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We extend the method of adiabatic regularization by introducing an arbitrary parameter μ for a scalar
field with quartic self-coupling in a Friedmann-Lemaître-Robertson-Walker spacetime at one-loop order.
The subtraction terms constructed from this extended version allow us to define a preferred vacuum state at
a fixed time η ¼ η0 for this theory. We compute this vacuum state for two commonly used background
fields in cosmology, specially in the context of preheating. We also give a possible prescription for an
adequate value for μ.
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I. INTRODUCTION

The construction of a theory of quantum fields propa-
gating in curved spacetimes has been a very fruitful
endeavor both in its theoretical-mathematical formulation
and in its astrophysical and cosmological applications [1–7].
One of the main lessons we have learned so far is that the
traditional concepts in flat spacetime of a preferred vacuum
state and normal ordering are not to be taken for granted
anymore. In this context, the construction of the expectation
value of the stress-energy tensor is highly nontrivial.
Accordingly, it is necessary to construct this magnitude
consistently, not only to determine the local energy, momen-
tum, and stress properties of the quantized field but also
because it plays a crucial role in the semiclassical Einstein
equations, which describe the backreaction of the quantum
field on the spacetime geometry. In the case of a cosmo-
logical spacetime, we can perform a Fourier transformation
on the fields and carry out a mode sum expansion. The
relative simplicity of the equations and the construction of
the stress-energy tensor in this description has been fruitful
not only for cosmological applications but also for con-
ceptual understanding of quantum properties in nonflat
spacetimes [1,2,5,6,8].
A well-known difficulty in the construction of the

vacuum expectation value (vev) of the stress-energy tensor
is the presence of UV divergences, where normal ordering
is not applicable anymore. Many methods, known as
regularization and renormalization, have been developed
to overcome these infinities and produce finite physical

results [1–3,5,9–12]. In the case of a Friedman-Lemaître-
Robertson-Walker (FLRW) spacetime, adiabatic regulari-
zation constructs the subtraction terms in such a way that
they include all possible divergences of the stress-energy
tensor while maintaining the mode sum description and
therefore preserving its computational efficiency [8,13].
Even though the spacetime geometry is fixed to be FLRW,
it is important to stress that this regularization method is
equivalent to more general methods such as the DeWitt-
Schwinger asymptotic expansion when restricting to an
homogeneous and isotropic geometry [14,15] (see also
Ref. [16]). Adiabatic regularization has been successfully
extended to spin-1

2
fields [17] and to classical scalar and

electromagnetic background fields [18,19].
In general, there exists an arbitrariness in the construc-

tion of a regularization and renormalization program. For
example, in dimensional regularization, this arbitrariness is
usually encoded in a mass parameter μ [20,21]. Of course,
there is no harm in this ambiguity since the difference
between two different values for μ can always be reab-
sorbed into the renormalized coupling constants. A change
in the renormalization point μ corresponds to a change in
the renormalized coupling constants. In flat spacetime, this
change or running of the coupling constants has been
proven to be very fruitful, for example, to analyze the
behavior of gauge theories in a high-energy limit or to
construct effective potentials for the quantized fields [22].
In curved spacetime, there also exists an arbitrariness

when constructing the subtraction terms. For example,
for a free massive scalar field in a four-dimensional
curved spacetime, the possible difference between two
stress-energy tensors with different renormalization schemes
yields [3]
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hTabiren − hT̃abiren ¼ agab þ bGab þ cHð1Þ
ab þ dHð2Þ

ab ; ð1Þ

whereGab is theEinstein tensor andH
ð1Þ
ab andH

ð2Þ
ab are tensors

constructed from higher-order curvature terms. In the case of
adiabatic regularization, it has been shown that one possibil-
ity is to encode this arbitrariness into a mass scale μ, similar
to the dimensional regularization analog, by upgrading
the leading order of the adiabatic expansion from ωð0Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2m2

p
to ω̃ð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2μ2

p
, wherem is the physical

mass of the field [23]. The consequences of this extended
adiabatic regularization method have been recently studied
inRefs. [24,25] in the context of the RunningVacuumModel
and the cosmological constant problem. In this paper, we
generalize this extended adiabatic regularization method
for the case of an interacting λϕ4 theory in an expanding
universe. Note that the standard subtraction terms con-
structed via adiabatic regularization [13] can be regarded
as a particular scheme, i.e., μ2 ¼ m2.
Another difficulty in quantum field theory in curved

