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As a new step toward defining complexity for quantum field theories, we map Nielsen operator
complexity for SUðNÞ gates to two-dimensional hydrodynamics. We develop a tractable large N limit that
leads to regular geometries on the manifold of unitaries as N is taken to infinity. To achieve this, we
introduce a basis of noncommutative plane waves for the suðNÞ algebra and define a metric with
polynomial penalty factors. Through the Euler-Arnold approach we identify incompressible inviscid
hydrodynamics on the two-torus as a novel effective theory of large-qudit operator complexity. For largeN,
our cost function captures two essential properties of holographic complexity measures: ergodicity and
conjugate points.
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I. INTRODUCTION

Quantum computational complexity [1], referred to as
complexity hereafter, quantifies the number of simple gates
required to synthesize a given unitary operation in quantum
computing. In recent years, the geometric approach to
complexity of Nielsen et al. [2–4] has proven immensely
useful for investigating the complexity of n-qubit systems,
independently of the particular state of the system. In its
original manifestation, this geometric framework relied on
the SUð2nÞ manifold of unitaries acting on n-qubits. In this
paper, we consider a generalization of Nielsen’s approach
that incorporates quantum circuits acting on N-level sys-
tems, i.e., qudits of dimension N. For qudit systems, the
unitaries of interest belong to SUðNÞ. The key ingredient in
Nielsen’s approach is the choice of metric on this manifold,
assigning penalty factors to unitaries departing from the
identity operator I. The complexity of U ∈ SUðNÞ is then
identified with the length of the minimal geodesic con-
necting I and U. These unitaries are generated by a control
Hamiltonian H tangent to SUðNÞ. The corresponding
group algebra characterizes fully these Hamiltonians and
their geodesics, through the Euler-Arnold method [5–8].

Recent progress on complexity measures via the
AdS=CFT correspondence (or holography) [9–11] further
motivates the present work. In general, holographic com-
plexity measures should be ergodic and exhibit conjugate
points: Ergodicity ensures all points on the group manifold
can be reached in finite time, thus implying a linear [12]
growth of complexity with time [14,15]. In contrast,
conjugate points, i.e., the meeting points of equal-length
geodesics, provide bounds on this growth [4]. This con-
jecture is supported by work on the curvatures of complex-
ity measures in holographic CFT’s [7,8].
Based on Nielsen’s approach, different definitions for

complexity both for discrete systems [14–19] and quantum
field theories [6–8,20–25] have been investigated.
However, how these notions of complexity are related in
the limit of infinite Hilbert space dimensions is an open
question. This limit is in general not well-defined, because
desirable features of quantum circuits, such as k-locality
[15,17–19,26], require penalty factors typically scaling
exponentially with the system size for every direction on
the manifold [2]. In the N → ∞ limit, this leads to singular
geometries on the manifold of unitaries, impeding the
definition of complexity as geodesic length.
In this paper, we show how a judicious choice of basis and

metric for the suðNÞ algebrawith polynomial penalty factors
leads towell-defined nonsingular geometry for SUðN → ∞Þ
[27]. We show that, on the SUðNÞmanifold at infiniteN and
at low energies, Nielsen complexity can be equivalently
evaluated on the manifold of volume-preserving diffeo-
morphisms SDiffðT 2Þ of the torus. We show that the Euler-
Arnold equation on the resulting manifold coincides with
the Euler equation of a two-dimensional ideal fluid [29].
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This permits identifying control Hamiltonians with diffeo-
morphism generators in two-dimensional hydrodynamics.
Moreover, it suggests a natural cost function, based on the
two-dimensional Laplacian, with a smooth dependence on
N. This smooth dependence suggests the prevalence of
particular characteristics of the hydrodynamic theory
even at finite N. In particular, two-dimensional ideal
hydrodynamics is classically chaotic due to the hyper-
bolic geometry of its phase space [30]. We quantify this
instability at finite, large N by numerically computing the
sectional and Ricci curvatures of SUðNÞ.
Finally, we find that our formulation of complexity

exhibits both ergodicity and conjugate points, whose
presence is necessary for a proper holographic complexity
measure (although see [27]). In this way, our results
constitute a new step toward understanding quantum
complexity in QFT’s with a holographic dual.

