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We study nonanalytic terms, which cannot be written in the form of any positive integer power of field-
dependent mass squared, in effective potential at finite temperature in one-loop approximation for a real
scalar field on the D-dimensional spacetime, S! x RP~(PF1) x [12., S!. The effective potential can be
recast into the integral form in the complex plane by using the integral representation for the modified
Bessel function of the second kind and the analytical extension for multiple mode summations. The pole
structure of the mode summations is clarified and all the nonanalytic terms are obtained by the residue
theorem. We find that the effective potential has a nonanalytic term when the dimension of the flat
Euclidean space, D — (p + 1) is odd. There appears only one nonanalytic term for the given values of

D and p, for which the nonanalytic term exists.
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I. INTRODUCTION

The effective potential at finite temperature has provided
a useful tool to study the phenomena of phase transition in
quantum field theory. Dolan and Jackiw [1] found that there
exists a nonanalytic term, which cannot be written in the
form of any positive integer power of field-dependent mass
squared, in the effective potential at finite temperature for
a scalar field. The nonanalytic term found by them is
proportional to three-halves power of the mass squared, and
the term turns out to play a crucial role to trigger the first-
order phase transition[2,3], for example, in electroweak
theories. The magnitude of the term determines the strength
of the first order phase transition and thus, it is concerned
with the scenario of electroweak baryogenesis [4] as well.
Hence, the nonanalytic term in the effective potential is an
important quantity.

Quantum field theory with compactified dimensions
has been one of the attractive approaches for physics
beyond the standard model. Orbifold compactification,
for example, provides an attractive framework for gauge-
Higgs unification, where the Higgs field is unified into
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higher-dimensional gauge fields and it is an alternative
solution to the gauge hierarchy problem([5,6]. The order of
the phase transition in the gauge-Higgs unification at finite
temperature has been studied in [7,8], and the first-order
phase transition can take place due to the term with three-
halves power of the field-dependent mass squared in the
effective potential. Compactified dimensions also offer the
theoretical framework for studying quantum field theory
itself. From a point of view of dimensional reduction
[9,10], models with several numbers of S' have been
investigated. It has been also shown that the quantum field
theory with compactified dimensions (at finite temperature)
can possess rich phase structures [11,12].

Taking account of the aforementioned studies, it is
important and interesting to investigate nonanalytic terms
in the effective potential in the presence of extra dimensions
at finite temperature. In this paper, we study all the
nonanalytic terms for a real scalar field on the D-dimen-
sional spacetime, S!x RP=(P+1) x [T7_, S!, where S!
stands for the Euclidean time direction and the spacial
directions are compactified on S!. The RP=("*1) is the
D — (p + 1)-dimensional flat Euclidean space. We assume
that the scalar field satisfies the periodic boundary con-
dition for the spacial S! direction.

The effective potential contains the modified Bessel
function of the second kind accompanied with multiple
mode summations. In addition to the integral representation
for the modified Bessel function of the second kind given
by the inverse Mellin transformation [13,14], we make use
of the analytical extension for the mode summations [15] in
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order to recast the effective potential into the integral form
in the complex plane and to obtain the nonanalytic terms by
the residue theorem.

The analytical extension consists of the products of the
gamma, zeta functions and their integrals. We clarify the pole
structure of the analytical extension and find that relevant
terms in the mode summations for yielding the nonanalytic
terms satisfy a recurrence relation, which gives a general
form for the relevant terms. Then, all the nonanalytic terms
can be obtained by the residue theorem for the poles of the
gamma and zeta functions in the general form, depending on
the even/odd D and n (n =1,2,..., p + 1). The positions
of the poles that yield the nonanalytic terms turn out not to
depend on D.

We find that a nonanalytic term appears in the effective
potential when the dimension of the flat Euclidean space,

—(p+1) is odd. There is only one nonanalytic term
for the given values of D and p, for which the nonanalytic
term exists.

This paper is organized as follows. In the next section we
rewrite the effective potential in the integral form in the
complex plane and discuss to obtain the nonanalytic terms
for the case of p = 1 explicitly, and we obtain the general

|

var= o5 (TT7 32 ) [ Gmmeioe]t o () ot + 32 () om0 )

i=0 "tn;

in order to obtain the effective potential on S! x RP=(P+1) x
. S} in the one-loop approximation. The M2( ) is the
ﬁeld dependent mass squared of the scalar field." The PE
denotes the D — (p + 1)-dimensional Euclidean momen-
tum. The f is the fermion number, which is O (1) for bosons
(fermions). The ) is the on shell degrees of freedom. The
ngy denotes the Matsubara mode at finite temperature and
the Kaluza-Klein mode n;(i =1, ..., p) comes from each
|

Then, the effective potential can be written as

Var= 115 (- 310)) (23)

2 ds

5s—0

'Hereafter, we denote M(¢p) by M for simplicity.

© 4P p+1)pE 5 27\ 2 ) P 27\ 2 5 5 —s
Z)/izﬂ)l) D) |:pE+<L_0> (no + 1) +;<Z> (n; +n;) +M} .

form for the relevant terms in the mode summations. We
calculate the nonanalytic terms by using the general form
in Sec. III and obtain the nonanalytic terms in the effective
potential in Sec. IV. The final section is devoted to
conclusions and discussions. Some details on the pole
structure of the analytical extension in the mode summa-
tions are given in Appendix A.

II. EFFECTIVE POTENTIAL IN INTEGRAL
FORM AND NONANALYTIC TERMS

We study nonanalytic terms, which cannot be written in
the form of any positive integer powers of the field-
dependent mass squared, in the effective potential for a
real scalar field at finite temperature on the D-dimensional
spacetime, S! x RP~(P+1) x TT?_, S! in one-loop approxi-
mation. We employ the Euclidean time formalism for finite
temperature field theory and then the Euclidean time
direction is compactified on S!. The spacial p dimensions
are compactified on the p numbers of S'. We denote the
circumference of each S! as L;(i=0,1,...,p) and L,
stands for the inverse temperature 7.

One needs to evaluate

S!(i=1,---p). The parameter 5, which stands for the
boundary condition for the S! direction, is determined by
quantum statistics to be 0 (%) for bosons (fermions). The
parameter 77;(i = 1, ..., p) specifies the boundary condition
for the spacial S! direction.

We employ the zeta-function regularization in order to
evaluate Eq. (2.1). Let us define

(2.2)

|
Using the formula

1 o0
A~ = —— / dtt=le A
I'(s) Jo

and the Poisson summation (A2) in Appendix A with the
replacement of Ly — 2” , my — n;, ng = m;, and ny — n;,
we arrive at

(2.4)
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D =)
Veff = (—1>f+1%[(2ﬂ2) Z Z / dt [___1 % mOLO) + +(mpr) ] M2f+2”i(m0’70+"'+mp'7p)' (25)
T —

It is convenient to separate each summation Zm[ in Eq. (2.5) into the zero mode (m; = 0) and the nonzero ones (m; # 0),
and to express Eq. (2.5) into the form

p+1
Verr = ZF("), (2.6)

n=0

where

o= S R (2.7)

0<iy<ip<--<i,<p

n N ﬂ.g . . -b_ m; m —M? wi(m: n: ebm; N

P, = OV S g P / it 121 e HOm Ly 4 L P2 ) (2.5

Here, the prime of the summation means that the zero mode (m; = 0) is removed.

