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For a massive scalar field with general curvature coupling we evaluate the Wightman function in the
geometry of two parallel branes perpendicular to the AdS boundary. On the separate branes, the field
operator is constrained by Robin boundary conditions, in general, with different coefficients. In the region
between the branes their contribution to the Wightman function is explicitly separated. By using this
decomposition, the brane-induced effects on the vacuum expectation values for the field squared and
energy-momentum tensor are investigated. The behavior of those expectation values is studied in various
asymptotic regions of the parameters. The vacuum energy-momentum tensor in addition to the diagonal
components has a nonzero off-diagonal stress. Depending on the boundary conditions and also on the
distance from the branes, the vacuum energy density can be either positive or negative. The Casimir forces
acting on the branes have two components. The first one corresponds to the standard normal force and the
second one is parallel to the branes and presents the vacuum shear force. Unlike to the problem of parallel
plates in the Minkowski bulk, the normal Casimir forces acting on separate branes differ if the boundary
conditions on the branes are different. They can be either repulsive or attractive. In a similar way, depending
on the coefficients in the boundary conditions, the shear force is directed toward or from the AdS boundary.
The separate components may also change their signs as functions of the interbrane separation. At large
proper separations between the branes, compared to the AdS curvature radius, both of the components of
the Casimir forces exhibit a power-law decay. For a massive scalar field this behavior is in contrast to that
for the Minkowski bulk, where the decrease is exponential.
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I. INTRODUCTION

Motivated by fundamental questions and applications in
condensed matter physics, cosmology and in high-energy
physics, the Casimir effect (for reviews see [1]) remains an
active field of research in quantum field theory. The effect
is an interesting manifestation of quantum fluctuations
of fields influenced by the presence of boundaries or by
nontrivial spatial topology. Depending on the model under
consideration the physical nature of the boundaries can be
different. Examples are the interfaces of macroscopic
bodies in quantum electrodynamics, boundaries separating
different phases of the system, horizons in gravitational

physics, branes in string theories and in cosmological
models of braneworld type, etc. The boundary and perio-
dicity conditions imposed on the operator of a quantum
field modify the spectrum of fluctuations and result in the
shift of the expectation values of physical quantities such
as energy-momentum tensor or current densities for
charged fields.
In addition to the boundary or periodicity conditions

imposed on the field, the properties of quantum fluctuations
are sensitive to the presence of background classical fields.
Those fields reduce the symmetry in respective problems
and exact results for physical characteristics in the Casimir
effect are obtained for highly symmetric bulk and boundary
geometries only. In the present paper we consider the
influence of the background gravitational field on the
properties of the scalar vacuum in the geometry of two
parallel branes in the background of anti–de Sitter (AdS)
spacetime. That geometry is the maximally symmetric
solution of the Einstein field equations with a negative
cosmological constant as the only source of the gravita-
tional field. As it will be shown below, this high symmetry
allows one to obtain closed analytic expressions for the
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expectation values characterizing the local properties of the
vacuum state. In addition to the high symmetry, our choice
of AdS spacetime as the background geometry is motivated
by its important role in two exciting developments
of theoretical physics during the last decade, namely,
AdS/conformal field theory (CFT) correspondence and
braneworld scenarios with large extra dimensions. The
AdS=CFT correspondence (for reviews see, e.g., [2])
establishes duality between two different theories: super-
gravity or string theory on asymptotically AdS bulk from
one side and conformal field theory on AdS boundary from
another one. Those theories live in different numbers
of spacetime dimensions and the correspondence is an
example of holographic duality. It provides an important
possibility to investigate strong coupling nonperturbative
effects in one theory by mapping them to a weak coupling
region of dual theory and has been applied in different
physical settings including the variety of condensed matter
systems. The braneworld paradigm [3] naturally arises in
the context of supergravity and string theories and presents
an alternative to Kaluza-Klein compactification of extra
dimensions. The models formulated on AdS bulk provide a
geometrical solution for the hierarchy problem between the
electroweak and gravitational energy scales and also new
perspectives and different interpretations for various prob-
lems in particle physics and cosmology.
In the Randall-Sundrum-type realizations of the brane-

world models [4] the branes are parallel to the AdS
boundary. Motivated by the radion stabilization and the
generation of cosmological constant on branes, the Casimir
effect in that setup has been widely investigated in the
literature for scalar [5,6], fermionic [7] and vector [8] fields.
In the main part of the papers, as a physical characteristic of
the vacuum, global quantities, such as the Casimir energy or
the effective potential, are investigated by using various
regularization schemes. Local observables carry more
detailed information about the properties of the vacuum
state. In particular, being a source of gravity in semiclassical
Einstein equations, the vacuum expectation value (VEV) of
the energy-momentum tensor is of special importance. It is
investigated in [9–11] for scalar, fermionic and electromag-
netic fields. The combined effects of a brane and topological
defect of a cosmic string type on the local characteristics of
the fermionic vacuum in AdS spacetime have been recently
considered in [12]. For charged fields, another important
local characteristic of the vacuum state, bilinear in the field,
is the VEVof the current density. It has been studied in [13]
for scalar and fermionic fields in the geometry of branes
parallel to the boundary of locally AdS spacetimewith a part
of spatial dimensions compactified to a torus.
Motivated by an increase of interest to conformal field

theories in the presence of boundaries (see, for example,
references given in [14]), in recent studies the AdS=CFT
correspondence is extended to the problems where boun-
daries are present in the conformal field theory side. In the

corresponding setup the boundary CFT is dual to a theory
in AdS bulk with additional boundaries intersecting
the AdS boundary at the locations of boundaries in CFT
(AdS/BCFT correspondence) [15]. Problems with surfaces
in the AdS bulk crossing the AdS boundary have been
considered in recent studies of entanglement entropy in the
context of AdS=CFT correspondence [16] (for reviews see
[17,18]). A geometric classical procedure is suggested for
evaluation of the entanglement entropy of quantum systems
living on the AdS boundary. In accordance of that pro-
cedure, the entanglement entropy for a bounded region in
CFT is expressed in terms of the area of the minimal surface
in the AdS bulk anchored at the boundary of that region.
In the papers cited above, the physical characteristics in

the Casimir effect, with branes serving as constraining
boundaries, have been considered in the context of Randall-
Sundrum-type models with branes parallel to the AdS
boundary. Motivated by recent developments for physical
models on AdS bulk with boundaries crossing the space-
time boundary and continuing the investigation started in
[19], in the present paper we consider a problem with two
branes orthogonal to the AdS boundary for a massive scalar
field with general curvature coupling parameter. Though
this problem is less symmetric than the setups with branes
parallel to the AdS boundary, as it will be seen below, it is
still exactly solvable.
The organization of the paper is as follows. In the next

section we fix the problem setup and present the complete
set of mode functions for a scalar field in the region
between the branes. By using those functions, the positive
frequency Wightman function is evaluated in Sec. III. The
brane-induced contribution is explicitly separated. Taking
the coincidence limit of the arguments in that contribution,
the mean field squared is investigated in Sec. IV. The
behavior of the VEV in various asymptotic regions for the
values of the parameters is discussed. Similar investigations
for the VEVof the energy-momentum tensor are presented
in Sec. V. The Casimir forces acting on the branes are
discussed in Sec. VI. It is shown that for Robin boundary
conditions, in addition to the normal component, those
forces have a nonzero component parallel to the branes
(shear force). The nature of the forces is studied depending
on the boundary conditions. The main results are summa-
rized in Sec. VII. In Appendix, by using a variant of the
generalized Abel-Plana formula we provide an integral
representation for the series in the mode-sum over the
eigenvalues of the quantum number describing the degree
of freedom along the direction normal to the branes.

II. PROBLEM SETUP AND THE FIELD MODES

We consider a scalar field φðxÞ on the background of a
(Dþ 1)-dimensional AdS spacetime with the curvature
radius α. In Poincaré coordinates the corresponding line
element is given by
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ds2¼gikdxidxk¼e−2y=α½dt2−ðdx1Þ2−dx2�−dy2; ð2:1Þ

where the coordinates x ¼ ðx2;…; xD−1Þ are separated for
future convenience. In addition to the coordinate y,
−∞ < y < þ∞, we will also use the coordinate z, defined
as z ¼ αey=a, 0 < z < ∞, in terms of which the line
element is written in a manifestly conformally flat form

ds2 ¼
�
α

z

�
2

½dt2 − ðdx1Þ2 − dx2 − dz2�: ð2:2Þ

The AdS boundary and horizon are presented by the
hypersurfaces z ¼ 0 and z ¼ ∞, respectively. The Ricci
scalar and the cosmological constant are expressed in
terms of the AdS curvature radius by the relations R ¼
−DðDþ 1Þ=α2 and Λ ¼ −DðD − 1Þ=ð2α2Þ.
The operator of the scalar field with the curvature

coupling constant ξ obeys the equation

ðgik∇i∇k þm2 þ ξRÞφðxÞ ¼ 0: ð2:3Þ

The most popular special cases correspond to minimally
and conformally coupled fields with ξ ¼ 0 and ξ ¼ ξD ¼
ðD − 1Þ=ð4DÞ, respectively. We are interested in the effects
of two branes located at x1 ¼ a1 and x1 ¼ a2 on the local
properties of vacuum state for the field φðxÞ (see Fig. 1). It
is assumed that on the brane at x1 ¼ aj, j ¼ 1, 2, the field
obeys Robin boundary condition

ðAj þ Bjnij∇iÞφðxÞ ¼ 0; ð2:4Þ

where nij is the normal to the brane. The discussion in what
follows will be mainly focused on the VEVs in the region
between the branes, a1≤x1≤a2, with nij ¼ ð−1Þj−1δi1z=α.
We will consider the special case with Bj=Aj ¼ αβj=z,
where βj, j ¼ 1, 2 are constants. With this choice, the

boundary condition (2.4) in the region between the branes
is written as

ð1þ ð−1Þj−1βj∂1ÞφðxÞ ¼ 0: ð2:5Þ

Note that for a given z, the physical coordinate that
measures the proper distance from the branes is given
by x1ðpÞ ¼ αx1=z and the condition (2.4) is presented as

ð1þ βjn1j∂x1ðpÞ ÞφðxÞ ¼ 0. This means that the coefficient in

the Robin boundary condition written in terms of the
coordinate x1ðpÞ is constant. The results for Dirichlet and

Neumann boundary conditions are obtained in the special
cases βj ¼ 0 and βj ¼ ∞, respectively.
Our use of the term “brane” for the boundaries is, in

some sense, conditional. Fundamental branes in string
theory or phenomenological branes in braneworld scenar-
ios are among the possible physical realizations of the
boundary conditions (2.4). For example, in Randall-
Sundrum type models they follow from the Z2-symmetry
with respect to the branes and the corresponding Robin
coefficients are expressed in terms of constants in the brane
mass terms of the part of the action located on the branes
(see [6,10]). The Robin conditions also arise on boundaries
separating spatial regions with different geometries (this
type of setup on the AdS bulk has been considered in [11]
to model the finite thickness of branes). In this case the
Robin coefficients are expressed in terms of geometric
characteristics of the contacting regions. The Robin type
boundary conditions were used to model the finite pen-
etration of the field into the boundary with the penetration
length determined by the coefficient in the boundary
condition.
The properties of the vacuum state in the problem under

consideration are encoded in two-point functions. Those
functions are presented in the form of sums over a complete
set of the field modes obeying the boundary conditions.
Those modes for a scalar field in AdS spacetime when the
branes are absent are well known in the literature. We will
denote by λ the quantum number corresponding to the
coordinate x1. For the problem at hand the corresponding
solutions are found by combining the factors eiλx

1

and e−iλx
1

with the relative coefficient that will be determined from the
boundary conditions. Denoting by σ the set of quantum
numbers specifying the modes, in the region between the
branes the mode functions are written in the form

φσðxÞ ¼ CσzD=2JνðγzÞ cos½λjx1 − ajj þ αjðλÞ�eikx−iEt;
ð2:6Þ

where JνðuÞ is the Bessel function, k ¼ ðk2;…; kD−1Þ,
−∞ < kl < þ∞, 0 ≤ λ < þ∞, and the energy is
expressed as

