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The Moore-Read state is one of the most well-known non-Abelian fractional quantum Hall states. It
supports non-Abelian Ising anyons in the bulk and a chiral bosonic and chiral Majorana modes on the
boundary. It has been recently conjectured that these modes are superpartners of each other and described
by a supersymmetric conformal field theory [K. K.W. Ma et al., Phys. Rev. Lett. 126, 206801 (2021).].
We propose a nonrelativistic supergeometric theory that is compatible with this picture and gives rise to an
effective spin-3=2 field in the bulk. After breaking supersymmetry through a Goldstino, the spin-3=2 field
becomes massive and can be seen as the neutral collective mode that characterizes the Moore-Read state.
By integrating out this fermion field, we obtain a purely bosonic topological action that properly encodes
the Hall conductivity, Hall viscosity and gravitational anomaly. Our work paves the way to the exploration
of the fractional quantum Hall effect through nonrelativistic supergeometry.
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE) is a mile-
stone in the understanding of topological phases of matter
[1]. Non-Abelian FQH states have been investigated since
the seminal work by Moore and Read [2]. The Moore-Read
(MR) state is a candidate to describe the filling fraction 5=2
and represents the prototypical example of FQH state that
supports non-Abelian anyons in the bulk with a single
chiral boson and chiral Majorana mode propagating on the
boundary. In the low-energy regime, these edge modes
are described by a SUð2Þ2 Wess-Zumino-Witten (WZW)
model with chiral central charge c ¼ 1þ 1=2, which is
associated to a SUð2Þ2 Chern-Simons (CS) theory in the
bulk [3–5]. However, recently it has been proposed an
alternative picture of the boundary theory of the MR state,
in which the fermionic and bosonic modes can be seen as
superpartners such that the effective theory is given by a
chiral supersymmetric conformal field theory [6–8].
The emergence of supersymmetry in this framework is
partially justified by the possible existence of a propagating
massive spin-3=2 mode in the bulk [9–11]. This collective
mode in the MR state has been argued to indeed be the
superpartner [11,12] of the spin-2 GMP (Girvin-
MacDonald-Plazman) mode [13–15]. The latter can be
seen a nonrelativistic massive graviton [16–20] while
the former would be a massive gravitino (gravitinos carry

spin-3=2 in supergravity). We remind here that without
being related to the MR state, supersymmetry has been
previously discussed in a number of works concerning the
FQHE [21–26].
In this framework, it is natural to expect that the

topological sector of the supersymmetric model describing
the MR state is given by a (2þ 1)-dimensional CS theory
invariant under some nonrelativistic superalgebra similar to
three-dimensional nonrelativistic supersymmetry or super-
gravity [27–32]. If this supersymmetric picture of the MR
state is correct, then one should also be able to take into
account further geometric effects such as the Hall viscosity
[33–37], which is an universal feature of the FQHE
and emerges once the FQH fluid is coupled to a curved
background. Several works have discussed the geometric
effective nonrelativistic field theory of the Abelian FQH
states [19,38–52], where the effective action is purely
bosonic as well as its corresponding edge states.
The main goal of our work is to fill the gap between

supersymmetry and the geometric theory for the MR state,
by introducing and studying a novel nonrelativistic super-
geometric theory that is able to describe both the chiral
boundary states and the topological and geometric bulk
features, such as Hall viscosity and the presence of massive
spin-3=2 mode. In order to combine supersymmetry with a
geometric theory compatible with the symmetries of the
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MR state, we start by defining a novel supersymmetric
extension of the extended Nappi-Witten algebra, which has
been introduced in an our previous work that deals with the
geometry of the Abelian Laughlin state [53]. Through this
new algebra, we will define the corresponding gauge
connections that contains both the external and hydrody-
namical fields. The universal topological action is given by
the CS term associated to this connection. However, in
order to obtain a massive spin-3=2 mode we will add an
extra gauge-invariant term in the action [54] that introduces
a Goldstino field and breaks supersymmetry, giving rise to
the mass term of the spin-3=2 field. This will allow us to
integrate our the fermionic field in the bulk and obtain a full
bosonic geometric theory that encodes the Hall viscosity
response of the system. On the boundary, the effect of
adding this term is that the chiral boson and chiral Majorana
modes acquire different velocities, breaking supersym-
metry at the level of the edge theory as well.
Our work offers a nonrelativistic supergeometric frame-

work to describe the universal (topological) features of the
MR state in the low-energy regime. It represents a novel
bridge between two apparently uncorrelated research fields,
i.e., nonrelativistic supersymmetry and FQHE. Although
our supersymmetric theory is formally different with
respect to other nonrelativistic supergravity models pre-
sented previously in the high-energy physics context, it is
compatible with the underlying symmetries of the FQHE
and paves the way for the construction of a more general
theory describing dynamical (nonuniversal) features of
massive gravitons and gravitinos.