ﬂ’l =—00

The F(© in Eq. (2.6) corresponds to the contribution from all the zero modes nmy = m; = --- = m » = 0in Eq. (2.5) and
. . 2
is given by

D

N 71'g b D 2 . N 2 D D
0) = (my+1Z LM 1 22
F (=1)/* > (271)0/0 drr2le (=1)/* 5 (Zﬂ)DF( 2>(M) (2.9)

On the other hand, by using the formula (A3) in Appendix A, F (L") . (n>1) can be obtained as
i

2 D
() M :
F
Li.Li,...L;, — ( mZI mz;l ( ) 4+ 4 (minLi,,)2>
K%(\/Mz{(anil)z +ot (minLin)2}> cos(2zm;,n;,) - - - cos(2mm; ;). (2.10)

In this paper, we consider a real scalar field (f = 0,V = 1) and take the periodic boundary condition7; = 0(j = 1, ..., p)
for the spacial Sjl. direction.

A. Nonanalytic terms for the case of S} x RP=2 x S}

Let us first consider that the spacetime is S} x RP~2 x S1 and study nonanalytic terms in the effective potential. Although
the results concerning the effective potential in this subsection are not new and, in fact, they are given in [9], this is a simple
but nontrivial example and is appropriate to present here the analysis on the nonanalytic terms in detail.

The effective potential on S x RP=2 x S takes the form

Ve = FO + FI) + FO), (2.11)
where F©) is given by Eq. (2.9) and

FO = F) 4 Y

2 X M?N\* . ; VRN : 2
— -—(Mﬁle (—m%L(%) K%( M?(mgLy) ) - (271)%";1 (Wﬁﬁ) K%( M?*(mL)) ) (2.12)

’It must be understood that F(©) is regularized by the dimensional regularization for D = even.
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=S

= - (sz)g i: i ((mOLO)ZA—/Il—z(mlLl)2>

which follow from Eq. (2.10). Here, the Kp(x) is the
modified Bessel function of the second kind. Let us note

that FO + F (LIJ is the effective potential at finite temper-
ature without the compactified spacial dimension.

For our purpose, let us use the integral representation for
the modified Bessel function of the second kind [13] in the
complex plane,3

1 c+ico
K, (x) = 47”/ .

The constant ¢ should be understood to be a point located
on the real axis which is greater than all the poles of the
gamma functions in the integrand. Then, we deform the
integration path in such a way that it encloses all the poles
in the integrand and we can perform the ¢ integration by the
residue theorem.

If we apply Eq. (2.14) to the first term of Eq. (2.12), we
have

(1) 2 M2 % 1 /C+ioo
F,’=— — — (¢
Lo (27[)% ( 2 > dri c—ico ( )

xT <r - l;) ¢(21) <MzL°> )

The zeta function {(2¢) is the consequence of the single
mode summation with respect to m . One can obtain all the
terms in the effective potential in terms of M [2,16] by the
residue integral for all the poles in the integrand.

Once we obtain the integral form like Eq. (2.15), it is
easy to find the nonanalytic terms, which cannot be written
in the form of any positive integer powers of M?. The pole
at t=2-n(n=0,1,2,...) of I'(t —%) yields the mass

dependence on (M2)2M~2 = (M?)", so that the residue
integral for the pole does not produce nonanalytic terms. It
turns out that any poles depending on D do not produce
nonanalytic terms. This observation is crucially used
throughout our discussions.

Moreover, we find that the mass dependence on
(M®)ZM~2 in Eq. (2.15) tells us that for D = even
(odd), half-odd integer (integer) values of ¢ can yield
nonanalytic terms. It follows that a nonanalytic term in
Eq. (2.15) arises from either a pole of I'(r) at r =0 for

A (T (i - v) <)2€) BT

(2.15)

*This is the inverse Mellin transformation for the K, (x)[14].

Ko <\/M2{(m0L0)2 + (mlLl)z}), (2.13)

D = odd or that of {(2f) at =1 for D = even, whose
value of the pole is independent of D, as stated above. One
might think that the poles of I'(¢) at t = —n(n = 1,2, ...)
could produce nonanalytic terms for D = odd. This is not,
however, the case because of the property {(27) =0 for
t=-n(n=1,2,...). This observation is also used
throughout our discussions.

For D = even, the residue theorem for the pole ¢ = % of
£(2t) gives us the nonanalytic term given by

o CDE M

D D=2
n.a. 22

7z (D-1)!! Lo

FO

Lo

where we have used

r (1 - D>
2
The abbreviation denoted by “n.a.” in Eq. (2.16) means
nonanalytic terms. Equation (2.16) is the famous term
found by Dolan and Jackiw [1] for D = 4. The other poles
of the gamma functions in the integrand and Eq. (2.9) for
D = even do not yield nonanalytic terms, so that the
Dolan-Jackiw term (2.16) is the only possible nonanalytic
term in the effective potential for D =4 and p = 0.
For D = odd, on the other hand, the pole # = 0 of I'(#) in
Eq. (2.15) gives us

_ (e
(D=1

Va. (217

D=even

m _ =T,
Fy, = 2%”%D”M , (2.18)
where we have used
D (=1)2"
I —— S ———— 2.19
( 2) D=odd D! v ( )

Equation (2.18), however, cancels the nonanalytic term of
Eq. (2.9). Thus, there is no nonanalytic term in the effective
potential for D = odd and p = 0.

Likewise, one can evaluate the second term of Eq. (2.12)
and obtains the nonanalytic term as

—%M:q for D = even,
FOl = 277 (p-1n b (2.20)
e D11
| SFe—MP for D = odd.
274D
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Let us next proceed to study nonanalytic terms in
F® =F (LZO{LI, which is rewritten in the integral form by
using Eq. (2.14) as

N

where we have first summed over m, and then m;.
Inserting (2.23) into (2.21) we have

1
()2t — It —=
%[ ()g( )+ 2 LoL%t_l < 2

+1 AR /Cl+iwdtl“t t—l—l C(2ty =2t + )I(11)¢(217) L=
Vi\Ly) 27iJe i O\ 2 )eteh Vel )

One must evaluate the double summations

[5e] o]

I'(z) Z Z{(moLo)2 + (mLy)*},

my=1 m;=1

(2.22)

which is known to have an analytical extension [15], as
shortly discussed in Appendix A, given by [see Eq. (A4)]

)C(Zt— n

(2.23)

D .
o 1 (M\E 1 /c+zoo D ML\
Fo = el R ar (1= 2 \r(ne@n (2L
Ly,L; (27[)% < 2 ) 27i oo L t 2 (Z)C< t) 2

1 M2N\2L, 1
__Q\/Z-(_>2_1_
2

(27[) 2 LO 2ri c—ioo

c+ioco

ar(1=2)r (L) (M)

2 [M*\% 1 [c+ico D\ (M\~2 1 [z\2
- (=) — / ar(i-=) (=) —(—
(27)7 \ 2 ) 27 Je i 2 2 VvV \Lg

L [ore dz1r<rl i ;) £ty = 21+ D(1,)¢(21,) (ﬂ Ll) o

X .
2ri ¢ —ioo

We note again that the poles of I'(r—%) do not yield
nonanalytic terms. This is because the residue integral with
the poles of I'(t —§) atr =2 — n(n =0, 1,2, ...) gives the
mass dependence on (M?)ZM~2 = (M?)", which are not
nonanalytic terms for n =0,1,2,.... Thus, the poles,
whose positions depend on D, do not give nonanalytic
terms, as mentioned before.