spacetimes is the absence of a preferred vacuum state, even
in the case of isotropic and homogeneous spacetimes.
Indeed, any state that is Hadamard or adiabatic for
cosmological spacetimes is equally suitable for the defi-
nition of a vacuum state [2,3]. Therefore, to select an
adequate vacuum state, additional requirements need to
be considered, e.g., taking advantage of the emergent
conformal symmetry near the big bang in a radiation-
dominated universe [26]. For general FLRW spacetimes, a
recent method to select an adequate vacuum state was
proposed in Ref. [27] for the case of a free linear scalar
field. This vacuum state verified the necessary restrictions
by requiring that the mode expansion of the regularized
stress-energy tensor vanish mode by mode at a given time
η ¼ η0. It was also proven that this condition is sufficient to
uniquely determine the vacuum state for several relevant
backgrounds in cosmology.
An interesting question is whether this requirement can

be imposed into an interacting theory, e.g., a scalar field
with an λϕ4 potential. This question is of special impor-
tance since it is well known that scalar fields with a
potential play an essential role in the dynamics of the
early stages of the Universe [28]. Furthermore, to quantify
the possible quantum production of particles due to the
scalar background field [29], we need to be able to both
construct a regularize stress-energy tensor and select a
preferred vacuum state. As we will show in this work, the
above-mentioned requirement for the regularized stress-
energy tensor via standard adiabatic regularization fails to
produce well-defined modes for physical models of infla-
tion and reheating.
Since this vacuum state is constructed from the sub-

traction terms of adiabatic regularization, different schemes
can result in different vacuum states. In the case of the
extended version of adiabatic regularization [23], each
possible value for μ will produce a different vacuum state.

We will show that there is always the possibility to choose a
specific value of μ such that there exist modes of the
vacuum state that have vanishing stress-energy tensor
mode by mode at a given time η ¼ η0. This is a generali-
zation of the results in Ref. [27], since it is a particular case
for μ ¼ m and λ ¼ 0.
The paper is organized as follows. In Sec. II, we

introduce the model that we use through the rest of the
paper. We also give the formal expressions of some relevant
quantities, such as the energy density or the pressure. In
Sec. III, we introduce the μ-extended version of the
adiabatic regularization method when including scalar
background fields. We also give the renormalized vacuum
expectation values of the main observables of the theory. In
Sec. IV, we introduce an upgraded version of the instanta-
neous vacuum proposed in Ref. [27] including scalar
background fields and for an arbitrary μ. For the λϕ4

potential in a FLRW universe, we deeply study the region
of validity of our instantaneous vacuum and its dependence
on the μ parameter. Finally, in Sec. V, we will reanalyze
the validity of the instantaneous vacuum as a function of μ
for the potential 1

2
g2ϕ2X2, that is, for a daughter field X

coupled with the usual inflaton field ϕ. In Sec. VI, we give
some concluding remarks.

II. SCALAR FIELD IN A FLRW SPACETIME

Consider the action of a scalar field ϕ, nonminimally
coupled to the curvature

Sϕ½ϕ; gμν� ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p

×

�
gμν∂μϕ∂νϕ − ðξRþm2Þϕ2 −

λ

2
ϕ4

�
: ð2Þ

Here, m2, λ, and ξ are the bare mass, quartic coupling, and
scalar curvature coupling, respectively. The associated
Klein-Gordon equation for the scalar field is

ð□þ ξRþm2 þ λϕ2Þϕ ¼ 0; ð3Þ

and the corresponding stress-energy tensor reads

Tab ¼ ∇aϕ∇bϕ −
1

2
gab∇cϕ∇cϕþ gab

�
m2

2
ϕ2 þ λ

4
ϕ4

�

− ξ

�
Rab −

1

2
Rgab

�
ϕ2 þ ξðgab∇c∇cϕ

2 −∇a∇bϕ
2Þ:

ð4Þ

It is useful to break the field into its mean field ϕ̄ ¼ hϕi
and the fluctuation field δϕ as ϕ≡ ϕ̄þ δϕ. Following
Refs. [30,31] and truncating at one-loop order, the
equations of motion become
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ð□þ ξRþm2 þ λϕ̄2 þ 3λhδϕ2iÞϕ̄ ¼ 0;

