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We consider the Nielsen-Olesen vortex nonminimally coupled to Einstein gravity with a cosmological
constant Λ. A nonminimal coupling term ξRjϕj2 is natural to add to the vortex as it preserves gauge
invariance (here R is the Ricci scalar and ξ a dimensionless coupling constant). This term plays a dual role:
It contributes to the potential of the scalar field and to the Einstein-Hilbert term for gravity. As a
consequence, the vacuum expectation value (VEV) of the scalar field and the cosmological constant in the
AdS3 background depend on ξ. This leads to a novel feature: There is a critical coupling ξc where the VEV
is zero for ξ ≥ ξc but becomes nonzero when ξ crosses below ξc and the gauge symmetry is spontaneously
broken. Moreover, we show that the VEV near the critical coupling has a power-law behavior proportional
to jξ − ξcj1=2. Therefore, ξc can be viewed as the analog of the critical temperature Tc in Ginzburg-Landau
(GL) mean-field theory where a second-order phase transition occurs below Tc and the order parameter has
a similar power-law behavior proportional to jT − Tcj1=2 near Tc. The plot of the VEV as a function of ξ
shows a clear discontinuity in the slope at ξc and looks similar to plots of the order parameter versus
temperature in GL theory. The critical coupling exists only in an AdS3 background; it does not exist in
asymptotically flat spacetime (topologically a cone) where the VEV remains at a fixed nonzero value
independent of ξ. However, the deficit angle of the asymptotic conical spacetime depends on ξ and is no
longer determined solely by the mass; remarkably, a higher mass does not necessarily yield a higher deficit
angle. The equations of motion are more complicated with the nonminimal coupling term present.
However, via a convenient substitution, one can reduce the number of equations and solve them
numerically to obtain exact vortex solutions.
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I. INTRODUCTION

In this work, we consider the Nielsen-Olesen vortex, a
2þ 1-dimensional Abelian Higgs model, nonminimally
coupled to Einstein gravity with and without a cosmologi-
cal constant. Compared to previous work on the effects of
gravity on vortices [1–4], the new ingredient in the action is
the nonminimal coupling term ξRjϕj2, where R is the Ricci
scalar, ξ is a dimensionless coupling constant, and ϕ is a
complex scalar field. When gravity is present, it is perfectly
fitting to add this term to the action as it preserves the local
Uð1Þ gauge invariance of the vortex.
The nonminimal coupling term changes the physical

landscape significantly, in a qualitative fashion. This is
related to the dual role that it plays: It acts as part of the

potential for the scalar field but also contributes to the
Einstein-Hilbert term for gravity. As a consequence, the old
parameters when ξ ¼ 0 such as the vacuum expectation
value (VEV) v, cosmological constant Λ, and α (propor-
tional to the inverse of Newton’s constant) effectively
become the VEV veff, the asymptotic cosmological constant
Λeff , and αeff , respectively, which now depend on the
coupling ξ. The novel feature that emerges is that in an
AdS3 background, where Λeff is nonzero and negative,
there exists a critical coupling ξc where the VEV veff is zero
for ξ at or above ξc but is nonzero when ξ crosses below ξc.
When the VEV crosses from zero to nonzero at ξc, the local
Uð1Þ gauge symmetry is spontaneously broken corre-
sponding to a phase transition to a vortex. The critical
coupling ξc acts like the analog of the critical temperature
Tc in Ginzburg-Landau (GL) mean-field theory where the
order parameter is zero above Tc but nonzero below Tc
[5,6]. There is a second-order phase transition when the
temperature crosses below Tc, and this is typically accom-
panied by a symmetry that is spontaneously broken. The
analogy between ξc and Tc can be made quantitative. Near
ξc, we show that the VEV veff has a power-law behavior
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proportional to jξ− ξcj1=2 which is similar to the jT−Tcj1=2
power-law behavior of the order parameter near Tc in GL
mean-field theory [5,6]; both have a critical exponent of
1=2. The plot of the VEV versus the coupling ξ looks very
similar to the plot of the order parameter versus temperature
T in GL mean-field theory, and in both cases there is a
discontinuity in the slope at the critical point where the
slope diverges.
The magnitude of the scalar field, represented by the

function fðrÞ, starts at zero at the origin, r ¼ 0, and reaches
its VEVasymptotically (at a large radius, the computational
boundary R which formally represents infinity). An impor-
tant feature is that the scalar field reaches its VEV more
slowly, over a larger radius, as one approaches the critical
coupling ξc. In other words, the core of the vortex extends
out further. The plot of the scalar field’s “extension”1 as a
function of ξ shows a dramatic increase near the critical
coupling ξc. We show analytically that the extension is
expected to diverge in the limit ξ → ξc. This is the analog to
the divergence of the coherence length at the critical
temperature Tc in GL mean-field theory [5,6]. We also
plot the extension of the magnetic field, which shows a
similar trend; starting at its peak value at the origin, it falls
off more slowly (extends further out) as one approaches the
critical coupling ξc.
We derive analytical expressions for the VEV veff and the

asymptotic cosmological constant Λeff as a function of ξ
and four other parameters that appear in the Lagrangian.
When ξ ¼ 0, veff reduces to v and Λeff reduces to Λ.
However, when ξ ≠ 0, veff does not depend only on v and ξ
and Λeff does not depend only on Λ and ξ. They each
depend on five parameters in total. A nonzero ξ therefore
causes veff and Λeff to have a dependence on extra
parameters besides itself compared to ξ ¼ 0. This wider
influence ultimately stems from the aforementioned dual
role that the nonminimal coupling term plays.
An important point is that the critical coupling exists

only in asymptotic AdS3 spacetime; it does not exist in
asymptotically flat spacetime (Λeff ¼ 0) where the VEV is
a fixed nonzero constant independent of ξ. However, the
nonminimal coupling term still plays a significant role in a
flat background. In 2þ 1-dimensional general relativity
without a cosmological constant, it is well known that
outside matter the spacetime is locally flat but has the
topology of a cone whose deficit angle is proportional to
the mass [7]. However, we find that the deficit angle is not
determined solely by the mass of the vortex but also
depends on the coupling ξ. One remarkable consequence
of this is that a higher mass does not necessarily yield a
higher deficit angle.
The focus of this paper is to study how the vortex

changes with the coupling ξ. The effect of other parameters

such as Λ, v, and the winding number n has already been
studied in previous work [3]. We therefore fix all other
parameters and obtain numerical results for different values
of ξ. With the nonminimal coupling term, the equations of
motion are more complicated. Nonetheless, via a conven-
ient substitution, one can reduce the number of equations
and solve them numerically. In an AdS3 background, we
obtain vortex solutions for nine values of the coupling ξ.
These range from −0.14 to 0.095 (near ξc) and include the
case ξ ¼ 0. For the parameters chosen, the critical coupling
turns out to be equal to ξc ¼ 2=21 ≈ 0.0952. Note that ξc is
an upper bound as the VEV is zero for any ξ above this
value. For each ξ, we provide plots of the scalar field fðrÞ,
gauge field aðrÞ, metric field AðrÞ, and magnetic field
BmðrÞ. In Table I, for each ξ, we state the numerical values
obtained for the VEV veff, the cosmological constant Λeff ,
the ADM mass, the peak value of the magnetic field, and
the numerically integrated magnetic flux. The expected
theoretical values for veff and Λeff obtained from our
derived analytical expressions are also quoted in the table.
The numerical values and the theoretical expectations for
the VEV, cosmological constant, and magnetic flux match
almost exactly (to great accuracy, within three or four
decimal places). This provides a strong mutual confirma-
tion of both our numerical simulation and our derived
analytical expressions. We verify numerically that the VEV
near ξc indeed obeys the power law jξ − ξcj1=2. As
previously mentioned, the critical exponent of 1=2 points
to a clear analogy with GL mean-field theory where ξc acts
as the analog of the critical temperature Tc. For asymp-
totically flat spacetime, we consider five values of ξ ranging
from −0.4 to þ0.4. The metric field AðrÞ starts at unity at
the origin r ¼ 0 but then dips below unity and asymptoti-
cally reaches (at sufficiently large radius) a plateau at a
positive constant value (labeled D) that is different for each
ξ. This is in stark contrast to AdS3 where the metric field
AðrÞ grows as r2 at radius. The mass and the deficit angle at
each ξ are calculated from the numerical value obtained
for D.
We now place this paper in context, with a focus on

previous studies of gravitating vortices that we referred to
earlier [1–4]. It was recognized a long time ago that
Einstein gravity in 2þ 1 dimensions yields a locally flat
spacetime outside localized sources, albeit with the top-
ology of a cone [7]. However, it becomes interesting when
one includes a negative cosmological constant as this leads
to the famous BTZ black holes [8,9]. Later, in a higher-
derivative extension of Einstein gravity in 2þ 1 dimen-
sions called Bergshoeff-Hohm-Townsend (BHT) massive
gravity [10], black hole solutions in both de Sitter and anti-
de Sitter space were found, as were wormhole solutions,
kinks, and gravitational solitons [11]. An analytical study
of black holes with spherical scalar hair in AdS3 was later
studied [1]. Closer to our topic of interest, black hole vortex
solutions with a complex scalar field were constructed.

1The extension is defined here as the radius where it reaches
99.9% of its VEV.
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These solutions departed from the conventional nonsingu-
lar vortex in two ways. The scalar field had a singularity at
the origin and asymptotically tended towards zero, which
satisfied the Breitenlohner-Freedman bound [12] in AdS3
but was not the minimum of the potential. In [2], how
vortices affect the tunneling decay of a false vacuum under
Einstein gravity was studied, and it was found that,
compared to Coleman–de Luccia bubbles [13], the tunnel-
ing exponent was less by a factor of a half. Hence, vortices
are short-lived and become of cosmological interest [2].
The nonsingular vortex under Einstein gravity in an AdS3
and Minkowski background was first studied in [3]. These
were not black hole solutions as in [1]. Nonsingular vortex
solutions were found numerically for different values of the
cosmological constant Λ, VEV v, and winding number n.
Two expressions for the (ADM) mass of the vortex were
obtained: one in terms of the metric and one as an integral
over purely matter fields. The latter showed that the mass
was roughly proportional to n2v2 (an n2 dependence was
also found in [1]). The mass of the vortex increased as the
magnitude of the cosmological constant increased, and this
led to a slightly smaller core for the vortex. Later, work was
extended to include singular vortex solutions besides non-
singular ones [4]. Vortices with conical singularities were
obtained in flat backgrounds, and BTZ black hole solutions
were obtained in curved backgrounds, though it was found
that the vortex cannot ultimately hold a black hole at its core
[4]. Our present paper introduces the nonminimal coupling
term which is missing in all previous studies of gravitating
vortices. As previously pointed out, this term preserves the
local Uð1Þ gauge invariance of the vortex and is therefore a
perfectly natural candidate to add to the action when gravity
is present. We already discussed how this term significantly
changes the physics qualitatively.
Our paper is organized as follows. In Sec. II, we obtain

analytical expressions for the VEV veff and the cosmo-
logical constant Λeff in terms of ξ and other parameters.
Details of the derivation are relegated to Appendix A. We
also obtain an expression for the critical coupling ξc in
terms of the parameters of the theory and discuss the
analogy with the critical temperature Tc in GL mean-field
theory. In Sec. III, we state the equations of motion in an
abbreviated form, and in Appendix B we write down the
full equations that are used in our numerical simulation. In
Sec. IV, we obtain analytical expressions for the asymptotic
metric. In Sec. V, we obtain an expression for the ADM
mass as well as an expression for the deficit angle in
asymptotically flat space. In Sec. VI, we state the expres-
sion for the magnetic field and derive a formula for the
magnetic flux which is a topological invariant independent
of ξ. In Sec. VII, we present all of our numerical results in
plots and tables for different values of the coupling ξ in
both an AdS3 and a Minkowski background. Before
presenting the numerical results, we obtain useful analyti-
cal expressions for the behavior of the scalar, gauge, and

metric field asymptotically and near the origin. We end
with our conclusion in Sec. VIII where, among other
things, we discuss an interesting and challenging problem
to solve in the future.