We find that nonanalytic terms in Eq. (2.24) can arise
only from the poles other than those of I'(z — £). In fact, the
nonanalytic terms are produced by the poles of t = 0 for
D = odd and 1 = { for D = even (1 = § for D = even and

= 1 for D = odd) in the first (second) term of Eq. (2.24).

On the other hand, there is no pole that contributes to the
residue integral with respect to ¢ in the third term of
Eq. (2.24), other than those of I'(r—%), as shown in
Sec. A.1 of Appendix A. This implies that the third term
in Eq. (2.24) is irrelevant for the analyses of the nonanalytic
terms because the poles of I'(r —2) do not produce any

L (2.24)

nonanalytic terms, as stressed above. This is a crucial
observation for our study on the nonanalytic terms in the
effective potential and plays a central role in the discussions.

The nonanalytic terms in F 220) 1, turn out to come from

the first and the second terms in Eq. (2.24) and we obtain

-1)? 1 1
FoL | = — D,(z F - <+> (2.25)
"na 25p 2 (D= 1)!! Ly Ly

for D = even. The first (second) term in Eq. (2.25) comes
from the pole t =1 of £(2¢) (t =1 of I'(t — 1)) in the first
(second) term of Eq. (2.24). On the other hand, for
D = odd, we obtain the nonanalytic terms as

@) (-1)= b -7 MP-2
FroL, =~ o MU~ s :

2777 D! 2572 (D=2 LoL,
(2.26)
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The first (second) term of Eq. (2.26) comes from the pole
t=00fI(¢) (r =10f {(2¢ — 1)) in the first (second) term
of Eq. (2.24).

Collecting the terms we have obtained above, we find
that for D = even the effective potential has no nonanalytic
term, i.e.,

VE:ff|n.a. = (F(()) + FSU) + F(Ll|) + F(L20)L1 )|n.a. =0

for D = even, (2.27)

although F (Llo) F 21]), and F (Lzo) 1, contain the nonanalytic
terms. For D = odd, all of FO, F (Ll()), F (Lll), and F f)’ 1, have

0
the nonanalytic terms, but some of them cancel each other.

Then, the result is given by

1 1 2
Veff|n.a. = (F<0) +F§40) +F§,]) +F20),Ll)|n.a.

-1 D1 MDP-2
= <sz )2 for D = odd.
25 a2 (D-2)!" LoL,

(2.28)

We conclude that the effective potential for the scalar field
on S! x RP=2 x S} does not have nonanalytic terms for
D = even, while for D = odd it has the nonanalytic term
given by Eq. (2.28).

B. General form for relevant terms in mode summation

In this subsection we investigate F(L'('){Ll“__’L (n=

1,2,...,p+ 1) and rewrite it in a tractable form to obtain
the nonanalytic terms. By use of the formula (2.14),
Eq. (2.10) with f = 0, ' = 1 and 57; = 0 can be written as

F(ﬂ) B on M? 5 1 /C—H’oo ar( s D M\~
Ly,Ly,..., L,y — (271_)1—2) 2 Ami c—ioo 2 2

mo=1m;=1 m,_1=1
2" (MP\T 1 [etio D\ (M\ -
=- — | — al'lt—— (=) S"W(t;Lo.Ly,...,L,_1), 2.29
(zﬂ)%<2> 47i Jo—ico < 2><2> (L. Ly v (2.29)
where we have defined
SO(tLo Ly Ly ) ST oo > {(moLg)? + (myLy)? + - (M Ly )2} (2.30)
my=1m;=1 m,_1=1
Inserting the formula (A8) into Eq. (2.29), we have
£ 2 (MR /c+ioo a2y (M) ™
Foliesbo = 0m3\ 2 ) 4i Joico 2)\2
1 7 1
X {—ES(”‘l)(t;Ll,Lz,...,Ln_l)+2—£)S(”‘1><I—E;L1,L2,...,Ln_l)
L™ gnr De@n =204 1)(Z) " 00 (15 Ly Lo L 231
—_— 1Ol —t4+= t — 2t — =U(ty;Ly, Ly, ....L,_1) ¢. )

+\/7—[2m.[1_m =147 ¢(2t +)Lo (t1:Ly. Ly 1) (2.31)

Since we are interested in the nonanalytic terms of the effective potential, Eq. (2.31) can be expressed as

£ _2n (MA\E /moo gl P (M)
folvesbotlna =208\ 2 ) 47 Jeico 2)\2
1 T 1

X {_zs(n_l)(t;leLZ’ ""Ln—l) +2\£_05(n—1) (t _E;leLZs ~-~aLn—l> } n.ai’ (232)
where we have dropped the third term in Eq. (2.31) because it is irrelevant to obtain the nonanalytic terms in F g) LiviLys

due to the fact that only the poles of I'(r — g) contribute to the residue integral with respect to ¢ in the third term of
Eq. (2.31), as shown in Sec. A.2 of Appendix A, and those of I'( — 2) do not produce any nonanalytic terms, as stressed
before. This is a crucial observation in our analysis.
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NONANALYTIC TERM IN THE EFFECTIVE POTENTIAL AT ...
It follows from Eq. (2.29) and Eq. (2.32) that as long as our considerations are restricted to the nonanalytic terms, we can
V) (4
— s ——=;Li, Ly, ..., L 2.
2L0 S t 2 s i, LiDy s Lip—1 ( 33)

use the recurrence relation
) (4 U ety
S (t’LOth ’Ln—l):_ES (t’LhLZ’ an—1)+

¢
(Li L, .Lif)—ls(1)<t—5;Ln_1), (2.34)

in Eq. (2.32). The recurrence relation (2.33) is easily solved as
-1 n—1 n—=1
S YSILIEDY
0<i|<ip<--<ip<n—-2

S(n)(t;Lo,Ll, ""Ln—l) = 1
2 =0
(2.35)

in terms of SW(t—%;L, ;). By direct calculations, S¢V)(#; L) is found to be
T(1)¢(21)

S(l) (t,L) =
m=1
Thus, we have found that
£ _ (=0 m? %L/”""" =2 (MLu-r) ™
LoLveobniy o (27[)% 2 270 Je—ico 2
n—1 , f
(~1)fx (Lo 1) ) T(1=5Je0r=0) 230
n.a.

0<i| <ip<--<ip<n—=2

X

=0

which will be used in the next section.
III. NONANALYTIC TERMS IN F;'r(l)?l‘ls'“’l‘n—l
We are ready to calculate the non-analytic terms by using Eq. (2.36) for each case of even/odd D and n. We note again
that the mass dependence of (M?2)2~" in Eq. (2.36) tells us that 7 = half-odd integer (integer) poles of I'(7 — £ and £(2t — £)

yield the nonanalytic terms for D = even(odd).
A. (D,n)=(even,even)
Since D = even in the present case, one needs the poles which are half-odd integers in the integrand of Eq. (2.36) in order
to have the nonanalytic terms, that is, the poles of I'(r — %) for # = odd and those of the {(2¢ — #) for £ = even. Hence, it is

convenient to separate the summation over ¢ into £ = odd and £ = even, as follows:
) -2t

(0 _ Lo mnE L /c+f°° LY (ML
na (20)5\ 2 ) 270 Jeoioo 2 2
. 2j—1 .
(LllLiz T izjl)_l(Ln—l)2'1_1F<t_]T) C(Zt— (2] - 1))
(3.1)