II. THE ALGEBRA OF N-LEVEL QUDITS

At the heart of our construction lies a new and nontrivial
choice of anti-Hermitian generators for the suðNÞ Lie
algebra. We employ known results for suðNÞ to investigate
the large N limit of our basis and explain the subtleties it
carries. The corresponding structure constants determine
the Riemannian curvature of SUðNÞ, which we compute in
Sec. V. We outline our construction below [31].
We first introduce the N × N “shift” matrix hkl ¼ δkþ1;l

and “clock”matrix gkl ¼ ωlδk;l, withω ¼ exp 2πi
N a primitive

Nth root of unity, and k; l ¼ 0;…; N − 1 mod N. These
matrices commute up to a phase, i.e., hg ¼ ωgh. Then,
following [32–35], we define a basis of unitary, but not
necessarily anti-Hermitian, matrices Jm⃗ ¼ ω

m1m2
2 gm1hm2 ,

indexed by a two-vector m⃗ ¼ ðm1; m2Þ on the Z2-lattice.
These can be thought of as a noncommutative version of
plane waves, with the vector index m⃗ playing the role of the
wavevector, andh and g themomentumand positionmodes,
respectively [34]. Their commutator is given by

½Jm⃗; Jn⃗� ¼ −2i sin
�
π

N
ðm⃗ × n⃗Þ

�
Jm⃗þn⃗; ð1Þ

where m⃗ × n⃗≡m1n2 −m2n1. In [34] it was shown that the
algebra (1) is, in theN → ∞ limit, isomorphic to the algebra
SVectðT2Þ of the group SDiffðT 2Þ of volume-preserving
diffeomorphisms on the standard two-torus T2. To see this,
note that SVectðT 2Þ admits a symplectic structure in terms of
divergence-free vector fields which, in two-dimensions, are
Hamiltonian vector fields Xf. The Xf are uniquely deter-
mined by their associated stream function f [36], which can
be expanded in plane waves on T 2 as fm⃗ ∝ expðiðm1xþ
m2pÞÞ [30]. The isomorphism then between SVectðT2Þ and
suðNÞ in the largeN limit is obtained by expanding the sine
in (1) to first order in 1=N and identifying

Jm⃗ ⟶
N→∞ 2π

iN
Xm⃗: ð2Þ

The isomorphism (2) thus relates Hamiltonian vector fields
[i.e., elements of SVectðT 2Þ] with the basis elements of
suðNÞ given by (1). A detail not addressed in [32–35], but
already mentioned in [37], is that the Taylor expansion
truncation is invalid for several classes of vectors m⃗, n⃗; There
are vector pairs defined for all N, e.g., m⃗ ¼ ðN−1

2
; 0Þ and

n⃗ ¼ ð0; N−1
2
Þ, for which the cross product is of orderOðN2Þ

orOðNÞ. We must restrict the isomorphism to only the pairs
of Oð1Þ. These turn out to be precisely the low-momentum
modes relevant for hydrodynamics, see Sec. IVand [31] for
more details.
We now proceed with the definition of anti-Hermitian

basis elements, capable of constructing SUðNÞ operators
through exponentiation, as required by Nielsen’s approach.
To this end, we introduce for each m⃗,

Cm⃗ ≡ iðJm⃗ þ J†m⃗Þ; Sm⃗ ≡ ðJm⃗ − J†m⃗Þ: ð3Þ

The generators (3) obey commutation relations inherited
from (1) [31]. The structure constants thus obtained are
more involved than those in (1) due to the overcomplete-
ness of (3). However, we can make this basis complete via
modularity symmetries and linear dependences enjoyed by
the generators [31]. Most importantly, due to linearity, the
isomorphism (2) carries over to this basis, which hence
exhibits a well-defined large N limit. We exploit this in our
curvature computations in Sec. V.

