ð3:24Þ

which is evidently satisfied. Equation (3.15b) reads instead

Z
1

0

dt tð2Γ̄ð1;2Þ
½2�c̄�c̄� þ Γ̄ð1;2Þ

½1�c̄�c̄� Þ ¼ −Γ̄ð1;2Þ
½1�c̄�c̄� ; ð3:25Þ
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which is again easily verified. A similar procedure leads to
the verification of all the remaining one-loop two-point
functions.

IV. RENORMALIZATION

At z ¼ 0 the dimension-six operator vanishes and the
theory defined by the vertex functional (2.1) is power-
counting renormalizable, as it coincides with the usual HK
model. On the other hand, when z ≠ 0 power-counting
renormalizability is lost, and new UV divergences appear at
each loop order (starting already at one loop) proportional
to increasing powers of the external momenta. The theory
can be still renormalized à la Weinberg [25]: the newly
appearing divergent amplitudes must be regularized by
subtracting appropriate counterterms; however, contrary to
the renormalizable case, the corresponding finite parts of
these amplitudes must also be fixed by appropriate renorm-
alization conditions, reflecting the well-known fact that,
being nonrenormalizable at z ≠ 0, the vertex functional
(2.1) gives rise to an effective field theory [2,26].
At z ≠ 0, therefore, a general amplitude can be decom-

posed as follows:

ΓðnÞ
Φ1���Φr

¼
X
l≥0

�
Γðn;lÞ
Φ1…Φr

−
Xn
k¼1

1

ϵk
Γ̄ðn;lÞ
k;Φ1…Φr

þ Fðn;lÞ
Φ1…Φr

�
;

ð4:1Þ

where Γðn;lÞ
Φ1���Φr

is the D-dimensional regularized nth order
amplitude in the l sector after the insertion of the counter-

terms up to order n − 1 in the loop expansion, Γ̄ðn;lÞ
k;Φ1…Φr

are

the residues of the poles in 1=ϵk in the expansion of Γðn;lÞ
Φ1…Φr

around D ¼ 4, and Fðn;lÞ
Φ1…Φr

are the finite counterterms that
inherit the degree l from the number of internal X2 lines.
Notice, in particular, that both Γ̄ and F are Lorentz-
covariant polynomials of degree δr (the UV degree of
divergence of the corresponding amplitude) in the external
momenta pi, and that they obey the same differential
equation (3.5) of the corresponding amplitudes, namely,

DM2

z Γ̄ðn;lÞ
k;Φ1…Φr

¼ −lΓ̄ðn;lÞ
k;Φ1…Φr

; DM2

z Fðn;lÞ
Φ1…Φr

¼ −lFðn;lÞ
Φ1…Φr

;

ð4:2Þ

and thus possess the structure (3.6) for their general
solutions,

Γ̄ðn;lÞ
k;Φ1…Φr

ðz;M2Þ¼ 1

ð1þzÞl Γ̄
ðn;lÞ
k;Φ1…Φr

ð0;M2=1þzÞ; ð4:3aÞ

Fðn;lÞ
Φ1…Φr

ðz;M2Þ ¼ 1

ð1þ zÞl F
ðn;lÞ
Φ1…Φr

ð0;M2=1þ zÞ: ð4:3bÞ

Now, consider, for example, the case of the one-loop
three-point σ 1-PI amplitude where one has contributions
from diagrams with l ¼ 0–3. Thus, we have

Γð1Þ
σ1σ2σ3 ¼

X3
l¼0

�
Γð1;lÞ
σ1σ2σ3 −

1

ϵ
Γ̄ð1;lÞ
1;σ1σ2σ3

þ Fð1;lÞ
σ1σ2σ3

�
; ð4:4Þ

where the UV divergent and finite parts Γ̄ and F are in this
case polynomials of degree two in the independent
momenta p1;2 (p3 ¼ −p1 − p2), or

Γ̄ð1;lÞ
1;σ1σ2σ3

¼ γ0ð1;lÞ1;σ1σ2σ3
þ γ1ð1;lÞ1;σ1σ2σ3

ðp2
1þp2

2þp1 ·p2Þ; ð4:5aÞ

Fð1;lÞ
σ1σ2σ3 ¼ f0ð1;lÞσ1σ2σ3 þ f1ð1;lÞσ1σ2σ3ðp2

1 þ p2
2 þ p1 · p2Þ: ð4:5bÞ

An explicit calculation in the Feynman gauge then yields

γ0ð1;0Þ1;σ1σ2σ3
¼ −

3

16π2v3
ðm4 − 2m2M2

A þ 12M4
AÞ; ð4:6aÞ

γ0ð1;1Þ1;σ1σ2σ3
¼ −

3M2

4π2v3ð1þ zÞ2
�
m2 þ 2M2

1þ z

�
; ð4:6bÞ

γ0ð1;2Þ1;σ1σ2σ3
¼ 9

16π2v3ð1þ zÞ2
�
m4 þ 8m2M2

1þ z
þ 12M4

ð1þ zÞ2
�
;

ð4:6cÞ

γ0ð1;3Þ1;σ1σ2σ3
¼ −

3

4π2v3ð1þ zÞ3
�
m4 þ 6m2M2

1þ z
þ 8M4

ð1þ zÞ2
�
;

ð4:6dÞ

γ1ð1;0Þ1;σ1σ2σ3
¼ 0; ð4:6eÞ

γ1ð1;1Þ1;σ1σ2σ3
¼ −

M2

2π2v3ð1þ zÞ2 ; ð4:6fÞ

γ1ð1;2Þ1;σ1σ2σ3
¼ 1

8π2v3ð1þ zÞ2
�
m2 þ 10M2

1þ z

�
; ð4:6gÞ

γ1ð1;3Þ1;σ1σ2σ3
¼ −

1

8π2v3ð1þ zÞ3
�
m2 þ 6M2

1þ z

�
: ð4:6hÞ

In particular, notice that summing the different layers
in l (like one would do in a “standard” approach) gives for
the coefficient of the quadratic term in the independent
momenta
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γ1ð1Þ1;σ1σ2σ3
¼

X3
l¼0

γ1ð1;lÞ1;σ1σ2σ3

¼ z
8π2v2ð1þ zÞ4 ½2M

2ð1 − 2zÞ þm2ð1þ zÞ�:

ð4:7Þ

Consider then first the z ¼ 0 case, where, without loss of
generality, we can work in the minimal subtraction (MS)
scheme (in fact, amplitudes at z ¼ 0 in any other sub-
traction scheme can be reduced to those in the MS scheme
by a suitable redefinition of fields and coupling constants).
As expected, for a power-counting renormalizable model
like the HK, Eq. (4.7) vanishes when z ¼ 0; therefore, we
obtain the condition on the finite parts

f1ð1Þ1;σ1σ2σ3

				
z¼0

¼
X3
l¼0

f1ð1;lÞ1;σ1σ2σ3

				
z¼0

¼ 0: ð4:8Þ

When z ≠ 0, Eq. (4.7) is nonvanishing and, within an
effective field-theory approach, we need to impose a
renormalization condition for this new term without spoil-
ing the ST identities. This can be achieved by fixing the

coefficient λð1Þ6 of the invariant that contains the term σ2□σ,
and namely [see Eq. (D4)],