II. LAGRANGIAN FOR THE VORTEX
NONMINIMALLY COUPLED TO

EINSTEIN GRAVITY

The vortex nonminimally coupled to Einstein gravity
with a cosmological constant has the following Lagrangian
density in 2þ 1 dimensions:

L ¼ ffiffiffiffiffiffi
−g

p �
αðR − 2ΛÞ − 1

4
FμνFμν −

1

2
ðDμϕÞ†ðDμϕÞ

þ ξRjϕj2 − λ

4
ðjϕj2 − v2Þ2

�
: ð1Þ

Here, ϕ is a complex scalar field, Fμν is the usual
electromagnetic field tensor, R is the Ricci scalar, Λ is a
cosmological constant, the constant α is equal to 1

16πGwhere
G is Newton’s constant, and ξ is a dimensionless coupling
constant. The interaction with the gauge field Aμ is
incorporated via the usual covariant derivative Dμϕ ¼
∂μϕþ ieAμϕ where e is a coupling constant. The constants
λ and v are parameters that enter into the potential for the
scalar field. The constants α, λ, and v are positive, whereas
ξ can be positive, negative, or zero. In 2þ 1-dimensional
general relativity, positive Λ does not yield black holes (i.e.,
the famous BTZ black holes require negative Λ). Similarly,
positive Λ does not support vortices [3], and the non-
minimal coupling term does not change that fact. We will
see that Λ must be either negative or zero, which will
ultimately yield asymptotic AdS3 or Minkowski spacetime,
respectively.
The Lagrangian density has a local Uð1Þ symmetry; it is

invariant under the following gauge transformations:

ϕðxÞ → eieηðxÞϕðxÞ; ð2Þ

AμðxÞ → AμðxÞ − ∂μηðxÞ ð3Þ

where ηðxÞ is an arbitrary function. The nonminimal
coupling term ξRjϕj2 is clearly invariant under the above
gauge transformation and is therefore a perfectly natural
ingredient to add to the gravitating vortex.

A. VEV and cosmological constant as a function of ξ

When ξ ¼ 0, the VEV and cosmological constant are
simply v and Λ, respectively. When ξ ≠ 0, the VEV and
cosmological constant change and become functions of ξ and
other parameters. These will be labeled by veff and Λeff to
denote that they are the actual (effective) VEV and cosmo-
logical constant, respectively, for general coupling ξ. In this
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section, we determine their expressions. This requires one to
know only the asymptotic behavior of the fields, and this can
be determined directly from the Lagrangianwithout working
out the full equations of motion.
Asymptotically, one reaches the vacuum when the

asymptotic spacetime is either AdS3 or Minkowski; these
are maximally symmetric spacetimes that can be viewed as
the ground states of general relativity [14]. In this asymptotic
region, the kinetic terms for the scalar field and gauge field
tend to zero: − 1

2
ðDμϕÞ†ðDμϕÞ → 0 and − 1

4
FμνFμν → 0.

This occurs when the magnitude of the scalar field asymp-
totically approaches the minimum of the potential (the
nonzero VEV) and the gauge field approaches a nonzero
constant equal to the winding number n. In 2þ 1 dimen-
sions, the asymptotic value of the Ricci scalar is given by2

6Λeff where Λeff is either negative (AdS3 background) or
zero (Minkowski background). The potential for the scalar
field can be readily picked out from the Lagrangian and is
asymptotically given by

VðjϕjÞ ¼ λ

4
ðjϕj2 − v2Þ2 − ξRjϕj2

¼ λ

4
ðjϕj2 − v2Þ2 − 6ξΛeff jϕj2: ð4Þ

The VEVoccurs at the minimum of this potential where the
derivative with respect to jϕj is zero. This yields two
possibilities: jϕj ¼ 0 and the solution

jϕj2 ¼ v2eff ¼ v2 þ 12ξΛeff

λ
: ð5Þ

When v2eff is positive, veff is the minimum of the potential,
and it corresponds to the VEV (and jϕj ¼ 0 is a local
maximum). In this case, since theVEVis nonzero, the gauge
symmetry is spontaneously broken. When v2eff is negative
(and hence veff is imaginary), this signals that jϕj ¼ 0 is now
the minimum of the potential (the VEV). A zero VEV
corresponds to the unbroken phase.
With the nonminimal coupling term ξRϕ2 present in the

action, the cosmological constant is asymptotically no
longer Λ but Λeff ; this is governed by the equation

αðR−2ΛÞþξRv2eff −
λ

4
ðv2eff−v2Þ2¼ðαþv2effξÞðR−2ΛeffÞ:

ð6Þ

If we substitute R ¼ 6Λeff above, we can solve Eqs. (5) and
(6) for veff and Λeff as a function of ξ and the other
parameters of the theory. This is worked out in Appendix A
in Eqs. (A7) and (A8):

veff ¼
�
2v2 þ α

ξ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαþ v2ξÞ2 − 24αΛξ2=λ

p
ξ

�
1=2

ð7Þ

and

Λeff ¼
λ

12ξ2

�
αþ v2ξ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαþ v2ξÞ2 − 24αΛξ2=λ

q �
: ð8Þ

Equation (6) also implies that the coefficient in front of R
asymptotically is not α but

αeff ¼ αþ v2effξ: ð9Þ

Newton’s constant is asymptotically obtained from αeff , so
the condition αeff > 0 must be satisfied. We expect that
limξ→0 veff ¼ v, limξ→0 Λeff ¼ Λ, and limξ→0 αeff ¼ α; this
is in fact the case, as one can readily check. When Λ in (8)
is negative, this yields a negative Λeff , so the background is
AdS3. In that case, veff and Λeff change with ξ. However,
when Λ ¼ 0 and αþ v2ξ > 0, one obtains Λeff ¼ 0 and
veff ¼ v regardless of the value of ξ or the other parameters.
Therefore, in a Minkowski background (Λeff ¼ 0), the
VEV remains constant at v as ξ changes. Note that
Λ ¼ 0 with αþ v2ξ < 0 is not a physically viable option
as it leads to a negative αeff ; i.e., one obtains v2eff ¼ 3v2 þ 2α

ξ ,

so αeff ¼ αþ v2effξ is equal to 3ðαþ v2ξÞwhich is negative.
When ξ ¼ 0, veff is simply v, but when ξ ≠ 0, veff does

not depend only on v, ξ, and λ but also on the gravitational
parameters α and Λ. Similarly, when ξ ≠ 0, Λeff does not
depend only on Λ, ξ, and α but also on the parameters v and
λ appearing in the scalar potential. We see that the non-
minimal coupling term has a wide reach because of the dual
role it plays in simultaneously affecting the potential of the
scalar field and the Einstein-Hilbert gravitational term.

B. Critical coupling ξc
The VEV, given by (5), is equal to zero at a critical

coupling ξc. This occurs when

2v2 þ α

ξ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαþ v2ξÞ2 − 24αΛξ2=λ

p
ξ

¼ 0 ð10Þ

which has the solution

ξc ¼ −
2v2αλ

3ðv4λþ 8αΛÞ ð11Þ

if the condition αþ 2v2ξ > 0 is satisfied. This condition
implies that v4λþ 8αΛ in the denominator of (11) is
negative. The critical coupling is therefore positive and
exists only when Λ is negative and obeys the inequality
Λ < − v4λ

8α . A negative Λ implies Λeff < 0, so the spacetime
is asymptotically AdS3. In particular, the case Λ ¼ 0
(which yields Λeff ¼ 0) has no critical coupling and has

2Note that the vacuum Einstein field equations with cosmo-
logical constant Λeff yield R ¼ 4Λeff in 3þ 1 dimensions but
R ¼ 6Λeff in 2þ 1 dimensions.
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a fixed VEV at v. There is therefore no critical coupling in
asymptotic Minkowski spacetime. The critical coupling
exists only in AdS3 when Λ < − v4λ

8α . What happens when Λ
is negative but falls in the range − v4λ

8α < Λ < 0? The
spacetime is asymptotically AdS3 since Λeff < 0, and the
VEV changes with ξ but it always remains above zero;
there is no transition from the unbroken phase (zero VEV)
to the broken phase (nonzero VEV). Note that the value of
the critical coupling does not depend on the winding
number n.
When the critical coupling exists, the VEV is zero for

ξ ≥ ξc, but it is nonzero and grows as ξ decreases below ξc. A
phase transition from a symmetric (unbroken) phase to a
spontaneously broken phase occurs when ξ crosses below ξc.
In Fig. 1, we plot veff as a function of ξ (for parametersα ¼ 1,
v ¼ 1, λ ¼ 1, and Λ ¼ −1). Since Λ < − v4λ

8α ¼ −1=8, the
condition for a critical coupling is satisfied, and its value from
(11) is ξc ¼ 2=21 ¼ 0.0952. We see that the VEV is zero
above ξc ¼ 0.0952 but becomes nonzero and increases as ξ
decreases below ξc. The VEV is continuous, but one can
readily see that the derivative (slope of the graph) is
discontinuous at ξc. We see that, in fact, the slope diverges
at that point.
Figure 1 brings to mind the graph (see Fig. 2) of the order

parameter as a function of temperature in the GL mean-
field theory of second-order phase transitions where the
order parameter is zero above a critical temperature Tc but
increases above zero below Tc. Our critical coupling ξc is
the analog to the critical temperature Tc. We can make this
connection more quantitative. In GL mean-field theory, at
temperatures T below and near Tc, the order parameter is
proportional to ðTc − TÞ1=2 [5,6], a power-law behavior
with a critical exponent of 1=2. The VEV for ξ below and

near ξc has a similar behavior. Using (11), we can expressΛ
in terms of ξc and substitute this into (7) to obtain

veff¼

2
642v2þα

ξ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2þ2v2αξþv4ξ2−ξ2ð−2v2αλ−3v4λξcÞ