III. EULER-ARNOLD FRAMEWORK

Nielsen’s approach identifies complexity with the length
of the minimal geodesic UðsÞ, with s parametrizing the
position along the trajectory [38], connecting the identity
element with the desired U on the manifold of unitaries.
Each geodesic UðsÞ is generated by an (anti-Hermitian)
control Hamiltonian HðsÞ via the Schrödinger equation
dU
ds ¼ HðsÞUðsÞ. The Euler-Arnold formalism [30,39]
exploits the group structure by identifying H with a Lie
algebra element HðsÞ ¼ U−1ðsÞ _UðsÞ ∈ suðNÞ, i.e., with
the pullback of the vector _UðsÞ onto the tangent space at the
identity. The time-evolution ofHðsÞwithin this approach is
then given by the Euler-Arnold (EA) equation

_H ¼ κðH;HÞ; ð4Þ

where κ is a quadratic bilinear two-form defined via
h½X; Y�; Zi ¼ hκðZ; XÞ; Yi, for X; Y; Z ∈ suðNÞ and h·; ·i
the Lie algebra inner product [39]. Distinct κ-forms are
induced by different inner products on the algebra. This is
equivalent to choosing a metric on SUðNÞ, and hence a cost
function in Nielsen’s setup. Using the EA equation is
advantageous, since it can be easier to solve (4) than to
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compute the nested commutators appearing in a solution of
the Schrödinger equation [20]. In fact, we explain in the
next section how the EA equation drastically simplifies in
the large N limit, which allows for the direct calculation of
the control Hamiltonian.

IV. INNER PRODUCT AND PENALTY FACTORS

We now show how at large N, suðNÞ leads within the
EA framework to the ideal-fluid Euler equation. Solutions
to this equation are control Hamiltonians in the sense of
Nielsen, which allows for a hydrodynamic interpretation of
the standard computation of Nielsen complexity [31]. We
also discuss in detail how this suggests a natural extrapo-
lation of the hydrodynamic cost function to finite N.
In the large N limit and for low-energy Oð1Þ generators,

SUðNÞ is identified via (2) with the manifold of volume-
preserving diffeomorphisms SDiffðT2Þ [40]. We consider
the standard inner product on its algebra SVectðT2Þ, given
by the L2-inner product between Hamiltonian vector fields.
This can be rewritten in terms of the Laplacian acting on
stream functions as

hXf; Xgi ¼
Z
ω
Xf · Xg ¼ −

Z
ω
fΔg; ð5Þ

with ω the symplectic form on T 2 [31]. For f ¼ g, this is
(twice) the kinetic energy of a flow. The inner product (5)
induces a metric on SDiffðT2Þ which defines the length,
and thus the cost, of geodesics. Consequently, it defines a κ
form given by κðf; fÞ ¼ −Δ−1ff;Δfg, with f·; ·g the usual
Poisson bracket [31]. This κ form leads to the following EA
equation for the control Hamiltonian H

Δ _h ¼ −fh;Δhg; ð6Þ

with h the “control stream function” associated toH via the
symplectic form [31]. Equation (6) constitutes a main result
of this work. Considering the large N limit of the suðNÞ
algebra, we obtain the stream function form of the Euler
equation for a (2þ 1)-dimensional ideal fluid [30].
We find that the Nielsen complexity of a large-qudit

unitary can be evaluated via this effective hydrodynamic
theory, for which the control Hamiltonian can be straight-
forwardly computed (6). Moreover, the computation of
Nielsen complexity can be recast in the hydrodynamic
setting: The Schrödinger equation defining the target
unitary U in terms of the control Hamiltonian, is now
the equation relating the Eulerian and Lagrangian frames of
reference of the fluid df

ds ¼ Hðs; fðsÞÞ [41]. HðsÞ is the
control Hamiltonian obtained from the solution h of (6)
and f the corresponding diffeomorphism. Imposing
the boundary conditions fð0Þ ¼ id, the identity map,
and fð1Þ ¼ ftarget, the target diffeomorphism [42], yields
initial velocities vm⃗ ≡ vm⃗ðs; ftargetÞ [43] for the geodesic as