ð□þ ξRþm2 þ 3λϕ̄2Þδϕ ¼ 0; ð5Þ

where hδϕ2i≡ h0jδϕ2j0i is the vacuum expectation value
of the fluctuating field. The same equations can be obtained
by making use of the 1=N approximation (see Ref. [6] for a
detailed explanation). The semiclassical Einstein equation
at one-loop order is

ð8πGÞ−1Gab þ Λgab þ αð1ÞHab þ βð2ÞHab

¼ T̄abðϕ̄Þ þ hTabi: ð6Þ

T̄abðϕ̄Þ is the stress-energy tensor (4) for ϕ̄, and hTabi≡
h0jTabj0i is the vacuum expectation value of the stress-
energy tensor of a free field with effective square mass
Q ≔ m2 þ 3λϕ̄2. Both hδϕ2i and hTabi are divergent and
need to be regularized and renormalized by adding the
corresponding counterterms. The λϕ4 theory can be renor-
malized in general curved spacetime [32,33]. The renorm-
alization involves shifting the bare coupling constants of (2)
to their renormalized, finite analogs. For example, in
dimensional regularization, the relation between the bare
couplings and the renormalized ones is

m2 ≡m2
R −

3λR
8π2ðn − 4Þm

2
R ð7Þ

ξ −
1

6
≡ ξR −

1

6
−

3λR
8π2ðn − 4Þ

�
ξR −

1

6

�
ð8Þ

λ≡ λR −
9λ3R

8π2ðn − 4Þ ; ð9Þ

while the renormalized semiclassical equations are [6,34]

ð□þ ξRRþm2
R þ λRϕ̄

2 þ λRhδϕ2irenÞϕ̄ ¼ 0;

ð□þ ξRRþm2
R þ 3λRϕ̄

2Þδϕ ¼ 0: ð10Þ

ð8πGRÞ−1Gab þ ΛRgab þ αð1ÞR Hab þ βð2ÞR Hab

¼ ðT̄abðϕ̄Þ þ hTabirenÞ: ð11Þ

From now on, we drop the R index for simplicity; i.e., all
the couplings constants appearing into the computations are
the finite renormalized couplings. In the next section,
we show how to construct the finite magnitudes hδϕ2iren
and hTabiren.
In the case of a flat FLRWmetric ds2¼aðηÞ2ðdη2−dx⃗ 2Þ,

where η is the conformal time, we can assume ϕ̄ ¼ ϕ̄ðηÞ
and express the quantum fluctuations as

δϕðx⃗;ηÞ¼ 1

ð2πÞ3
Z

d3k½Ak⃗hk⃗ðηÞeik⃗ x⃗þA†
k⃗
h�
k⃗
ðηÞe−ik⃗ x⃗�: ð12Þ

By choosing the normalization conditions hk⃗h
�0
k⃗
− hk⃗

0h�
k⃗
¼

ia−2 and hk⃗h
0
−k⃗

− hk⃗
0h−k⃗ ¼ 0, the operators Ak⃗ and A†

k⃗
can

be interpreted as the usual creation and annihilation
operators. At this point, we can define the vacuum state
j0i as the state annihilated by the operator Ak⃗. The modes hk⃗
follow the equation of motion

hk⃗
00 þ 2

a0

a
h0
k⃗
þ
�
k2 þ a2Qþ 6ξ

a00

a

�
hk⃗ ¼ 0; ð13Þ

where here again Q≡m2 þ 3λϕ̄2. We note that the
expected invariance under rotations requires that the modes
hk⃗ depend only on k ¼ jk⃗j. Therefore, from now on, we

drop the vector k⃗ and write k ¼ jk⃗j. In an isotropic and
homogeneous spacetime, the vacuum expectation value of
the stress-energy tensor can be decomposed in terms of

hTabi ¼ −gabhpi þ ðhpi þ hρiÞuaub; ð14Þ

where ua is the unit vector normal to the homogeneous and
isotropic hypersurface. In terms of mode function of (12),
the components of (14) become

hρi≡ 1

ð2πÞ3
Z

d3khρki

¼ 1

ð2πÞ3
Z

d3k
2a2

�
jh0kj2 þ ðk2 þQa2Þjhkj2

þ 6ξ

�
a02

a2
jhkj2 þ

a0

a
ðhkh0�k þ h�kh

0
kÞ
��

ð15Þ

hpi≡ 1

ð2πÞ3
Z

d3khpki

¼ 1

ð2πÞ3
Z

d3k
2a2

�
jh0kj2 −

�
k2

3
þQa2

�
jhkj2

− 2ξ

�
ð2 − 12ξÞ a

00

a
−
a02

a2

�
jhkj2

þ 2ξ

�
a0

a
ðhkh0�k þ h�kh

0
kÞ − 2jh0kj2

þ ð2k2 þ 2Qa2Þjhkj2
��

: ð16Þ

As we have already stressed, both of these quantities
diverge. In the next section, we will use adiabatic
regularization to construct finite energy density (15) and
pressure (16).
The specific splitting in (12) is arbitrary. In Minkowski