FIG. 1. The geometry of the problem with branes intersecting
the AdS boundary.
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E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ k2 þ γ2

q
: ð2:7Þ

In (2.6) and in what follows we use the notation

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

4
−DðDþ 1Þξþm2α2

r
; ð2:8Þ

assuming that ν ≥ 0. This condition is dictated by the
stability of the vacuum state [20]. With the mode functions

)2.6 ) the set of quantum numbers is specified as
σ ¼ ðλ;k; γÞ.
From the boundary condition at x1 ¼ aj it follows that

e2iαjðλÞ ¼ iλβj − 1

iλβj þ 1
: ð2:9Þ

We have αjðλÞ ¼ π=2 and αjðλÞ ¼ 0 for Dirichlet and
Neumann conditions, respectively. The boundary condition
on the second brane gives the equation that determines the
eigenvalues for the quantum number λ:

ðb1 þ b2Þu cos uþ ðu2b1b2 − 1Þ sin u ¼ 0; ð2:10Þ

where u ¼ λa and bj ¼ βj=a. This eigenvalue equation is
the same as the corresponding equation for two parallel
plates in the Minkowski bulk, considered in [21]. As it has
been discussed in [21], depending on the values of bj,
Eq. (2.10) may have single or two purely imaginary roots
with respect to u. In the presence of those roots and for
the part of the modes with k2 þ γ2 < juj2=a2 the energy
becomes imaginary which signals about the instability of
the vacuum state. Note that here the situation is different
from that in the corresponding problem on the Minkowski
bulk. In the latter problem the mass enters in the expression
for the energy, and for imaginary modes with juj=a < m
the energy is positive for all the modes and the vacuum is
stable. To have a stable vacuum state, we will assume the
values of the parameters b1 and b2 for which all the roots of
Eq. (2.10) are real. Those values belong to the region in the
plane ðb1; b2Þ given by fb1þb2≥1;b1b2≤0g∪fb1;2≤0g
(see [21]). We will denote by u ¼ un, n ¼ 1; 2;… the
positive roots of Eq. (2.10). For the eigenvalues of the
quantum number λ one has λ ¼ λn ¼ un=a. For Dirichlet
and Neumann boundary conditions the eigenvalue equation

is reduced to sinu ¼ 0 with the modes λn ¼ πn=a, where
n ¼ 1; 2;…, and n ¼ 0; 1; 2;…, for the first and second
cases, respectively. Note the presence of an additional zero
mode for Neumann condition. For Dirichlet condition on
one brane and the Neumann one on another from (2.10) we
get cos u ¼ 0 and λn ¼ πðn − 1=2Þ=a, n ¼ 1; 2;….
The constant Cσ in (2.6) is determined from the

normalization condition

Z
dDx

ffiffiffiffiffi
jgj

p
g00φσðxÞφ�

σ0 ðxÞ ¼
δnn0

2E
δðk − k0Þδðγ − γ0Þ:

ð2:11Þ

For the mode functions (2.6) this gives

jCσj2 ¼
ð2πÞ2−Dγ
αD−1aENn

; ð2:12Þ

with the notation

Nn ¼ 1þ sin un
un

cos ½un þ 2αjðλnÞ�: ð2:13Þ

Note that cos ½un þ 2α1ðλnÞ� ¼ cos ½un þ 2α2ðλnÞ�. Having
fixed the complete set of modes we pass to the evaluation of
the Wightman function.

III. WIGHTMAN FUNCTION

As a two-point function we consider the positive
frequency Wightman function defined as the VEV
Wðx; x0Þ ¼ h0jφðxÞφðx0Þj0i. Expanding the operators
φðxÞ and φðx0Þ in terms of the complete set fφσðxÞ;
φ�
σðxÞg and using the definition of the vacuum state, it is

written in the form of the following sum over the modes:

Wðx; x0Þ ¼
Z

∞

0

dγ
Z

dk
X∞
n¼1

φσðxÞφ�
σðx0Þ: ð3:1Þ

The problem is homogeneous in the subspace ðt;xÞ and
we expect that the dependence on the arguments in that
subspace will enter in the form of the differences Δt ¼
t − t0 and Δx ¼ x − x0. Substituting the functions (2.6) and
the expression (2.12) for the normalization coefficient, the
Wightman function is expressed as

Wðx; x0Þ ¼ 2ðzz0ÞD=2

ð2παÞD−1a

Z
dk eikΔx

Z
∞

0

dγ γJνðγzÞJνðγz0ÞSðb;Δt; x1; x01Þ; ð3:2Þ

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ k2

p
, and

Sðb;Δt; x1; x01Þ ¼ π
X∞
n¼1

e−i
ffiffiffiffiffiffiffiffiffi
λ2nþb2

p
Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2n þ b2
p

Nn

cos ½λnjx1−ajj þ αjðλnÞ� cos ½λnjx01−ajj þ αjðλnÞ�: ð3:3Þ
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An equivalent representation for the series over n is obtained by using the definition (2.9) for the function αjðλÞ:

Sðb;Δt; x1; x01Þ ¼ π

4

X∞
n¼1

e−i
ffiffiffiffiffiffiffiffiffi
λ2nþb2

p
Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2n þ b2
p

Nn

�
2 cosðλnΔx1Þ þ

X
l¼�1

�
eiλnjx1þx01−2ajj iλβj − 1

iλβj þ 1

�
l
�
: ð3:4Þ

For boundary conditions different from Dirichlet or
Neumann ones on both of the branes, the eigenvalues λn
are given implicitly, as roots of (2.10), and the representa-
tion (3.2) with (3.3) or (3.4) is not convenient for
the investigation of the local VEVs in the coincidence
limit.

In order to get around this inconvenience and also to
separate explicitly the divergence in the coincidence limit,
the integral representation (A7) for the function (3.4) is
obtained in Appendix by using the generalized Abel-Plana
formula from [22]. Substituting (A7) in (3.2), the
Wightman function is decomposed as

Wðx; x0Þ ¼ Wjðx; x0Þ þ
ðzz0ÞD2

ð2παÞD−1

Z
dk eikΔx

Z
∞

0

dγ γJνðγzÞJνðγz0Þ

×
Z

∞

b
dλ

coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − b2

p
ΔtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − b2
p 2 coshðλx1−Þ þ

P
l¼�1½ejx1þ−2ajjλcjðλÞ�l

c1ðλÞc2ðλÞe2aλ − 1
; ð3:5Þ

where and in what follows x1� ¼ x1 � x01 and

cjðλÞ ¼
βjλ − 1

βjλþ 1
: ð3:6Þ

Note that cjðλÞ ¼ c̃jðλaÞ, with the functions c̃jðuÞ defined in Appendix after formula (A1). In (3.5) we have defined the
two-point function

Wjðx; x0Þ ¼ W0ðx; x0Þ þ
ðzz0ÞD2

ð2παÞD−1

Z
dk eikΔx

Z
∞

0

dγ γJνðγzÞJνðγz0Þ
Z

∞

b
dλ

coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − b2

p
ΔtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − b2
p e−jx1þ−2ajjλ

cjðλÞ
: ð3:7Þ

Here, the part W0ðx; x0Þ comes from the term S0ðb;Δt; x1−Þ in (A4) and is given by

W0ðx; x0Þ ¼
ðzz0ÞD2

2ð2παÞD−1

Z
dK eiKΔX

Z
∞

0

dγ γJνðγzÞJνðγz0Þ
e−i

ffiffiffiffiffiffiffiffiffiffi
γ2þK2

p
Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þK2
p ; ð3:8Þ

with X ¼ ðx1;xÞ, K ¼ ðk1; k2;…; kD−1Þ. The integration
over the angular coordinates of the vector k in (3.5) and
(3.7) [and in a similar way for (3.8)] can be done by using
the formula

Z
dk eikΔxgðkÞ ¼ ð2πÞD2−1

jΔxjD2−2
Z

∞

0

dk k
D
2
−1JD

2
−2ðkjΔxjÞgðkÞ;

ð3:9Þ

for a given function gðkÞ, where k ¼ jkj.
The separate terms in (3.5) and (3.7) have clear physical

interpretation. The function W0ðx; x0Þ is the Wightman

function in AdS spacetime in the absence of the branes. Its
expression in terms of the hypergeometric function is
well known from the literature (see below). As it has been
mentioned in Appendix, the last term in (3.5) vanishes
in the limit ð−1Þj0aj0 → þ∞, where j0 ¼ 1 for j ¼ 2 and
j0 ¼ 2 for j ¼ 1. Hence, the functionWjðx; x0Þ corresponds
to the Wightman function in the problem with a single
brane at x1 ¼ aj. It has been obtained in [19]. The last term
in (3.5) is interpreted as a contribution induced by the
second brane at x1 ¼ aj0 when we add it to the geometry
with a brane at x1 ¼ aj. The representation of the
Wightman function with combined contributions from
the branes is obtained from (A8):
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Wðx; x0Þ ¼ W0ðx; x0Þ þ
ðzz0ÞD2

ð2παÞD−1

Z
dk eikΔx

Z
∞

0

dγ γJνðγzÞJνðγz0Þ

×
Z

∞

b
dλ

coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − b2

p
ΔtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − b2
p 2 coshðλx1−Þ þ

P
j¼1;2e

jx1þ−2ajjλcjðλÞ
c1ðλÞc2ðλÞe2aλ − 1

: ð3:10Þ

For the angular part of the integral over k we can use the
relation (3.9).
In the representations (3.5) and (3.10) the explicit

knowledge of the eigenvalues λn is not required and they
are well adapted for the investigation of local VEVs. Those
representations give the Wightman function in the region
between the branes. In the regions x1 < a1 and x1 > a2 the
Wightman functions coincide with that for the problem
with a single brane and they are given by (3.7) with j ¼ 1
and j ¼ 2 in the first and second regions respectively.
For the special cases of Dirichlet and Neumann boun-

dary conditions we have cjðλÞ ¼ −δJ, where J ¼ D;N
correspond to Dirichlet and Neuamann boundary condi-
tions with δD ¼ 1, δN ¼ −1. The part with the exponential
function is reduced to 1=ðe2aλ − 1Þ. Presenting this func-
tion as the series

P∞
n¼1 e

−2naλ, the integral over λ is
expressed in terms of the modified Bessel function
K0ðuÞ (see [23]). Next, we use the result (3.9) for the
integral over the angular coordinates of k. The integral over
k is expressed through the associated Legendre function
Qμ

βðxÞ and the final expression reads

Wðx;x0Þ¼W0ðx;x0Þ

þ α1−D

2
D
2
þνþ1π

D
2

X∞
n¼1

�X
l¼�1

fνðuð−Þl;n Þ−δJ
X
j¼1;2

fνðuðþÞ
j;n Þ

�
;

ð3:11Þ

with the notations

uð−Þl;n ¼ 1þ ð2nla − x1−Þ2 þ jΔxj2 þ Δz2 − Δt2

2zz0
;

uðþÞ
j;n ¼ 1þ ð2na − jx1þ − 2ajjÞ2 þ jΔxj2 þ Δz2 − Δt2

2zz0
;

ð3:12Þ

and Δz ¼ z − z0. In (3.11) we have defined the function

fνðuÞ ¼
2νþ1

2ffiffiffi
π

p e−
D−1
2
πi

Q
D−1
2

ν−1
2

ðuÞ
ðu2 − 1ÞD−1

4

¼ Γðνþ D
2
Þ

Γðνþ 1ÞuνþD
2

F

�
2þ 2νþD

4
;
2νþD

4
;νþ 1;

1

u2

�
;

ð3:13Þ

with Fða; b; c; xÞ≡ 2F1ða; b; c; xÞ being the hypergeomet-
ric function.
The Wightman function for a scalar field in the brane-

free AdS spacetime is expressed in terms of the function
fνðuÞ as

W0ðx; x0Þ ¼
α1−Dfνðuð−Þ0;0 Þ
2
D
2
þνþ1π

D
2

; ð3:14Þ

and the formula (3.11) presents the Wightman function in
the region between the branes in the form of the image sum.
In the spacetime region ðx1−Þ2 þ jΔxj2 þ Δz2 > Δt2 one

has the relation uð−Þ0;0 ¼ cosh ðσðx; x0Þ=αÞwith σðx; x0Þ being
the geodesic distance between the spacetime points x and
x0. In the cases of Dirichlet and Neumann boundary
conditions, the Wightman function for the geometry of a
single brane at x1 ¼ aj is obtained from (3.11) in the limit
ð−1Þj0aj0 → þ∞. In the series over n the contribution of the
term n ¼ 1, j ¼ j0 survives only and we get the result
obtained in [19]:

Wjðx; x0Þ ¼ W0ðx; x0Þ −
δJα

1−D

2
D
2
þνþ1π

D
2

× fν

�
1þ jx1þ − 2ajj2 þ jΔxj2 þ Δz2 − Δt2

2zz0

�
:

ð3:15Þ

We can also consider the problem with Dirichlet
boundary condition on the brane x1 ¼ a1 and Neumann
condition on the second brane. In this case cjðλÞ ¼ ð−1Þj
and the Wightman function is obtained in a way similar to
the cases of Dirichlet and Neumann conditions on both of
the branes. It can be seen that the corresponding expres-
sion is obtained from (3.11) by the replacements (the
replacement of δJ should be made after the summation
sign

P
j¼1;2)

X∞
n¼1

→
X∞
n¼1

ð−1Þn; δJ → ð−1Þj−1: ð3:16Þ

In the regions x1 < a1 and x1 > a2 the Wightman
functions for the Dirichlet-Neumann combination of
boundary conditions are given by (3.15) with δJ ¼ 1
and δJ ¼ −1, respectively.
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IV. VEV OF THE FIELD SQUARED

In this section we investigate the VEV of the field
squared h0jφ2j0i≡ hφ2i. It is obtained taking the coinci-
dence limit of the arguments in the Wightman function.
Of course, that limit is divergent and a renormalization
procedure is required to extract finite physical values. Here
we are interested in the effects induced by the branes. For
points outside the branes the local geometry is the same as
that for AdS spacetime without branes. The divergences in
the coincidence limit are determined by the local geomet-
rical characteristics and we conclude that for x1 ≠ aj,
j ¼ 1, 2, they are the same as in AdS spacetime. Having
extracted the part in the Wightman function corresponding
to the latter geometry [the function W0ðx; x0Þ], the renorm-
alization is reduced to that for brane-free AdS spacetime.
That procedure for the VEVs of the field squared and of
the energy-momentum tensor is well investigated in the
literature.
Taking the coincidence limit x0 → x in (3.10), the VEV

of the field squared is presented as

hφ2i ¼ hφ2i0 þ
22−Dα1−DzD

π
D
2ΓðD

2
− 1Þ

Z
∞

0

dk kD−3
Z

∞

0

dγ γJ2νðγzÞ

×
Z

∞

b
dλ

2þP
j¼1;2e

2jx1−ajjλcjðλÞ
½c1ðλÞc2ðλÞe2aλ − 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − b2

p ; ð4:1Þ

where hφ2i0 is the renormalized VEV in AdS spacetime
when the branes are absent. Because of the maximal
symmetry of AdS geometry the part hφ2i0 does not depend
on the spacetime point and it is well investigated in the
literature. For further transformation of the brane-induced
contribution in (4.1), instead of λ we introduce a new
integration variable χ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − b2

p
and then pass to polar

coordinates in the plane ðk; χÞ. After integrating over the
angular part one finds

hφ2i ¼ hφ2i0 þ
ð2 ffiffiffi

π
p

αÞ1−DzD
ΓðD−1

2
Þ

Z
∞

0

dr rD−2

×
Z

∞

0

dγ
γ

λ

2þP
j¼1;2e

2jx1−ajjλcjðλÞ
c1ðλÞc2ðλÞe2aλ − 1

J2νðγzÞ; ð4:2Þ

where λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ r2

p
. Introducing polar coordinates in the

plane ðr; γÞ, for the angular integral we use the result [24]
Z

1

0

dxxð1−x2Þμ−3=2J2νðuxÞ¼
Γðμ−1=2Þ

22νþ1
u2νFμ

νðuÞ; ð4:3Þ

with the function

Fμ
νðuÞ ¼ 1F2ðνþ 1

2
; μþ νþ 1

2
; 1þ 2ν;−u2Þ

Γðμþ νþ 1
2
ÞΓð1þ νÞ : ð4:4Þ

Here, 1F2ða; b; c; zÞ is the hypergeometric function. The
final expression reads

hφ2i ¼ hφ2i0 þ
ð ffiffiffi

π
p

αÞ1−D
2Dþ2ν

Z
∞

0

dx xDþ2ν−1

× FD=2
ν ðxÞ 2þ

P
j¼1;2e

2jx1−ajjx=zcjðx=zÞ
c1ðx=zÞc2ðx=zÞe2ax=z − 1

: ð4:5Þ

In a similar way, by making use of the formula (3.5),
we can obtain the representation

hφ2i ¼ hφ2ij þ
ð ffiffiffi

π
p

αÞ1−D
2Dþ2ν

Z
∞

0

dx xDþ2ν−1

× FD=2
ν ðxÞ 2þ

P
l¼�1½e2jx1−ajjx=zcjðx=zÞ�l

c1ðx=zÞc2ðx=zÞe2ax=z − 1
; ð4:6Þ

where the VEV in the geometry of a single brane at x1 ¼ aj
is expressed as (see [19])

hφ2ij ¼ hφ2i0 þ
ð ffiffiffi

π
p

αÞ1−D
2Dþ2ν

Z
∞

0

dx xDþ2ν−1

× FD=2
ν ðxÞ e

−2jx1−ajjx=z

cjðx=zÞ
: ð4:7Þ

Note that the product αD−1hφ2i depends on the quantities
having dimension of length (x1, aj, βj) and on the
coordinate z through the ratios x1=z, aj=z, βj=z. Those
ratios are the proper values of the quantities measured by an
observer with fixed z in units of the curvature radius α. This
feature is a consequence of the AdS maximal symmetry.
For a conformally coupled massless field one has

ν ¼ 1=2 and

Fμ
1=2ðuÞ ¼

2ffiffiffi
π

p
u2

�
1

ΓðμÞ −
Jμ−1ð2uÞ
uμ−1

�
: ð4:8Þ

For the VEV of the field squared this gives

hφ2i ¼ hφ2i0 þ ðz=αÞD−1hφ2iðMÞ; ð4:9Þ

where

hφ2iðMÞ ¼
1

2Dπ
D
2

Z
∞

0

dλ λD−2
�

1

ΓðD=2Þ −
JD=2−1ð2zλÞ
ðzλÞD=2−1

�

×
2þP

j¼1;2e
2jx1−ajjλcjðλÞ

c1ðλÞc2ðλÞe2aλ − 1
: ð4:10Þ

The background geometry under consideration is confor-
mally flat and the last term in (4.9) exhibits the standard
conformal relation between the boundary-induced parts
of the VEVs in two conformally related problems (see,
for example, [25]). The geometry of two branes in AdS
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spacetime is conformally connected to the problem in the
Minkowski spacetime with the line element

ds2M ¼ dt2 − ðdx1Þ2 − dx2 − dz2; ð4:11Þ

involving two parallel Robin plates at x1 ¼ a1 and x1 ¼ a2
intersected by the plate z ¼ 0 with Dirichlet boundary
condition. The latter plate is the conformal image of the
AdS boundary. Note that the part in (4.10) coming from the
first term in the square brackets gives the mean field
squared in the region between two parallel plates in the
Minkowski spacetime (the boundary at z ¼ 0 is absent) and
the part with the second term is induced by the Dirichlet
plate at z ¼ 0.
Note that the Dirichlet boundary condition at z ¼ 0 in the

conformally related problem on the Minkowski bulk is
related to the condition we have imposed for the scalar
modes (2.6) on the AdS boundary. For the values of the
parameter ν in the range 0 ≤ ν < 1 the general normal-
izable solution of the field equation has the form (2.6) with
the Bessel function replaced by the linear combination
JνðγzÞ þ bσYνðγzÞ, where YνðxÞ is the Neumann function.
In this case an additional boundary condition is required on
the AdS boundary for unique fixation of the set of modes.
Our choice in (2.6) corresponds to Dirichlet condition.
In the literature the Neumann and more general Robin
boundary conditions have been considered as well (for
recent discussions see [26]). In the conformally related
problem on the Minkowski spacetime, the boundary con-
dition on the z ¼ 0 image is determined by the respective
condition on the AdS boundary. Note that the different
boundary conditions will correspond to different
conformal field theories in the context of the AdS=CFT
correspondence.
Let us consider the Minkowskian limit of the problem at

hand. It corresponds to the limit α → ∞ for fixed value
of the coordinate y in (2.1). Introducing in (4.5) a new
integration variable λ ¼ x=z and by taking into account that
in the limit under consideration z ≈ α and ν ≈mα, we see
that both the argument and the order ν of the function
FD=2
ν ðλzÞ are large. The uniform asymptotic expansion is

obtained in [19] by using the corresponding expansion for
the Bessel function in (4.3). It has been shown that for large
ν and λ < m the function FD=2

ν ðνλ=mÞ is exponentially
small. The VEV of the field squared is dominated by the
contribution of the integral coming from the region λ > m.
In that region the leading term in the expansion over 1=ν is
given by [19]

Fμ
ν

�
ν

m
λ

�
≈
ðλ2 −m2Þμ−1ð2m=νÞ2νþ1

2
ffiffiffi
π

p
ΓðD=2Þλ2μþ2ν−1 : ð4:12Þ

With this estimate we get limα→∞hφ2i ¼ hφ2ið0ÞðMÞ, where

hφ2ið0ÞðMÞ ¼
ð4πÞ−D

2

ΓðD=2Þ
Z

∞

m
dλðλ2 −m2ÞD=2−1

×
2þP

j¼1;2e
2jx1−ajjλcjðλÞ

c1ðλÞc2ðλÞe2aλ − 1
ð4:13Þ

is the mean field squared in the region between two Robin
plates in the background of Minkowski spacetime with the
line element (4.11). This result for a massive field was
presented in [22]. For a massless field it is reduced to the
result derived in [21].
In order to find the mean field squared on AdS bulk in

the special cases of Dirichlet and Neumann boundary
conditions we can use the representation (3.11) for the
Wightman function. The corresponding expression reads

hφ2i ¼ hφ2i0 þ
α1−D

2
D
2
þνþ1π

D
2

X∞
n¼1

�
2fνðunÞ − δJ

X
j¼1;2

fνðuj;nÞ
�
;

ð4:14Þ

with the notations

un ¼ 1þ 2ðna=zÞ2;

uj;n ¼ 1þ 2

z2
ðna − jx1 − ajjÞ2: ð4:15Þ

An alternative representation is obtained from (4.5) expand-
ing the function 1=ðe2ax=z − 1Þ. The integral is evaluated by
using the formula from [27]:

Z
∞

0

dx x2μþ2ν−1e−2cxFμ
νðxÞ ¼ hμνðcÞ

2
ffiffiffi
π

p ; ð4:16Þ

where the function in the right-hand side is defined as

hμνðuÞ ¼ Γðμþ νÞ
Γðνþ 1Þ

1

u2ðμþνÞ F
�
νþ 1

2
; μþ ν; 1þ 2ν;−

1

u2

�
:

ð4:17Þ

The VEV is presented as

hφ2i ¼ hφ2i0 þ
α1−D

2Dþ2νþ1π
D
2

X∞
n¼1

�
2h

D
2
ν

�
na
z

�

− δJ
X
j¼1;2

h
D
2
ν

�
na − jx1 − ajj

z

��
: ð4:18Þ

By employing the linear and quadratic transformation
formulas for the hypergeometric function (see, for example,
]28 ]) we can see that

h
D
2
νðxÞ ¼ 2

D
2
þνfνð1þ 2x2Þ: ð4:19Þ
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This relation shows the equivalence of the representations
(4.14) and (4.18). Note that for a conformally coupled
massless field

hμ1=2ðxÞ ¼
4Γðμþ 1=2Þffiffiffi
π

p ð2μ − 1Þ ½x
1−2μ − ðx2 þ 1Þ12−μ�: ð4:20Þ

For Dirichlet or Neumann boundary conditions, the VEV
in the problem with a single brane is obtained from (4.18)
taking the limit a1 → −∞ or a2 → þ∞:

hφ2ij ¼ hφ2i0 −
δJα

1−D

2Dþ2νþ1π
D
2

h
D
2
ν

�jx1 − ajj
z

�
: ð4:21Þ

In problems with two scalar fields with Dirichlet and
Neumann conditions on a single brane, the brane-induced
mean field squared vanishes as a result of cancellations
of contributions from Dirichlet and Neumann scalars. In
particular, for D ¼ 3, the electromagnetic field with per-
fectly conducting boundary condition on the brane is
reduced to two scalar modes with Dirichlet and
Neumann conditions and their contributions in the vacuum
energy density cancel each other. An equivalent represen-
tation for the single brane mean field squared hφ2ij, given
in [19], is derived from (3.15) in the coincidence limit. In
(4.14) and (4.18), the parts corresponding to the contribu-
tion of the brane at x1 ¼ aj0 , when the second brane is
absent, are presented by the term n ¼ 1, j ¼ 2 for j0 ¼ 1
and by the term n ¼ 1, j ¼ 1 for j0 ¼ 2.
In the case of Dirichlet boundary condition on the brane

x1 ¼ a1 and Neumann boundary condition on x1 ¼ a2,
the expression for the mean field squared in the region
between the branes is obtained from (4.18) making the
replacements (3.16).
Now let us consider the behavior of the VEV hφ2i in

asymptotic regions of the parameters. The VEV diverges on
the branes. The divergences come from the single brane
contributions: in the representation (4.6) the divergence at
x1 ¼ aj is contained in the part hφ2ij [in the last term
of (4.7)]. Near the brane, for jx1 − ajj ≪ z, the total VEV
hφ2i is dominated by the last term in (4.7). Assuming
additionally jx1 − ajj ≪ jβjj (non-Dirichlet boundary con-
ditions), the leading term in the expansion over the distance
from the brane reads [19]

hφ2i ≈ ΓðD−1
2
Þ

ð4πÞDþ1
2

�
z

αjx1 − ajj
�

D−1
: ð4:22Þ

For the Dirichlet boundary condition the corresponding
asymptotic differs from (4.22) by the sign of the right-hand
side. The last term in the representation (4.6) is finite on the
brane x1 ¼ aj.
For points near the AdS boundary, z≪ jx1−ajj, j ¼ 1, 2,

the main contribution to the integral in (4.5) comes from the

region with small values of x. By using the asymptotic
expression Fμ

νðxÞ ≈ Fμ
νð0Þð1þOðx2ÞÞ with

Fμ
νð0Þ ¼ 1

Γðνþ 1ÞΓðμþ νþ 1
2
Þ ; ð4:23Þ

in the leading order, for the brane-induced contribution
we get

hφ2i≈hφ2i0þ
F

D
2
νð0ÞzDþ2ν

2Dþ2νð ffiffiffi
π

p
αÞD−1

×
Z

∞

0

dλλDþ2ν−1 2þ
P

j¼1;2e
2jx1−ajjλcjðλÞ

c1ðλÞc2ðλÞe2aλ−1
: ð4:24Þ

Hence, for points near the AdS boundary and not too close
to the branes, the brane-induced part in the mean field
squared tends to zero like zDþ2ν. For points near the
horizon, z ≫ a, the integral in (4.5) is dominated by the
contribution coming from the region with large values of x.
For those x one has [19]

Fμ
νðxÞ ≈ 22νffiffiffi

π
p

ΓðμÞx2νþ1
; x ≫ 1; ð4:25Þ

and the VEV of the field squared is approximated by

hφ2i ≈ hφ2i0 þ ðz=αÞD−1hφ2ið0ÞðMÞjm¼0; ð4:26Þ

where hφ2ið0ÞðMÞjm¼0 [see (4.13)] is the corresponding VEV

for a massless scalar field between two parallel plates in the
Minkowski bulk with separation a [21]. Note that the latter
is obtained from (4.10) in the limit z → ∞. As seen, near
the horizon the effects of the curvature on the brane-
induced VEVare weak. Note that for a given a and large z
the proper separation between the branes is much smaller
than the curvature radius, ap ¼ αa=z ≪ α, and the main
contribution to the brane-induced VEV comes from the
vacuum fluctuations with the wavelengths much smaller
than the curvature radius. The influence of the gravitational
field on those fluctuations is weak.
In Fig. 2 the brane-induced VEV of the field squared,

hφ2ib ¼ hφ2i − hφ2i0, is plotted in the region between the
branes as a function of the proper distance from the brane at
x1 ¼ 0 (in units of the AdS curvature radius α). For the
location of the second brane we have taken a2=z ¼ 5. The
graphs are plotted for D ¼ 4 conformally (left panel) and
minimally (right panel) coupled massive scalar fields with
mα ¼ 0.5. The same boundary conditions are imposed on
the branes (β1 ¼ β2) and the numbers near the curves
indicate the respective values of the ratio β1=z. The graphs
for Dirichlet and Neumann boundary conditions are
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presented as well (Dir and Neu, respectively). The brane-
induced mean field squared is negative for the Dirichlet
case and positive for the Neumann one. For Robin con-
ditions with sufficiently small values of jβjj=z, the VEV is
positive near the branes and negative in the region near the
center with respect to the branes. With increasing jβjj=z,
started from some critical value, the VEV hφ2ib becomes
positive everywhere in the region between the branes. For
the example presented in Fig. 2, for the critical values one
has βj=z ≈ −1.08 and βj=z ≈ −0.70 for conformally and
minimally coupled scalars, respectively. The critical value
for jβjj=z decreases with decreasing a=z.

V. ENERGY-MOMENTUM TENSOR

Another important characteristic of the vacuum state is
the VEVof the energy-momentum tensor. With the known
Wightman function and the VEVof the field squared, it is
evaluated by using the formula

hTiki ¼
1

2
lim
x0→x

ð∂i∂0k þ ∂k∂
0
iÞWðx; x0Þ þ B̂ikhφ2i; ð5:1Þ

where the operator acting on the VEVof the field squared is
defined by

B̂ik ¼
�
ξ −

1

4

�
gikglm∇l∇m − ξð∇i∇k þ RikÞ; ð5:2Þ

with Rik ¼ −Dgik=α2 being the Ricci tensor for AdS
spacetime. In the geometry at hand one gets

B̂00 ¼
�
1

4
− ξ

��
∂
2
1 þ ∂

2
z −

D − 1

z
∂z

�
−
ξ

z
∂z þ

D
z2
ξ; ð5:3Þ

and the spatial diagonal components are expressed as
B̂ll ¼ −B̂00 − Ĉll, l ¼ 1; 2;…; D, where

Ĉ11 ¼ ξ∂21; Ĉll ¼ 0; l ¼ 2;…; D − 1;

ĈDD ¼ ξ

�
∂
2
z þ

2

z
∂z

�
: ð5:4Þ

In addition to the diagonal components, the action of
the operator (5.2) on hφ2i gives a nonzero off-diagonal
component B̂1Dhφ2i with the operator

B̂1D ¼ −ξ
�
∂z þ

1

z

�
∂1: ð5:5Þ

By using the representation (3.10), the coincidence limit
of the bitensor ∂i∂0kWðx; x0Þ is evaluated in a way we have
described above for the mean field squared. For the
diagonal components hTlli with l ≠ D the angular integrals
at the last step are expressed in terms of the functions
FD=2
ν ðuÞ and FD=2þ1

ν ðuÞ. For the component hTDDi the
integral is reduced to

Z
1

0

dx xð1 − x2ÞD−3
2 ½∂uðuD

2JνðuxÞÞ�2: ð5:6Þ

By making use of the equation for the Bessel function this
integral is expressed in terms of the functions FD=2

ν ðuÞ,
FD=2þ1
ν ðuÞ and of the first and second derivatives

of FD=2
ν ðuÞ.

After long but straightforward calculations, the VEVs of
the diagonal components of the energy-momentum tensor
are written in the form (no summation over i)

FIG. 2. The brane-induced mean field squared in the region between the branes as a function of the ratio x1=z for D ¼ 4 fields with
conformal and minimal couplings (left and right panels, respectively). The graphs are plotted for mα ¼ 0.5 and the numbers near the
curves correspond to the values of the ratio β1=z ¼ β2=z. The graphs for Robin boundary conditions are located in the region between
the curves corresponding to Dirichlet and Neumann conditions.
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hTi
ii ¼ hTi

ii0 −
α−1−D

2Dþ2νπ
D−1
2

Z
∞

0

dx x

�
EixDþ2νF

D
2
νðxÞ

c1ðx=zÞc2ðx=zÞe2ax=z − 1

þ 2þP
j¼1;2e

2jx1−ajjx=zcjðx=zÞ
c1ðx=zÞc2ðx=zÞe2ax=z − 1

h
AixDþ2νF

D
2
þ1

ν ðxÞ þ B̂ixDþ2νF
D
2
νðxÞ

i�
: ð5:7Þ

Here we have defined the operators

B̂1 ¼
�
ξ −

1

4

�
∂
2
x þ

�
D − 1

4
− ðD − 2Þξ

�
∂x

x
−
Dξ

x2
;

B̂i ¼ B̂1 þ 4ξ − 1; i ¼ 0; 2;…; D − 1;

B̂D ¼ 1

4
∂
2
x −Dðξþ ξDÞ

∂x

x
þD2ξ −m2α2

x2
þ 4ξ; ð5:8Þ

and the coefficients

Ei¼2ð1−4ξÞ; i¼0;2;…;D; E1¼−2;

Ai¼
1

2
; i¼0;2;…; D−1; AD¼1−D

2
; ð5:9Þ

and A1 ¼ 0. The nonzero off-diagonal component is ex-
pressed as

hT1
Di ¼ −

2α−1−D

2Dþ2νπ
D−1
2

Z
∞

0

dx

P
j¼1;2ð−1Þje2jx1−ajjx=zcjðx=zÞ
c1ðx=zÞc2ðx=zÞe2ax=z − 1

��
ξ −

1

4

�
x∂x þ ξ

�
xDþ2νF

D
2
νðxÞ: ð5:10Þ

In (5.7), the part hTk
i i0 corresponds to the vacuum energy-

momentum tensor in the brane-free AdS spacetime.
Similar to the case of the VEV hφ2i0, that part is well
known from the literature. From the maximal symmetry
of the AdS geometry one has hTk

i i0 ¼ const · δki . The
components hT0

0i and hTi
ii, i ¼ 2;…; D − 1, determining

the energy density and stresses along the directions
parallel to the branes (except the component i ¼ D),
are equal. Of course, that is a consequence of the problem
symmetry. As another consequence of the symmetry,
the VEVof the energy-momentum tensor depends on the
variables x1, aj, βj, z in terms of the combinations x1=z,
aj=z, βj=z. The first and second derivatives of the product

xDþ2νFD=2
ν ðxÞ, appearing in (5.7) and (5.10), are ex-

pressed in terms of the functions FD=2
ν ðxÞ, FD=2−1

ν ðxÞ,
and FD=2−2

ν ðxÞ. The corresponding relations can be
found in [19].
Let us denote by hTk

i ib ¼ hTk
i i − hTk

i i0 the brane-
induced contribution to the vacuum energy-momentum
tensor. We can check the following relation for the
corresponding trace:

hTi
iib ¼ Dðξ − ξDÞ∇l∇lhφ2ib þm2hφ2ib; ð5:11Þ

where the brane-induced part in the VEV of the field
squared is given by the last term in (4.5). The trace is zero
for a conformally coupled massless field. Another relation
expected from general arguments is the covariant conser-
vation equation ∇khTk

i ib ¼ 0. The latter is a necessary
condition for hTk

i ib to be a source in the Einstein field
equations. From the equations with i ¼ 1 and i ¼ D the
following two relations are obtained between the separate
components (see also [19] for the corresponding relations
in the geometry of a single brane):

∂1hT1
1ib ¼ −zDþ1

∂z

�hTD
1 ib

zDþ1

�
;