functions of ftarget. These are inserted into the length

functional l ¼ R
1
0 ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G̃m⃗ n⃗vm⃗vn⃗

p
. Here, G̃m⃗ n⃗ is the metric

induced by the inner product (5). Minimizing this
functional over all solutions (6) yields the complexity of
ftarget, CðftargetÞ. In summary, the Nielsen complexity
of large-qudit unitaries is given by the length of the
minimal geodesic, generated by a solution to the EA
equation (6), that connects the Lie algebra SVectðT2Þ with
the desired target element of SDiffðT2Þ. Our construction,
hence, provides a smooth geometry at largeN, the manifold
SDiffðT2Þ, on which complexity can be calculated. Thus,
we avoid the singular geometries encountered in previous
manifestations of large N complexity models. Additionally,
SDiffðT2Þ has a clear physical interpretation as the phase
space of a well-known theory, namely two-dimensional
hydrodynamics.
Motivated by our construction for complexity atN → ∞,

and exploiting the generator isomorphism (2), we now
formulate new results for the complexity geometry at finite
N by ensuring a smooth transition between the finite- and
infinite-dimensional setups. We adapt the inner product (5)
at N → ∞ to finite N by defining the action of the
Laplacian on noncommutative waves as ΔJm⃗ ¼ −m2Jm⃗.
This choice transitions smoothly to infinite N, where the
action of the standard Laplacian on plane waves fk⃗ is
Δfk⃗ ¼ ð∂2x þ ∂

2
pÞfk⃗ ¼ −k2fk⃗ [44]. We define an inner

product on suðNÞ for finite N as

hT m⃗; T n⃗i ≔ −
1

2N
TrðT m⃗ΔT

†
n⃗Þ; ð7Þ

with T ∈ fC; Sg. By means of group translation, this inner
product induces a right-invariant metric Gm⃗ n⃗ on SUðNÞ. Its
components are the penalty factors for different directions
on the tangent space, given by the eigenvalues of the
Laplacian acting on the generators, i.e., Gm⃗ n⃗ ¼ m2δm⃗ n⃗,
with m ¼ jm⃗j. These penalties render the metric homo-
geneous but not isotropic, since not all directions get
penalized equally. Equal penalty factors are assigned only
to those vectors related by parity or conjugation e.g.,
m⃗ ¼ ð1; 2Þ, n⃗ ¼ ð2; 1Þ and ⃗l ¼ ð−2;−1Þ. This reflects
the Hamiltonian structure of the problem, with the
Laplacian being invariant under symplectic transforma-
tions, and is visually manifest in our curvature results
shown in Fig. 1. Due to this symmetry, every direction on
the Lie algebra gets assigned a different penalty with at
most eight-fold degeneracy, yielding a maximally aniso-
tropic metric for the manifold of unitaries. This is an
essential property, since anisotropy leads to negative
curvature on the manifold and negative curvature is a
strong indicator of ergodic geodesic flow [16]. In terms of
N-level qudits, our choice of metric ensures high-energy
excitations with large wave vector receive larger penalty
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factors. These high-energy sectors effectively decouple in
the strict large N limit.
Our choice of penalty factors is fundamentally different