II. NAPPI-WITTEN ALGEBRA AND UNBROKEN
SUPERSYMMETRY

In order to build the proper supergeometric theory for the
Moore-Read state, we need first to specify the underlying
algebra compatible with the symmetries of the FQHE. In
fact, it is well known that general relativity, in the first-order
formalism, can be seen an effective gauge theory associated
to the Lorentz group. In this formalism the metric tensor is
replaced by the spin connection and the vielbein. In the
(2þ 1)-dimensional case, both exotic (see, Ref. [55] for an
application of exotic gravity in topological phases) and
Einstein-Hilbert gravity, with and without cosmological
constant, can be rewritten as a CS theory where the
corresponding gauge connection is a linear combination
of the spin connection and the dreibein [i.e., the equivalent
of the vielbein in 2þ 1 dimensions] [56,57]. Differently
from these relativistic theories, an effective geometric
action for FQHE should take into account the magnetic
translations together with the Galilei invariance. The latter,
although not crucial in the FQHE, has been shown to be
very useful in the construction of nonrelativistic effective
theories in several FQH states. In our previous work, we
have shown that both magnetic translations and space
rotations are naturally encoded in an extended version of

the Nappi-Witten algebra [58,59], which allowed us to
build a nonrelativistic geometric theory for the Laughlin
state [53]. By following Ref. [8], we consider now, besides
the previously mentioned symmetries, also supersymmetry
as a symmetry for the Moore-Read state (in the unbroken
supersymmetric phase). In this way, by identifying the
correct supersymmetric generalization of the extended
Nappi-Witten algebra we will be able to construct a
corresponding nonrelativistic supergeometric theory by
gauging the global symmetries. This nonrelativistic super-
symmetric algebra exists and is given by

½J ;Pa� ¼ ϵa
bPb; ½Pa;Pb� ¼ −ϵabT ;

½J ;Qα� ¼
1

2
ðγ0ÞβαQβ; fQα;Qβg ¼ 1

2
ðCγ0ÞαβT ;

½Z;Pa� ¼ βϵa
bPb; ½Z;Qα� ¼

β

2
ðγ0ÞβαQβ; ð1Þ

where β is an arbitrary constant, Cαβ ¼ ϵαβ is the charge
conjugation matrix, and γ0 ¼ iσ2. In the bosonic sector Pa
(a ¼ 1; 2), stands for the generator of translations in the
two-dimensional plane, J is the generator of the spatial
rotations, T is the Lie algebra generator associated to the
external electromagnetic field and Z is a bosonic generator
associated to the emergent U(1) gauge field. The fermionic
generators Qα (α ¼ 1; 2) are Majorana supercharges. The
first line in (1) represents the Euclidean version of the
original algebra by Nappi and Witten [58], which is
ubiquitous in low-dimensional physics [60–64] and is also
related to the Maxwell algebra [65,66] in the sense that it
includes magnetic translations. The case β ¼ 0 yields a
supersymmetric extension of the Nappi-Witten symmetry.
When the superchargesQα vanish, we recover the extended
Nappi-Witten algebra employed for the Laughlin state
in [53]. From now on, we will refer to the symmetry (1)
as snw algebra.
From this novel supersymmetric algebra, by following

the gauge principle, we can naturally build a corresponding
one-form gauge connection

A ¼ ωJ þ aZ þ eaPa þ AT þQαΨα; ð2Þ

where ω is the spin connection, a is an emergent gauge
field, ea is the spatial dreibein, A is the external electro-
magnetic field, and Ψα is a fermionic spin-3=2 field.
They are all the physical fields in the effective geometric
theory that we will construct in the next section. Note that
our superalgebra includes the central generator T in
the anticommutator of the supercharges, in analogy with
the N ¼ 1 super-Bargmann algebra [67–69]. Since the
Hamiltonian generator does not appear in the fQ;Qg
bracket, this algebra does not lead to supersymmetry in
the standard sense. In order to include the Hamiltonian
generator, it is necessary to embed the algebra (1) in a lager
nonrelativistic superalgebra, as done in [53] in the purely
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bosonic case. In the same way, the supersymmetric gen-
erators cannot be understood as the square root of the
spatial translations Pa, as it happens in nonrelativistic
supergravity [29–32] or superparticle models [70,71].
Thus, the theory that will follow from gauging snw will
not define a supergravity theory.