λξc

q
ξ

3
75
1=2

:

ð12Þ

Expanding veff above the critical coupling ξc yields

veff ¼ kðξc − ξÞ1=2 þOððξc − ξÞ3=2Þ ð13Þ

where the proportionality constant is k ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξcþð2v2ξ2cÞ=α

p . We

therefore see that the power-law behavior of the VEV near
ξc and of the order parameter near Tc in GL theory is
similar and has the same critical exponent of 1=2. From
(13), one can readily see that the slope in Fig. 1 diverges at
ξc (just like the slope in Fig. 2 diverges at Tc). We see that
the VEV for values of ξ near ξc in our numerical simulation
closely follows the power-law behavior given by (13).
We now determine the equations of motion, solve them

numerically, and obtain plots of various quantities for
different values of the coupling ξ. Equations (7) and (8)
for the VEV and cosmological constant that we derived in
this section will be used to predict the asymptotic values of
our plots, and we will see that they match exactly. This
provides a strong confirmation of both our derived theo-
retical results in this section and of our numerical vortex
solutions in later sections.

III. ROTATIONALLY SYMMETRIC ANSATZ
AND EQUATIONS OF MOTION

For the vortex, we consider rotationally symmetric static
solutions. The ansatz for the gauge and scalar field is

FIG. 1. VEV veff as a function of ξ plotted for parameters
α ¼ 1, v ¼ 1, λ ¼ 1, and Λ ¼ −1. The VEV is zero at or above
ξc ¼ 0.0952 and transitions to a nonzero value below ξc where it
increases as ξ decreases. When ξ crosses below ξc, there is a
transition from a symmetric phase to a spontaneously broken
phase. Note that, as expected, the VEV is equal to v ¼ 1 at ξ ¼ 0.

FIG. 2. Order parameter η0ðTÞ as a function of temperature in
the GL mean-field theory. The order parameter is zero at or above
the critical temperature Tc but nonzero below Tc. There is a
discontinuity in the slope at Tc, and there is a second-order phase
transition when the temperature crosses below Tc. Image courtesy
of C. Lygouras [15].
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AjðxÞ ¼ ϵjkx̂k
aðrÞ
er

; ð14Þ

ϕðxÞ ¼ fðrÞeinθ ð15Þ
where aðrÞ and fðrÞ are functions of r that represent the
gauge and scalar fields, respectively. The non-negative
integer n is called thewinding number. A 2þ 1-dimensional
metric that is rotationally symmetric can be expressed as

ds2 ¼ −BðrÞdt2 þ 1

AðrÞ dr
2 þ r2dθ2 ð16Þ

where AðrÞ and BðrÞ represent two metric functions of r.
With the ansatz (15) and (16), the Langrangian density

(1) reduces to

L ¼
ffiffiffiffiffiffiffiffiffi
B=A

p
r

�
αðR − 2ΛÞ − Aða0Þ2

2e2r2
−
ðf0Þ2A

2
−
ðn − aÞ2f2

2r2

þ ξRf2 −
λ

4
ðf2 − v2Þ2

�
: ð17Þ

Since f approaches a nonzero constant asymptotically,
one requires that a → n asymptotically [which yields
ðn − aÞ2f2 → 0] so that one avoids a logarithmic diver-
gence in the energy of the vortex [3,16]. The Ricci scalar is
a function of A and B and their derivatives:

R ¼ ðB0Þ2A
2B2

−
A0

r
−
A0B0

2B
−
B0A
rB

−
B00A
B

: ð18Þ

Note that when the complex scalar field is inserted in the
Lagrangian density, thewinding numbern appears but not the
coordinate θ since the phase cancels out. The Lagrangian
density therefore depends on r only, and solutions are
rotationally symmetric. The Euler-Lagrange equations of
motion for AðrÞ, BðrÞ, fðrÞ, and aðrÞ are, respectively,

4e2rAB0ðαþξf2þ2rξff0ÞþBðe2r2ðv4λþ8αΛÞ
þ2e2ðn2−r2v2λ−2naþa2Þf2
þe2r2λf4þ16e2rξAff0−2Aða02þe2r2f02ÞÞ¼ 0; ð19Þ
e2r2λf4 þ e2rðrv4λþ 8rαΛþ 4αA0Þ

þ 2e2f2ðn2 − r2v2λ − 2naþ a2 þ 2rξA0Þ
þ 2Aða02 þ e2r2ð1þ 8ξÞf02Þ
þ 8e2rξfðrA0f0 þ 2Aðf0 þ rf00ÞÞ ¼ 0; ð20Þ

2r2ξAfB02 þ rBð−2rξfA0B0 þ AðrB0f0 − 4ξfðB0 þ rB00ÞÞÞ
þ B2ð−2r2λf3 − 2fðn2 − r2v2λ − 2naþ a2 þ 2rξA0Þ
þ rðrA0f0 þ 2Aðf0 þ rf00ÞÞÞ ¼ 0; ð21Þ

rAa0B0 þ Bð2e2rðn − aÞf2 − 2Aa0 þ ra0A0 þ 2rAa00Þ ¼ 0:

ð22Þ

We can reduce the above four equations of motion to three by
extractingWðrÞ ¼ B0=B fromEq. (19) and substituting it into
Eqs. (21) and (22). The function WðrÞ contains A, f, and a
and their derivatives. The main point is that the three
remaining equations no longer have any dependence on
BðrÞ. However, the equations become longer, especially
the one for the function fðrÞ. We write out the full equations
in Appendix B; Eqs. (B2)–(B4) are the equations we
solve numerically. To avoid writing out cumbersome
lengthy equations here, the three remaining equations are
written below using WðrÞ andW0ðrÞ. Note that we need W0
because of the appearance of B00 in (21). In particular,
B00=B ¼ W0 þW2. The three remaining equations are

e2r2λf4 þ e2rðrv4λþ 8rαΛþ 4αA0Þ
þ 2e2f2ðn2 − r2v2λ − 2naþ a2 þ 2rξA0Þ
þ 2Aða02 þ e2r2ð1þ 8ξÞf02Þ
þ 8e2rξfðrA0f0 þ 2Aðf0 þ rf00ÞÞ ¼ 0; ð23Þ

2r2ξAfW2 − 2r2ξfA0W

þ ArðrWf0 − 4ξfðW þ rðW0 þW2ÞÞÞ − 2r2λf3

− 2fðn2 − r2v2λ − 2naþ a2 þ 2rξA0Þ
þ rðrA0f0 þ 2Aðf0 þ rf00ÞÞ ¼ 0; ð24Þ

rAa0Wþ2e2rðn−aÞf2−2Aa0 þ ra0A0 þ2rAa00 ¼ 0: ð25Þ

When WðrÞ given by (B1) is substituted into the above
equations, we obtain Eqs. (B2)–(B4).

IV. ASYMPTOTIC ANALYTICAL SOLUTIONS

One can solve analytically for the metric in vacuum by
setting f ¼ veff and a ¼ n identically in Eq. (23). This
yields

A0ðrÞ ¼ −r
ð8αΛþ λðv2eff − v2Þ2Þ

4ðαþ ξv2effÞ
ð26Þ

with the solution

A0ðrÞ ¼ −
ð8αΛþ λðv2eff − v2Þ2Þ

8ðαþ ξv2effÞ
r2 þ C

¼ −Λeffr2 þ C ð27Þ

where the subscript “0” denotes vacuum and C is an
integration constant. In the last step, we substituted veff
given by (7), and this yields Λeff given by (8) as the
coefficient of −r2 [see also Eq. (A3)]. Of course, this is
exactly what we expect the metric of pure AdS3 to be for
the cosmological constant Λeff . The initial conditions at
r ¼ 0 are determined by the constantC. We set C ¼ 1 since
in 2þ 1 dimensions this choice avoids a conical singularity
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at the origin [7,8]. Moreover, C ¼ 1 also works for the case
of vortices embedded in asymptotically Minkowski space-
time (Λeff ¼ 0).
We can now solve for the metric function B0ðrÞ in

vacuum by substituting A0ðrÞ with C ¼ 1 into Eq. (19).
This yields B0ðrÞ ¼ k0ð−Λeffr2 þ 1Þ where k0 is an inte-
gration constant (positive). We can absorb this constant into
a redefinition of time in the line element (16) so that

B0ðrÞ ¼ −Λeffr2 þ C ¼ A0ðrÞ: ð28Þ

In the presence of the vortex, we have that f → veff and
a → n asymptotically. Note that in contrast to the vacuum
case, these are now only the asymptotic values. The vortex
departs significantly from that in the core region near the
origin. In numerical simulations, f and a start at zero at the
origin and reach their asymptotic values (within less than a
percent) at a finite radius R, the computational boundary
which formally represents infinity. The asymptotic form of
the metric function A in the presence of matter (the vortex)
is obtained again via Eq. (23) and yields, at r ¼ R,

AðRÞ ¼ −ΛeffR2 þD: ð29Þ

The constant D differs from the constant C in (27); as one
goes through the core of the vortex, one naturally emerges
into an asymptotic region that differs from the purely
vacuum one, and this is reflected in D being a different
constant from C. We see that the (ADM) mass of the vortex
is expressed in terms of A0ðRÞ and AðRÞ.
Asymptotically, using (19), we obtain BðRÞ ¼ kAðRÞ.

Here k is an integration constant (positive); it can no longer
be absorbed into a redefinition of time since this has been
carried out once already with the constant k0. At large
radius R, in the presence of the vortex, we obtain that BðRÞ
is proportional to AðRÞ but not equal to it.

V. EXPRESSION FOR THE (ADM) MASS
OF THE VORTEX

An important property of a vortex is its finite mass. In
curved spacetime, the mass of a localized source is defined
as its ADM mass [17]. AdS3 is a maximally symmetric
spacetime with isometry group SOð2; 2Þ; it has a timelike
Killing vector, so a conserved energy (the ADM mass)
naturally applies to matter embedded in it. The ADM mass
in 2þ 1 dimensions can be calculated via the following
expression [17]:

M ¼ −2αeff lim
Ct→R

I
Ct

ðk − k0Þ
ffiffiffi
σ

p
NðRÞdθ: ð30Þ

Note that αeff , given by (9), must be used here instead
of α. Here Ct is the circle at spatial infinity where
infinity corresponds to the computational boundary r¼R.
The lapse NðRÞ is given by ðB0ðRÞÞ1=2 ¼ ðA0ðRÞÞ1=2.