from the majority of previous work on the subject, e.g.,
[4,15,17,18]. In particular, the penalty factors in these
setups grow exponentially p ∼ αk ∼ ek ln α instead of poly-
nomially [45]. Here, k is the Pauli weight of the many-qubit
gate in the Pauli basis [46]. Although exponential penalty
factors are well motivated from the point of view of local
quantum operations, they typically lead to singular geom-
etries in the N ¼ 2n → ∞ limit [17–19]. Instead, our
penalty factors remain finite in the large N limit, by
transitioning to the position and momentum modes of
Hamiltonian vector fields on T2 via (2). This identification
with the hydrodynamical phase-space is naturally restricted
to the low-energy sector of Oð1Þ vectors, the so-called
admissible directions. Thus, there are no infinitely penal-
ized directions on SDiffðT2Þ, resulting in a regular geom-
etry. The remaining directions of the large SUðN → ∞Þ
manifold containing the high-energy sectors with OðNÞ
vectors are inadmissible and effectively decouple from the
geometry since they are assigned penalty factors that are at
least infinite. This situation is captured in the framework of
sub-Riemannian geometry [47], also recently mentioned in
the context of complexity in [48]. A fundamental theorem
due to Chow and Rashevskii [49,50] asserts that geodesics
can still reach every point by only accessing admissible
directions [51,52]. That is, trajectories from the hydro-
dynamic phase space can still reach every large qudit
unitary. Since it is infinitely expensive to move in

inadmissible directions, the hydrodynamic trajectories have
an overall smaller cost, i.e., smaller complexity, cf. [31].

V. AVERAGE RICCI CURVATURE

Curvature computations in recent literature regarding
Nielsen complexity geometries [15–19,26] typically focus
on the sectional curvatures of the manifold of unitaries. The
sign of the sectional curvatures is an indicator for con-
vergence (positive sign) or divergence (negative sign)
of nearby geodesics [53]. However, the stability of a
geodesic and, hence, the emergence of ergodic behavior
does not only depend on the sign of the sectional curvature
in the direction parallel to its velocity, but rather on the
sign of the sectional curvatures of all two-planes containing
its velocity vector [30]. For this reason, we believe that a
more telling quantity to describe the stability of a geodesic
with velocity vector v is given by the normalized Ricci
curvature [54],

RicðvÞ ¼ lim
N→∞

1

N2 − 2

X
m⃗

Kðv; T m⃗Þ; ð8Þ

with K the sectional curvature tensor and m⃗ running
over the algebra directions. Equation (8) can be thought
of as an average sectional curvature across an orthonormal
basis for the tangent space and is well defined as N → ∞.
Importantly, RicðvÞ ≤ 0 for SDiffðT2Þ [54], which is the
quantitative reason for the chaotic behavior of two-dimen-
sional hydrodynamics. The smooth limit of our suðNÞ
basis for large N, given by SVectðT2Þ, indicates we can
compute Ricci curvatures of SUðNÞ at largeN and compare
to the hydrodynamic result. We evaluate the Ricci curvature
for every direction m⃗ in suðNÞ for odd values of N ∈
½3; 39� by first calculating the corresponding sectional
curvatures [31]. Note that, since the dimensionality of
the tangent space grows with N, a given velocity m⃗ can be
defined only after it appears within the distribution of
directions atN ¼ N0ðm⃗Þ. Its corresponding Ricci curvature
Ricðm⃗Þ is thus defined only after N ¼ N0ðm⃗Þ and will
continue to change with N as more and more directions
contribute to the average in (8). Our numerical data shows
that Ricci curvatures of newly introduced directions at a
given N ¼ N0 are always positive, but all eventually turn
negative at some critical value N ¼ Ncðm⃗Þ. The resulting
data for Nc as a function of the direction m⃗ ∈ suðNÞ is
shown in Fig. 1 and constitutes a second main result of our
work. We interpret this figure and its extrapolation at large
N as a visual definition of the Oð1Þ subsector (the blue
region) from which the hydrodynamic theory emerges in
the strict large N limit [31].
Our results have the following implications for the

complexity geometry of SUðNÞ at large N. The large
N geometry of the low-energy sector has negative
Ricci curvature, thus numerically confirming previous