III. SUPERGEOMETRIC CHERN-SIMONS
THEORY AND BOUNDARY CHIRAL MODES

In the previous section we introduced a novel algebra
snw, defined by the commutation relations (1), that
encodes two-dimensional magnetic translations, spatial
rotations, and supersymmetry. Another fundamental feature
in the FQHE is the absence of the time-reversal symmetry,
which is typically taken into account by considering a CS
theory, which is a topological field theory that supports a
conformal field theory (CFT) on the boundary of the
system. Because we are mainly interested in the topological
(universal) features of the MR state in the low-energy
regime, a natural choice for the construction of an effective
field theory in terms of the gauge connection (2) is to
consider a CS action of the form

SCS ¼ −
k
4π

Z
M

�
AdAþ 2

3
A ∧ A ∧ A

�
: ð3Þ

where M is a three-dimensional spacetime manifold and k
is the corresponding quantized level, which we fix k ¼ 1
for simplicity. Here, h·; ·i denotes some nondegenerate
invariant bilinear form on the gauge algebra (1), i.e.,
denoting the generators of (1) by GA ¼ fJ ;Z;Pa; T ;
Qαg, with A a collective index, the map h·; ·i∶snw ×
snw → R satisfies

iÞ hGA;GBi ¼ hGA þ ½GA;GC�;GB þ ½GB;GC�i;
iiÞ det hGA;GBi ≠ 0: ð4Þ

Given an arbitrary gauge symmetry defined by some Lie
algebra, the existence of such invariant form, and thus of a
well-defined CS action, is not guaranteed. For example, the
nondegenerate invariant bilinear form on the Poincaré
algebra in three spacetime dimensions [72] is a peculiarity
that does not occur in higher dimensions and allowed
to define a gauge theory for three-dimensional Einstein
gravity. Similarly, in the nonrelativistic case, the Galilean
symmetry does not admit a well-defined invariant form
unless its double central extension is considered, which
exists only in three space-time dimensions and allows to
define a Bargmann-invariant nonrelativistic CS gravity
theory [73]. Along the same lines, a remarkable property
of the extended supersymmetric Nappi-Witten algebra snw
is that it admits a nondegenerate invariant bilinear form,
which reads

hJ ;J i ¼ μ0; hPa;Pbi ¼ μ1δab;

hJ ;Zi ¼ μ2; hQα;Qβi ¼ μ1Cαβ;

hZ;Zi ¼ μ3; hJ ; T i ¼ β−1hZ; T i ¼ −μ1; ð5Þ
where μi (i ¼ 0; 1; 2; 3) are all arbitrary real parameters.
Therefore, it is possible to define a well-defined CS
action (3) invariant under gauge transformations δϵA ¼
dAþ ½A; ϵ� with ϵ a local parameter taking values in snw.
The construction of the CS action invariant under the
symmetry (1) is the first result of our paper. As we will see
in the next sections, such action can be used as an effective
action for the Moore-Read fractional quantum Hall states,
provided we associate the constants μi to physical quan-
tities, such as Hall conductivity, Hall viscosity and chiral
central charge.
Without matter currents, the corresponding equations of

motions are given by F ¼ 0, where F is curvature tensor
of A, namely

F ¼ dAþ 1

2
½A;A�

¼ dωJ þ daZ þ RaPa þ FT þQαDΨα; ð6Þ
where

Ra ¼ dea þ ϵabeb ∧ ðωþ βaÞ;

F ¼ dA −
1

2
ϵabea ∧ eb −

1

4
Ψ̄α ∧ ðγ0ÞαβΨβ; ð7Þ

and we have defined the covariant derivative of Ψα as

DΨα ¼ dΨα þ 1

2
ðωþ βaÞ ∧ ðγ0ÞαβΨβ: ð8Þ

By employing the above expressions and defining the
conjugate spinor Ψ̄α ¼ ΨβCβα, we can rewrite the CS
action in Eq. (3) in terms of the physical fields