The metric on Ct is σAB, and
ffiffiffi
σ

p ¼ R where σ is its
determinant. The extrinsic curvature of Ct embedded in
the two-dimensional spatial surface obtained by setting t
constant in (16) is given by k, whereas its embedding in the
two-dimensional spatial surface of AdS3 is given by k0.
A straightforward calculation yields

k ¼ ðAðRÞÞ1=2
R

; k0 ¼
ðA0ðRÞÞ1=2

R
: ð31Þ

Substituting all of the above quantities into (30) yields our
final expression for the ADM mass:

M ¼ 4παeffðA0ðRÞ − ½A0ðRÞAðRÞ�1=2Þ: ð32Þ

We use the above expression to calculate the ADM mass in
an AdS3 background. Note that if AðRÞ ¼ A0ðRÞ, one
obtains M ¼ 0, which implies that our definition has set
empty AdS3 space to have zero mass. This is the desired and
expected result since maximally symmetric spacetimes can
be viewed as the ground states of general relativity [14] and,
as such, are typically set to zero energy.
The analytical expression (27) for the vacuum metric

A0ðRÞ is −ΛeffR2 þ 1, and this can be readily calculated for
any given R. From (29), we have that AðRÞ ¼ −ΛeffR2 þD
where D is a constant. This corresponds to the case with
matter (the vortex), and it is obtained by solving the
equations of motion numerically since we do not know
a priori the value of the constant D. The mass M of the
vortex is then obtained via (32). Though A0ðRÞ and AðRÞ
both change with R, at a large enough R, the massM hardly
changes as R increases and the matter fields fðrÞ and aðrÞ
plateau to their respective asymptotic values of veff and n.
The value of AðrÞ at r ¼ 0 is an initial condition. In
vacuum, AðrÞ must reduce to A0ðrÞ so that the initial
conditions at the origin match. This implies that
Að0Þ ¼ A0ð0Þ ¼ C ¼ 1.

A. ADM mass in asymptotically flat space
and angular deficit

In asymptotically flat spacetime whereΛ ¼ Λeff ¼ 0, the
ADM mass formula (32) remains valid but simplifies
greatly. We have that A0ðRÞ ¼ C ¼ 1 and AðRÞ ¼ Dwhich
yields

Mflat ¼ 4παeffð1 −D1=2Þ ð33Þ

where αeff ¼ αþ ξv2 since veff ¼ v. Note that A0ðrÞ ¼
B0ðrÞ stays constant at unity for all r (this represents the
vacuumMinkowski spacetime). In contrast, AðrÞ is unity at
the origin r ¼ 0 but dips below unity as r increases until it
plateaus to a positive valueD at large radius R. The value of
D is obtained numerically. Recall that localized matter in
2þ 1 dimensions yields an asymptotically Minkowski
spacetime with an angular deficit [7]. Asymptotically,

NONMINIMALLY COUPLED GRAVITATING VORTEX: PHASE … PHYS. REV. D 106, 065017 (2022)

065017-7



AðrÞ ¼ D, and the spatial part of the metric (16) becomes
dr2
D þ r2dθ2. If we define r0 ¼ r=D1=2 and θ0 ¼ D1=2θ, we
obtain a manifestly flat metric dr20 þ r20dθ

2
0 but with θ0 now

ranging from 0 to 2πD1=2 instead of 2π. Since 0 < D < 1,
there is an angular deficit of

δ ¼ 2πð1 −D1=2Þ: ð34Þ

Using (33) with αeff ¼ 1=ð16πGeffÞ, we obtain that
δ ¼ 8πGeffMflat, which is the formula for the angular
deficit produced by a mass Mflat in 2þ 1 Minkowski
spacetime [7] if Geff replaces G in [7]. Asymptotically, the
spacetime is locally flat but topologically a cone. However,
there is no conical singularity at the origin in our case, in
contrast to the point mass in [7]. The spacetime is smooth at
the origin since the vortex, by construction, is an extended
nonsingular object. In our case, the conical spacetime is
only the asymptotic spacetime, and it does not extend into
the core of the vortex.
In the original work of [7], the only way to change the

angular deficit is to change the mass since G remains
constant. In our case, Geff depends on the coupling ξ.
Therefore, as ξ changes, one can encounter a scenario (and
one does, as our numerical results will show) where a
higher mass yields a smaller deficit angle than a smaller
mass. This is another instance of how the nonminimal
coupling term plays a novel role.

VI. MAGNETIC FLUX AS A TOPOLOGICAL
INVARIANT INDEPENDENT OF COUPLING ξ

The vortex contains a magnetic field which we label Bm.
When we plot our numerical results, we will see that it has
its maximum at the origin and then decreases towards zero
outside a core region. The maximum value of the magnetic
field at the origin, as well as its profile, depends on the
coupling ξ. After we present our numerical results, we will
look at the radial extension of the scalar field as a function
of ξ, a measure of how far the field extends before it gets
close to its plateau value (the VEV). We will see that the
radial extension of the scalar field increases significantly as
we approach the critical coupling ξc. This is analogous to
the coherence length in GL mean-field theory which
diverges near the critical temperature. We discuss here
the radial extension of the scalar field because we see that
the radial extension of the magnetic field as a function of ξ
undergoes the same fate and also increases as we approach
the critical coupling ξc. The magnetic field profile therefore
provides us with an additional window into how far the core
region of the vortex extends.
An important property of the magnetic field is that even

though its profile changes with the coupling ξ, the magnetic
flux Φ obtained by integrating the magnetic field over the
entire two-dimensional area stays constant (i.e., it is
independent of the value of ξ). We show here that the

magnetic flux depends only on the winding number n and

hence is a topological invariant. The quantity − Aða0Þ2
2e2r2

appearing in the Lagrangian density (17) stems from the
term − 1

4
FμνFμν and hence is identified with −B2

m=2 where
Bm is the magnetic field (no electric field is present, hence
the absence of an E2

2
term). It follows that the magnetic field

is given by Bm ¼
ffiffiffi
A

p
a0

er which reduces to the well-known
result a0=ðerÞ for the magnetic field in fixed Minkowski
spacetime [16] where AðrÞ ¼ 1 identically.
The magnetic flux Φ, the integral of the magnetic field

over the invariant area element, yields

Φ ¼
Z

d2x
ffiffiffi
γ

p
Bm ¼

Z
drdθ

�
rffiffiffiffi
A

p
�� ffiffiffiffi

A
p

a0

er

�

¼ 2π

e

Z
R

0

a0dr ¼ 2π

e
ðaðRÞ − að0ÞÞ ¼ 2πn

e
ð35Þ

where γ ¼ r2=A is the determinant of the spatial two-metric
obtained from (16) by setting t constant.Weuse the boundary
conditions on the function aðrÞ: aðRÞ ¼ n and að0Þ ¼ 0.
Note that the expression for the magnetic fluxΦ ¼ 2πn

e is the
same in curved space as it is in fixed Minkowski spacetime
[16]. In the next section, where we present our numerical
results, we will integrate numerically over the area of the
different magnetic field profiles for different couplings ξ and
show that the result is the same, independent of the profile
and ξ. Besides demonstrating numerically that the magnetic
flux is a topological invariant in curved space, this also
provides another check on our numerical simulation. The
magnetic flux is “quantized” as it comes in integer steps of
2π=e. This does not stem from any quantization procedure
imposed on the fields but from the topology of the vortex,
which is characterized by its winding number n.

VII. NUMERICAL SOLUTIONS OF VORTEX
IN CURVED SPACE

The three equations of motion, Eqs. (B2)–(B4), are
solved numerically to obtain nonsingular profiles for the
scalar field fðrÞ, the gauge field aðrÞ, and the metric
function AðrÞ. The initial conditions at the origin r ¼ 0 are

fð0Þ ¼ 0; að0Þ ¼ 0; Að0Þ ¼ 1: ð36Þ

These initial conditions ensure that our vortex solutions are
nonsingular. Let R be the computational boundary formally
representing infinity. We expect that

fðRÞ ¼ veff ; aðRÞ ¼ n; AðRÞ ¼D−ΛeffR2 ð37Þ

where D is a constant that is determined only after running
the numerical simulation and it depends on the matter
distribution of the vortex. The quantity veff is the value
where fðrÞ plateaus numerically, and we see that it matches
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very closely our theoretical prediction given by (7). The
winding number of the vortex is given by the positive
integer n, and we see that aðrÞ plateaus at that value
numerically. The coefficient Λeff in front of R2 in AðRÞ can

be extracted from our numerical simulation by evaluating
−A00ðrÞ=2 at r ¼ R. We see that it matches very closely our
theoretical prediction for the asymptotic value of the
cosmological constant given by (8). We obtain the profiles

FIG. 3. Case ξ ¼ −0.14. This is the case with the lowest value of ξ and the highest VEV (value where f plateaus). The gauge field
plateaus at n ¼ 1 which is the same value for all subsequent cases. The dip in the metric function AðrÞ near the origin is the most
pronounced of our sample. The magnetic field Bm peaks at the origin and has the highest peak in our sample. The magnetic field also
falls off the fastest (extends out the least). The plot of f near the origin shows that f plateaus quickly (does not extend much before
reaching its VEV).
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by adjusting f0ðrÞ and a0ðrÞ near the origin until the curves
for fðrÞ and aðrÞ plateau towards their respective constant
values beyond a certain radius (in our numerical simula-
tions, they reach their expected constant values to within
less than a tenth of a percent at the computational
boundary R).

A. Analytical behavior of the fields asymptotically
and near the origin

The equations of motion are a long, complicated set of
coupled, nonlinear, differential equations which require a
numerical solution. However, before presenting the numeri-
cal results, it is instructive to extract some useful analytical

FIG. 4. Case ξ ¼ −0.12. This is the case with the next lowest value of ξ. Note that f plateaus at a lower VEV than ξ ¼ −0.14, but it has
the highest (ADM) mass in our sample. The dip in the metric function AðrÞ near the origin is not as pronounced as in ξ ¼ −0.14. The
magnetic field Bm at the origin is lower than for ξ ¼ −0.14, but it falls off more slowly so that the magnetic flux turns out to be the same.
Again, the plot of f near the origin shows that f plateaus quickly and hence has a small extension.
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information from the equations. In particular, we determine
the analytical behavior of the fields near the origin and in
the asymptotic region. We see that the asymptotic profile of
a vortex is not supported by a positive cosmological
constant Λeff ; it must be either negative (AdS3 background)
or zero (Minkowski background). This is similar to the fact

that in 2þ 1-dimensional general relativity, a black hole
exists for a negative cosmological constant (the BTZ black
hole [8,9]) but not for a positive cosmological constant.
There is no black hole in a Minkowski background either,
but in contrast, one can have a vortex in a Minkowski
background.