∂1hT1
Dib ¼ −zD∂z

�hTD
Dib
zD

�
−
1

z

XD−1

k¼0

hTk
kib: ð5:12Þ

The first equation shows that the dependence of the normal
stress on the coordinate x1 is related to the presence of the
nonzero off-diagonal component.
The VEV of the energy-momentum tensor in the geom-

etry of a single brane at x1 ¼ aj is obtained from (5.7) and
(5.10) in the limit ð−1Þj0aj0 → ∞ with j0 ≠ j. For the
diagonal components this gives (no summation over i)

hTi
iij ¼ hTi

ii0 −
α−1−D

2Dþ2νπ
D−1
2

Z
∞

0

dx x
e−2jx1−ajjx=z

cjðx=zÞ
h
AixDþ2νF

D
2
þ1

ν ðxÞ þ B̂ixDþ2νF
D
2
νðxÞ

i
: ð5:13Þ

The corresponding expression for the off-diagonal component reads
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hT1
Dij ¼

2ð−1Þjα−1−D
2Dþ2νπ

D−1
2

Z
∞

0

dx
e−2jx1−ajjx=z

cjðx=zÞ
��

ξ −
1

4

�
x∂x þ ξ

�
xDþ2νF

D
2
νðxÞ: ð5:14Þ

The formulas (5.13) and (5.14) were obtained in [19] from the Wightman function (3.7) by using (5.1). Note that (5.14)
presents the VEV in the region x1 > a1 for j ¼ 1 and in the region x1 < a2 for j ¼ 2. Making the replacement

ð−1Þj → sgnðaj − x1Þ; ð5:15Þ

in (5.14) we obtain the expression for a single brane at x1 ¼ aj that is valid for both regions x1 < aj and x1 > aj.
Extracting the single brane contributions from the VEVs we can obtain the following equivalent representations for the

components of the vacuum energy-momentum tensor (no summation over i):

hTi
ii ¼ hTi

iij −
α−1−D

2Dþ2νπ
D−1
2

Z
∞

0

dx x

�
EixDþ2νF

D
2
νðxÞ

c1ðx=zÞc2ðx=zÞe2ax=z − 1

þ 2þP
l¼�1½e2jx1−ajjx=zcjðx=zÞ�l

c1ðx=zÞc2ðx=zÞe2ax=z − 1
½AixDþ2νF

D
2
þ1

ν ðxÞ þ B̂ixDþ2νF
D
2
νðxÞ�

�
; ð5:16Þ

and

hT1
Di ¼ hT1

Dij −
ð−1Þjα−1−D
2Dþ2ν−1π

D−1
2

Z
∞

0

dx

P
l¼�1l½e2jx1−ajjx=zcjðx=zÞ�l

c1ðx=zÞc2ðx=zÞe2ax=z − 1

��
ξ −

1

4

�
x∂x þ ξ

�
xDþ2νF

D
2
νðxÞ: ð5:17Þ

The last terms in these representations are the contributions
induced by the brane at x1 ¼ aj0 when we add it to the
problem with a single brane at x1 ¼ aj. Those terms are
finite on the brane x1 ¼ aj and the divergences on that brane
come from the single brane contribution hTk

i ij. For points
near the brane the total VEVis dominated by the single brane
contribution. Under the conditions jx1 − ajj ≪ z; jβjj, the
corresponding leading terms in the expansion over the
distance from the brane are given in [19]:

hT0
0ib ≈

ð1 −DÞhT1
1ib

ðjx1 − ajj=zÞ2
≈
zhT1

Dib
x1 − aj

≈
2DðξD − ξÞΓðDþ1

2
Þ

π
Dþ1
2 ð2αjx1 − ajj=zÞDþ1

:

ð5:18Þ

For Dirichlet boundary condition, βj ¼ 0, the leading terms
are given by the same expressions with opposite signs. As
seen, the divergence on the branes is weaker for the normal

stress and off-diagonal component. For conformal coupling
the leading terms vanish and the next terms in the expansion
should be kept.
In the case of a conformally coupled massless field, by

using the expression (4.8) for the function Fμ
νðxÞ, the

vacuum energy-momentum tensor is presented in the form

hTi
ki ¼ hTi

ki0 þ ðz=αÞDþ1hTi
kiðMÞ; ð5:19Þ

where hTk
i iðMÞ is the corresponding VEV in the region

a1<x1<a2, z > 0 for the geometry of plates at x1 ¼ a1; a2
and z ¼ 0 in the Minkowski spacetime with the line
element (4.11). On the plates x1 ¼ a1; a2 the field obeys
Robin boundary condition (2.5) and on the plate z ¼ 0 the
Dirichlet boundary condition is imposed. For the diagonal
components the Minkowskian VEV is given by (no
summation over i)

hTi
iiM ¼ hTi

iið0ÞM þ π−
D
2

2Dþ1D

Z
∞

0

dλ
λD

c1ðλÞc2ðλÞe2aλ − 1

�
aðiÞgD

2
−1ðλzÞ

þ
�
2þ

X
j¼1;2

e2jx1−ajjλcjðλÞ
�h
bðiÞgD

2
−1ðλzÞ þ cðiÞgD

2
ðλzÞ

i�
; ð5:20Þ
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with the coefficients

ðað0Þ; að1Þ; aðDÞÞ ¼ ð4;−4D; 4Þ;
ðbð0Þ; bð1Þ; bðDÞÞ ¼ ð0; 2;−2Þ;
ðcð0Þ; cð1Þ; cðDÞÞ ¼ ð1; 1 −D; 0Þ: ð5:21Þ

In (5.20) we have introduced the function

gμðxÞ ¼ x−μJμð2xÞ; ð5:22Þ

and (no summation over i)

hTk
i ið0ÞM ¼ −δki

ð−DÞδ1i ð4πÞ−D
2

ΓðD
2
þ 1Þ

Z
∞

0

dλ
λD

c1ðλÞc2ðλÞe2aλ − 1

ð5:23Þ

is the corresponding VEV in the problem where the plate
z ¼ 0 is absent. Hence, the last term in (5.20) is induced by
the Dirichlet plate z ¼ 0 added to the geometry of two
parallel plates. For the off-diagonal component in the
Minkowski bulk we obtain

hT1
DiðMÞ ¼

2z1−
D
2

2Dþ2νπ
D
2D

×
Z

∞

0

dλλ
D
2
þ1

P
j¼1;2ð−1Þje2jx1−ajjλcjðλÞ
c1ðλÞc2ðλÞe2aλ−1

JD
2
ð2λzÞ:

ð5:24Þ

For the VEV of the energy-momentum tensor, the
consideration of the Minkowskian limit, corresponding
to large values of the curvature radius α, is similar to that
for the mean field squared. By taking into account that both
ν and z are large, we use the asymptotic (4.12) for the
functions FD=2

ν ðxÞ and FD=2þ1
ν ðxÞ in (5.7) and (5.10). For

the diagonal components, to the leading order over 1=α one

gets hTi
ii ≈ hTi

iið0ÞðMÞ, where (no summation over i)

hTi
iið0ÞðMÞ ¼ −

ð4πÞ−D
2

DΓðD=2Þ
Z

∞

m
dλ

ðλ2 −m2ÞD=2

c1ðλÞc2ðλÞe2aλ − 1

×

�
2þ 4Dðξ − ξDÞw2 −m2

λ2 −m2

X
j¼1;2

e2jx1−ajjλcjðλÞ
�
;

ð5:25Þ

for the components i ≠ 1 and

hT1
1ið0ÞðMÞ ¼

2ð4πÞ−D
2

ΓðD=2Þ
Z

∞

m
dλ

λ2ðλ2 −m2ÞD=2−1

c1ðλÞc2ðλÞe2aλ − 1
; ð5:26Þ

for the normal stress. These results coincide with the
expressions given in [22] for the VEV of the energy-
momentum tensor between two plates in the Minkowski
bulk. In the massless limit they are reduced to the expres-
sions in [21]. Note that the distribution of the normal stress is
uniform. For the off-diagonal component the leading order
term in the expansion over 1=α is expressed as

hT1
Di ≈ −

2ð4πÞ−D
2

ΓðD=2Þα
Z

∞

m
dλ

P
j¼1;2ð−1Þje2jx1−ajjλcjðλÞ
c1ðλÞc2ðλÞe2aλ − 1

× λðλ2 −m2ÞD=2−2
�
Dðξ − ξDÞλ2 −

�
2ξ −

1

4

�
m2

�
:

ð5:27Þ

Of course, this component vanishes in the Minkowskian
limit.
Now let us consider the special cases of Dirichlet and

Neumann boundary conditions. Similar to the discussion
for the field squared, we expand the function 1=ðe2ax=z − 1Þ
in (5.7). The resulting integral over x is presented in terms
of the integral (4.16) and its first and second order
derivatives with respect to c. In this way we can show
that the VEVs of the diagonal components of the energy-
momentum tensor are presented as (no summation over i)

hTi
ii ¼ hTi

ii0 −
α−1−D

2Dþ2νπ
D
2

X∞
n¼1

��
Ei

8
∂
2
ch

D
2
νðcÞ þ qðiÞν ðcÞ

�
c¼na

z

−
δJ
2

X
j¼1;2

qðiÞν ðcÞ
				
c¼na−jx1−aj j

z

�
: ð5:28Þ

Here we have defined the function

qðiÞν ðcÞ ¼
h
ðwðiÞ

2 c2 þ wðiÞÞ∂2c þ wðiÞ
1 c∂c þ wðiÞ

0

i
h

D
2
νðcÞ

þ Aih
D
2
þ1

ν ðcÞ; ð5:29Þ

with the coefficients



wðiÞ
2 ; wðiÞ

1 ; wðiÞ
0 ; wðiÞ

�

¼
�
ξ −

1

4
; Dξ −

Dþ 1

4
;−Dξ;

�
ξ −

1

4

�
δi1

�
; ð5:30Þ

for i ≠ D and



wðDÞ
2 ; wðDÞ

1 ; wðDÞ
0 ; wðDÞ

�

¼
�
1

4
; DξþDþ 1

4
; D2ξ −m2α2; ξ

�
: ð5:31Þ

For the off-diagonal component we get
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hT1
Di ¼

δJα
−1−D

2Dþ2νþ3π
D
2

X∞
n¼1

X
j¼1;2

ð−1Þj½ð4ξ − 1Þc∂c − 1�∂ch
D
2
νðcÞ

				
c¼na−jx1−aj j

z

: ð5:32Þ

This component has opposite signs for Dirichlet and
Neumann boundary conditions. Note that for the system
of two scalars with Dirichlet and Neaumann boundary
conditions and with the same mass the total energy-
momentum tensor is diagonal and does not depend on
the coordinate x1.
The VEVs for a single brane with Dirichlet or Neumann

boundary conditions are obtained from (5.28) in the limit

when the location of the second brane tends to infinity. For
the diagonal components this gives (no summation over i)

hTi
ii ¼ hTi

ii0 þ
δJα

−1−D

2Dþ2νþ1π
D
2

qðiÞν

�jx1 − ajj
z

�
: ð5:33Þ

In a similar way the expression for the off-diagonal
component reads

hT1
Di ¼ sgnðx1 − ajÞ

δJα
−1−D

2Dþ2νþ3π
D
2

½ð4ξ − 1Þc∂c − 1�∂ch
D
2
νðcÞ

				
c¼jx1−ajj=z

: ð5:34Þ

Alternative representations for the VEVs (5.33)
and (5.34) in terms of the function (3.13) are provided
in [19].
The VEVs for the components of the energy-momentum

tensor in the special case of Dirichlet boundary condition
on the brane x1 ¼ a1 and Neumann condition on x1 ¼ a1
are obtained from (5.28) and (5.32) by the replace-
ments (3.16).