SCS ¼ −
1

4π

Z
M
½μ0ω ∧ dωþ 2μ2a ∧ dωþ μ3a ∧ da

þ μ1ea ∧ Ra − 2μ1A ∧ dðωþ βaÞ − μ1Ψ̄α ∧ DΨα�:
ð9Þ

This a gauge invariant topological action for a manifold
without boundary and will give rise to the topological
response of the fractional Hall fluid in presence of the
external fields as we will discuss in full detail in the next
section. We now move our attention to the case where M
has a boundary and consider the dynamical quantummodes
induced by this effective topological action on the spatial
boundary of the system. In fact, on a manifold with
boundary a CS action is not gauge invariant anymore
and dynamical gapless degrees of freedom need to
appear on the boundary in order to compensate the gauge
anomaly of the bulk [74]. This is the well-known CS/CFT
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correspondence that holds also in our case as we now
show. We start considering for simplicity a manifold
M ¼ D2 × R, where R is associated to the timelike coor-
dinate t, while D2 is a two-dimensional disk on which we
introduce polar coordinates ðr;ϕÞ, such that its boundary is
given by one-dimensional circle S1. Thus, the boundary
theory is given by the following chiral super-WZW model
[75] for an element g of the Lie group associated to the snw
algebra,

SWZW ¼ 1

4π

Z
dtdϕhg−1∂þgg−1∂ϕgi þ

1

12π

Z
M
hðg̃−1dg̃Þ3i;

ð10Þ
which is obtained after replacing the local solution of the
CS constraint F ij ¼ 0 (i ¼ fr;ϕg), given by Ai ¼ g−1∂ig
with the boundary condition ðAt þ vAϕÞj∂M ¼ 0 back in
the action (3). Here, we consider a boundary group element
that depends only on the boundary coordinates, i.e.,
g ¼ gðt;ϕÞ.The group element g̃ in (10) is the extension
of g to the three-dimensional bulk M. In the gauge
∂rAϕ ¼ 0, one finds

g̃ðt; r;ϕÞ ¼ gðt;ϕÞhðt; rÞ; ð11Þ
for some hðt; rÞ. The result (10) then follows from
introducing the right boundary term in the CS action such
that δSjon-shell ¼ 0 and considering ∂thj∂M ¼ 0. Notice that
v will represent the velocity of the chiral modes, and we
have defined x� ¼ ð1=2Þðt� ð1=vÞϕÞ and ∂� ¼ ∂t � v∂ϕ.
In order to find the explicit form of SWZW we look at the left-
invariant Maurer-Cartan form on snw, Ω ¼ g−1dg, which
satisfies the Maurer-Cartan equation dΩþ Ω ∧ Ω ¼ 0.
From (11), one can see that the bulk and boundary left-
invariant Maurer Cartan forms are related by Ω̃ ¼
h−1Ωhþ h−1dh. By employing the snw commutation
relations (1), the Maurer-Cartan equation can be solved
and leads to

Ω ¼ dθJ þ dφZ þΩa
PPa þ ΩT T þQαΩα

Q; ð12Þ
where we have defined

Ωa
P ¼ dσa − ϵabσ

bðdθ þ βdφÞ;

ΩT ¼ dϑþ 1

2
ϵabσ

aΩb
P −

1

4
χ̄αðγ0Þαβdχβ;

Ωα
Q ¼ exp½−ð1=2Þðθ þ βφÞðγ0Þαβ�dχβ; ð13Þ

where χα is a Grassmann-valued spinor. The one-form Ω̃ has
the same functional form as Ω in terms of fields θ̃, φ̃, σ̃a and
χ̃ that include r-dependent functions which properly decou-
ple when expressing the Wess-Zumino term in (10) as a
boundary integral.
By putting now all these solutions back into SWZW, one

finds that ϑ is the Lagrange multiplier that enforces the

constraint ∂þθ0 þ β∂þφ0 ¼ 0, which implies θ þ βφ ¼
ρðtÞ þ λðx−Þ, with ρðtÞ and λðx−Þ arbitrary functions of
their arguments. Replacing this expression in the action and
integrating out the field σa, we find