FIG. 5. Case ξ ¼ −0.10. Note that f plateaus at a lower VEV than the previous cases. The dip in the metric function AðrÞ near the
origin is still pronounced but not as much as in ξ ¼ −0.12 or ξ ¼ −0.14. The magnetic field Bm at the origin is lower than for ξ ¼ −0.12,
but it falls off more slowly, which yields the same magnetic flux as previous cases. The plot of f near the origin shows that f still plateaus
relatively quickly though less fast than in previous cases.
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1. Behavior of AðrÞ, f ðrÞ, and aðrÞ near the origin

The initial conditions on the fields at r ¼ 0 are fð0Þ ¼ 0,
að0Þ ¼ 0, and Að0Þ ¼ 1. We want to find the behavior of
these fields in the vicinity of r ¼ 0. If we linearize (B2)
about A ¼ 1, we obtain AðrÞ ¼ 1 − r2ðv4λ

8α þ ΛÞ. This
quadratic behavior implies that its first derivative A0ðrÞ

at r ¼ 0 is always zero regardless of the parameters, so the
metric function always starts out flat at the origin. This is
what is observed numerically. Linearizing (B4) about
a ¼ 0 yields aðrÞ ¼ br2 with b a positive constant. We
see that aðrÞ also starts out flat at the origin since a0ð0Þ ¼ 0.
Again, this agrees with our numerical simulation.

FIG. 6. Case ξ ¼ −0.05. Note that f plateaus at a lower VEV than the previous cases. The dip in the metric function AðrÞ near the
origin is visible but not as pronounced as in previous cases. The magnetic field Bm has a profile that yields the same magnetic flux as
previous cases. The plot of f near the origin now shows that f is no longer plateauing quickly (it needs to extend more before
reaching its VEV).
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Linearizing (B3) about f ¼ 0 yields fðrÞ ¼ crn where n is
the winding number and c a positive constant. Near the
origin, f0ðrÞ ¼ cnrn−1 so that f0ð0Þ ¼ c for n ¼ 1 and
f0ð0Þ ¼ 0 for n > 1. This implies that fðrÞ starts off flat at
the origin when n > 1 but with a positive slope when
n ¼ 1. Note that the fields near r ¼ 0 have no dependence
on the coupling ξ.

2. Behavior of AðrÞ, f ðrÞ, and aðrÞ asymptotically

Asymptotically, the metric function AðrÞ is given by
D − Λeffr2 whereD is a constant. The matter fields a and f
asymptotically plateau to their constant values of n and veff ,
respectively. We want to find their behavior as they
approach these constant values. At large r, we can write
aðrÞ ¼ n − ϵðrÞ and fðrÞ ¼ veff − βðrÞ where ϵ and β are

FIG. 7. Case ξ ¼ 0. The nonminimal coupling term is turned off. The VEV is therefore equal to v ¼ 1. The dip in the metric function
AðrÞ near the origin is still visible. The magnetic field Bm extends further out but yields the same magnetic flux as previous cases.
The plot of f near the origin shows that f is still rising and requires more radial distance before it plateaus to its VEV.
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small positive perturbations which must vanish asymptoti-
cally. Substituting these expressions into Eqs. (B4) and
(B3) and keeping only terms linear in ϵ and β yields the
differential equations

e2v2effϵðrÞ þ rΛeffϵ
0ðrÞ þ r2Λeffϵ

00ðrÞ ¼ 0; ð38Þ

2v2effðαeffλ − 24Λeffξ
2ÞβðrÞ

þ rΛeffðαeff þ 16v2effξ
2Þð3β0ðrÞ þ rβ00ðrÞÞ ¼ 0: ð39Þ

FIG. 8. Case ξ ¼ 0.05. The regular plot of f vs r now has a computational boundary of R ¼ 40 whereas in all previous cases it was
R ¼ 12. This is because f reaches its VEV now much more slowly, and one needs to extend the computational boundary so that f can
reach its VEV to the same level of accuracy. The plot of f near the origin shows that f has a large slope and is also far from its plateau
value; thus, it requires significantly more radial distance before it plateaus to its VEV. The numerical values of the metric function A
show that there is an extremely tiny dip right near the origin, but this is not visible on the plot. The magnetic field Bm, just like f, extends
further out than all previous cases.
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The above equations are valid only for the case Λeff ≠ 0
(the case Λeff ¼ 0 will be treated separately). Both equa-
tions have power-law falloff solutions

ϵðrÞ ¼ br
− eveff
ð−Λeff Þ1=2 ; ð40Þ

βðrÞ ¼ cr
−1−
h
−αeffΛeffþ2αeff v

2
eff

λ−64v2
eff

Λeff ξ
2

−αeffΛeff−16v
2
eff

Λeff ξ
2

i
1=2

ð41Þ

where b and c are positive constants. Since (40) is valid
only if Λeff is negative, the above profiles apply only to an
AdS3 background. An important point is that the profile of

FIG. 9. Case ξ ¼ 0.07. The regular plot of f vs r has a computational boundary of R ¼ 90. The plot of f near the origin shows that f is
now quite far from its plateau value. It now requires a larger radial distance before it plateaus to its VEV. There is no longer any dip in the
metric function A: The numerical values show that AðrÞ increases monotonically. The magnetic field Bm, just like f, extends out much
further than previously.
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a vortex which requires the gauge field a to plateau at n and
f to plateau at veff is not supported by a positive Λeff . It is
supported by a negative Λeff and, as we will see, also by a
zero Λeff . The vortex therefore exists only in an AdS3 or
Minkowski background.

When Λeff ¼ 0, asymptotically we have AðrÞ ¼ D
where D is positive [since a nonsingular profile
requires that AðrÞ > 0]. We also have veff ¼ v. The differ-
ential equations governing the perturbations ϵ and β are
then

FIG. 10. Case ξ ¼ 0.09. This is the second largest ξ in our sample, and we are now getting quite close to the critical coupling
ξc ≈ 0.0952 where the derivative of the VEV with respect to ξ diverges. The change from ξ ¼ 0.07 to ξ ¼ 0.09 is therefore large.
The regular plot of f vs r has a significantly larger computational boundary of R ¼ 800. The plot of f near the origin shows that f is
very far from its plateau value. It now requires a very large radial distance before it plateaus to its VEV. Again, there is no longer any dip
in the metric function A, and it increases monotonically. The magnetic field Bm, just like f, extends out again much further than
previously.
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e2rv2ϵðrÞ þDðϵ0ðrÞ − rϵ00ðrÞÞ ¼ 0; ð42Þ

2rv2λðαþ v2ξÞβðrÞ
−Dðαþ v2ξð1þ 8ξÞÞðβ0ðrÞ þ rβ00ðrÞÞ ¼ 0 ð43Þ

with solutions

ϵðrÞ ¼ be
−evrffiffi

D
p ffiffiffi

r
p

; ð44Þ

βðrÞ ¼ ce
−vr
�

2λαeff
Dðαeffþ8v2ξ2Þ

�
1=2

1ffiffiffi
r

p ð45Þ

where b and c are positive constants. The above result is
for a Minkowski background (Λeff ¼ 0) but where

FIG. 11. Case ξ ¼ 0.095. This is the largest ξ in our sample, and it is very close to the critical coupling ξc ≈ 0.0952. Since we are near
the critical point, the change from ξ ¼ 0.09 to ξ ¼ 0.095 is very large. The plot of f near the origin shows that f is again very far from its
plateau value; this is why the regular plot of f vs r requires an extremely large computational boundary of R ¼ 5 × 106. This is the
radius required for f to reach its VEV to the same level of accuracy as the other cases. The “extension” of f (a measure of the radius
required to reach the VEV) therefore increases enormously as ξ approaches the critical coupling ξc, and this is analogous to the
divergence of the coherence length in GL mean-field theory as one approaches the critical temperature Tc.
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Einstein gravity and a nonminimal coupling term act on the
vortex. The exponential falloff expressions (44) and (45)
are similar to those found in fixed Minkowski spacetime
[16], and we recover them if we set ξ ¼ 0 and D ¼ 1.

B. Plot of vortex profiles and magnetic field
in AdS3 for different ξ

The parameters that appear in the Lagrangian density
(17) for the vortex are λ, e, n, v, α,Λ, and ξ. The goal here is
to determine how the vortex changes with the coupling ξ
and to observe what happens as we approach the critical
coupling ξc. How the vortex changes with the other
parameters such as Λ, n, and v has been studied elsewhere
[3]. We therefore run numerical simulations for different
values of ξ with the other parameters held fixed; we set
λ ¼ 1, e ¼ 3, n ¼ 1, v ¼ 1, α ¼ 1, and Λ ¼ −1. We work
in natural units where ℏ ¼ c ¼ 1. Though our parameters
and quantities such as the radius, mass, and magnetic field
are quoted as numbers, they should be thought of as having
a unit attached to them (except for the winding number n
which is a pure number).3 As we have seen, a negative Λ
automatically ensures that the asymptotic cosmological

constant Λeff will be negative. Our solutions in this section
will therefore correspond to an AdS3 background. Note that
though v and Λ are held fixed, the VEV veff and the
cosmological constant Λeff will change with ξ.
Recall that a critical coupling ξc exists only if v4λþ 8αΛ

is negative. With the above values for the parameters, this
latter quantity is negative (equal to −7) and therefore a
critical coupling exists. It is given by (11) and, substituting
the values of our parameters, is equal to ξc ¼ 2=21 ≈
0.0952 (the same value that appears in our plot of the VEV
vs ξ in Fig. 1). This implies that for ξ ≥ 2=21 the VEV is
zero and there is no vortex. We therefore obtain vortices
for ξ < 2=21.
We consider nine values of the coupling ξ that range

from −0.14 to 0.095 (close to the upper bound ξc) which
includes the case ξ ¼ 0. We present Figs. 3–11, one for
each value of the couplings in order of increasing ξ. Each
figure contains plots of the scalar field fðrÞ, the gauge field
aðrÞ, the metric function AðrÞ, and the magnetic field
BmðrÞ. We also made separate plots of f and A that focus on
the core region near the origin where the fields undergo
significant change. Therefore, there are six plots associated
with each value of ξ. We also present some numerical
results in table format. In Table I, we present the following
data for each value of ξ: the theoretically expected and
numerically obtained values of the VEV veff and cosmo-
logical constant Λeff , the (ADM) mass of the vortex, the
peak value of the magnetic field at the origin, and the
numerically integrated magnetic flux.
In Table I, the formula (7) for the VEV veff matches

almost exactly (to within three or four decimal places) the
value where f plateaus numerically. Similarly, our for-
mula (8) for the cosmological constant Λeff matches almost
exactly (again to within three or four decimal places) the
numerical value of the asymptotic cosmological constant.