X
7 N
N

(1w
n.a.

j=1

-1
SRS

0<i) <iy<-+<iyj<n—2
(3.2)

0<i) <iy<+<ipj_ 1 <n=2
v (L L M LT = 621 =2)))
The residue integral for the first term in Eq. (3.1) is performed by the pole ¢ = % of the gamma function, which yields

TS

=0

~

-1
(LiyLi, -+ Ly, )7

3 (=1)2(=1)/~' MP~2i=1)
(D - (2_] - 1))” 0<iy <iy<-<ipj_1<n-2

§ : D-2(j-1) D-2j
j=12 ]
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of the zeta function in the second term of Eq. (3.1) gives us

Zl (- 1”( 1)/ MP-2i+1)
g 21);2]”1) 2]+1

) Z (LilLi2 o 'Liszn—1>_1
D - (2] + 1))” 0<i) <iy<-++<iyj<n—2
3 D

)2(=1)i~ 1p4D—-(2j-1)
- Z D~ 2(1 ) Z (Lz L L; Ln 1)_1-
j=1 272 (2J - 1)) + 0<iy <ip<--<iyj_,<n—=2

o (3.3)

Combining the two results (3.2) and (3.3), we obtain

n
2

-1
“lln.a. - Z ¥

Fili i

D
2

(1)1 MP-2i=)

= Z (Li,Li,+ Ly, )7 (3.4)
j=1 2 HDTZI<D (2] - 1)) 0<iy <ip<+<ipj_ <n—1 L N
where we have used the relation
(LilLiz ’ i )_l + (LilLiz o 'Li2j-2Ln—l)_l = (LilLiz o LiZj—l)_l'
0<i) <ip<-+<ip;_ 1 <n—2 0<i) <iy <+ <ipj_p<n=2 0<i) <ip<<ipj_ 1 <n—1
(3.5)

B. (D,n)=(even,odd)

Likewise the previous case, one needs the poles of I'(7 — g) for £ = odd and those of {(2¢ — £) for £ = even in Eq. (2.36)
in order to have the nonanalytic terms for D = even. Then, we write Eq. (2.36) as

#0) 1 (MA\% 1 /c+ioo a2 P\ (MLat\
LoLuoLnt |0 ™ (27[)% 2 270 Je—ioco 2 2
n—1
- o ) 2j—1
x ( (-1 (LiLi, - ~Lizj_])-l(Ln_1>2f-'F<r—J—>¢(2r— (2/-1)
j=1 0<i) <iy <+ <ipj_ <n—2 2
3 1225 LiLi Ly L2012 =2 ei- 2j -2
+Z(—) T Z (L; Ly, -~ izj_z) (Ly—1) t_T {(2t—=(2j-2))
j=1 0<i) <iy<+<iyjp<n—2 n.a.
(3.6)
The residue integral for the pole =

2L of the gamma function in the first term of Eq. (3.6) yields

D

i )3( )/ 1pD-(2j-1)
j]

(LiyLy, -~ Ly, )7
(2] - 1)) O<1]<12<2<:lzj 1<n—-2 L o

(3.7)
and the residue integral for the pole r = 2= of the zeta function in the second term in Eq. (3.6) gives
. 1D3(=1)' MP-C5=)
Z / 1) D 2/ ) Z (LilLiz '”Lizj,an—l)_l' (38)
Jj=1 (2] - 1)) *0<iy <ip<-<iyj_,<n—2
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We combine the two results (3.7) and (3.8) to yield

n+l

2 (_1)%(_1)]—1MD—(2j—1)

=122 1z (D= (2) = 1) osi <iy<-<ipy a1

Fili

(Li Ly Ly, )7 (3.9)

n—1 1)

C. (D,n)=(odd,even)
The spacetime dimension D is odd in this case, so that one needs the poles which are integers in the integrand of
Eq. (2.36) in order to have the nonanalytic terms, that is, the poles of I'(r — %) for £ = even and those of (2t — £) for

¢ = odd. From Eq. (2.36), we have the same expression as Eq. (3.1). The residue integral for the pole t = j of the zeta
function in the first term of Eq. (3.1) yields

o e o VL

_ (LiLi, - Ly, L) (3.10)
=127 1 2 (D =2j)"ogij<iy<-<ir_ <n—2

For the second term in Eq. (3.1), the pole t = j of the gamma function gives us

(- (~1)/MP2

: : L;L;--L; )" (3.11)
-(2j=1) (2j+1) . ( i ~i ir
j=0 e (D = 2j)" o<iy<ir<m<iyy<n—2 o '
We put the two results (3.10) and (3.11) together to yield
n 2 (—1)%(—1)jMD_2j
Foool =Y it (LiLy-Li ). (3.12)
T jZO TN D - 2 osiy < et

Let us note that the j = 0 contribution does not have the dependence on the scale of the ', but does the mass scale M alone.

D. (D,n)=(odd,odd)

Similar to the previous case, one needs the poles of I'(z —%) for £ = even and those of {(2t — £) for # = odd in
Eq. (2.36) in order to have the nonanalytic terms for D = odd. Then, we write Eq. (2.36) as

1 (MAE 1 /c+ioo a1 P) (ML)
na. (277;) 2 271 Jo—ico 2 2

FY(:)-Ll ~~~~~ L,y

IS

&)

A Ly ) (-2 e - )

0<i) <iy <+ <ipj_ <n—2

~.
Il
=

X
N
M"’|

&)
|

5
+Y (=D¥r > (L Ly L) T (L )T = j)E(2 = 21)) (3.13)
Jj=0 0<i) <iy <+ <ipj<n—2 n.a.
The pole # = j of the zeta function in the first term of Eq. (3.13) gives
S G 0
_Z D-(j=1) D-(j+1) . (LiJLiz"'Lizj,an—1)_1- (3.14)
=127 w2 (D =2j)ogi <iy<-<iy_ <n—2

The residue integral for the pole r = j of the gamma function in the second term of Eq. (3.13) becomes
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n—1
> (=) ()M _
- D-(2j—1) D—(2j+1) R (Li]Liz o 'Lizj) L (3-15)
=0 2@ 2 (D - 2])” 0<iy <ipy<-<ip;<n—2
We combine the two results (3.14) and (3.15) to yield
2 (=) (1M y

FLU,L, ..... Lo = - D_(2j-1) D-(2j11) ; (LilLiz T Lizj) . (3-16)

- =02 7 w2 (D=2))"osij<iy<m<ip;<n-1

Let us note again that the j = 0 contribution does not possess the scale dependence on the S', but does the mass scale M.
We have succeeded in obtaining the nonanalytic terms in F' (L':)) Lyl 8 Egs. (3.4), (3.9), (3.12), and (3.16), depending
on even/odd D and n. In order to calculate the nonanalytic terms in Eq. (2.7), it is useful to generalize the expressions of

(n)
FLO,L] ..... L

to F,E"l) £, Ina.- Then, we have

.....

n—1 0.2

[STE]

(_1)%+j—1MD—(2j—l)

(D.n) = (even,even): F\" | | = E e
o inas S 27 l)ﬂ'DZZJ(D —2j=1))N" | oty
€{i1.igemin}

(LeLey- Loy )7 ey (3.17)

2
= — . (3.18)
;2” YD - (2 - I | i

€{if.in,nin}

(LeyLey Loy, )™

,,,,, in 1 ) .
- j:UZ 2 ;w2 (D—Z])!! {01.60.625)

€{ifigenin}

5 (_1)%+j—1MD—2J‘ _
= D-(2j-1) D-(2j+1) . Z (Lflsz o 'Lf") 1
- > 2 (D — 2])!! {61692}

€{iq.ip..min}

. (3:20)

5 (_1)%+jMD—2j B
na = Z D—(2j—1) D—(2j+1 Z (Lflsz"'sz,-> ! s (319)

where the order of the elements in the set should be understood tobe £ < ¢, < -+ <&y jand i} <ip <--- < i,_y, etc.
Equations (3.17)—(3.20) will be used in the next section.