λð1Þ6

Z
d4x

�
ϕ†ϕ −

v2

2

�
ðϕ†D2ϕþ ðD2ϕÞ†ϕÞ ⊃ vλð1Þ6

×
Z

d4x σ2□σ; f1ð1Þ1;σ1σ2σ3
≡ 2vλð1Þ6 : ð4:9Þ

However, this fixes only the overall sum over l; its
decomposition in terms of l is, in general, not uniquely
determined. If, on the other hand, each l sector could be
proven to be separately Slavnov-Taylor invariant, each of
these subsectors would reproduce in the limit z → 0 the
corresponding subsectors of the amplitude in the power-
counting renormalizable theory at z ¼ 0. This implies that
the condition (4.8) can be imposed at z ≠ 0,

f1ð1Þ1;σ1σ2σ3
¼

X3
l¼0

f1ð1;lÞ1;σ1σ2σ3
¼ 0; ð4:10Þ

and at this point it is immediate to prove that the condition
above implies, upon repeated application of the differential
operator DM2

z , that

f1ð1;lÞ1;σ1σ2σ3
¼ 0 ∀ l: ð4:11Þ

This result is, in fact, generic and not limited to the three-
point σ amplitude considered here for illustrative purposes;
that is, within this formulation of the HK model at z ≠ 0,
finite parts are unambiguously set to zero by imposing the
condition

X
l≥0

Fðn;lÞ
Φ1…Φr

¼ 0;⇒ Fðn;lÞ
Φ1…Φr

¼ 0 ∀ l: ð4:12Þ

In the next section we are going to prove that fixed l
sectors are indeed separately ST invariant. Before doing
that, however, let us observe that the widely studied choice
of normalization conditions for the Stückelberg theory
(the l ¼ 0 sector) in which one requires the matching of
the 1-PI amplitudes of the Stückelberg model with those of
the Higgs theory (seen as a UV completion of the former)
[27–29] breaks the condition (4.12); in fact, it requires one

to choose the finite parts of Fðn;0Þ
Φ1…Φr

in such a way that the
Stückelberg and Higgs amplitudes at z ¼ 0 coincide at some
IR scale μ2 in the Taylor expansion up to the super-
ficial degree of UV divergence δr of the Stückelberg
amplitude.
In order to enforce this matching condition, we need to

fine-tune Fðn;0Þ
Φ1…Φr

in Eq. (4.1) according to (all amplitudes
on the rhs are understood to be evaluated at z ¼ 0)

Fðn;0Þ
Φ1…Φr

				
p2¼μ2

¼ tδr
�
ΓðnÞ
Φ1…Φr

− Γðn;0Þ
Φ1…Φr

þ
Xn
k¼1

1

ϵk
Γ̄ðn;0Þ
k;Φ1…Φr

�
;

ð4:13Þ
where tδr denotes the Taylor expansion up to order δr
around a symmetric point p2 ¼ μ2 in the momenta
p1;…; pr. Then, using Eq. (4.1), we obtain

Fðn;0Þ
Φ1…Φr

				
p2¼μ2

¼ tδr
�X
l≥1

�
Γðn;lÞ
Φ1…Φr

−
Xn
k¼1

1

ϵk
Γ̄ðn;lÞ
k;Φ1…Φr

��

þ
X
l≥1

Fðn;lÞ
Φ1…Φr

				
p2¼μ2

; ð4:14Þ

where the last term in the above equation is a polynomial
of degree δr in the momenta. In addition, the sum rule at
z ¼ 0,

X
l≥0

Fðn;lÞ
Φ1…Φr

				
z¼0

¼ 0; ð4:15Þ

must also hold true, since, as mentioned above, we can
assume, without loss of generality, that the power-counting
renormalizable HK model at z ¼ 0 is defined in the MS
scheme. No unique choice of finite parts fulfilling simulta-
neously the two conditions (4.13) and (4.15) exists: at least

two Fðn;lÞ
Φ1…Φr

must be different from zero with the remaining
parts that can be arbitrarily fixed.

V. l-SECTOR SLAVNOV-TAYLOR IDENTITIES

The 1-PI amplitudes involving at least one external X2

leg are uniquely fixed by the X2 equation of motion,
Eq. (C4), so that we can concentrate on X2-independent
amplitudes. At order n in the loop expansion, the 1-PI
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amplitudes of the functional ΓðtÞ of Eq. (3.11) at X2 ¼ 0

can be gathered into a vertex functional Γ̂ðtÞ defined as

Γ̂ðtÞðnÞ ≡ ΓðnÞ
0 jX2¼0 þ t½ΓðtÞðnÞ − ΓðnÞ

0 �jX2¼0

¼ ΓðnÞ
0

				
X2¼0

þ
X

l≥1t
lΓðn;lÞ

				
X2¼0

: ð5:1Þ

Γ̂ðtÞðnÞ can be recovered from the vertex functional of
the complete theory Γð1Þ upon rescaling the internal X2

propagators according to

ΔX2X2
ðtÞ ¼ it

ð1þ zÞp2 −M2
¼ i

1þz
t p2 − M2

t

; ð5:2Þ

i.e., by rescaling the parameters z and M2 according to

1þ z →
1þ z
t

; M2 →
M2

t
: ð5:3Þ

Since both M2 and z at tree level only appear in the
quadratic part, the choice in the above equation entails that
the parameter t only enters in the bilinear term and does not
affect the interaction vertices. Moreover, since X2 is gauge
and Becchi-Rouet-Stora-Tyutin (BRST) invariant, this
choice does not violate the ST identity. Therefore, at the
regularized level, the ST identity holds true for the vertex
functional Γ̂ðtÞ in Eq. (5.1).
We can obtain a local scaling equation by applying the

operator DM2

z to Eq. (5.1), since

DM2

z Γ̂ðtÞ ¼
X
l≥1

tlDM2

z Γðn;lÞ ¼ −
X
l≥1

ltlΓðn;lÞ ¼ −t
∂

∂t
Γ̂ðtÞ;

ð5:4Þ

so that
�
DM2

z þ t
∂

∂t

�
Γ̂ðtÞ ¼ 0: ð5:5Þ

The most general solution of this equation has the form

Γ̂ðtÞ ¼ Γ̂
�

t
M2

;
t

1þ z

�
: ð5:6Þ

Diagrams involvingonly tree-level interactionvertices and
rescaled internalX2 lines obviously fulfill Eq. (5.6). The fact
that Eq. (5.6) holds true at the renormalized level implies that
the rescaling in Eq. (5.3) survives quantization, namely, that
also the counterterms are consistent with Eq. (5.6).
At t ¼ 0, one recovers the Stückelberg sector of the

theory; in addition, since the vertex functional Γ̂ðtÞ admits
a Taylor expansion in powers of t, Eq. (5.6) entails that each
coefficient Γðn;lÞjX2¼0 of order tl satisfies the eigenvalue
equation