TABLE I. We present data for ξ ranging from −0.14 to 0.095 (near the critical coupling ξc ¼ 2=21 ≈ 0.0952). The theoretically
predicted values of the VEV veff and cosmological constant Λeff calculated using (7) and (8), respectively, match the numerical values to
within three or four decimal places. The peak value of the magnetic field occurs at the origin and also decreases monotonically as ξ
increases. The magnetic flux obtained by integrating numerically over the magnetic field profile remains constant despite the different
profiles, and its numerical value matches the theoretically expected value of Φ ¼ 2πn=e ¼ 2.0944 to within three or four decimal
places. This provides a very strong check on our numerical simulation. The ADMmass increases from ξ ¼ 0.095 to ξ ¼ −0.12, but this
trend does not extend all the way to ξ ¼ −0.14; this is due to a significant negative gravitational binding energy in the case of ξ ¼ −0.14
(see body of the article for more details).

Coupling ξ Veff (theory) Veff (numeric) Λeff (theory) Λeff (numeric) Mass (ADM)
Peak magnetic

field
Magnetic

flux (numeric)

−0.14 1.6475 1.6475 −1.0204 −1.0204 4.17 12.280 2.0944
−0.12 1.5766 1.5763 −1.0318 −1.0316 4.31 5.443 2.0944
−0.10 1.4990 1.4983 −1.0391 −1.0388 4.25 4.127 2.0943
−0.05 1.2733 1.2732 −1.0357 −1.0358 3.53 2.439 2.0946
0.0 1.000 1.0000 −1.000 −1.000 2.59 1.493 2.0943
0.05 0.6604 0.6604 −0.9398 −0.9398 1.50 0.783 2.0944
0.07 0.4839 0.4839 −0.9117 −0.9117 1.05 0.515 2.0945
0.09 0.2161 0.2161 −0.8827 −0.8827 0.45 0.200 2.0945
0.095 0.04584 0.04584 −0.8753 −0.8753 0.063 0.0425 2.0944

3In AdS3 the appropriate length scale is the AdS length l. From
(27), the quantity−Λeffr2 must be dimensionless.We quoteΛeff as
a pure negative number, but one should think of a unit y attached to
it so that Λeff × y ¼ −1=l2. Therefore, the unit attached to the
radius r is y−1=2 which in terms of the AdS length is ð−ΛeffÞ1=2l.
Note that the equation for ϵðrÞ in (41) implies that eveff=ð−ΛeffÞ1=2
is dimensionless. The quantity λ=e2 is also dimensionless. The
mass is proportional to αeff¼αþv2effξ; therefore, the mass is
expressed in units of the VEV squared, which is y1=2, and this
can be expressed in terms of the inverse of the AdS length. The
magnetic field is given by Bm ¼

ffiffiffi
A

p
a0

er , and since AðrÞ and aðrÞ are
dimensionless, it has units of y3=4 which can be expressed in terms
of the inverse of the AdS length to the power of 3=2.
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This provides strong confirmation of both our analytical
formulas and the numerical simulation. In Figs. 3–11, the
magnetic field Bm always peaks at the origin and then falls
off with radius towards zero. As ξ increases and approaches
closer to the critical coupling, the value of the peak
magnetic field decreases (see plot in Fig. 13), but the
magnetic field extends further out since it falls off to zero
more slowly. As a consequence, the magnetic flux obtained
numerically by integrating over the magnetic field profile
remains constant as ξ changes (see Table I) and matches
exactly (to within three or four decimal places) the expected
theoretical value of Φ ¼ 2πn=e ¼ 2π=3 ¼ 2.0944 (where
we substituted n ¼ 1 and e ¼ 3). That this numerically
integrated magnetic flux remains constant across different
magnetic field profiles provides another strong check on
our numerical simulation.
In Table I, the VEV monotonically decreases from a

value of 1.6475 at ξ ¼ −0.14 to a value of 0.04584 at
ξ ¼ 0.095. We plot the nine data points in Fig. 12, and they
trace out a curve similar to the plot in Fig. 1 of the VEV vs ξ
obtained theoretically and hence also similar to the plot in
Fig. 2 of the order parameter vs temperature in GL mean-
field theory. We now verify numerically that the data points
in our sample that are close to the critical coupling ξc ¼
2=21 follow the power law with critical exponent 1=2 that
we previously derived for ξ near ξc, i.e., veff ¼ kðξc − ξÞ1=2
where k ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξcþð2v2ξ2cÞ=α
p [see (13)]. For the values of our

parameters, we obtain k ¼ 2.96985. For ξ ¼ 0.095, which
is the closest data point to ξc in our sample, we obtain
kðξc − ξÞ1=2 ¼ 0.04583, which matches almost exactly our

numerical result of 0.04584 for the VEV quoted in Table I.
Another data point we can consider is ξ ¼ 0.09 as it is
not that far off from the critical coupling. This yields
kðξc − ξÞ1=2 ¼ 0.2149, which still matches quite closely
our numerical result of 0.2161. This constitutes a quanti-
tative confirmation that the nonminimally coupled vortex in
AdS3 undergoes critical phenomena with exponent 1=2 at
the critical coupling ξc.
We mentioned above that the magnetic field extends

further out as ξ increases towards the critical coupling ξc.
The same thing happens with the scalar field f. For cases
ξ ¼ −0.14, ξ ¼ −0.12, and ξ ¼ −0.10, f can be seen to
roughly plateau already near the origin (see plots of f near
the origin in Figs. 3–5). At higher ξ, f has not plateaued yet
near the origin (see plots of f near the origin in Figs. 6–11).
This implies that it must extend further out to reach its
VEV. In particular, as ξ approaches near the critical
coupling ξc, the regular plot of f vs r has to be extended
to drastically larger radii to accommodate the fact that f
plateaus so much more slowly. We discuss the extension of
the scalar field (and of the magnetic field) in more detail in
the next subsection.
If the local matter density in the core region of the vortex

is high enough, it causes a noticeable dip of the metric
function AðrÞ near the origin: The metric starts at A ¼ 1 at
the origin r ¼ 0, dips below unity in the core region, and
reaches a minimum that is above zero before increasing to
reach its asymptotic r2 dependence. The dip can be seen in
the plot of A near the origin, and the asymptotic r2

dependence is more evident in the regular plot of A vs
r. The plots of the metric function AðrÞ near the origin in
Figs. 3–11 reveal that the dip monotonically decreases as ξ
increases and is most pronounced at ξ ¼ −0.14. This
implies that the local matter density in the core region is

FIG. 12. Plot of the numerical value of the VEV vs ξ. The data
points trace out a curve similar to the plot in Fig. 1 of the VEV vs
ξ that was obtained theoretically, and similar to the curve in Fig. 2
of the order parameter vs temperature in GL mean-field theory.
The VEV decreases monotonically, and its slope gets steeper
(more negative) as ξ increases towards the critical coupling. The
data points near ξc obey the power law veff ∝ ðξc − ξÞ1=2 (see
body of the article above for exact comparison); this confirms
that our system undergoes critical phenomena with a critical
exponent of 1=2.

FIG. 13. Plot of peak magnetic field vs ξ. Like the VEV, it
decreases monotonically as ξ increases, but in sharp contrast to
the VEV, its slope gets flatter (less negative) as ξ increases
towards the critical coupling. Therefore, the peak magnetic field
does not act like an order parameter.
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greatest for ξ ¼ −0.14. Though A in this case dips the
closest to zero (i.e., its minimum is the smallest), it does not
cross zero. If A crosses zero, this would signal black hole
formation and a singularity. However, our nonsingular
initial conditions prevent one from constructing vortices
beyond a local matter density where gravity becomes so
strong that the scalar field is no longer able to reach its
asymptotic plateau value. The fact that f is fixed to be zero
at the origin prevents one from constructing vortex sol-
utions when gravity’s effect gets too strong. This places a
lower bound on ξ; for the values of our parameters, we are
not able to construct nonsingular vortices roughly below
ξ ¼ −0.14. This lower bound is reached way before the
lower bound set by the condition αeff ¼ αþ v2effξ > 0.
With veff given by (7) and using the values of our
parameters, one can readily check that this would have
occurred at the much lower value of ξ ¼ −0.26.
In Table I, one can see that the ADM mass is highest at

ξ ¼ −0.12 and decreases afterwards as ξ increases towards
ξ ¼ 0.095. There is one case that does not follow this trend
in masses. The ADM mass at ξ ¼ −0.14 is actually lower
than the mass at ξ ¼ −0.12 (the data points of mass vs ξ are
plotted in Fig. 14, and the curve nicely illustrates the trend
in masses). The case ξ ¼ −0.14 has the highest VEV, which
would seem to imply that it should have the highest mass
(vortices with higher VEVs will usually have more mass in
fixed Minkowski spacetime [16]). Why then is the mass
lower for ξ ¼ −0.14 than for ξ ¼ −0.12? This is due to the
fact that the ADM mass receives contributions not only
from matter but also from the negative binding energy of
the gravitational field (see Sec. 3.9 on “Thin-shell collapse”
in [17] for a clear illustration of this). The metric field
AðrÞ near the origin for ξ ¼ −0.14 (Fig. 3) has a more

pronounced dip than for ξ ¼ −0.12 (Fig. 4). So the negative
gravitational binding energy is significant enough in
ξ ¼ −0.14 to yield a lower ADM mass than in ξ ¼ −0.12.

1. Extension of scalar field and magnetic field
and divergence at critical coupling ξc

We have already mentioned that as ξ increases towards
the critical coupling, the scalar field and magnetic field
extend further out. In the case of the scalar field, this means
it rises more slowly and plateaus at its VEV over a longer
radius. For the magnetic field, this means that starting from
its peak at the origin, it decreases towards zero in a slower
fashion, again over a longer radius. In short, the core region
of the vortex occurs over a longer spatial range as ξ gets
larger.
To make this more quantitative, we define the extension

rf of the scalar field to be the radius where it reaches 99.9%

FIG. 14. Plot of mass M vs ξ. Near the critical coupling, this
plot looks similar to the one for the VEV; in particular, its slope
gets steeper (more negative) as ξ increases towards the critical
coupling. The mass increases as ξ decreases, but unlike the VEV,
this trend stops when we get to the most negative point,
ξ ¼ −0.14, where the mass is less than that for ξ ¼ −0.12 due
to gravity’s effect (see discussion in body of the article).