Let us consider the behavior of the vacuum energy-
momentum tensor near the AdS boundary and horizon.
Near the AdS boundary, assuming that z ≪ jx1 − ajj for
j ¼ 1, 2, the contributions of small x dominate in (5.7) and
(5.10). To the leading order, making the replacement

F
D
2
νðxÞ ≈ F

D
2
νð0Þ, with F

D
2
νð0Þ given by (4.23), we get (no

summation over i)

hTi
ii ≈ hTi

ii0 −
BνF

D
2
νð0ÞzDþ2ν

2Dþ2νπ
D−1
2 αDþ1

½2ν − ðDþ 2νÞδDi �
Z

∞

0

dλ λDþ2ν−1 2þ
P

j¼1;2e
2jx1−ajjλcjðλÞ

c1ðλÞc2ðλÞe2aλ − 1
;

hT1
Di ≈ −

2BνF
D
2
νð0ÞzDþ2νþ1

2Dþ2νπ
D−1
2 αDþ1

Z
∞

0

dλ λDþ2ν

P
j¼1;2ð−1Þje2jx1−ajjλcjðλÞ
c1ðλÞc2ðλÞe2aλ − 1

; ð5:35Þ

where we have defined

Bν ¼ ðDþ 2νþ 1Þξ −Dþ 2ν

4
: ð5:36Þ

Under the conditions assumed, all the components tend to
zero in the limit z → 0. Note that the coefficient Bν is
negative for minimally and conformally coupled fields.
For points tending to the horizon the coordinate z is

large. Assuming that z ≫ a we use the asymptotic (4.25)

for the function F
D
2
νðxÞ. For the diagonal components this

gives (no summation over i)

hTi
ii ≈ hTi

ii0 þ ðz=αÞDþ1hTi
iið0ÞðMÞjm¼0; ð5:37Þ

with hTi
iið0ÞðMÞ being the corresponding VEV for two parallel

plates in Minkowski spacetime given by (5.25) for a

massive field. The leading term in the expansion of the
off-diagonal component is obtained from (5.27) taking
m ¼ 0 and multiplying by ðz=αÞD. For a nonconformally
coupled field it behaves like ðz=αÞD. For the conformal
coupling the next term in the expansion should be kept.
Figure 3 presents the brane-induced energy density for

conformally (left panel) and minimally (right panel)
coupled scalar fields in the region between the branes
versus the proper distance from the brane (in units of α).
The graphs are plotted for a1 ¼ 0, a2=z ¼ 5,mα ¼ 0.5 and
for the same Robin boundary conditions on the branes
(β1 ¼ β2). The numbers near the graphs correspond to the
values of the ratio β1=z. We have also plotted the graphs for
Dirichlet and Neumann boundary conditions. In accor-
dance with the asymptotic (5.18), for a minimally coupled
field and for non-Dirichlet boundary conditions the vacuum
energy density is positive near the branes. For Dirichlet
boundary condition the energy density is negative. The
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behavior of the energy density near the center with
respect to the branes depends on the Robin coefficients.
For βj=z < 0 and sufficiently close to zero the brane-
induced energy density is negative near the center. With
increasing value of jβjj=z, started from certain critical value

βðcÞj , that depends on a=z, it becomes positive everywhere
in the region between the branes. For the values of the
parameters corresponding to Fig. 3, the critical values are

given by βðcÞj =z ≈ −1.12 and βðcÞj =z ≈ −0.69 in the cases of
conformal and minimal couplings, respectively. The critical

values jβðcÞj j=z are increasing functions of a=z.
In this section we have considered the local densities

induced by the branes. They are well defined for points
away from the branes and do not contain renormalization
ambiguities. The global quantities, such as the total vacuum
energy in the region between the branes (per unit surface of
the branes), are also of physical interest. However, because
of the surface divergences, it cannot be obtained by direct
integration of the vacuum energy density: an additional
renormalization is required. This problem is well known
from the theory of the Casimir effect for curved boundaries
in flat spacetime. It is worth mentioning that for general
Robin boundary conditions the vacuum energy obtained by
the integration of the bulk energy density, in general, does
not coincide with the total vacuum energy evaluated as the
sum of the ground state energies for elementary oscillators.
As it has been discussed in [29] for general case of the bulk
and boundary geometries, the reason for that is the presence
of surface energy density located on constraining bounda-
ries. For a scalar field with general curvature coupling
parameter the expression for the surface energy-momentum
tensor is obtained in [29] by using the standard variational
procedure. Similar to the case of the integrated bulk energy,

the corresponding VEV requires an additional renormali-
zation. As an example we can use the approach based on
the generalized zeta function approach. We plan to address
these points in a separate publication.

VI. THE CASIMIR FORCES

The ith component of the force acting on the surface
element dS of the brane at x1 ¼ aj is given by
−hTi

lix1¼ajþ0n
l
ðþÞjdS in the region x1 ≥ aj þ 0 and by

−hTi
lix1¼aj−0n

l
ð−ÞjdS in the region x1 ≤ aj − 0, where

nlð�Þj ¼ �δl1. For the resulting force we get

dFi
ðjÞ ¼ hTi

1i
			x1¼aj−0

x1¼ajþ0
dS: ð6:1Þ

Due to the nonzero off-diagonal stress hTD
1 i, in addition

to the normal component dF1
ðjÞ, this force has nonzero

component parallel to the brane (shear force), dFD
ðjÞ. First

we will consider the normal force.

A. Normal force

For the normal force acting on the brane at x1 ¼ aj one

has dF1
ðjÞ ¼ hT1

1ijz¼aj−0
z¼ajþ0dS. For hT1

1i we have the decom-

position (5.16) in the region between the branes and
hT1

1i ¼ hT1
1ij in the remaining regions. The parts hT1

1ij
are the same on the left- and right-hand sides of the brane
and they do not contribute to the net force. The nonzero
contribution comes from the part hT1

1i − hT1
1ij [given by

the last term in (5.16)] in the region between the branes.
Hence, for the vacuum effective pressure on the brane
x1 ¼ aj, given as Pj ¼ −ðhT1

1i − hT1
1ijÞx1¼aj

, one gets

FIG. 3. The vacuum energy densities for D ¼ 4 conformally (left panel) and minimally (right panel) coupled scalar fields induced by
the branes in the region 0 < x1=z < 5. The graphs are plotted in the cases of Dirichlet, Neumann and Robin boundary conditions (with
the values of β1=z ¼ β1=z given near the curves) for the locations of the branes a1 ¼ 0, a2=z ¼ 5 and for mα ¼ 0.5.
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Pj ¼
α−1−D

2Dþ2νπ
D−1
2

Z
∞

0

dx x
−2þ ½2þ cjðx=zÞ þ 1=cjðx=zÞ�B̂1

c1ðx=zÞc2ðx=zÞe2ax=z − 1
xDþ2νF

D
2
νðxÞ: ð6:2Þ

The corresponding Casimir forces act on the sides x1 ¼
a1 þ 0 and x1 ¼ a2 − 0. They are attractive for Pj < 0 and
repulsive for Pj > 0. In the special cases of Dirichlet or
Neumann boundary conditions the Casimir forces are
obtained directly from (5.28) with i ¼ 1:

Pj ¼ −
α−1−D

2Dþ2νþ2π
D
2

X∞
n¼1

h
∂
2
ch

D
2
νðcÞ − 4ð1 − δJÞqð1Þν ðcÞ

i
c¼na=z

:

ð6:3Þ

For Dirichlet boundary condition on the brane x1 ¼ a1 and
Neumann condition for x1 ¼ a2 the corresponding formula
is obtained from (6.3) by the replacement (3.16).
The expression for the Casimir normal force in the

Minkowskian limit directly follows from (5.26). The
corresponding effective pressure is expressed as

PðMÞ
j ¼ −hT1

1ið0ÞðMÞ. Note that for the Minkowskian bulk

the forces acting on separate plates coincide regardless of
the values of the Robin coefficients. As seen from (6.2), in
general this is not the case for the AdS geometry.
For small separations between the branes, a ≪ z, the

dominant contribution to the integral in (6.2) comes from
the region with large x and we use the asymptotic (4.25) for
the function Fμ

νðxÞ. The leading term in the expansion
of the force comes from the part with −2 in the numerator
of the integrand in (6.2) and we get

Pj ≈ −
2ðz=αÞDþ1

ð4πÞD2ΓðD
2
Þ

Z
∞

0

dλ
λD

c1ðλÞc2ðλÞe2aλ − 1
: ð6:4Þ

If additionally one has a ≪ jβlj, l ¼ 1, 2, we note that the
integral in (6.4) is dominated by the contribution from
the region λ≲ 1=a and in that region c1ðλÞc2ðλÞ ≈ 1. The
estimate (6.4) is further simplified as

Pj ≈ −
DζðDþ 1Þ

ð2 ffiffiffi
π

p
αa=zÞDþ1

Γ
�
Dþ 1

2

�
; ð6:5Þ

where ζðxÞ is the Riemann zeta function. For Dirichlet
boundary conditions on both of the branes c1ðλÞc2ðλÞ ¼ 1
and we get the same leading term. For Dirichlet boundary
condition on one brane and non-Dirichlet condition on the
other, with the modulus of the Robin coefficient much
larger than a, we have c1ðλÞc2ðλÞ ≈ −1. In this case (6.4) is
reduced to

Pj ≈
DζðDþ 1Þ

ð2 ffiffiffi
π

p
αa=zÞDþ1

�
1 −

1

2D

�
Γ
�
Dþ 1

2

�
: ð6:6Þ

The approximations (6.5) and (6.6) are obtained from
the corresponding asymptotics for Robin plates in the
Minkowski spacetime replacing the separation between
the plates by the proper separation αa=z in the AdS bulk.
The asymptotics show that for small separations between
the branes (a ≪ z and a ≪ jβlj for non-Dirichlet boundary
conditions) the Casimir normal forces are repulsive for
Dirichlet boundary condition on one brane and non-
Dirichlet condition on the other [formula (6.6)]. In the
remaining cases the forces are attractive. In the asymptotic
region under consideration with the proper separation much
smaller than the curvature radius, the effects of gravity on
the Casimir forces are small and the results are similar to
those for the Minkowski bulk.
We expect that the influence of the gravity will be

essential for proper separations larger than the AdS
curvature radius. In the limit a=z ≫ 1 the integral in
(6.2) is dominated by the contribution from the region
with small x. Expanding the function FD=2

ν ðxÞ in (6.2)
one finds

Pj ≈
2π

1−D
2 α−1−Dðz=2ÞDþ2ν

ΓðDþ1
2

þ νÞΓð1þ νÞ

×
Z

∞

0

dλ λDþ2ν−1 νBν½2þ cjðλÞ þ 1=cjðλÞ� − λ2z2

c1ðλÞc2ðλÞe2aλ − 1
;

ð6:7Þ

where Bν is defined by (5.36). Under additional conditions
a ≫ jβlj, l ¼ 1, 2 (non-Neumann boundary conditions on
both of the branes), we further expand the integrand over
the small ratio jβlj=a with the result

Pj ≈ −
2ðDþ 2νþ 1Þð4νBνβ

2
j=z

2 þ 1Þ
π

D
2Γð1þ νÞαDþ1ð2a=zÞDþ2νþ2

× ζðDþ 2νþ 2ÞΓ
�
D
2
þ νþ 1

�
; ð6:8Þ

For a ≫ jβjj and for Neumann boundary condition on the
second brane [cj0 ðλÞ ¼ 1, as before, j0 ¼ 1 for j ¼ 2 and
j0 ¼ 2 for j ¼ 1] from (6.7) we get

Pj ≈
2ðDþ 2νþ 1Þð4νBνβ

2
j=z

2 þ 1Þ
π

D
2Γð1þ νÞαDþ1ð2a=zÞDþ2νþ2

×

�
1 −

1

2Dþ2νþ1

�
ζðDþ 2νþ 2ÞΓ

�
D
2
þ νþ 1

�
:

ð6:9Þ
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The forces corresponding to (6.8) and (6.9) have opposite
signs. As it has been already mentioned before, the
coefficient Bν is negative for minimally and conformally
coupled fields. Then, from (6.8) we see that, depending on
the boundary conditions, the Casimir forces can be either
attractive or repulsive at large distances. The sign of the
forces is determined by the factor 4νBνβ

2
j=z

2 þ 1. This
factor is positive near the horizon and is negative near the
AdS boundary if Bν < 0. This shows that, for given values
of the parameters, the vacuum pressure changes the sign as
a function of z.
For Neumann boundary condition on the brane at

x1 ¼ aj and at large separations, to the leading order,
we can ignore the term λ2z2 in (6.7). For non-Neumann
boundary condition on the second brane, assuming
a ≫ jβj0 j, this gives

Pj ≈ −
4νBνð1 − 21−D−2νÞζðDþ 2νÞ
π

D
2Γð1þ νÞαDþ1ð2a=zÞDþ2ν

Γ
�
D
2
þ ν

�
: ð6:10Þ

By taking into account that Bν < 0 for minimal and
conformal couplings, this result shows that for Neumann
boundary condition on the brane x1 ¼ aj and for non-
Neumann condition on the second brane the force is
repulsive at large separations. For Neumann boundary
condition on both of the branes the leading term is
expressed as

Pj ≈
4νBνζðDþ 2νÞΓðD=2þ νÞ
π

D
2Γð1þ νÞαDþ1ð2a=zÞDþ2ν

; ð6:11Þ

and the force is attractive for Bν < 0. The decay of the
normal force at large proper separations between the branes
is power law for both massless and massive cases. In the
Minkowski bulk and for massive fields the corresponding
suppression is exponential. The leading term is found

from (5.26), PðMÞ
j ∝ a−D=2e−2ma.