spacetime, we can use the additional symmetries to make
a particular choice of this splitting (i.e., positive- and
negative-frequency solutions), selecting a particular
vacuum state. However, in general, even for FLRW space-
times, we cannot select a preferred vacuum state. A useful

ADIABATIC REGULARIZATION AND PREFERRED VACUUM … PHYS. REV. D 106, 065015 (2022)

065015-3



guide to determining a subclass of preferred vacuum states
in cosmological backgrounds is to impose the adiabatic
condition, namely, in the limit k → ∞, the mode functions
should behave as [27]

jhkðηÞj ¼ jhðnÞk jð1þOðk−n−ϵÞÞ;
jh0kðηÞj ¼ j∂ηhðnÞk jð1þOðk−n−ϵÞÞ: ð17Þ

where

hðnÞk ¼ a−1ð2WðnÞ
k Þ−1

2e−i
R

η WðnÞ
k dη0 ; ð18Þ

with WðnÞ
k ¼ ωk þ ωð2Þ þ � � � þ ωðnÞ and ϵ > 0. The form

of this expansion will be explicitly constructed in the next
section. These states allow us to build the finite stress-
energy tensor and two-point function if n ¼ 4 after
renormalization. We can check that our instantaneous
vacuum state for a given η0 is of adiabatic order 4.
Therefore, the solution constructed from this condition
will be also of adiabatic order 4 for any time η. Note that the
extension of the adiabatic expansion for a free scalar field to
the case under consideration is straightforward, with an
effective time-dependent mass m2

eff ¼ Q2.

III. ADIABATIC REGULARIZATION

We briefly introduce how to perform adiabatic regulari-
zation (for a more extended description, see Refs. [1,5]).
First, we introduce the Wentzel-Kramers-Brillouin (WKB)
ansatz

hk ∼
1

a
ffiffiffiffiffiffiffiffiffi
2Wk

p e−i
R

η Wkdη0 ð19Þ

into the equations of motion (13), which results in (we drop
the subindex k for convenience)

W1=2 d2

dη2
W−1=2 þ ðk2 þ a2QÞ þ ð6ξ − 1Þ a

00

a
¼ W2: ð20Þ

We want to obtain an (adiabatic) expansion of W ¼ ωð0Þ þ
ωð1Þ þ ωð2Þ þ…where each term ωðnÞ has a fixed adiabatic
order n. To this end, it becomes necessary to give a
prescription of the adiabatic order for each time-dependent
parameter. In the case of the scale factor aðηÞ, which is of
adiabatic order 0, each derivative gives rise to an extra
adiabatic order [5]. The case of Q is more subtle. A first
possibility is to assume Q of adiabatic order zero. This is
the standard procedure for the free field case whenQ ¼ m2

is a constant [5]. However, if Q is not constant, e.g., for a
polynomial type potential V∝ϕn with n>2 with Q∝ ϕ̄n−2,
then the adiabatic order-0 assignation is no longer valid.
In Ref. [31], for the special case of n ¼ 4, it was found that
the consistent adiabatic order for Q is order 2 (see also

Ref. [18]). Therefore, it is reasonable to choose Q of
adiabatic order 2.
In this case, we need to introduce an additional parameter

μ2 to avoid infrared divergences. This is equivalent to the
infrared divergences appearing in the massless case for free
fields [5,23]. We follow the approach used in Ref. [23].
Equation (20) is modified as follows:

W1=2 d2

dη2
W−1=2 þ ðk2 þ a2μ2Þ

þ ða2Q − a2μ2Þ þ ð6ξ − 1Þ a
00

a
¼ W2: ð21Þ

Here, ðk2 þ a2μ2Þ≕ω2 is assumed of adiabatic order 0,
while ða2Q − a2μ2Þ þ ð6ξ − 1Þ a00a ≔ σ is assumed of
adiabatic order 2.1 We can solve (20) iteratively, which
results in