DM2

z Γðn;lÞjX2¼0 ¼ −lΓðn;lÞjX2¼0; ð5:7Þ

which is consistent with Eq. (3.5).
The subtraction of UV divergences by local counterterms

with the boundary condition inEq. (4.12) does not violate the
ST identity, so that we can write at the renormalized level

SðΓ̂ðtÞÞ ¼ 0: ð5:8Þ

In particular, notice that, since Γ̂ð0Þ ¼ Γ0 and Γ̂ð1Þ ¼ Γð1Þ,
the functional Γ̂ðtÞ interpolates between the Stückelberg
theory and the fully deformed Abelian HK model at z ≠ 0.
We can now expand the ST identity for Γ̂ðtÞ in the

number of loops and then order by order in t. This double
expansion yields relations among 1-PI Green’s functions
that hold true separately. Let us then start at one-loop order
and use the mass eigenstate basis, that is reflected in the
shift (at ξ ≠ 0) b ¼ b0 þ 1

ξ ∂Aþ evχ. We consider only
amplitudes that are independent of X1;2 since these ampli-
tudes are recovered by the X1;2 equations (C3) and (C4), so
we can safely use σ in place of σ0. The ST identity becomes

S0ðΓ̂ð1ÞðtÞÞ ¼
Z

d4x

�
∂μω

δΓ̂ð1ÞðtÞ
δAμ

þ δΓð0Þ

δσ�
δΓ̂ð1ÞðtÞ

δσ

þ δΓð0Þ

δσ

δΓ̂ð1ÞðtÞ
δσ�

þ δΓð0Þ

δχ�
δΓ̂ð1ÞðtÞ

δχ

þ δΓð0Þ

δχ

δΓ̂ð1ÞðtÞ
δχ�

þ
�
b0 þ 1

ξ
∂Aþ evχ

�
δΓ̂ð1ÞðtÞ
δω̄

�
¼ 0: ð5:9Þ

At higher orders in the loop expansion, one must take
into account the effects of the bilinear antifield-dependent
terms in the ST identity (C5). Defining the bracket

ðΓ̂ðtÞ; Γ̂ðtÞÞ≡
Z

d4x
�
δΓ̂ðtÞ
δσ�

δΓ̂ðtÞ
δσ

þ δΓ̂ðtÞ
δχ�

δΓ̂ðtÞ
δχ

�
; ð5:10Þ

at order n > 1 in the loop expansion the ST identity yields

S0ðΓ̂ðnÞðtÞÞ þ
Xn−1
j¼1

ðΓ̂ðjÞðtÞ; Γ̂ðn−jÞðtÞÞ ¼ 0: ð5:11Þ

A further expansion in powers of t yields a set of
independent identities valid at order n, one for each l,

S0ðΓðn;lÞÞ þ
Xn−1
j¼1

Xl
i¼0

ðΓðj;iÞ;Γðn−j;l−iÞÞ ¼ 0: ð5:12Þ

Such identities encode the conditions required to guarantee
physical unitarity of the theory (i.e., the cancellation of the
intermediate ghost states).
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In Landau gauge major simplifications arise since the
bilinear term vanishes, as a consequence of the fact that at
order n ≥ 1 amplitudes with at least one antifield external
leg are zero, since there are no Feynman diagrams
contributing to them. For the same reason

S0ðΓðn;lÞÞ ¼ sðΓðn;lÞÞ; ð5:13Þ
implying that there are no radiative corrections to the
classical BRST symmetry. The latter is a well-known
property of the Landau gauge [30–32].
In particular, gauge invariance of the X2 field entails that

off-shell 1-PI subdiagrams with a given number of internal
X2 lines form separately gauge-invariant sectors. The
lowest sector is the Stückelberg theory (no physical X2

states). Then perturbation theory based on the classical
action (2.1) will generate the higher order l sectors (with
one, two, etc. internal X2 lines).
The interplay between the loop expansion and the

grading in the number of internal X2 lines in an arbitrary
Rξ gauge requires one to instead take into account the
deformation of the classical BRST symmetry via the
renormalization of antifield-dependent amplitudes and is
encoded in the ST identity in Eq. (5.12). It should be
stressed that the grading of the ST identity with respect
to the number of internal X2 lines does not depend on
the z-differential equation and the specific quadratic defor-
mation controlled by z, yet it holds for any X2 potential
provided that X2 remains gauge invariant.

A. Two-point functions

As a specific example of the ST identity just derived, let
us consider the two-point sector. By differentiating
Eq. (5.9) with respect to ω and Aν, one finds

−∂μΓ̂
ð1Þ
AνAμ

ðtÞ þΓð0Þ
ωχ� Γ̂

ð1Þ
Aνχ

ðtÞ þΓð0Þ
Aνχ

Γ̂ð1Þ
ωχ�ðtÞ−

1

ξ
∂νΓ̂

ð1Þ
ωω̄ðtÞ ¼ 0:

ð5:14Þ
In a similar fashion by differentiating Eq. (5.9) with respect
to ω, χ one gets

− ∂μΓ̂
ð1Þ
χAμ

ðtÞ þ Γð0Þ
ωχ� Γ̂

ð1Þ
χχ ðtÞ þ Γð0Þ

ωσ�χΓ̂
ð1Þ
σ ðtÞ þ Γð0Þ

χχ Γ̂ð1Þ
ωχ� ðtÞ

þ evΓ̂ð1Þ
ωω̄ðtÞ ¼ 0: ð5:15Þ

In Landau gauge instead no shift of the b field is required
and the ST identities for the two-point functions are simpler
(notice that the one-loop amplitudes with external antifield
legs are zero in this gauge),

−∂μΓ̂
ð1Þ
AνAμ

ðtÞj
ξ¼0

þ Γð0Þ
ωχ� Γ̂

ð1Þ
Aνχ

ðtÞj
ξ¼0

¼ 0;

−∂μΓ̂
ð1Þ
χAμ

ðtÞj
ξ¼0

þ Γð0Þ
ωχ� Γ̂

ð1Þ
χχ ðtÞjξ¼0 þ Γð0Þ

ωσ�χΓ̂
ð1Þ
σ ðtÞjξ¼0 ¼ 0:

ð5:16Þ
We now project Eqs. (5.14)–(5.16) at zero and first order

in t (there are no further contributions since the amplitudes
involve at most one internal X2 line). In the Feynman
gauge, we then obtain (l ¼ 0, 1)

−∂μΓ
ð1;lÞ
AνAμ

j
ξ¼1

þ Γð0Þ
ωχ�Γ

ð1;lÞ
Aνχ

j
ξ¼1

þ Γð0Þ
Aνχ

Γð1;lÞ
ωχ� j

ξ¼1
− ∂νΓ

ð1;lÞ
ωω̄ jξ¼1 ¼ 0; ð5:17aÞ

−∂μΓ
ð1;lÞ
χAμ

j
ξ¼1

þ Γð0Þ
ωχ�Γ

ð1;lÞ
χχ jξ¼1 þ Γð0Þ

χχ Γð1;lÞ
ωχ� j

ξ¼1
þ Γð0Þ

ωσ�χΓ
ð1;lÞ
σ j

ξ¼1
þ evΓð1;lÞ

ωω̄ jξ¼1 ¼ 0; ð5:17bÞ

whereas in the Landau gauge, we get

− ∂μΓ
ð1;lÞ
AνAμ

j
ξ¼0

þ Γð0Þ
ωχ�Γ

ð1;lÞ
Aνχ

j
ξ¼0

¼ 0; ð5:18aÞ

−∂μΓ
ð1;lÞ
χAμ

j
ξ¼0

þ Γð0Þ
ωχ�Γ

ð1;lÞ
χχ jξ¼0 þ Γð0Þ

ωσ�χΓ
ð1;lÞ
σ j

ξ¼0
¼ 0: ð5:18bÞ

At variance with the standard ϕ formalism, the identities above hold true separately for each sector with a given number
of internal X2 lines. They can be explicitly checked using the following results:

Γ̄ð1;0Þ
AμAν

¼ −
e2M2

A

8π2
gμν

ϵ
δξ;1; Γ̄ð1;1Þ

AμAν
¼ e2

24π2ð1þ zÞ ½−ð9M
2
A þ p2Þgμν þ pμpν� 1

ϵ
;

Γ̄ð1;0Þ
χχ ¼ M2

A

16π2v2
½6M2

A þ δξ;1ðm2 − 2p2Þ� 1
ϵ
;

Γ̄ð1;1Þ
χχ ¼ 1

16π2v2ð1þ zÞ3 fM
2½ð1þ zÞm2 þ 2M2� − 2ð3 − 2δξ;1ÞM2

Að1þ zÞ2p2g 1
ϵ
;

Γ̄ð1;0Þ
χAμðpÞ ¼ i

eM2
A

8π2v

δξ;1
ϵ

pμ; Γ̄ð1;1Þ
χAμðpÞ ¼ i

eM2
Að3δξ;0 þ 2δξ;1Þ
8π2ð1þ zÞv

1

ϵ
pμ;

Γ̄ð1;0Þ
ωω̄ ¼ 0; Γ̄ð1;1Þ

ωω̄ ¼ −
e2M2

A

8π2ð1þ zÞ
δξ;1
ϵ

; Γ̄ð1;0Þ
ωχ� ¼ 0; Γ̄ð1;1Þ

ωχ� ¼ −
e2MA

8π2ð1þ zÞ
δξ;1
ϵ

; ð5:19Þ
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where δξ;1 (δξ;0) is one in the Feynman (Landau) gauge and
zero otherwise.

VI. OTHER RENORMALIZATION SCHEMES

Separate invariance under the ST identities for each l
sector has some important consequences. For example,
when chiral fermions are introduced, as in the Standard
Model, the presence of the γ5 matrix entails that the ST
identities are broken by the intermediate regularization
and that finite counterterms must be added to recover
the validity of the ST identities themselves. In order to be
consistent with the z-differential equation, such finite
counterterms must also possess a grading in the number
of internal X2 lines; and the fact that for each l sector a
separate ST identity exists implies that the breaking of the
lth ST identity can be compensated by finite counterterms
also belonging to the same l sector.
At z ¼ 0 the ST identities in the l sector are fulfilled;

namely,

S0ðΓðn;lÞjz¼0Þ þ
Xn−1
j¼1

Xl
i¼0

ðΓðj;iÞjz¼0;Γðn−j;l−iÞjz¼0Þ ¼ 0:

ð6:1Þ

Then, since in both terms in Eq. (6.1) a common overall
factor 1=ð1þ zÞl can be factorized and

�
S0;

∂

∂M2

�
¼

�
S0;

∂

∂z

�
¼ 0; ð6:2Þ

a solution to the ST identities at z ≠ 0 is provided by

Γðn;lÞðz;M2Þ ¼ 1

ð1þ zÞl Γ
ðn;lÞ

�
0;

M2

1þ z

�
: ð6:3Þ

Similarly, all the other functional identities of the theory,
e.g., the one reported in Eqs. (C1)–(C4), (C6), and (C7),
can be expanded in the different l sectors and each
projected equation is satisfied by Γðn;lÞ in Eq. (6.3) if
Γðn;lÞjz¼0 is a solution of the same equation at z ¼ 0.
As Eq. (6.3) holds at the renormalized level, it can be

taken as the definition of the 1-PI amplitudes of the theory
at z ≠ 0. Within such a formulation, one can then extend
the construction presented to an arbitrary renormalization
scheme of the power-counting renormalizable theory at
z ¼ 0, e.g., the on-mass shell renormalization scheme. In
fact, finite renormalizations compatible with the sym-
metries of the theory are encoded into the relevant
amplitudes contributing to Γðn;lÞð0;M2Þ and are lifted at
z ≠ 0 by Eq. (6.3), as such normalization conditions inherit
(as a consequence of the validity of the ST identities in each
l sector) a natural l grading.
Consider as an example the on-mass shell normalization

condition for the vector meson. Defining

ΓAμAν ¼ gμνðp2 −M2
AÞ þ

�
gμν −

pμpν

p2

�
ΣTðp2Þ

þ pμpν

p2
ΣLðp2Þ; ð6:4Þ

one requires that the position of the pole of the physical
components of the vector meson does not shift with respect
to the one at tree level and that the residue of the propagator
on the pole is one,

ReΣTðM2
AÞ ¼ 0; Re

∂ΣTðp2Þ
∂p2

				
p2¼M2

A

¼ 0: ð6:5Þ

These conditions can be matched by finite renormalizations
involving the invariants shown in Eq. (D4),

λ4

Z
d4xðDμϕÞ†Dμϕ ⊃

λ4v
2

Z
d4xA2

μ;

λ8
2

Z
d4xF2

μν ⊃ λ8

Z
d4xAμð□gμν − ∂

μ
∂
νÞAν: ð6:6Þ

Then, projecting into the different l sectors, with l ¼ 0, 1,
which can be done due to the l-sector ST invariance, one
obtains

ReΣð1;lÞ
T ðM2

AÞ þ vλð1;lÞ4 ¼ 0;

Re
∂Σð1;lÞ

T

∂p2

				
p2¼M2

A

− 2M2
Aλ

ð1;lÞ
8 ¼ 0: ð6:7Þ

As can be seen from the above equation, on-mass shell
renormalization conditions respect the layers in l of the ST
identities and consequently the z-differential equation.
Once the appropriate normalization conditions are enforced
at order n in the loop expansion at z ¼ 0, Eq. (6.3) fixes the
1-PI amplitudes of the theory at z ≠ 0 in a unique way.