IV. NONANALYTIC TERMS IN EFFECTIVE POTENTIAL

Equipped with Eqgs. (3.17)—(3.20), let us calculate the nonanalytic terms in the effective potential (2.6). We omit the
abbreviation “n.a.” used in Secs. II and III, which stands for the nonanalytic terms. One should keep in mind that we are
treating the nonanalytic terms in this section. We introduce

(_1)§+j—1MD—(2j—1)

A (4.1)

D-2(j-1) D-2j

2D - (25— D)L

(_1)%+j—lMD—2j
D-(2j-1)

BP
D—(2j+1
TR (D — o))

in Egs. (3.17)-3.20 in order to write them in compact forms.
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A. (D,p+1)=(even, even)
Let us write the F")(n > 1) part of the effective potential in Eq. (2.6) for (D, p + 1) = (even, even) as

ol il

S R0 = i{ FOkD) 4 FORY
n=1

ptl
2
2k—1) (2k)
= > F + D F
L . LiyLiyoooiLig L . Lij Liyo-osLiyy
k=1 | 0<i|<ip<--<iy_1<p 0<i| <ip<--<iy<p
p+1
2
— -1
- Z Z Z (Lflsz'”szf—l)
k=1 | 0<i|<ip<--<iy_1<p j= {fl«va“-fzjf]}
€{ij.ip...ipp—1}
k
D -1
+ Y YA Y (LeLeLe )y (4.3)
0<i| <iy<-<in<p j=I {1L00nlrjy b

Elifuin.ise}

where we have used Egs. (2.7), (3.17), and (3.18). By changing the order of the summations with respect to j and k, we
obtain

ptl ptl
p+1 7. 2
n) D -1
E F( ) — — g E + E E A] (Lflsz N Lij—l) , (44)
n=1 j=1 k=j 0<i|<iy<--<ip_1Sp {f1.£2.- 21} 0<iy<ip<--<iy<p {f1£2.--L2j-1}

€{ifinening1} SURGING T3

where we have used the formula

+1

|~4
o
|:1
|+
|~\f
|+

k
y = (4.5)

1 j=1

=~
I
~.
Il

=

=~
II
<.

There are p +1C2j-1 numbers of the independent configurations for (Lg Ly, -+ Le,, )~! for a given value of j, each of
which has the same multiplicity in Eq. (4.4) for a fixed value of k. Hence, it is enough to calculate the multiplicity for the
configuration with £y = 0,7, = 1,...,¢5;_; = 2j — 2, that is, (LoL; - -+ Ly;_,)™" for each value of k = j,j+1,. e

2
Let us first compute the multiplicity for the case of k = j with fixed j. Aside form the factor A?, we have

- Z Z + Z z (LoLy -+ Lyjp)™ = {-1+ pi1—(2j-1yC1H(LoLy - Lyj)™!

0<iy <iy<-<ipj1<p _{01....2j-2} 0<ij<iy<-+<ipj<p {0.1....2j-2}
(SRR ij— 1} efij.ig..... 12/}
(4.6)
Let us next calculate the multiplicity for the case of k = j + 1. The result is given by
-1
SIS SRR DR S (R
0<iy<iy<<ipj <p  {0.1...2j=2} 0§i1<i2<~~~<i2,-+2§p {01 ----- 2j-2}
{i g minjyl b {iinominjya}
= {_p+1_(2j_1)C2 + p+1_(2j_1)c3}(L0L1 o 'L2j—2)_ . (4'7)
In the same manner, one can calculate the multiplicity for k = j + 2, j + 3, pTH Collecting the terms with k =

JJj+1, .. ”“ and denoting A= p + 1 — (2j — 1), which is odd for the present case, we have
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{1+ 4G+ 4Cyt 4 4Cay) + (€1 + 4 C3 4+ 4, Co) HLoLy - Lyj )™
1 1
= {—§X2A+§X2A}(L0Ll"'sz_z)_l =0. (48)
This holds for any j satisfying 1 <j < "TH and the same conclusion (4.8) holds for the other configurations of

LeLg L, - Furthermore, Eq. (2.9) is analytic for D = even. Thus, we conclude that V|, , = 0, that is, there is no
nonanalytic term in the effective potential for D = even and p + 1 = even.

B. (D,p+1)=(even,odd)
We write the F")(n > 1) part of the effective potential for this case as

pt1 5 £
ZFM) — Z{F(Zk—U + F(2k)} + Flp+l) — Z Z Z Z (Ly Ly, LfZ/'—l)_l
n=1 k=1 k=1 | 0<i|<ip<-<iy_1<p j= {{l*ZZ'“"ijf]} ‘

iz}

+ > ZAD > (LeLe, o Ley )

0<i|<ip<-<in<p j= {162 2j1}
€{if.in,.ipp}
P42
2
D -1
+ E (_I)Aj § : (Lflsz"'Lij—l) ’ (4.9)
j=1 0 <ty <<lrj1<p

where we have again used Egs. (2.7), (3.17), and (3.18). The last term in Eq. (4.9) with ]*”T” yields
—AP,(LoL,---L,)”". Then, we have
5

ptl s
2 F= S DREEEDS >, ) >, (-
j=1 k=j 0<iy <ip<-<igp_1 <p {6102 l2j1} 0<Li)<iy<-<in<p {¢1.62.--L2j—1} 08 <ty <<trj1<p
Elituin.minp-1} Elifuin.inp}
D -1 D -1
XAJ (LKILKZ.HLKZ/H) _AP_-Z(LOLIL]J) y (410)
/ 2

where we have exchanged the order of the summations with respect to j and k.

Let us count the multiplicity for the configuration with #; = 0,4, = 1,...,¢5;_; = 2j — 2. Note that the third term in
Eq. (4.10) results one for the configuration. We calculate the multiplicity of the first and the second terms in Eq. (4.10) for
k = j. Apart from the factor A?, it is calculated as

- Z Z + Z Z (LoLy -+~ Lyjp)™"

0<i | <ip<- <ipj 1 <p _{0.1....2j-2} 0<i|<ip<-+ <ip;<p {0.1...2j-2}
Elifuinnizjo Elifuinizj}

= {1+ o1y CLHLoLy -+ Lyj) ™ (4.11)

Likewise, for k = j + 1, we have

- Z z + z Z (LoLy -+ Lajp)™

0<iy<ip < <ipj <p  {0.1...2j=2} 0<i;<iy<+<ipjp<p {0.1....2j-2}
e{ij.ig..... Dj+1 €{ij.iy..... 121+2}

= {_p+1_(2j_1)C2 + p+1_(2j_1)c3}(L0L1 o 'L2j—2)_ . (4'12)
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Similarly, we can compute the multiplicity for k = j+ 1,7+ 2, ..., %. Collecting all the terms with k = j,j + 1, ..., % and
including the third term in Eq. (4.10), we have

{=(14+4C+ ,Ch+ -+ 4Cug) + (4C1 + 4C3 + -+ 4 Cuy) = TH(LoLy -+~ Lyj5) ™!