FIG. 15. Extension of the scalar field fðrÞ as a function of ξ.
Note the rapid increase in the extension as one approaches the
critical coupling ξc ≈ 0.0952. The extension is expected to
diverge at the exact value of ξc ¼ 2=21.

FIG. 16. Extension of the magnetic field BmðrÞ as a function of
ξ. Here there is also a rapid increase in the extension as one
approaches the critical coupling ξc ≈ 0.0952. The extension is
expected to diverge at the exact value of ξc ¼ 2=21.
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FIG. 17. Flat case ξ ¼ −0.4. We plot the metric A, the magnetic field Bm, the scalar field f, and the gauge field a. Since the VEVof the
scalar field is always unity, it plateaus at unity regardless of the value of ξ. The gauge field a always plateaus at unity also since n ¼ 1 for
all ξ. We therefore show the scalar and gauge field profiles here but not in subsequent figures since they are roughly similar. The metric
profile plateaus at D ¼ 0.488 which yields a deficit angle of 1.894 rad, the largest deficit angle in our sample but not the one with the
highest mass (see Table II). The magnetic field peaks at 1.43, which is the highest peak in our sample. This implies that it extends the
least (falls off fastest) since the magnetic flux remains constant at Φ ¼ 2πn=e ¼ 2.0944 to within three or four decimal places.
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of its VEVand define the extension rB of the magnetic field
to be the radius where it has fallen to 0.1% of its peak value
(i.e., decreased by 99.9% from its peak at the origin). We
plot in Fig. 15 the scalar field extension rf vs ξ and in
Fig. 16 the magnetic field extension rB vs ξ. In both cases,
there is a very rapid increase in the extension when ξ is near
the critical coupling ξc. We see that the extension actually
diverges at the exact value of ξ ¼ ξc ¼ 2=21. This is
reminiscent of the divergence of the coherence length in
GL mean-field theory at the critical temperature Tc.
We now show analytically that fðrÞ approaches the VEV

in the slowest fashion possible in the limit when ξ
approaches ξc. If we let fðrÞ ¼ veff − βðrÞ asymptotically,
we know that βðrÞ is given by (41), which we rewrite for
convenience below:

βðrÞ ¼ cr
−1−
h
−αeffΛeffþ2αeff v

2
eff

λ−64v2
eff

Λeff ξ
2

−αeffΛeff−16v
2
eff

Λeff ξ
2

i
1=2

¼ cr−1−P
1=2 ð46Þ

where P is the quantity in square brackets. Since αeff > 0
and Λeff < 0, all the terms in the numerator and

denominator in the square brackets are positive. It should
be clear that P ≥ 1. We have that β approaches zero
asymptotically as 1=r1þP1=2

. When ξ → ξc, we have that
veff → 0 and P → 1. Therefore, as ξ → ξc, β decreases as
1=r2 asymptotically, which is the slowest falloff it can have,
translating to the slowest approach that f can have towards
its VEV.
Now rf is the extension, defined as the radius where f¼

0.999veff so that r1þP1=2

f is proportional to 1=ð0.001veffÞ.
This diverges as ξ → ξc since veff → 0. It is therefore
expected that the extension rf diverges at the critical
coupling ξc in accordance with the trend in Fig. 15.
Asymptotically we have that aðrÞ ¼ n − ϵðrÞ where

ϵ is given by (40). The magnetic field is given by
Bm ¼ ffiffiffiffiffiffiffiffiffi

AðrÞp
a0ðrÞ=ðerÞ. Asymptotically, AðrÞ → −Λeffr2

and a0ðrÞ → −ϵ0ðrÞ so that Bm falls off asymptotically as

r
− eveff
ð−Λeff Þ1=2

−1
. As ξ → ξc, we have that veff → 0, so Bm

falls off as 1=r, which is the slowest falloff possible.
The extension rB is therefore proportional to the inverse
of the peak magnetic field as ξ → ξc. Our numerical results

FIG. 18. Flat case ξ ¼ −0.2. The metric A plateaus at D ¼
0.615 yielding a deficit angle 1.356 rad, the second largest deficit
angle in our sample. The magnetic field peaks at 1.092, the
second largest peak in our sample.

FIG. 19. Flat case ξ ¼ 0. The nonminimal coupling is turned
off here. The metric A plateaus at D ¼ 0.668 yielding a deficit
angle of 1.148. The magnetic field peaks at 0.962 and is less than
the previous case.
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show that the peak value of the magnetic field at the origin
keeps decreasing (towards zero) as ξ → ξc, so the extension
rB tends to infinity. This agrees with the fact that the
magnetic flux can remain constant as the peak magnetic
field at the origin decreases to zero only if the magnetic
field has an infinite extension.

C. Plot of vortex profiles and magnetic field in
asymptotically Minkowski spacetime

We now consider the role the coupling ξ plays for the
case of asymptotically Minkowski spacetime. This corre-
sponds to Λ ¼ 0 which as we have seen, implies Λeff ¼ 0.
As previously mentioned, there is no critical coupling
for asymptotically Minkowski spacetime. The VEV is
expected to remain constant at veff ¼ v ¼ 1, and the
cosmological constant is expected to remain at Λeff ¼ 0;
i.e., the VEVs veff and Λeff have no dependence on ξ in
contrast to the AdS3 case. We run numerical simulations for
different values of ξ with the same set of parameters as

before: λ ¼ 1, e ¼ 3, n ¼ 1, v ¼ 1, and α ¼ 1. The only
difference is that Λ ¼ 0 now (instead of Λ ¼ −1 in the
AdS3 case). We work again in natural units. As before, the
parameters and quantities like the radius, mass, and
magnetic field are quoted as numbers, but one should
think of a unit attached to them.4

We made plots for five different cases: ξ ¼
f−0.4;−0.2; 0.0; 0.2; 0.4g corresponding to Figs. 17–21
respectively. The plots of the scalar field f and the gauge
field a all plateau at unity regardless of ξ. We also plot the
magnetic field whose profile depends on ξ. The most

FIG. 20. Flat case ξ ¼ 0.2. The metric A plateaus atD ¼ 0.668,
the same value as the previous case. It therefore also has a deficit
angle of 1.148. It has a peak magnetic field of 0.950 which is less
than the previous case. So far, there has been a trend: The peak of
the magnetic field has monotonically decreased, and the deficit
angle has decreased or remained the same.

FIG. 21. Flat case ξ ¼ 0.4. This case departs from the above
decreasing trend. The metric plateaus at D ¼ 0.648 yielding a
deficit angle of 1.225 rad and a peak magnetic field of 0.987:
Both are greater than in the previous two cases.

4In Minkowski spacetime, the appropriate length scale is set by
the VEV v. In particular, evr is dimensionless, where r is the
radius. Though e and v are quoted as numbers, one should think
of ev as having a unit x of dimension ½L�−1 attached to it. It
follows then that the radius r has units of x−1 which has the
correct dimensions of [L]. The mass is proportional to the VEV
squared and is therefore expressed in units of x which has the
correct dimension of ½L�−1. The magnetic field Bm ¼

ffiffiffi
A

p
a0

er is
expressed in units of x3=2 which has the correct dimensions of
½L�−3=2. As before, λ=e2 is dimensionless.
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important plot by far is the one for the metric A which
plateaus asymptotically to a constant value (which we
previously labeled D). The profile of the metric here
(starting at unity at the origin and then plateauing to
0 < D < 1) is in stark contrast to the AdS3 case where
the metric had an r2 dependence asymptotically. The
constant D can only be obtained numerically (by running
the simulation), and it changes with ξ. Since the deficit
angle depends onD via (34), the deficit angle depends on ξ.
We also calculate the massMflat of the vortex via (33). The
constant D, the deficit angle δ, the massMflat as well as the
peak value of the magnetic field are presented in Table II. In
2þ 1-dimensional general relativity in asymptotically
Minkowski spacetime, there is the classic result of Deser
et al. [7] that a point mass produces a deficit angle
proportional to the mass. The ratio of mass to deficit angle
is equal to 2α ¼ 1=ð8πGÞ and is a constant since Newton’s
constant G does not change as the mass changes. In
contrast, for the vortex with nonminimal coupling, the
ratio of mass to deficit angle is not constant but depends on
ξ: It is equal to 2αeff ¼ 2ðαþ v2ξÞ ¼ 2ð1þ ξÞ where we
substituted the values α ¼ 1 and v ¼ 1 for our parameters.
A striking consequence is that it is possible for a larger
mass to actually produce a smaller deficit angle compared
to a smaller mass. For example, in Table II, the case at
ξ ¼ −0.4 has the largest deficit angle of 1.894 rad in our
sample and has a mass of 2.273, whereas the case at
ξ ¼ 0.4 has a smaller deficit angle of 1.225 rad but the
largest mass of 3.430 in our sample, which is roughly 1.5
times greater than our former case.

VIII. CONCLUSION

In this paper, we studied the effects of the nonminimal
coupling term ξRjϕj2 on a vortex under Einstein gravity in
an AdS3 and flat (conical) background. In the case of AdS3,
this led to the emergence of a critical coupling ξc where the
VEV of the scalar field is zero for ξ at or above ξc but

nonzero when ξ crosses below ξc. For the values of our
parameters, ξc is equal to 2=21 ≈ 0.0952. We presented our
numerical results in plots and tables for nine values of ξ.
Our plot of the numerically obtained VEV versus ξ is in
accordance with the theoretical expectation that the slope
has a discontinuity and diverges at the critical coupling ξc.
For ξ near ξc, we verified numerically that the VEV indeed
behaved according to the power law jξ − ξcj1=2. These
results confirmed the idea that the critical coupling ξc acts
like the analog of the critical temperature Tc in GL mean-
field theory. In that theory, the order parameter is zero at or
above Tc and nonzero below Tc and behaves according to
the power law jT − Tcj1=2. The plot of the order parameter
versus temperature T also shows a discontinuity and
divergence in the slope near Tc. Numerical results of the
“extension” of the scalar field (core region of the vortex)
show that it increases monotonically as ξ increases, with a
dramatic increase near ξc. We showed analytically that it is
expected to diverge at the critical coupling, and this is
analogous to the divergence of the coherence length in
GL mean-field theory as one approaches the critical
temperature.
In asymptotically flat (conical) spacetime, we considered

five values of ξ and, remarkably, found that higher masses
did not necessarily lead to a higher deficit angle as one
might naively expect. The reason for this is that, when a
nonminimal coupling term is present, the ratio of mass to
deficit angle is no longer constant but depends on the
coupling ξ. This can lead to cases where a higher mass has a
smaller deficit angle than a smaller mass as our data clearly
showed.
If ξc acts as the analog to Tc in GL mean-field theory,

this naturally raises the question, “Is the nonminimally
coupled vortex a thermodynamic system at nonzero tem-
perature?”. The answer is clearly no. The Nielsen-Olesen
vortex without gravity constitutes a static classical field
configuration which is at zero temperature and has zero
entropy. The zero temperature agrees with the fact that the
fields have no average kinetic energy, and the zero entropy
is in accordance with the fact that we know everything
about the field’s configuration throughout spacetime; we
are not ignorant of its configuration at any time, and no
information is hidden from us. The zero entropy is of
course consistent with the zero temperature. When gravity
is included, this can change only if the vortex acquires an
event horizon. However, our gravitating vortex solutions
are nonsingular static solutions with no event horizon. The
temperature and entropy are again zero, and as before, the
metric field, as well as the scalar and gauge fields, are static
throughout all of spacetime. In contrast, the BTZ black hole
[8,9] has a nonzero temperature and entropy as it has an
event horizon (for simplicity, assume no angular momen-
tum or electric charge, only mass with a single horizon).
Note that the BTZ spacetime has a timelike Killing vector
outside the event horizon, but like the Schwarzschild black