VII. CONCLUSIONS

When formulating the scalar sector of the Abelian HK
model by means of a Lagrange multiplier X1 and a gauge-
invariant field coordinate X2, one obtains a new vertex
functional (2.1) (with z ¼ 0), which is on-shell equivalent
to the original HK model, but satisfies a plethora of
functional identities (see Appendix C) which constrain
the behavior of otherwise seemingly unrelated amplitudes
[13–15,18].
At this stage, one might ask if other terms in the

Lagrangian are allowed by the symmetries of the model
formulated in the auxiliary fields formalism. It turns out
that there is just one such term, namely, a kinetic term
for X2,

z
2
∂
μX2∂μX2 ∼ −

z
2
X2□X2: ð7:1Þ
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This is akin to adding the following nonpower-counting
renormalizable dimension-six derivative operator to the
original model:

−
z
2v2

�
ϕ†ϕ −

v2

2

�
□

�
ϕ†ϕ −

v2

2

�
: ð7:2Þ

However, in the X1;2 formulation of the theory, both the
dependence of the 1-PI amplitudes on the deformation
parameter z as well as the subtraction of UV divergences
are governed by a novel differential equation, which reads

½ð1þ zÞ∂z þM2
∂M2 �ΓðnÞ

Φ1���Φr
¼ −

X
l≥0

lΓðn;lÞ
Φ1���Φr

; ð7:3Þ

where l counts the number of internal X2 lines. In addition,
the model’s ST identity separately holds for each sector of
the vertex functional with a fixed number l of internal X2

lines. This is at variance with the standard formalism, in
which the dependence on z affects both the bilinear and the
interaction terms in the tree-level classical action (and
hence no z-differential equation exists) and the ST identity
cannot be filtered according to the number of internal
physical Higgs propagators (as the physical Higgs field σ is
not gauge invariant).
Then, the most general solution of the z-differential

equation, namely,

Γðn;lÞðz;M2Þ ¼ 1

ð1þ zÞl Γ
ðn;lÞ

�
0;

M2

1þ z

�
; ð7:4Þ

holds at the renormalized level and therefore provides a
definition of the theory’s 1-PI amplitudes at z ≠ 0 that is
valid in any renormalization scheme. Thus, even if power-
counting renormalizability is lost, the model depends on the
same number of physical parameters of its renormalizable
realization at z ¼ 0 plus the z parameter itself. To the best
of our knowledge, this is a first.
Interestingly enough, the deformation (7.2), controlled

by the parameter z and allowed by the symmetries of the

theory, only affects at the classical level the potential of the
Higgs field, which becomes derivative dependent once one
goes on shell with the auxiliary fields, while the interactions
with the gauge field are unaffected by such deformation
(again at the classical level). As such, it provides a candidate
of a deformation of the usual quartic Higgs potential that
might be relevant for the study of the electroweak sponta-
neous symmetry breaking. The extension to the SUð2Þ ×
Uð1Þ gauge group and the phenomenological implications
of the z deformation are currently under investigation. In
particular, themagnitude of the one-loop oblique corrections
together with the size of the different Higgs couplings at tree
level (including the trilinear Higgs self-interaction that is
expected to be studied in the forthcoming LHC run) can be
used to fix the allowed region for the z parameter. Moreover,
the novel z-differential equation allows one to control the
radiative corrections of the theory. In the longer term, this
paves theway to their systematic study and thus to the global
electroweak fit based on the model at z ≠ 0. We hope to
report soon on our findings.

APPENDIX A: DEGREES OF FREEDOM
IN THE X FORMALISM

The extension of the scalar sector via the fields X1;2 does
not introduce additional physical degrees of freedom. This
can be seen at tree level by inspecting the propagators in the
mass eigenstate basis, see Eq. (B1). We notice that ΔX1X1

and Δσ0σ0 differ by a sign and they, in fact, cancel out in the
intermediate states; this is a consequence of the constraint
U(1) BRST symmetry

sX1 ¼ vc; sc ¼ 0; sc̄ ¼ 1

v

�
ϕ†ϕ −

v2

2
− vX2

�
;

ðA1Þ
all other fields and external sources being invariant under s
and c; c̄ being the constraint U(1) ghost and antighost
fields.
We notice that the whole dependence of the classical

action (2.1) on m2 is BRST exact, since

Z
d4x



m2

2
X2
2 −

m2

2v2

�
ϕ†ϕ −

v2

2

�
2

þ 1

v
ðX1 þ X2Þð□þm2Þ

�
ϕ†ϕ −

v2

2
− vX2

�
− c̄ð□þm2Þc

�

¼
Z

d4xs
�
−
m2

2v2
c̄

�
ϕ†ϕ −

v2

2
þ vX2

�
þ 1

v
ðX1 þ X2Þð□þm2Þc̄

�
: ðA2Þ

Therefore, physical observables cannot depend on this
parameter [33], in agreement with the explicit computations
of [13].
In order to see that the physical states of the theory are

unchanged with respect to the ϕ formalism, we make use of
the BRST quantization approach [21,22,34]. We remark

that the BRST symmetry in Eq. (A1) holds true together
with the usual BRST symmetry s associated with the
Abelian gauge group

sAμ ¼ ∂μω; sϕ ¼ ieωϕ; sσ ¼ −eωχ;

sχ ¼ eωðσ þ vÞ; sω̄ ¼ b; sb ¼ 0; ðA3Þ
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with all other fields and external sources being s invariant.
ω and ω̄ are the ghost and antighost fields associated
with the gauge symmetry, and b is the Nakanishi-
Lautrup field.
Both BRST differentials s and s are nilpotent and they

anticommute, so that s0 ¼ sþ s is nilpotent too. Then, the
physical Hilbert space can be defined according to the
BRST quantization prescription [21,22,34] as

Hphys ¼
Ker s00
Im s00

; ðA4Þ

where s00 is the linearized full BRST differential acting on
the fields as follows:

s00Aμ¼ ∂μω; s00χ¼evω; s00σ¼0; s00ω̄¼b; s00b¼0;

s00X1¼vc; s00c¼0; s00c̄¼σ−X2; s00X2¼0: ðA5Þ

From above equation one can easily see that the transverse
polarizations of the massive gauge field belong to Hphys as
well as the physical scalar σ. The latter can be equivalently
parametrized at the linearized level by σ or X2, since their
difference is s00 exact (being the image of c̄), and thus X2

and σ belong to the same equivalence class in Hphys. χ is
unphysical since it does not belong to the kernel of s00.
Moreover, the ghost ω is unphysical being (modulo a
constant factor) the s00 image of χ; thus ðχ; evωÞ form a so-
called BRST doublet and, consequently, they do not
contribute to the cohomology of s00 that determines
Hphys (for a review, see, e.g., [35]). Similarly, the pairs
ðω̄; bÞ, ðX1; cÞ, and ðc̄; σ − X2Þ form BRST doublets and
thus drop out of Hphys. We therefore conclude that the
physical field content of the theory is still given by the
transverse modes of the massive gauge fields and one
physical massive Higgs scalar.
The last line of Eq. (2.1) contains the antifield-dependent

terms, i.e., the terms coupling the antifields (external
sources of the BRST transformation) and the nonlinear
BRST variations of the fields that, being nonlinear, require
an independent renormalization with respect to the fields
themselves [33,36], controlled by the antifield Green’s
functions.