0
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10

15

20

m2

m1

FIG. 1. Color density plot of the critical value Nc at which the
normalized Ricci curvature of a given direction m⃗ in suðNÞ
becomes negative over the Z2 lattice, spanned by the vector
componentsm1, m2. The interpolation between the integer points
of the lattice is there to guide the eye. The color flare at the lower
left corner is an artifact of this interpolation.
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mathematical results [54], as well as indicating
emergent chaotic behavior [55]. This implies geodesics
can reach every point of the manifold in finite time,
resulting in an ergodic geodesic flow. Therefore, our
canonical cost function has a property characteristic of
any proper holographic complexity measure as conjec-
tured by [14,15].
Furthermore, the numerically evaluated distribution of

sectional curvatures of our model always contains positive
sectional curvatures at large N [31]. The presence of
positively sectional curvatures is also a necessary property
of our cost function from two points of view: First, while a
strictly negative geometry is indeed ergodic [18,56], com-
plexity metrics on Lie groups without positive curvatures
are necessarily flat [19,57]. Our choice of metric thus
combines the negative average Ricci curvature beneficial
for ergodicity with the necessity of having positively
curved directions. Second, strictly negative geometries lack
an important feature of geometric complexity, namely
conjugate points [58]. These are points on a manifold
where a geodesic ceases to be globally minimizing, e.g.,
antipodal points on the sphere. Conjugate points seem to be
a necessary feature of complexity geometries, since they
forbid complexity from exhibiting an unbounded linear
growth with time [4,17–19]. It is well-known that
SDiffðT2Þ, our effective geometry at N → ∞, indeed
exhibits conjugate points [30,59]. All in all, our results
indicate that even though the large N limit considered here
is more similar to the vector large N limit than to the matrix
large N limit relevant in holography [28], our setup still
exhibits desirable properties of a holographic complexity
measure for large enough values of N.
Finally, our results for the sectional curvatures [31]

indicate the existence of a universality class of SUðNÞ
metrics, as defined in [48], indexed by N2. These
SUðNÞ metrics are conjectured to be equivalent, i.e.,
leading to the same complexity, at late geodesic times.
We infer from this conjecture that the complexity of
SUðNÞ scales at large N and at large geodesic distances
as CðSUðNÞÞ ≃ CðSDiffðT 2ÞÞ þOð1=NÞ. Moreover, this
implies a finite critical N ¼ NC such that CðSUðNCÞÞ at
short distances equals CðSDiffðT2ÞÞ at long distances,
even if the manifolds are not isomorphic.

VI. DISCUSSION AND OUTLOOK

For the first time, we provide a definition for Nielsen
operator complexity of SUðNÞ with a well-defined large N
limit. This is realized by using the ideal hydrodynamics
equation as the geodesic equation on the low-momentum
sector of SUðN → ∞Þ ≅ SDiffðT2Þ. The natural choice of
cost function is the kinetic energy of the fluid, which we
derive within the Euler-Arnold approach and adapt for
every value of N. Our construction provides a simple way
of computing the control Hamiltonian, thus simplifying

one of the main obstacles in the computation of Nielsen
complexity. In particular, our setup allows to reach every
point of the large SUðN → ∞Þ manifold via admissible
geodesics within the hydrodynamical phase space, thus
drastically simplifying the complexity geometry.
From the perspective of quantum information, we find a

basis for qudit unitaries that scales nicely with the qudit
size. This scalability allows for the synthesis of large qudit
gates as long as they only implementOð1Þ transitions, with
respect to N. This corresponds to a locality property of our
basis, implying its usefulness for constructing qudit lattices.
This is particularly interesting in view of computing
complexity of fault-tolerant quantum error-correction qudit
architectures [60–62].
It is possible to include 1=N corrections for large, but

finite, qudit unitaries in order to confirm the conjectured
scaling of CðSUðNÞÞwith N in terms of CðSDiffðT2ÞÞ. This
will also allow to derive the critical NC at which the
complexities for the two manifolds coincide. This approach
is closely related to integrable systems in noncommutative
geometry [37,63–65], see [31] for a first step in this
direction.
Finally, our cost function captures two essential proper-

ties in view of holographic complexity, ergodicity and
conjugate points. Both are consequences of the phase
space geometry of hydrodynamics. This suggests that cost
functions based on the Laplacian acting on infinitesimal
gates are a promising new avenue for describing operator
complexity also in holographic CFTs.
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