1 1
= {—<§x2“‘ —ACA> +§x2A - 1}(L0L1~--L2j_2)_1 =0, (4.13)

where A = p 41 — (2j — 1), which is even in this case. This holds for any value of j between 1 and £. Hence, the last term
in Eq. (4.10) alone is left to yield the nonanalytic term in the effective potential for D = even and p + 1 = odd, i.e.,

Veff

== —A%(L()L] c 'Lp)_]

n.a.
D+p+2

(™

bep D= §’+2><D_(p+1))!!LOL1"'Lp.

MP-(p+1)

(4.14)
2 3

C. (D,p+1)=(0dd, even)
The F")(n > 1) part of the effective potential for this case is given by

p+l

p+1
(2k—1) (2k) D -1
> F Z{F I+ FEy = Z 2. ZB >, (LaleoLe)
n=1 k=1 0<i|<ip<-<iy1<p j= {162,025}
€{if.in....ipp_1}

+ > Z PN (LeLeyLey) ). (4.15)

0<i| <ip<-<iy<p j= {fl,fz,...,fzj}
eligin...ming}

where we have used Egs. (2.7), (3.19), and (3.20). Separating the j = k contribution from the second term in Eq. (4.15) and
exchanging the summations with respect to j and k, we obtain

Pl -1 p+|

SRS S5 SE D SRNIND SIETED SUNID Dl VPSRN

J=0 k=j+1 | 0<i)<iy<-<ipp_1Zp {10225} 0Li)<iy<--<ip<p {£1.42.--22)}
Elituinmiop—1} Elipin i}

=1
2

-y > BP(Ls Ly -+ Lg )™ —B2.(LoLy---L,)™" (4.16)
k=1 0<t, <) <<€y <p 2

Here, the last term in Eq. (4.16) has been separated from the third term and corresponds to the k = 2~ H contribution of it.
Let us first study the j = O contribution in the first and the second term in Eq. (4.16), which is glven by

ot 1 !
Z{p—HCZk—l — ,11Cu} B = {5 2P+l _ (E « 2P+ _ p+1C0> }B(L))
k=1
=
e o

This exactly cancels the contribution coming from the one-loop correction for the zero modes (2.9) for D = odd. Then,
rewriting k as j in the third term in Eq. (4.16), we have
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ptl el s
R L - > > DN DD DI
J=1\ k=j+1 | 0<i)<iy<--<igg_1<p {610202j)  0Liy<iy<--<iy<p {£1.£2.--625} 0<t) <y <--<lpj<p
€{iyig.ming_1} €{iyaig..ing}
D -1 D -1
xB,- (LflLf2~~~Lf2j) —Bﬂ(LOL, '--Lp) . (4.18)
; 2

Let us count the multiplicity for the configuration #; = 0,7, =1, ...,£,; = 2j — 1 for fixed j. To this end, we extract

all the terms proportional to LoL -+ Ly;_y for k= j+1,j+2,.. S = “ from Eq. (4.18). Apart from the factor BD the
result is

{(GC1 +C3+ -+ 5Cp1) = (3Co + pCa+ -+ + pCp) = 1}(LoLy -+ Lyjy) ™"

= {Gx 2B> - Gx 28 —Bc()) = 1}(LOL1 i Lyi)T =0, (4.19)

where B = p + 1 — 2j, which is even in this case. Since Eq. (4.19) holds by any values of j = 1,2, ”T_l only the last
term in Eq. (4.18) is left to yield the nonanalytic term in the effective potential,

Vs = —B&<L0L1 - 'Lp)_l
n.a. 2
D+p
1 MDP-(p+1)
Dy D (,Hz() J* . (4.20)
2D - (p+ 1)1 Lol Ly
D. (D,p+1)=(odd, odd)
Let us proceed the fourth case. The F")(n > 1) part of the effective potential is given by
p+l 5
Z Fln) — Z{F(Zk—l) + FO} 4 Fl+D)
n=1 k=1
5
=294 X ZBD > (Lol Ly
k=1 | 0<i)<ip<-<iy_1<p j= {6162 L2}
Elifuin.minp— 1}
k 5
+ Z Z(_I)B.? Z (LeLeyLey)™ +ZBJD Z (LeLe, - Ley)™s
0<i| <ip<-<iy<p j=0 (0169625} Jj=0 08 <ty<<Cy<p
€lifin..ing}
(4.21)
where we have again used Egs. (2.7), (3.19), and (3.20). We write the above equation as
p+l 5 k1
DFM=3 20 > B X LaleeLe)'+ d . (FDB) B (Laleeele)”
n=1 k=1 j=0 | 0<i|<iy<-<iy_1<p {01625} 0<iy <ip<--<iy<p {01620 25)
Eliyuining-1} Eliin.ine)
+Z > (=1)BR(LL; Ly, +ZBD > (Le,Le,++Le,) 7" (4.22)
=1 0<i| <ir<-<iy<p 0<t <ty <<t5;<p

Note that the third term in Eq. (4.22) cancels the last one in Eq. (4.22) except for the j = 0 term, which cancels the one-loop
contribution for the zero modes (2.9) for D = odd.
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Then, what is left is the first and the second terms in Eq. (4.22). By exchanging the summations with respect to j and &,
we obtain

-2 2
ptl &= 4

F<0>+;p<n>_zi 3 -

J=0 k=j+1 | 0<ij<iy<-<iy_1<p {f1.0...02)}
€{iy in,ing—1}

2. D

0<i) <ip<--<iy<p {¢142.-L2}
€{iy.in..minp}

BP(Ly Ly, Ley,)™' (4.23)

Let us count the multiplicity for the configuration with 7, = 0,7, = 1,...,£,; = 2j — 1 for fixed j by extracting all
the terms proportional to LoL, - - Ly;_ for k = j+1,j+ 1,...,5 from Eq. (4.23). Apart from the factor B?, the result is
given by

{(GC +5C3+ -+ 5Cp2) = (3Co + pCa+ -+ pCp_1) H(LoLy - - Lyjy)™!

1 1
B {(2 2 C) - (5“3 ‘BC°>}(L°L1 e Ly) T =0,

where B = p + 1 —2j, which is odd in this case. This holds for any j satisfying 0 < j < pT—Z’ so that we have Vg|,, =0,
that is, the effective potential does not possess nonanalytic terms for D = odd and p + 1 = odd.

We have calculated the nonanalytic terms in the effective potential for any D and p. We have found that there is no
nonanalytic term for (D, p + 1) = (even, even) and (odd, odd). On the other hand, the nonanalytic term appears
for (D, p + 1) = (even, odd) and (odd, even), as shown in Eqs. (4.14) and (4.20), respectively. The results are
summarized as

(4.24)

0 for (D, p 4+ 1) = (even,even), (odd, odd),

MP-(p+1)
LoL,—~L,

(D=(p+1))!!

The famous Dolan-Jackiw term corresponds to the case of
D =4, p =0 case in Eq. (4.25). We present some results
followed from Eq. (4.25) in Table I.

We observe that the nonanalytic term appears in the
effective potential when D — (p + 1) = odd, which corre-
sponds to the odd uncompactified spacial dimensions. It
must be noticed that there is only one nonanalytic term
for the given values of D and p, for which the nonanalytic
term exists.