APPENDIX B: PROPAGATORS

The diagonalization of the quadratic part of the classical
action in the sector spanned by σ; X1, and X2 is achieved via
the field redefinition σ ¼ σ0 þ X1 þ X2. σ0; X1, and X2 are
the mass eigenstates at tree level. Their propagators read

Δσ0σ0 ¼
i

p2 −m2
; ΔX1X1

¼ −
i

p2 −m2
;

ΔX2X2
¼ i

ð1þ zÞp2 −M2
: ðB1Þ

Diagonalization in the gauge sector is obtained by
redefining the Nakanishi-Lautrup multiplier field

b0 ¼ b −
1

ξ
∂A − evχ: ðB2Þ

Then, the Aμ propagator is

Δμν ¼ −i
�

1

p2 −M2
A
Tμν þ

1
1
ξ p

2 −M2
A

Lμν

�
; MA ¼ ev;

ðB3Þ

with

Tμν ¼ gμν −
pμpν

p2
; Lμν ¼

pμpν

p2
; ðB4Þ

whereas the Nakanishi-Lautrup, pseudo-Goldstone, and
ghost propagators are

Δb0b0 ¼
i
ξ
; Δχχ ¼

i
p2 − ξMA

; Δω̄ω ¼ i
p2 − ξM2

A
:

ðB5Þ

The Feynman gauge corresponds to ξ ¼ 1, whereas the
Landau gauge is ξ ¼ 0. Finally, the ghost associated with
the constraint BRST symmetry is free with a propagator

Δc̄c ¼
−i

p2 −m2
: ðB6Þ

APPENDIX C: FUNCTIONAL IDENTITIES

In this appendix, we collect for the sake of reference the
functional identities controlling the theory:

(i) The ST identity for the constraint BRST symmetry is

SCðΓÞ≡
Z

d4x

�
vc

δΓ
δX1

þ δΓ
δc̄�

δΓ
δc̄

�

¼
Z

d4x

�
vc

δΓ
δX1

− ð□þm2Þc δΓ
δc̄�

�
¼ 0;

ðC1Þ

where in the latter equality we have used the fact that
both the ghost c and the antighost c̄ are free,

δΓ
δc̄

¼ −ð□þm2Þc; δΓ
δc

¼ ð□þm2Þc̄: ðC2Þ

(ii) The X1 equation of motion, which follows from
Eq. (C1) by using the fact that the ghost c is free,

δΓ
δX1

¼ 1

v
ð□þm2Þ δΓ

δc̄�
: ðC3Þ
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(iii) The X2 equation of motion,

δΓ
δX2

¼ 1

v
ð□þm2Þ δΓ

δc̄�
− ð□þm2ÞX1

− ðð1þ zÞ□þM2ÞX2 − vc̄�: ðC4Þ

Notice that the z-term only affects the linear con-
tribution on the right-hand side of the above equa-
tion and thus no new external source is needed to
control its renormalization. Notice that further bi-
linear terms ∼X2□

nX2;n≥2 could be added to the
classical action while still modifying only the linear
part in X2 of the above equation. However, such
higher-derivative contributions induce in the spec-
trum modes with negative metrics and lead to
mathematical inconsistencies [37]; thus, in this
respect, the z deformation of the classical HK action
studied here is unique.

(iv) The ST identity associated with the gauge group
BRST symmetry

SðΓÞ ¼
Z

d4x

�
∂μω

δΓ
δAμ

þ δΓ
δσ�

δΓ
δσ

þ δΓ
δχ�

δΓ
δχ

þ b
δΓ
δω̄

�

¼ 0: ðC5Þ

(v) The b equation,

δΓ
δb

¼ ξb − ∂A − ξevχ: ðC6Þ

(vi) The antighost equation,

δΓ
δω̄

¼ □ωþ ξev
δΓ
δχ�

: ðC7Þ

1. Descendant and ancestor amplitudes

Equations (C3) and (C4) fix the amplitudes involving X1

and X2 external legs in terms of X1;2-independent ampli-
tudes. Hence, a hierarchy arises among 1-PI Green’s
functions: we call amplitudes with at least one X1 or X2

external legs descendant amplitudes, while the amplitudes
without X1;2 external legs are called ancestor amplitudes.
As an example, we derive the two-point X1;2 amplitudes

in terms of the 1-PI amplitudes with external c̄� legs. We
start by differentiating Eq. (C3) at order n ≥ 1 in the loop
expansion with respect to X1;2; we get

ΓðnÞ
X1X1

¼ 1

v
ð□þm2ÞΓðnÞ

X1c̄� ; ΓðnÞ
X2X1

¼ 1

v
ð□þm2ÞΓðnÞ

X2c̄� :

ðC8Þ

Next, we differentiate Eq. (C4) at order n ≥ 1 obtaining

ΓðnÞ
X2X2

¼ 1

v
ð□þm2ÞΓðnÞ

X2c̄� : ðC9Þ

Finally, differentiation of Eqs. (C3) and (C4) with respect to
c̄� yields

ΓðnÞ
X1c̄� ¼ ΓðnÞ

X2c̄� ¼
1

v
ð□þm2ÞΓðnÞ

c̄�c̄� : ðC10Þ

Substituting Eq. (C10) into Eq. (C8), we finally obtain

ΓðnÞ
X1X1

¼ ΓðnÞ
X1X2

¼ ΓðnÞ
X2X2

¼ 1

v2
ð□þm2Þ2ΓðnÞ

c̄�c̄� : ðC11Þ

As anticipated, the two-point functions of the fields X1;2 are

completely fixed by the ancestor amplitude ΓðnÞ
c̄�c̄� . We can

therefore limit the analysis to the X1;2-independent 1-PI
amplitudes, the latter being recovered algebraically by
functional differentiation of Eqs. (C3) and (C4).
Next, because the constraint ghosts c̄ and c are free, at

order n ≥ 1 in the loop expansion the vertex functional Γ is
c and c̄ independent. We can then take a derivative with
respect to c of Eq. (C1) and then substitute Eq. (C2) to
recover the X1 equation of motion in Eq. (C3); thus we see
that the constraint ST identity (C1) is equivalent to the X1

equation.
Finally, the antighost equation (C7) at order n ≥ 1,

δΓðnÞ

δω̄
¼ ξev

δΓðnÞ

δχ�
; ðC12Þ

entails that the 1-PI vertex functional only depends on the
antighost ω̄ only via the combination χ̂� ¼ χ� þ ξevω̄; and
the b equation (C6) implies that at order n ≥ 1 there is no
dependence on the Nakanishi-Lautrup field

δΓðnÞ

δb
¼ 0: ðC13Þ

APPENDIX D: LIST OF INVARIANTS

We list here the set of invariants needed to control the
UV divergences of operators up to dimension six at one-
loop order. The list is taken from Ref. [15] upon setting to
zero the source T1 coupled to the derivative interaction
∼T1ðDμϕÞ†Dμϕ that is not present here. In order to match
with the results of Ref. [15], one must also set the coupling
constant g of the derivative interactionϕ†ϕðDμϕÞ†Dμϕ equal
to zero. We keep the numbering used in Ref. [15] and use a
bar to denote the UV-divergent part of the coefficients.
In the cohomologically trivial sector, two invariants must

be considered,

ρ̄0S0

Z
d4x½σ�ðσ þ vÞ þ χ�χ�; ρ̄1S0

Z
d4xðσ�σ þ χ�χÞ:

ðD1Þ
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The invariants involving the external source c̄� are