SWZW ¼ 1

4π

Z
dtdϕðμ̃∂ϕφ∂þφþ μ1ψ∂þψÞ; ð14Þ

where we have imposed the extra fermionic boundary
condition χ1j

∂M ¼ constant (inspired in the three-
dimensional supergravity analysis [76,77]), introduced
the new field ψ ¼ ð ffiffiffiffiffiffiffiffiffiffi

v∂−λ
p

=2Þχ2, and defined μ̃ ¼ μ3 −
2βμ2 þ β2μ0. This chiral CFT describes the chiral boson
and chiral Majorana modes that propagate on the boundary
of the system in agreement with the boundary states of the
MR state. This represents one of the main results of our
work. Notice that in the unbroken supersymmetric limit,
both modes have the same velocity [8]. We will indeed
analyze the broken supersymmetric phase of our theory in
the next section, where we will introduce a Goldstino field
that induces a mass term to the spin-3=2 fermion.

IV. BROKEN SUPERSYMMETRY AND
TOPOLOGICAL RESPONSE

Supersymmetry breaking can be obtained by introducing
a fermionic Goldstone field, known as Goldstino [78].
Importantly, this new field induces a mass term for the
spin-3=2 field [79–81], which is expected to be a massive
collective mode of the bulk. Here we adopt the approach
proposed in Ref. [54] by one of the authors, where it has
been shown that there exists a nonpropagating fermionic
field in 2þ 1 dimensions that is able to induce a spin-3=2
mass term. We interpret this fermion as a Goldstino within
our current framework, described by the action

Sη ¼
μ1
4π

Z
M
dη̄α ∧ γ̂αβ ∧ dηα; ð15Þ

where ηα is the Goldstino spinor field describing a neutral
fermion, and η̄α ¼ ηβCβα is its conjugate. We have also
introduced the matrix γ̂αβ ¼ τðγ0Þαβ, where τ is some fixed
nondynamical clock form defining a Newton-Cartan struc-
ture. The term (15) is therefore a boundary term and does not
contribute to the bulk dynamics of the system. This action is
metric independent and so far does not introduce further
propagating degrees of freedom in our theory. Importantly, it
partially resembles the higher-derivative term that appears in
the Volkov-Akulov action for the relativistic Goldstino in
2þ 1 dimensions [82]. We can naturally couple the
Goldstino to the spin-3=2 field as follows:

dηα → dηα −
ffiffiffiffi
m

p
Ψα; dη̄α → dη̄α −

ffiffiffiffi
m

p
Ψ̄α; ð16Þ

with m a dimensionful parameter. This real coefficient is
indeed the mass of the spin-3=2 field. In fact, by replacing
the above expressions in Sη we obtain the following term
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Sm ¼ μ1m
4π

Z
M
Ψ̄α ∧ γ̂αβ ∧ Ψβ; ð17Þ

which the simplest mass term that can be built for the
spin-3=2 field and it is also parity-odd similarly to the Dirac
mass in the spin-1=2 theory [80,81]. This term breaks local
supersymmetry and is compatible with the possible existence
of a massive spin-3=2 collective mode. We can now integrate
out Ψα in the bulk action SCS þ Sm to obtain a purely
bosonic effective action that will allow us to derive the
topological response of the MR state. Before integrating out
Ψα, we rescale itΨα → ð ffiffiffiffiffiffi

8π
p ÞΨα and by assuming thatm is

large and positive and neglecting the terms that couple ηα

and Ψα (they are proportional to
ffiffiffiffi
m

p
, which we consider

small compared to m), we finally obtain a CS term
ðμ1ε=4πÞðωþ βaÞ ∧ dðωþ βaÞ (with ε ¼ signðmÞ) that
adds up to the other CS terms in (9) [83,84]. Moreover,
in order to have a unique geometric response from the
background geometry, we vary the action with respect to the
spatial dreibein ea to obtain the field equationRa ¼ 0, which
in turn yields the following equation for the torsion

Ta ≡ dea þ ϵab ∧ ebω ¼ −βϵabeb ∧ a: ð18Þ

This equation allows us to formally express the dreibein in
terms of the spin connection and the field a. Thus, the
effective action that depends only on the external fields is
obtained by integrating out also the spin-1 hydrodynamic
field a such that