TABLE I. Some results on nonanalytic terms in the effective
potential on the spacetime S! x RP=(P+1D x [TV SI. We use
T(=L;'). The “non” in the table means that there is no
nonanalytic term in the effective potential and the “x” stands

for the case, where the condition D > p + 1 is not satisfied.

St x RP-rHD < J7, 8]

D=3 non %% non X X
1
D=4 _MT non 1 MT non X
127 2L\L,
D=5 non __LMT non 1_MT non
127 L, 2LyLyL;

D=6 MT non __ 1L MT non 1__MT

12072 12z L,L, 2L LyL5L,
D=7 non 1 _MT non _ 1 MT non

12022 L, 12z L LyLs

for (D, p+ 1) = (even,o0dd), (odd, even).

(4.25)

V. CONCLUSIONS AND DISCUSSIONS

We have studied the nonanalytic terms in the effective
potential for the real scalar field at finite temperature in
one-loop approximation on the D-dimensional spacetime,
St x RP=(+1) x TP, S!. The effective potential is given
in terms of the modified Bessel function of the second kind
accompanied with the multiple mode summations. We have
introduced the integral representation for the modified
Bessel function of the second kind and have also made
use of the analytical extension for the mode summations.
The effective potential is recast into the integral form in the
complex plane, and the nonanalytic terms are obtained by
the residue theorem.

We have clarified the pole structure of the analytical
extension for the mode summations and have found the
recurrence relation (2.33), from which we have obtained
the general form (2.34) for the relevant terms in the mode
summations. We have calculated the nonanalytic terms,
Egs. (3.17)-(3.20) by the residue theorem for the poles of
the gamma and zeta functions in Eq. (2.34) with Eq. (2.35),
depending on the even/odd D and n(n =1,2,...,p + 1).
The positions of the poles that yield the nonanalytic terms
are found to be independent of D. Equipped with them, we
have calculated the nonanalytic terms in the effective
potential, which is given by Eq. (4.25), including the
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famous Dolan-Jackiw term. Some explicit results are
summarized in Table I.

We have found that the effective potential has the
nonanalytic term when the dimension of the flat
Euclidean space, D — (p + 1) is odd. There is only one
nonanalytic term for the given values of D and p, for which
the nonanalytic term exists.

There are untouched issues in the paper. We have not
discussed the physical origin of such the nonanalytic term
in the effective potential. Paper [1] showed that the famous
Dolan-Jackiw term had been emerged through the zero
mode of the S! direction, reflecting the infrared dynamics
of the theory. It may be important to clarify the physical
origin of the nonanalytic term found in this paper.
Moreover, it may be important to study the physical
implication of the nonanalytic terms on, for example, the
phase transition at finite temperature.

For the case of the fermion, the boundary condition for
the S! direction is antiperiodic due to the Fermi statistics,
and we have the factor (—1)™ in the mode summation.
Then, the zeta function {(2¢) in Eq. (2.15) is replaced by
the eta function, —#(2¢), which does not possess the pole,
so that the nonanalytic term does not arise for D = 4,
p = 0 [1]. It is expected that the analytical extension for
the mode summations is modified to yield different
nonanalytic terms from those of the scalar field.
Moreover, there are degrees of freedom to choose the
periodic or antiperiodic boundary condition for each
spacial S!(i = 1,2, ..., p) direction for the fermion (sca-

lar) field. We also expect that the analytical extension for
|

the mode summations is different from that of the case for
the periodic boundary condition. Accordingly, we may
have a different type of nonanalytic terms. These will be
reported elsewhere.
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APPENDIX: MODE SUMMATIONS AND
ANALYTICAL EXTENSION

The effective potential contains the modified Bessel
function of the second kind accompanied with the mode
summations. In addition to the integral representation
(2.14) in the text for the modified Bessel function of the
second kind, one needs an analytical extension for the
mode summations in order to recast the effective potential
into the integral form and to obtain the nonanalytic terms by
the residue integral. In this appendix we present an
analytical extension for the multiple mode summations
and clarify its pole structure in the residue integral.

1. Double mode summations

The double summations (2.22) in the text has an
analytical extension [15]. In our analysis, the following
formula plays a crucial role,

0 10(r) al(t=1Y) 220 1 & 1 27,
2 21—t - v 2 - 2
F(t) Z_l{(mOLO) +c } f= _2 o2 2L0 cz(z—%) LH% Ct—% _1110 Kf—% Ly ¢
mo= 0 o=
_ 1T VAT =Y)
2 Czl 2L0 C2(t—%
1 z\2 1 ci1+ico 1 )\ 20
— (=) — Ut —t+=)C(2t; =2t + DI(¢ — , Al
+ = (x) [ (n=r+3)een -2 e (e£) ™ qa)

where we have used Eq. (2.14) in the last equality. In obtaining Eq. (A1), we have made use of the Poisson summation

oo @mg)?y

ad 1 /'n 5 - +2mingng
~[(mo-+no)Lolt — —(Z ag ! A2
> > ) )
my=—00 nyp=—00
and the formula
1 v [ .
K()=5(> / dr v lemi) (A3)
2\2) Jo
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Setting ¢ = m, L, and taking the summation » % _,, we arrive at
0 D0 > ((moka)? +(miL )} == (02(0+ 5 (-3 e 1)

my=1m;=1
1 z\2 1 c1Fico 1 L, 21
—=\7 5= dul(ty—t+= )¢ =2+ 1) 2t ]
+\/7T<LO> 2;:1'11_,.00 ! <1 +2>C( 1 =20+ ()¢ ( 1)( L0>

(A4)
This is Eq. (2.23) in the text.
As we will show below, an important observation is that the third term in Eq. (A4) has the property
L e ro = [ an e (6 =142 en =20+ ) e (#22) 7 = 0 (AS)
270 Joeioo F0) 2 [l_m AU 2 ! \"L, -

where f(f) is any function that has no poles inside the — T'(z; — %) at#; = %and thatof {(2f; —a) at r; = %+ 1. One
region of the residue integral with respect to 7. might think that I'(f, — £)¢(2t; — a) could have an infinite
Equation (A5) implies that the poles coming from the  pumber of poles at 7, = ¢—n(n=1,2,3---). This is not,
third term of Eq. (A4) do not contribute to the residue however, the case because of the property ¢(—2n) = 0 for

integral with respect to 7 in Eq. (AS). A similar property  , — | 2 3 . Thisis an important observation, which will
holds for the multiple mode summations, as we will see in be used throughout our analyses.

the next subsection. o The 7, integration on the left-hand side of Eq. (A5) can
To show Eq. (AS5), we first note that the combination of  pe performed as the residue integral and the result is
['(t; —5){(2t; — a) has no poles except for the pole of

i- ¢ +ico dr, F(ﬁ _t+;)é’(2[l -2t + l)r( )§(2t1)< Ll) =21

211 Jor—ieo L
=¢or <z - %) [2i—1) <zz i—é) e %r (%) r(1)¢(21) <,T %) -
+ 5(0)F<% - f)C(l - 26) + %r(%)m —1)¢(2-21) (ﬂi_(l))_l, (A6)

which leads to Eq. (AS), as can be confirmed by direct calculations.