ϑ̄1

Z
d4xc̄�; ϑ̄3

Z
d4x

1

2
ðc̄�Þ2; ϑ̄9

Z
d4x

1

3!
ðc̄�Þ3;

ðD2Þ

and

θ̄1

Z
d4xc̄�

�
ϕ†ϕ−

v2

2

�
; θ̄3

Z
d4xc̄�ðDμϕÞ†Dμϕ;

θ̄5

Z
d4xc̄�½ðD2ϕÞ†ϕþH:c:�; θ̄7

Z
d4xc̄�

�
ϕ†ϕ−

v2

2

�
2

;

θ̄9

Z
d4xc̄�F2

μν; θ̄13

Z
d4xðc̄�Þ2

�
ϕ†ϕ−

v2

2

�
: ðD3Þ

The invariants only involving the fields of the theory are

λ̄1

Z
d4x

�
ϕ†ϕ −

v2

2

�
; λ̄2

Z
d4x

�
ϕ†ϕ −

v2

2

�
2

;

λ̄3

Z
d4x

�
ϕ†ϕ −

v2

2

�
3

; λ̄4

Z
d4xðDμϕÞ†Dμϕ;

λ̄5

Z
d4xϕ†½ðD2Þ2 þDμDνDμDν þDμD2Dμ�ϕ;

λ̄6

Z
d4x

�
ϕ†ϕ −

v2

2

�
ðϕ†D2ϕþ ðD2ϕÞ†ϕÞ;

λ̄7

Z
d4x

�
ϕ†ϕ −

v2

2

�
ðDμϕÞ†Dμϕ;

λ̄8
2

Z
d4xF2

μν;

λ̄9

Z
d4x∂μFμν∂

ρFρν; λ̄10

Z
d4x

�
ϕ†ϕ −

v2

2

�
F2
μν:

ðD4Þ

The coefficients are related to one-loop amplitudes
according to the algebraic relations derived in [15].
Notice that they still hold in the presence of the deformation
controlled by z since they arise from the projection of the
linearized ST operator, which is unaffected by the gauge-
invariant term ∼z∂μX2∂μX2. We find in the cohomologi-
cally trivial sector

ρ̄1 ¼ −
1

ev
Γ̄ð1Þ
χ�ω ¼ 1

8π2v2
M2

A

1þ z
δξ;1
ϵ

; ðD5Þ

−m2vρ̄0 þ vλ̄1 ¼ Γ̄ð1Þ
σ ; ðD6aÞ

ρ̄0v2 þ ϑ̄1 ¼ Γ̄ð1Þ
c̄� : ðD6bÞ

In the Feynman gauge one can safely set ρ̄0 ¼ 0, while
ρ̄1 ¼ 0 in the Landau gauge [15], since there are no
radiative corrections to the antifield-dependent amplitudes.
Hence, we obtain (λ̄1 is gauge invariant)

λ̄1 ¼
1

16π2v2

�
ðm2þ 6M2

AÞM2
Aþm2

M2

ð1þ zÞ2þ
2M4

ð1þ zÞ3
�
1

ϵ
;

ρ̄0 ¼
1

m2v
ðΓ̄ð1Þ

σ jξ¼1− Γ̄ð1Þ
σ jξ¼0Þ ¼

M2
A

16π2v2
δξ;0
ϵ

: ðD7Þ

By using Eq. (D6b) we get

ϑ̄1 ¼ −
1

16π2

�
M2

A þ M2

ð1þ zÞ2
�
1

ϵ
; ðD8Þ

ϑ̄3 ¼ Γ̄ð1Þ
c̄�
1
c̄�
2
j
p2
1
¼0

¼ 1

16π2

�
1þ 1

ð1þ zÞ2
�
1

ϵ
;

ϑ̄5 ¼ Γ̄ð1Þ
c̄�
1
c̄�
2
c̄�
3
j
p2¼p3¼0

¼ 0: ðD9Þ

Next, writing

Γ̄ð1Þ
c̄�
3
χ1χ2

¼ γ0ð1Þ1;c̄�
3
χ1χ2

þ γ1ð1Þ1;c̄�
3
χ1χ2

ðp2
1 þ p2

2Þ þ γ2ð1Þ1;c̄�
3
χ1χ2

ðp1 · p2Þ;
ðD10Þ

we obtain

θ̄1¼γ0ð1Þ1;c̄�
3
χ1χ2

−2ρ̄0−2ρ̄1; θ̄3¼−γ2ð1Þ1;c̄�
3
χ1χ2

; θ̄5¼−γ1ð1Þ1;c̄�
3
χ1χ2

:

ðD11Þ
An explicit calculation yields

θ̄1 ¼ −
1

16π2v2

×

2
642M2

A þm2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0−sector

−
2M2

ð1þ zÞ2|fflfflfflffl{zfflfflfflffl}
1−sector

þ m2

ð1þ zÞ2 þ
4M2

ð1þ zÞ3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2−sector

3
75 1

ϵ
;

ðD12Þ
where, as indicated, the first two terms in the square
brackets arise from the Stückelberg subdiagrams (zero
internal X2 lines), the third from the subdiagrams with
one internal X2 lines, and the last two terms from subdia-
grams with two internal X2 lines. Notice that they are
obtained from the corresponding expressions at z ¼ 0 by
carrying out the replacement M2 → M2

ð1þzÞ and multiplying

each subdiagram by the appropriate prefactor 1=ð1þ zÞl.
Finally, observe that θ̄1 does not depend on the gauge, as it
should being the coefficient of a gauge-invariant operator.
Similarly, we find

θ̄3 ¼ −
1

8π2v2

�
1 −

1

1þ z

�
1

ϵ
; θ̄5 ¼ 0: ðD13Þ

Now we can fix θ̄7 according to

2ðρ̄0 þ ρ̄1Þ þ θ̄1 þ 2v2θ̄7 ¼ Γ̄ð1Þ
c̄�
3
σ1σ2

j
p1¼p2¼0

; ðD14Þ
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obtaining

θ̄7 ¼
1

4π2v4

2
64− M2

ð1þ zÞ2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
1−sector

þ m2

ð1þ zÞ2 þ
4M2

ð1þ zÞ3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2−sector

−
m2

ð1þ zÞ3 −
3M2

ð1þ zÞ4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
3−sector

3
75 1

ϵ
; ðD15Þ

where again we have collected factors of 1=ð1þ zÞ in such
a way to identify their origin from the subdiagrams with a
given number of internal X2 legs. Notice that θ̄3 and θ̄7
vanish for z → 0, in agreement with Ref. [15] when the
coupling constant g of the operator ∼ϕ†ϕðDμϕÞ†Dμϕ is set
to zero.
The amplitude

Γ̄ð1Þ
c̄�
3
Aμ
1
Aν
2

¼ M2
A

8π2v2
z

1þ z
gμν

ϵ
ðD16Þ

is momentum independent both in Landau and Feynman
gauges, which implies θ̄9 ¼ 0; in addition,

θ̄13 ¼
1

2v
Γ̄ð1Þ
σ3c̄�1c̄

�
2
¼ 1

16π2v2
1

ð1þ zÞ2
�
−1þ 1

1þ z

�
: ðD17Þ

For z → 0, one gets θ̄13 ¼ 0, again in agreement
with Ref. [15].