As seen from the analysis given above, for the brane with
Neumann boundary condition the Casimir force on that
brane decays at large separations like ðz=aÞDþ2ν regardless
the boundary condition on the second brane (except the
special case with Bν ¼ 0). For non-Neumann boundary
conditions on the brane at x1 ¼ aj and for a ≫ jβjj the
corresponding force behaves as ðz=aÞDþ2νþ2 and the
suppression is stronger. As an example let us consider
the case of Dirichlet boundary condition for x1 ¼ a1 and
Neumann condition for x1 ¼ a2. At large separations the
Casimir pressure on the brane x1 ¼ a1 is given by (6.9)
with j ¼ 1 and βj ¼ 0. It corresponds to a repulsive
force. The leading term for the Casimir force on the brane
x1 ¼ a2 is obtained from (6.10) with j ¼ 2. The force is
repulsive for Bν < 0 and attractive for Bν > 0. This shows
that, in principle, we can have a situation when the force

has an attractive nature for one brane and repulsive nature
for another.
In Fig. 4 we have displayed the normal Casimir

force versus the proper separation between the branes,
in units of the AdS curvature radius, for D ¼ 4minimally
coupled scalar field. The same boundary conditions are
imposed on the branes. The numbers near the curves are
the values for β1=z ¼ β2=z. The dashed and dotted curves
correspond to Dirichlet and Neumann boundary condi-
tions, respectively. The graphs are plotted for mα ¼ 0.5.
The presented graphs demonstrate the feature already
seen from asymptotic analysis: the forces attractive at
small separations may become repulsive for larger
distances.
Figure 5 presents the dependence of the Casimir normal

force acting on the brane at x1 ¼ a1, given by (6.2) with
j ¼ 1, on the coefficient in the Robin boundary condition
on that brane. The left and right panels correspond to
D ¼ 4 conformally and minimally coupled fields with
mα ¼ 0.5. For the proper separation between the branes
we have taken a=z ¼ 1. The graphs are plotted for different
boundary conditions on the second brane: Dirichlet and
Neumann conditions (Dir and Neu, respectively), and Robin
boundary conditions with β2=z given near the curves. The
dashed lines correspond to Dirichlet and Neumann con-
ditions on both of the branes (DD and NN), Dirichlet
(Neumann) condition at x1 ¼ a1 and Neumann (Dirichlet)
condition at x1 ¼ a2, indicated as DN (ND). The graphs
show that depending on the coefficient in the Robin
boundary conditions the force can be either attractive or
repulsive.

FIG. 4. The Casimir normal force forD ¼ 4minimally coupled
field with mα ¼ 0.5 as a function of the interbrane separation.
The graphs are plotted for Dirichlet and Neumann boundary
conditions (dashed and dotted curves), and for Robin boundary
conditions with the coefficients β1=z ¼ β2=z given near the
corresponding graphs.
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B. Shear force

As it has been emphasized above, in the problem at hand in
addition to the normal Casimir force one has a nonzero shear
force along the z direction, dFD

ðjÞ ¼ fðjÞdS, where fðjÞ is the
shear force per unit surface of the plate at z ¼ zj. The latter is

given by fðjÞ ¼ hTD
1 ijx

1¼aj−0
x1¼ajþ0

. In accordance with the

decomposition (5.17), the shear force contains two contribu-
tions. The first part comes from the term hTD

1 ij and corre-
sponds to the force acting on the brane at x1 ¼ aj when the
second brane is absent. We will call this part the self-acting

shear force and will denote by fðsÞj . Those forces acting on the
sides x1 ¼ aj − 0 and x1 ¼ aj þ 0 coincide and we get

fðsÞj ¼ hTD
1 ij

			x1¼aj−0

x1¼ajþ0
¼ 4α−1−D

2Dþ2νπ
D−1
2

Z
∞

0

dx
1

cjðx=zÞ
��

ξ −
1

4

�
x∂x þ ξ

�
xDþ2νF

D
2
νðxÞ: ð6:12Þ

By using the asymptotic (4.25), we see that for non-
conformally coupled fields and for large x the integrand
in (6.12) behaves like xD−1 and the integral is divergent in
the upper limit. For the conformal coupling the next to
the leading term should be kept and the integral is still
divergent. Of course, the divergence comes from the
surface divergences in the single brane contributions to
the VEVs. The renormalization of the divergence in the

self-action shear force can be considered in the same line as
that for the total and surface Casimir energies and will be
discussed elsewhere. Here we will be focused on the
contribution to the shear force that is induced by the
second brane. This part acts on the sides x1 ¼ a1 þ 0

and x1 ¼ a2 − 0 and is determined from the last term

in (5.17). Denoting it by fðintÞj , we get

fðintÞj ¼ −
2α−1−D

2Dþ2νπ
D−1
2

Z
∞

0

dx
cjðx=zÞ − 1=cjðx=zÞ

c1ðx=zÞc2ðx=zÞe2ax=z − 1

��
ξ −

1

4

�
x∂x þ ξ

�
xDþ2νF

D
2
νðxÞ: ð6:13Þ

This part acting on the brane at x1 ¼ aj vanishes for
Dirichlet and Neumann boundary conditions on that brane
regardless of boundary conditions on the second brane. The

shear force is directed toward the horizon for fðintÞj > 0 and

toward the AdS boundary for fðintÞj < 0.
The asymptotic behavior of the shear force is found in a

way similar to that for the normal force. At small proper

separations compared with the curvature radius, a=z ≪ 1,
one gets

fðintÞj ≈ −
2Dðξ − ξDÞzD
2Dπ

D
2ΓðD

2
ÞαDþ1

Z
∞

0

dλ λD−1 cjðλÞ − 1=cjðλÞ
c1ðλÞc2ðλÞe2aλ − 1

:

ð6:14Þ

FIG. 5. The Casimir normal force per unit surface of the brane x1 ¼ a1 as a function of the Robin coefficient in the boundary condition
on that brane for D ¼ 4 conformally (left panel) and minimally (right panel) coupled fields. The graphs are plotted for mα ¼ 0.5,
a=z ¼ 1, and for different boundary conditions on the second brane (see the text).
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For a conformally coupled field the leading term vanishes
and the next term in the expansion should be kept. If
additionally jβlj ≫ a, l ¼ 1, 2 (the condition with l ¼ j0 is
required only for non-Dirichlet boundary conditions on the
brane at x1 ¼ aj0), the further expansion gives

fðintÞj ≈
4Dðξ − ξDÞζðD − 1Þ
π

Dþ1
2 αDþ1ð2a=zÞDbj

Γ
�
D − 1

2

�
ð22−D − 1Þδ0bj0 ;

ð6:15Þ

where the last factor is present only for Dirichlet boundary
condition at x1 ¼ aj0 . Note that under the specified con-
ditions one has jbjj ≫ 1. As seen, at small separations, the
shear component of the force has opposite signs for
Dirichlet and non-Dirichlet boundary conditions on the
second brane. For a minimally coupled field with bj < 0

and for small separations the shear force acting on the brane
at x1 ¼ aj is directed toward the AdS horizon for non-
Dirichlet boundary conditions on the second brane and
toward the AdS boundary for Dirichlet condition.
At large proper separations, a=z ≫ 1, the interaction

force is approximated by

fðintÞj ≈ −
2π

1−D
2 Bνα

−1−Dðz=aÞDþ2νþ1

2Dþ2νΓðνþ 1ÞΓðDþ1
2

þ νÞ

×
Z

∞

0

dx
cjðx=aÞ − 1=cjðx=aÞ
c1ðx=aÞc2ðx=aÞe2x − 1

xDþ2ν: ð6:16Þ

This estimate is further simplified under the condition
jβlj ≪ a, l ¼ 1, 2 (the condition for l ¼ j0 is required only
for non-Neumann boundary conditions at x1 ¼ aj0 ):

fðintÞj ≈ −
4bjBνðDþ 2νþ 1ÞζðDþ 2νþ 2Þ
π

D
2Γðνþ 1ÞαDþ1ð2a=zÞDþ2νþ1

× Γ
�
D
2
þ νþ 1

��
1

2Dþ2νþ1
− 1

�
δ∞bj0 ; ð6:17Þ

where Bν is defined by (5.36) and jbjj ≪ 1. The force
(6.17) has opposite signs for Neumann and non-Neumann
boundary conditions on the brane x1 ¼ aj0 . For confor-
mally and minimally coupled fields one has Bν < 0. In
those cases, for bj < 0 and at large separations between the
branes, the shear force acting on the brane x1 ¼ aj is
directed toward the AdS horizon for Neumann boundary
condition on the second brane and toward the AdS
boundary for non-Neumann conditions.
The interaction part of the shear force acting on the brane

x1 ¼ a1 versus the distance between the branes is depicted
in Fig. 6 for D ¼ 4 conformally and minimally coupled
field (left and right panels, respectively). The graphs
are plotted for mα ¼ 0.5 and for different values of the
ratio β1=z ¼ β2=z (the numbers near the curves). In both
cases the shear force is directed toward the horizon at
small separations between the branes and toward the AdS
boundary at large separations. For a minimally coupled
field this is in agreement with the asymptotic analysis
presented above.
The interaction part of the shear force per unit surface of

the brane x1 ¼ a1 is plotted in Fig. 7 as a function of the
ratio β1=z for different boundary conditions on the second
brane (Dirichlet, Neumann and Robin conditions with the
values for β2=z presented near the curves). The left and
right panels correspond to conformally and minimally
coupled fields in (4þ 1)-dimensional AdS spacetime.
The graphs are plotted for mα ¼ 0.5 and a=z ¼ 1.

FIG. 6. The interaction contribution to the shear force per unit surface of the brane x1 ¼ a1 versus the interbrane separation for
different values of β1=z ¼ β2=z (the numbers given near the curves). The graphs are plotted for D ¼ 4 conformally (left panel) and
minimally (right panel) coupled fields with mα ¼ 0.5.
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VII. CONCLUSION

In this paper we have investigated the influence of two
parallel branes, orthogonal to the AdS boundary, on the
local properties of the scalar vacuum in background of
(Dþ 1)-dimensional AdS spacetime. Robin boundary
conditions are imposed, in general, with different coeffi-
cients on separate branes. We consider a free field theory
and the properties of the vacuum are completely determined
by the two-point functions. As a two-point function, the
positive frequency Wightman function is chosen. The local
VEVs are obtained in the coincidence limit of the argu-
ments of that function and its derivatives. For the evaluation
of the Wightman function the direct summation over the
complete set of scalar modes is used. In the region between
the branes the mode functions are given by (2.6) with the
function αjðλÞ defined as (2.9). The eigenvalues of the
quantum number λ are discretized by the boundary con-
ditions and they are expressed in terms of the roots of
Eq. (2.10). The geometry of the subspace y ¼ const,
parallel to the AdS boundary, is Minkowskian and the
eigenvalue equation coincides with that in the Casimir
problem for two Robin plates in flat spacetime. For general
Robin boundary conditions the eigenvalues of λ are given
implicitly and for the summation of the corresponding
series in the mode sum of the Wightman function we have
employed the Abel-Plana-type formula (A1). This has two
advantages: (i) an integral representation is provided for
which the explicit knowledge of the eigenvalues is not
required and (ii) the parts corresponding to the brane-free
and single brane geometries are explicitly extracted. In
particular, on the basis of (ii), the renormalization of local
VEVs for points outside the branes is reduced to the one in
the brane-free problem.
As a local characteristic of the vacuum state we have

considered the mean field squared. Based on the Wightman

function decomposition, the VEV is presented in two
equivalent forms, (4.5) and (4.6). In the second one the
contribution corresponding to the problem with a single
brane is separated. For special cases of Dirichlet and
Neumann boundary conditions the VEVs are further sim-
plified to (4.14). An alternative representation for those cases
is given by (4.18). For a conformally coupled massless scalar
field the problem under consideration is conformally related
to the problem with parallel Robin plates in the Minkowski
spacetime orthogonally intersected by a Dirichlet plate, the
latter being the conformal image of the AdS boundary. The
Dirichlet boundary condition on the conformal image is
related to the condition for the field modes (2.6) imposed on
the AdS boundary. In the Minkowskian limit we recover the
result for a massive scalar field in the geometry of two
parallel plates, previously considered in [21,22] for massless
and massive fields, respectively. For points near the branes
and not too close to the AdS boundary the dominant
contribution to the VEV comes from quantum fluctuations
with wavelengths smaller than the curvature radius and the
influence of the gravity is weak. The leading term in the
expansion over the distance from the brane coincides with
that for a plate in the Minkowski bulk with the distance from
the plate replaced by the proper distance in the AdS bulk.
The brane-induced contribution vanishes on the AdS boun-
dary. For points not too close to the branes the corresponding
asymptotic is given by (4.24). In the opposite near-horizon
limit, for fixed value of the coordinate distance a, the proper
separation between the branes is small compared to the
curvature radius and the brane-induced VEV is well
approximated by the Minkowskian expression [see (4.26)].
Depending on the boundary conditions, the mean field
squared, as a function of the distance from the brane,
may change the sign.
The vacuum energy density and stresses in the region

between the branes have been discussed in Sec. V.