2. Multiple mode summations and pole structure

In this section we generalize the previous analysis of the double mode summations to the multiple ones

S< )(l Lo,L],..., _ E Z Z Z { moLO m]Ll) —|—--'—|—(mn_1L,,_|)2}_’. (A7)
o=1m;=1 my_1=1
By use of the formula (A1), S(")(t; Lo, Ly,...,L,_;) can be expressed into a recursive form as

1 T 1
SW(t; Lo, Lys ... Lyy) = —§S<"—1>(t;L1,L2, cerLyey) +2‘/L_OS<"-1> (r = 5L Lo, ...,Ln_l>

n 1 l/c|+ioodt o, t—l—l C(Zt 2t+1) T _2t1+21S(”_1)<t'L . . )
\/7_[271,'[ c1—ico 1 1 2 1 LO 1o Le]s iy vees iy_1)»

(A8)
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where we have defined

SRt Ly Lisrs oo L) =T D > oo Y L) 4 (my Ly )* + -+ + (my Lo )P} (A9)

mp=1my =1 m,_1=1

fork=0,1,....n—1.
In the following, we shall show that the third term in Eq. (A8) has the property

1 c+ioco 1 c1+ico 1 7\ —2t+2t
— dtf(z),/ dy, T h—t+s (2t =2t +1) T St=U(t;;Ly, Ly, ....L,_;) =0, (A10)

2mi c—ico 2mi |—ic0 0

where f(¢) is any function that has no poles inside the region of the residue integral with respect to . Equation (A10) implies
that the poles of the third term in Eq. (A8) with respect to ¢ do not totally contribute to the residue integral of t, although the
third term in Eq. (A8) has several poles with respect to ¢, as we will see below.

By repeatedly using the relation (AS), S<”)(t; Ly,Ly,...,L,_;) can be expressed into the form
S (t; Ly, Ly, ....L,_y) = (Py + Py + P3)"'S"(t; Ly, Ly, ..., L,_,)

303
:ZZ ZPJI Gy Py S"W(t Lo, Ly, ..., L,y), (A11)

J1=1jx=1 Jn1=1

where the operation of P; (j = 1,2,3) is defined by

1
PSRt Ly Ly, oo Lysy) = —ES(n_k_l)(f; Lii1:Liya, o Lyy), (A12)
T 1
PSP (5 Ly Lyyy, ooy L) = T\Q;S("_k_w <l - E;LkJrl’LkJer Ln—l)v (A13)

P3S(n_k> (t’ Lk’ Lk+1’ ceey Ln—l)

1 1 ¢ +ico 1 7\ "2ht2 (n—k—1)
:\/—Ez—m dt1F tl —t+5 C(Ztl —2t+1) L_ S (tl;Lk+l7Lk+27""Ln—l>' (A14)
c1—o0

k
For instance, let us consider the term (P;)"~*~"=1(P,)/(P3)"S" (t; Ly, L,, ..., L,_,), which is explicitly given by

(Py)"==m=1(Py)? (P3)"S" (t; Lo, Ly, ... L)

_ | 1/C‘+i°°dzrz e —aua y(Z2)
_\/772711' iU 2 ! L,
¢y t+ico 1 7\ ~2+2n
— de,I’ 182t =2t + 1) —
fzn o e (kg2 ()
1 Cm+too 1 Js =212t
—— —t = 1¢(2t, — 2t 1
e oo
n—¢—m—1
(v (L sofe ~2on
2Lm#»l 2Lf+m—l 2 2
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R () (x)
2”_'"_1 LyLyyr---Leyma \Lo

¢y +ico

L 2t
danr -1 2[ -2t 1
“2ri 27” cj—ico ! < - ) : " ><L1)

Ll 2t
tz—t1+ 2t2—2t1+1) L_ X
2

cr+ico
X — dtQF
2m y—ico

1 Cptico
t | ¢t 2t, —2 1
27” o, —ico d m < m Ln—1 + )C( I L1 =+ )
f Lm—l 2tm
rit,—=1)¢2t,-¢)| —— . Al5
(1 =5 )em - o) () (A1)
In the second equality of Eq. (A15), we have used
3 4 = — F(tm - g)g(ztm - f)

S(1) <tm - E;L”_1> — F<tm - 5) Z (M1 L)+t = (L n? . (A16)

my,_1=1

Let f(¢) be any function which has no pole inside the region of the residue integral with respect to z. Then, we can show
that

1 c+ico
5 AP (P (Pa)" S (5 Lo, Ly oo Lyey)] = O (A17)

it m>1.
To show Eq. (A17), we perform the residue integrals of Eq. (A15) with respect to {7,,,,,_1, - -, } successively by use
of the relations

1 cjtico

1 k
dfjg(fj)r<fj — 1t 2) €21 =210 + l)r‘(fj - 2> £(21; = k)

2mi cj—ico

= g(tj_] —%)C(O)F(tj_] —%)g(ztj_l —(k+1)) +%g(tj_1)f‘<%>f‘<tj_1 —§>§(21j_1 —k)
+g<§>§(0)l—‘<k—_|2_1 >C(k+ 1=26)+ lg(k;— 1)1“(%)1“(%—t.,-_l)C(k+2—2tj_1), (A18)

1 [e+ioo k

. 1

- g(;,._l - %) £()r (% - j_1> Ck+1-260) + %g(zj_l)r G)FG - j_1>cj(k “2, )
_ g(%)é’(O)F(k%l— ,_l)g(k C1-26) —%gC%l)rG)r(g _ ;j_l)ak S, (A19)

where g(t;) is any function that has no poles inside the region of the residue integral with respect to ;. We note that there
appears only the combination of the type I'(£(z;_y —£)){(%(2t;—; — ¢)) for some integer # on the right-hand side of the
formulas (A18) and (A19), so that we can perform the residue 1ntegrals with respect to t,,,1,_1, ..., I, successively.

After performing the residue integrals with respect to ¢;(j = m,m — ,2) by use of the formulas (A18) and (A19),
Eq. (A15) can be written as the sum of the terms proportlonal to the followmg types of the integrals,

1 cytioco

dtyg.(t,)C <t1 —t+ %) (21 =21+ 1)F<i (tl - §)>g(i(2tl -7)), (A20)

2w cj—ico
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where ¢ is some positive integer and g,(,) is some function, which has no poles inside the region of the residue integral

with respect t;.

It is now easy to show Eq. (A17), which follows from the relation

L 1_[‘% dllgg(t])r<tl i ;) cr =21+ I)F(j: <t1 - i))g’(i(%l ) =0  (A21)

27i c—ioo 27i | —ico

with Egs. (A18) and (A19). It should be emphasized that
Eq. (A21) does not mean that the integrand of Eq. (A17)
has no poles with respect to ¢. In fact, the integrand of
Eq. (A17) has several poles with respect to ¢ and each pole
contributes to the residue integral of ¢, though the sum of
their residues totally cancels each other.

We have proved Eq. (A17) for a special order of
P; P; ---P; . Since P;P.S"M(t;Li,Lyjy,-+.L, )
(j,k=1,2,3) is identical to the opposite order of
PP S"M(t; Ly, Lyyy,....L,_;) with the exchange of

[

Ly <> L, (and with a shift of the integration parameter,
if necessary), we generally have

1 c+ico
— dtf(t)[P; P

P
2mi c—ioo

o S (Lo Lyoe L) =0

B’
(A22)
if some of j (s = 1,2,...,n — 1) take the value of 3. This

result immediately leads to Eq. (A10) because Eq. (A10)
corresponds to the case of j; = 3 in Eq. (A22).
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