We now move to the sector of gauge-invariant operators
depending on the fields only. The coefficients of the
potential λ̄2 and λ̄3 are derived by solving the equations

2v2λ̄2 þ λ̄1 − 2m2ρ̄1 − 5m2ρ̄0 ¼ Γ̄ð1Þ
σ1σ2 jp¼0; ðD18aÞ

6v3λ̄3 þ 6vλ̄2 −
9m2

v
ρ̄1 −

12m2

v
ρ̄0 ¼ Γ̄ð1Þ

σ1σ2σ3 jp2¼p3¼0:

ðD18bÞ

It is convenient to express the results for each λ̄2;3 as the
sum over the l-sector contributions; writing

λ̄2;3 ¼
X2
l¼0

λ̄ðlÞ2;3 ; ðD19Þ

we obtain

λ̄ð0Þ2 ¼ 1

32π2v4
m4 þ 12M4

A

ϵ
; λ̄ð1Þ2 ¼ 1

8π2v4

�
m2M2

A

1þ z
−

m2M2

ð1þ zÞ2 −
2M4

ð1þ zÞ3
�
1

ϵ
;

λ̄ð2Þ2 ¼ 1

32π2v4

�
m4

ð1þ zÞ2 þ
8m2M2

ð1þ zÞ3 þ
12M4

ð1þ zÞ4
�
1

ϵ
;

λ̄ð0Þ3 ¼ −
m2M2

A

16π2v6
1

ϵ
; λ̄ð1Þ3 ¼ 1

16π2v6

�
m2M2

A

1þ z
þ 4m2M2

ð1þ zÞ2 þ
8M4

ð1þ zÞ3
�
1

ϵ
;

λ̄ð2Þ3 ¼ −
1

8π2v6

�
m4

ð1þ zÞ2 þ
8m2M2

ð1þ zÞ3 þ
12M4

ð1þ zÞ4
�
1

ϵ
;

λ̄ð3Þ3 ¼ 1

8π2v6

�
m4

ð1þ zÞ3 þ
6m2M2

ð1þ zÞ4 þ
8M4

ð1þ zÞ5
�
1

ϵ
: ðD20Þ

Notice that in the limit z → 0 one recovers the results given
in [15], in particular, λ3 becomes zero; furthermore, the
consistency conditions (the 1-PI amplitudes on the right-
hand side are understood at zero external momenta)

2vλ̄2 −
3m2

v
ρ̄1 −

4m2

v
ρ̄0 ¼ Γ̄ð1Þ

σχχ ;

2λ̄2 −
4m2

v2
ρ̄1 −

4m2

v2
ρ̄0 ¼ Γ̄ð1Þ

σσχχ ðD21Þ

hold separately for each l sector.

The coefficients λ̄4 and λ̄5 are obtained from the relations

2ðρ̄0 þ ρ̄1Þ þ λ̄4 ¼
∂Γ̄ð1Þ

χ1χ2

∂p2

				
p2¼0

; 3λ̄5 ¼
∂Γ̄ð1Þ

χ1χ2

∂ðp2Þ2
				
p2¼0

:

ðD22Þ

The two-point amplitude Γð1Þ
χ1χ2 has UV degree of diver-

gence 2, hence λ̄5 ¼ 0; moreover,

λ̄4 ¼ −
M2

A

8π2v2

�
1þ 3

1þ z

�
1

ϵ
: ðD23Þ
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In the limit z → 0, we recover the results of Ref. [15] again
by setting g ¼ 0.
The coefficients λ̄6 and λ̄7 can be determined from the

three-point function

Γ̄ð1Þ
σ3χ1χ2 ¼ γ0ð1Þ1;σ3χ1χ2

þ γ1ð1Þ1;σ3χ1χ2
ðp2

1 þ p2
2Þ

þ γ2;ð1Þ1;σ3χ1χ2
p1 · p2 þOðp4Þ; ðD24Þ

where the momentum of the σ field has been eliminated in
favor of p1;2 by imposing momentum conservation. Then
λ̄6 and λ̄7 can be determined according to

2vλ̄6 þ γ1ð1Þ1;σ3χ1χ2
¼ 0; 2vλ̄6 þ vλ̄7 þ γ2;ð1Þ1;σ3χ1χ2

¼ 0: ðD25Þ

Decomposing as before λ̄6;7 according to the grading in the
internal X2 lines,

λ̄6;7 ¼
X2
l¼0

λ̄ðlÞ6;7 ; ðD26Þ

one gets

λ̄ð0Þ6 ¼ 0; λ̄ð1Þ6 ¼ 1

16π2v4

�
2M2

A

1þ z
þ M2

ð1þ zÞ2
�
1

ϵ
;

λ̄ð2Þ6 ¼ −
1

16π2v4

�
2M2

A

ð1þ zÞ2 þ
M2

ð1þ zÞ3
�
;

λ̄ð0Þ7 ¼ 1

8π2v4
2M2

A −m2

ϵ
; λ̄ð1Þ7 ¼ 1

8π2v4

�
2M2

A þm2

1þ z
þ M2

ð1þ zÞ2
�
1

ϵ
;

λ̄ð2Þ7 ¼ −
1

8π2v4

�
4M2

A

ð1þ zÞ2 þ
M2

ð1þ zÞ3
�
1

ϵ
: ðD27Þ

Again we notice that in the limit z → 0 λ̄6;7 are zero, in agreement with the results of Ref. [15].

There are no contributions of order p4 in Γ̄ð1Þ
Aμ
1
Aμ
@

, so λ̄9 ¼ 0. In turn, λ̄8 can be fixed by the projection equation

½e2v2ð2ρ̄0 þ λ̄4Þ þ ð2λ̄8 þ e2v2λ̄5Þp2
1�gμν þ 2ðe2v2λ̄5 − λ̄8Þpμ

1p
ν
1 ¼ Γ̄ð1Þ

Aμ
1
Aν
2

; ðD28Þ

yielding

λ̄8 ¼ −
M2

A

48π2v2ð1þ zÞ
1

ϵ
: ðD29Þ

The limit z → 0 reproduces the result of Ref. [15].

Finally, the coefficient λ̄10 is recovered from the amplitude Γ̄ð1Þ
σ3A

μ
1
Aν
2

,

Γ̄ð1Þ
σ3A

μ
1
Aν
2

¼ ½γ0ð1Þ
1;σ3A

μ
1
Aν
2

− 2γ1ð1Þ
1;σ3A

μ
1
Aν
2

p1 · p2 þ γ2ð1Þ
1;σ3A

μ
1
Aν
2

ðp2
1 þ p2

2Þ�gμν þ γ3ð1Þ
1;σ3A

μ
1
Aν
2

pμ
1p

ν
2 þ γ4ð1Þ

1;σ3A
μ
1
Aν
2

pν
1p

μ
2; ðD30Þ

as

λ̄10 ¼
γ1ð1Þ
1;σ3A

μ
1
Aν
2

4v
¼ 0: ðD31Þ
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