S½A;ω� ¼ 1

4π

Z
M
½ĉω ∧ dωþ νA ∧ dðAþ 2s̄ωÞ�: ð19Þ

Here, for theMR state, ĉ ¼ νs̄2 − c=12, where ν ¼ 1=2, s̄ ¼
c ¼ 3=2 are the filling factor, average orbital spin and
chiral central charge, respectively [19,39]. The first and third
terms in the above action are known as gravitational Chern-
Simons [39] andWen-Zee term [85], respectively. The former
is associated to the gravitational anomaly, while the latter is
related to the Hall viscosity ηH [33–37], which represents the
response of the Hall fluid to shear or strain [38,86].
The physical coefficients in the action are obtained

by fixing the arbitrary constants μi in the invariant
bilinear form (5) as μ0 ¼ 2ενs̄þ c=12, μ1 ¼ 2νs̄ and μ2 ¼
2βνs̄ðεþ s̄Þ and μ3 ¼ 2β2νs̄ðεþ 2s̄Þ in our theory with
ε ¼ 1. Note that the results obtained in [53] for Laughlin
states can be recovered by setting ε ¼ 0 (which is com-
patible with removing the fermion field Ψα → 0) together
with ν ¼ 1=k, s̄ ¼ k=2, c ¼ 1 and a particular choice of β.
Introducing the Goldstino in the system does not only

break supersymmetry in the bulk, but also at the boundary.
Indeed, considering τ ¼ dt and the boundary value of
spin-3=2 field given by the Maurer-Cartan form Ωα

Q, one
finds that the contribution of the term (17) to the boundary
action reads

μ1mv∂−λ
16π

Z
dtdϕψ∂ϕψ : ð20Þ

where, without loss of generality we have assumed ∂−λ to
be an arbitrary constant. Thus, the effect of the Goldstino at
the boundary is a shift in the velocity of the chiral Majorana
fermion v → v0 ¼ vþmv∂−λ=4, breaking the supersym-
metry of (14). Note that β is still arbitrary and, by choosing
β ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

μ1=μ0
p

, the boundary theory obtained by adding (20)
to SWZW takes the form

Sbdy ¼
νs̄
2π

Z
dtdϕð∂ϕφð∂t þ v∂ϕÞφþ ψð∂t þ v0∂ϕÞψÞ;

ð21Þ

compatible with the broken supersymmetric phase of the
edge theory of the MR state [8].

V. CONCLUSIONS AND OUTLOOK

Summarizing, in this paper we have proposed a novel
geometric model for the Moore-Read FQH state based
on nonrelativistic supergeometry by introducing the novel
gauge algebra snw and considering the corresponding CS
action. Differently from canonical supergravity, our theory
is not relativistic and naturally generalizes the nonsuper-
symmetric actions introduced in literature for the Abelian
FQH states. On one hand, our topological action naturally
encodes a spin-3=2 fermion in the bulk, which is expected
to emerge as a collective mode in the MR state. On the
other hand, our theory gives rise to a chiral supersymmetric
CFT that decomposes into a chiral boson and a chiral
Majorana fermion. Finally, we have shown that when
supersymmetry is broken due to an effective Goldstino,
the spin-3=2 mode acquires a mass and can be integrated
out, providing the correct topological bosonic action that
takes into account both the Hall conductivity and Hall
viscosity. At the same time, supersymmetry is broken at the
boundary, where the effect of adding the Goldstino is to
modify velocity of the chiral Majorana field, recovering the
result of [8]. It would be very interesting to embed our
supergeometric theory into a generalized super-bimetric
model by following Ref. [19] to include the massive spin-2
GMP mode as the superpartner of the spin-3=2 neutral
fermion. Moreover, our supergeometric approach could be
important for the geometrical characterization of hierar-
chies of FQH states in the second Landau level build from
the MR state [87]. As it happens in the bosonic case [88],
one could expect that the right massive wave equation for
the spin-3=2 field in the FQHE can be obtained from a
special nonrelativistic limit of a spin-3=2 generalization of
the Fierz-Pauli equation in 2þ 1 dimensions. It would also
be interesting to embed our model into a full supersym-
metric Newton-Cartan geometry, as done in [53] in the
bosonic case by means of Lie algebra expansions [89–91]
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following the method introduced in [92]. We leave all these
important open points to future work.
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