TABLE II. The most important point about this table is that the
deficit angle is not proportional to the mass. Compare the first and
last rows. At ξ ¼ −0.4 one has the largest deficit angle of
1.894 rad with a mass of 2.273 whereas at ξ ¼ þ0.4 the mass is
significantly higher at 3.430 and yet it has a much smaller deficit
angle of 1.225 rad. With the nonminimal coupling term present,
the ratio of mass to deficit angle is not constant but depends on ξ
(see body of the article).

Coupling ξ
D (plateau value
of metric A)

δ Deficit
angle (rad) Mass

Peak value
of magnetic

field

−0.4 0.488 1.894 2.273 1.433
−0.02 0.615 1.356 2.170 1.092
0.0 0.668 1.148 2.296 0.962
0.2 0.668 1.148 2.755 0.950
0.4 0.648 1.225 3.430 0.987
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hole in 3þ 1 dimensions, it has no timelike Killing vector
inside the event horizon [18]. This implies that there is no
coordinate transformation that can put the metric in static
form inside the event horizon, so an outside observer is
ignorant of the metric configuration inside at any particular
time. Simply put, information is hidden from us behind the
event horizon [19]. Note that in contrast, our nonsingular
gravitating static vortex has a timelike Killing vector
throughout spacetime, and no information is hidden from
us (see also [20–22] for a related discussion).
The vortex actually constitutes a classical solution in

quantum field theory (QFT) [16]. The vortex cannot be
obtained from perturbative QFT as it is a nonperturbative
solution. It turns out that since the size of the vortex is much
larger than its Compton wavelength, the classical non-
perturbative solution constitutes a valid solution to the QFT
(i.e., a very good first approximation) [16]. Perturbation
theory can then be used to obtain one-loop quantum
corrections to the vortex by quantizing about the classical
configuration. In particular, quantum fluctuations of the
scalar field will change the nature of the potential as there
will now be logarithmic terms besides the usual terms
[23,24]. The critical exponent of 1=2 will therefore change
as a consequence of these quantum corrections. So an
interesting and pertinent problem to solve for the future is
to determine the critical exponent of the nonminimally
coupled vortex in an AdS3 background after quantum
corrections. This would be a considerably more compli-
cated calculation than, say, the quantization about the
1þ 1-dimensional kink in Minkowski spacetime [16] as
we have one extra spatial dimension and a curved space
background.
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APPENDIX A: DERIVATION OF THE VEV veff
AND COSMOLOGICAL CONSTANT Λeff

In this appendix we derive the expressions for veff and
Λeff given by Eqs. (7) and (8), respectively. We start by
rewriting Eqs. (5) and (6) where veff and Λeff are expressed
in terms of each other:

v2eff ¼ v2 þ 12ξΛeff

λ
; ðA1Þ

αðR−2ΛÞþξRv2eff −
λ

4
ðv2eff −v2Þ2¼ðαþξv2effÞðR−2ΛeffÞ:

ðA2Þ

We first substitute the asymptotic value of the Ricci scalar,
R ¼ 6Λeff , into (A2) which yields

Λeff ¼
αΛþ λ

8
ðv2eff − v2Þ2

αþ ξv2eff
: ðA3Þ

Substituting (A3) into (A1) yields a quadratic equation
for v2eff :

λξðv2effÞ2 − 2λðαþ 2v2ξÞv2eff þ 2v2αλþ 3v4λξ

þ 24αΛξ ¼ 0: ðA4Þ

This yields the following two possible solutions for v2eff
(which we label I and II):

I∶ 2v2 þ α

ξ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 2v2αξþ v4ξ2 − 24αΛξ2=λ

p
ξ

; ðA5Þ

II∶ 2v2 þ α

ξ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 2v2αξþ v4ξ2 − 24αΛξ2=λ

p
ξ

: ðA6Þ

However, only the first solution satisfies the requirement
that veff is equal to v in the limit ξ → 0. The second solution
yields ∞ in that limit and must be disregarded. Taking the
positive of the square root of the first solution yields the
quoted result (7) for veff :

veff ¼
�
2v2 þ α

ξ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 2v2αξþ v4ξ2 − 24αΛξ2=λ

p
ξ

�
1=2

:

ðA7Þ

Substituting the above solution (A7) into (A3) yields the
quoted result (8) for Λeff :

Λeff ¼
λ

12ξ2
ðαþ v2ξ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ v4ξ2 þ 2v2αξ− 24αΛξ2=λ

q
Þ:

ðA8Þ

APPENDIX B: FULL EQUATIONS OF MOTION

The three equations of motion quoted in the text
are (23)–(25). Equation (25) contains the function WðrÞ ¼
B0=B, and Eq. (24) contains W and its derivative W0. We
can extract W from (19), and this yields

W ¼ 1

4e2rAðαþ ξf2 þ 2rξff0Þ ð−e
2r2ðv4λþ 8αΛÞ

− 2e2ðn2 − r2v2λ − 2naþ a2Þf2 − e2r2λf4

− 16e2rξAff0 þ 2Aða02 þ e2r2f02ÞÞ: ðB1Þ

Substituting the above expression for W (as well as its
derivative) back into (24) and (25) and keeping (23) the
same yields three equations of motion that have no
dependence on the function B. The three full equations are
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e2r2λf4 þ e2rðrv4λþ 8rαΛþ 4αA0Þ þ 2e2f2ðn2 − r2v2λ − 2naþ a2 þ 2rξA0Þ
þ 2Aða02 þ e2r2ð1þ 8ξÞf02Þ þ 8e2rξfðrA0f0 þ 2Aðf0 þ rf00ÞÞ ¼ 0; ðB2Þ

− 2r2λf3 − 2fðn2 − r2v2λ − 2naþ a2 þ 2rξA0Þ þ rðrA0f0 þ 2Aðf0 þ rf00ÞÞ

þ 1

8e4Aðαþ ξfðf þ 2rf0ÞÞ2 ðξfðe
2r2ðv4λþ 8αΛÞ − 2Aa02

þ e2ð2ðn2 − r2v2λ − 2naþ a2Þf2 þ r2λf4 þ 16rξAff0 − 2r2Af02ÞÞ2Þ

þ r
4e4Aðαþ ξfðf þ 2rf0ÞÞ2

 
2e2ξfA0ðαþ ξfðf þ 2rf0ÞÞðe2r2ðv4λþ 8αΛÞ − 2Aa02

þ e2ð2ðn2 − r2v2λ − 2naþ a2Þf2 þ r2λf4 þ 16rξAff0 − 2r2Af02ÞÞ
− e2Af0ðαþ ξfðf þ 2rf0ÞÞðe2r2ðv4λþ 8αΛÞ − 2Aa02

þ e2ð2ðn2 − r2v2λ − 2naþ a2Þf2 þ r2λf4 þ 16rξAff0 − 2r2Af02ÞÞ

þ 1

r
ξf

�
−e4ðr2ðv4λþ 8αΛÞ þ 2ðn2 − r2v2λ − 2naþ a2Þf2 þ r2λf4Þ

ðr2λf4 þ rðrv4λþ 8rαΛþ 4αA0Þ þ 2f2ðn2 − r2v2λ − 2naþ a2 þ 2rξA0Þ þ 8r2ξfA0f0Þ
− 4e2Að−2e2r2λξf6 − r2ðv4λþ 8αΛÞða02 þ e2ð2αþ r2ð1 − 2ξÞf02ÞÞ
− rf4ð4e2ξð−nþ aÞa0 þ rλa02 þ e2rλð2ðα − 2v2ξÞ þ r2ð1þ 6ξÞf02ÞÞ
− 2f2ð2e2rαð−nþ aÞa0 þ ðn2 − r2v2λ − 2naþ a2Þa02 þ e2r2ð−2v2αλþ v4λξþ 8αΛξ

þ ð1þ 2ξÞðn2 − r2v2λ − 2naþ a2Þf02ÞÞ þ 2e2r3λξf5ð2f0 þ rf00Þ
þ 2e2rfð2ð−n2αþ r2ðv2αλþ 2v4λξþ 16αΛξÞ þ αð2n − aÞaÞf0 þ r3ðv4λþ 8αΛÞξf00Þ
þ 4e2rf3ð−ð−5n2ξþ r2λðαþ 3v2ξÞ þ 5ξð2n − aÞaþ 2rξð−nþ aÞa0Þf0

þ rξðn2 − r2v2λ − 2naþ a2Þf00ÞÞ − 4A2
�
a04 − 16e4rξfðαþ ξf2Þf0

þ 4e2ra0ðαþ ξfðf þ 2rf0ÞÞa00 − 2e2ra02ðrð−1þ 2ξÞf02 þ 2ξfð6f0 þ rf00ÞÞ
þ e4r2ð−16rξff03 þ r2ð1 − 4ξÞf04 − 16ξfðαþ ξf2Þf00

þ 4rðαþ ξf2Þf0f00 þ 4f02ðα − 4αξþ ξfðf þ 20ξf þ r2f00ÞÞÞ
��!

¼ 0; ðB3Þ

2e2rðn − aÞf2 − 2Aa0 þ ra0A0 þ 2rAa00 þ a0

4e2ðαþ ξf2 þ 2rξff0Þ ð−e
2r2ðv4λþ 8αΛÞ

− 2e2ðn2 − r2v2λ − 2naþ a2Þf2 − e2r2λf4 − 16e2rξAff0 þ 2Aða02 þ e2r2f02ÞÞ ¼ 0: ðB4Þ

The above three equations are those we solve numerically.
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