FIG. 7. The interaction shear force acting on the brane x1 ¼ a1 versus the corresponding Robin coefficient forD ¼ 4 conformally (left
panel) and minimally (right panel) coupled fields. The numbers near the curves are the values of the ratio β2=z and the graphs are plotted
for mα ¼ 0.5, a=z ¼ 1.

BELLUCCI, SAHARIAN, and KOTANJYAN PHYS. REV. D 106, 065021 (2022)

065021-20



The diagonal components of the vacuum energy-
momentum tensor are given by the formula (5.7). The
only nonzero off-diagonal component corresponds to the
stress hT1

Di, expressed as (5.10). The generation of this
component is a pure brane-induced effect and gives rise to a
shear force acting on the branes. As expected, the brane-
induced contribution obeys the trace relation (5.11) and the
covariant conservation equation. Single brane contributions
in the components of the vacuum energy-momentum tensor
are explicitly separated in the representations (5.16) and
(5.17). In the Minkowskian limit we recover the results
of Refs. [21,22] for massless and massive scalar fields. In
the special case of a conformally coupled massless field the
brane-induced part has a conformal connection with the
corresponding vacuum energy-momentum tensor for two
parallel plates with Robin boundary conditions intersected
by the third plate with Dirichlet boundary condition. The
respective VEVs are given by (5.20) and (5.24).
For special cases of Dirichlet and Neumann boundary

conditions equivalent representations are given by formu-
las (5.28) and (5.32). Near the branes and near the horizon,
for fixed value of the separation a, the effects of the gravity
on the brane-induced VEVs of the components hTi

ii with
i ≠ 1 are weak and the leading terms in the corresponding
expansions coincide with those for the Minkowski bulk.
The brane-induced contributions in the diagonal compo-
nents vanish on the AdS boundary like zDþ2ν. The decay for
the off-diagonal component is stronger, as zDþ2νþ1. The
numerical investigation for the distribution of the vacuum
energy density is presented for the case when the boundary
conditions imposed on separate branes are the same. The
brane-induced vacuum energy density in the region
between the branes is negative for Dirichlet boundary
conditions and positive for Neumann conditions. For
Robin conditions there is a critical value of the coefficient

βj ¼ βðcÞj < 0 that separates two qualitatively different

distributions. For βj < βðcÞj the behavior of the energy
density is of Neuman-type: the energy density is positive
everywhere in the region between the branes. In the range

βðcÞj < βj < 0 the energy density is positive near the branes
and negative near the center with respect to the brane
locations. This type of behavior is depicted in Fig. 3.
The Casimir forces acting on the branes have two

components. The first one corresponds to the normal force
which is considered in the literature for different bulk and
boundary geometries. Interpreted in terms of the vacuum
pressure on the brane at x1 ¼ aj, it is given by the
expression (6.2) or by an alternative representation (6.3)
for Dirichlet and Neumann boundary conditions. Unlike
the problem in the Minkowskian bulk, the forces for
Dirichlet and Neumann boundary conditions are different.
Another difference is that the forces acting on separate
branes differ if the coefficients in the Robin boundary
conditions on them are different. Depending on the

boundary conditions and on the separation between the
branes the normal forces can be either attractive or
repulsive. At small separations the effects of background
curvature are weak and the force is well approximated by
the corresponding result for the Minkowski bulk. They are
repulsive for Dirichlet boundary condition on one brane
and non-Dirichlet condition on the other and attractive in
the remaining cases.
The influence of gravity is essential for proper separa-

tions larger than the AdS curvature radius. The decay of
forces at large separations is power law for both cases of
massless and massive fields. For massive fields this results
is in contrast to the exponential decay in the Minkowski
bulk. The Casimir normal force acting on the brane decays
at large separations like ðz=aÞDþ2ν for Neumann boundary
condition on that brane and behaves as ðz=aÞDþ2νþ2 for
non-Neumann boundary conditions with jβjj ≪ a. The
large-distance asymptotic behavior of the vacuum effective
pressure on the brane at x1 ¼ aj is given by (6.8) and (6.9)
for non-Neumann boundary conditions on that brane and
by (6.10) and (6.11) for Neumann condition. The sign of
the force at large separations depends on the parameter Bν,
defined by (5.36). For given values of the parameters, the
vacuum pressure may also change its sign as a function of
z. This means that the forces acting on different parts of the
brane may differ by sign.
A qualitatively different feature of the problem in the

AdS bulk is the presence of the vacuum shear force on the
branes. The corresponding part induced by the second
brane is expressed as (6.13). It vanishes for the brane with
Dirichlet or Neumann boundary conditions regardless of
the condition on the second brane. Depending on the
coefficients in the boundary conditions, on the separation
between the branes and also on the distance from the AdS
boundary, the shear component of the force can be either
positive or negative. At small separations, the leading term
in the expansion of the shear force is given by (6.15). In
particular, for a minimally coupled field with negative value
of the Robin coefficient βj the shear force on the brane
x1 ¼ aj is directed toward the AdS horizon for non-
Dirichlet boundary conditions on the second brane and
toward the AdS boundary for Dirichlet condition. At large
separations the asymptotic for the interaction part of the
shear force is given by (6.17). For minimally and con-
formally coupled fields and for βj < 0, at large separations

the force fðintÞj is directed toward the AdS horizon for
Neumann boundary condition on the second brane and
toward the AdS boundary for non-Neumann conditions.
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APPENDIX: INTEGRAL REPRESENTATION FOR THE SERIES OVER EIGENVALUES

In this section we provide an integral representation for the series Sðb;Δt; x1; x01Þ, given by (3.4). The transformation will
be based on the summation formula [21]

X∞
n¼1

fðunÞ
Nn

¼ 1

π

Z
∞

0

du fðuÞ þ i
π

Z
∞

0

du
fðeπi=2uÞ − fðe−πi=2uÞ
c̃1ðuÞc̃2ðuÞe2u − 1

−
fð0Þ=2

1 − b2 − b1
−
θðbjÞ
2bj

½h1ðeπi=2=bjÞ þ h1ðe−πi=2=bjÞ�;

ðA1Þ

where θðxÞ is the Heaviside step function, c̃jðuÞ ¼ ðbju − 1Þ=ðbjuþ 1Þ and hðuÞ ¼ ðb2ju2 þ 1ÞfðuÞ. In (A1) it is assumed
that the function fðuÞ is analytic in the right half-plane Reu > 0. For the series in (3.2) the function fðuÞ is given by the
expression

fðuÞ ¼ e−i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2=a2þb2

p
Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2=a2 þ b2
p

�
2 cos

�
u
a
Δx1

�
þ

X
l¼�1

�
eijx1þx01−2ajju=a iubj − 1

iubj þ 1

�
l
�
; ðA2Þ

with fð0Þ ¼ 0. By taking into account that for x > 0 one has

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe�πi=2xÞ2 þ b2

q
¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p
; x < b

e�πi=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − b2

p
; x > b

; ðA3Þ

and introducing a new integration variable λ ¼ u=a, the function (3.4) is presented as

Sðb;Δt; x1; x01Þ ¼ a
2
S0ðb;Δt; x1−Þ þ

a
4
Sjðb;Δt; x1þÞ þ a

πθðβjÞ
2βj

e−jx
1
þ−2ajj=βj

X
l¼�1

e−i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðli=βjÞ2þb2

p
Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðli=βjÞ2 þ b2
q

þ a
2

Z
∞

b
dλ

2 coshðλx1−Þ þ
P

l¼�1½ejx1þ−2ajjλcjðλaÞ�l
½c1ðλaÞc2ðλaÞe2aλ − 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − b2

p cosh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − b2
p

Δt
�
; ðA4Þ

where x1� ¼ x1 � x01 and

S0ðb;Δt; x1−Þ ¼
Z

∞

0

dλ
e−i

ffiffiffiffiffiffiffiffiffi
λ2þb2

p
Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ b2
p cosðλx1−Þ;

Sjðb;Δt; x1þÞ ¼
Z

∞

0

dλ
e−i

ffiffiffiffiffiffiffiffiffi
λ2þb2

p
Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ b2
p

X
l¼�1

�
eijx1þ−2ajjλ

iλβj − 1

iλβj þ 1

�
l
: ðA5Þ

For the further transformation of the function Sjðb;Δt; x1þÞ we rotate the integration contour by the angle π=2 for the
l ¼ 1 term and by the angle −π=2 for the term with l ¼ −1. This choice for the integration contours is dictated by the
behavior of the integrands in the upper and lower half-planes of the complex variable λ. The poles λ ¼ �i=βj for βj > 0 are
excluded by semicircles in the right half-plane Reλ ≥ 0 with small radius. Again, by using (A3), this gives

Sjðb;Δt; x1þÞ ¼ 2

Z
∞

b
dλ

cosh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − b2
p

Δt
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − b2

p e−λjx1þ−2ajj

cjðλaÞ
−
2π

βj
θðβjÞ

X
l¼�1

e−i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði=βjÞ2þb2

p
Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ði=βjÞ2 þ b2
q e−jx1þ−2ajj=βj : ðA6Þ

Substituting this in (A4) we see that the terms with the Heaviside step function are cancelled out and the function (3.4) is
expressed as
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Sðb;Δt; x1; x01Þ ¼ a
2
S0ðb;Δt;Δx1Þ þ

a
2

Z
∞

b
dλ

cosh ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − b2

p
ΔtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − b2
p e−λjx1þ−2ajj

cjðλaÞ

þ a
2

Z
∞

b
dλ

2 coshðλx1−Þ þ
P

l¼�1½ejx1þ−2ajjλcjðλaÞ�l
½c1ðλaÞc2ðλaÞe2aλ − 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − b2

p cosh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − b2
p

Δt
�
: ðA7Þ

Another representation, symmetric with respect to the branes, is obtained from (A7) combining the integrals:

Sðb;Δt; x1; x01Þ ¼ a
2
S0ðb;Δt;Δx1Þ þ

a
2

Z
∞

b
dλ

cosh ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − b2

p
ΔtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − b2
p 2 coshðλx1−Þ þ

P
j¼1;2e

jx1þ−2ajjλcjðλaÞ
c1ðλaÞc2ðλaÞe2aλ − 1

: ðA8Þ

Note that in the limit ð−1Þj0aj0 → þ∞, with j0 ¼ 1 for j ¼ 2 and j0 ¼ 2 for j ¼ 1, the last term in (A7) goes to zero and the
first two terms in the right-hand side determine the contribution to the Wightman function in the geometry of a single brane
at x1 ¼ aj.
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