ωð0Þ ¼ ω; ωð2Þ ¼ 1

2
ω−1=2 d2

dη2
ω−1=2 þ 1

2
ω−1σ ð22Þ

ωð4Þ ¼ 1

4
ωð2Þω−3=2 d2

dη2
ω−1=2 −

1

2
ω−1ðωð2ÞÞ2

−
1

4
ω−1=2 d2

dη2
ðω−3=2ωð2ÞÞ: ð23Þ

We only need to compute up to adiabatic order 4 since the
subtractions for the stress-energy tensor are required only
up to this order. For the renormalized two-point function,
we obtain

hδϕ2iren ¼
1

ð2πÞ3
Z

d3kjhkj2 −Φð0Þ −Φð2Þ; ð24Þ

where

Φð0Þ ¼ 1

ð2πÞ3
Z

d3k
1

2a2ω
;

Φð2Þ ¼ −1
ð2πÞ3

Z
d3k

ωð2Þ

2a2ω2
: ð25Þ

The two-point function needs only to be subtracted up to
adiabatic order 2 since the fourth adiabatic order is already
finite. In the case of the stress-energy tensor, we need to
subtract up to adiabatic order 4,

hTabiren ¼ hTabi − T ð0Þ
ab − T ð2Þ

ab − T ð4Þ
ab ; ð26Þ

1Note that an alternative is to consider only the μ2 in the first
parenthesis of (21) and then take, at the end of the calculation,
μ2 → 0. We do not follow this approach here for practical
purposes, as we will see in the next section.
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and in terms of the individual components (14)

hρiren ¼
1

ð2πÞ3
Z

d3k½hρki − Cρðμ; k; ηÞ�;

hpiren ¼
1

ð2πÞ3
Z

d3k½hpki − Cpðμ; k; ηÞ�: ð27Þ

The subtractions for each component Cρ and Cp can be
found in the Appendix.

A. μ-invariance of the renormalized
semiclassical equations

It is important to check whether the introduction of μ
does not generate additional counterterms into the renor-
malized semiclassical equations (10) and (11). There are
different ways of proving this. One option is to compute the
difference between two stress-energy tensors, obtained via
adiabatic regularization with two different prescriptions μ1
and μ2. This was done in Ref. [23] for the case of a scalar
field with an electromagnetic field. Here, we follow a
different approach. We take the stress-energy tensor renor-
malized with a general prescription μ and perform the
derivative with respect to this parameter. It is easy to check
that, at one-loop approximation, this magnitude gives a
finite quantity,

μ
d
dμ

hTabiren ¼ agab þ b

�
ξ −

1

6

�
Gab

þ c

�
ξ −

1

6

�
2ð1ÞHab þ Sab; ð28Þ

where a, b, and c are functions of μ2 and Sab is defined as

Sab ¼
1

16π2

�
−
1

2
Q2gab þ μ2Qgab þ ð6ξ − 1ÞQGab

− ð1 − 6ξÞðgab∇c∇cQ −∇a∇bQÞ
�
: ð29Þ

For our particular caseQ ¼ m2 þ 3λϕ̄2, all terms appearing
in (28) are already present in the renormalized semiclassical
equations (10) and (11). Therefore, any possible difference
between the reparametrization of an initial prescription of
the subtraction terms μ ¼ μ1 into another μ ¼ μ2 can always
be reabsorbed by reparametrizing the coupling constants of
the renormalized semiclassical equations (10) and (11).
By requiring μ independence of the semiclassical equa-

tions (10) and (11), the renormalization of the coupling
constant generates an effective dependence on the μ scale.
In theories where we can assign a physical interpretation to
μ as an energy scale, one can study the behavior of the
couplings and, therefore, of the theory at some extreme
high- or low-energy regime. This lies at the heart of the
effective field theory approach or the asymptotic free

theories [35–37]. Some attempts have been carried out
to study this possible scale dependence in general curved
spacetime [7,38,39] and for the expansion of the Universe
[40,41]. Nevertheless, the possible interpretations in this
context are still not completely understood. Here, we will
carry on a different approach. We will fix the arbitrary
parameter μ ¼ μ� in order to obtain the semiclassical
equations (10) and (11) with fixed coupling constants,
which would be determined by observations. Therefore,
once we have fixed the corresponding value of μ�,
the renormalized couplings constants will not change.
We recall that in our approach we only rely on the well-
known result that we can always give different prescrip-
tions on how to construct regularized magnitudes, in this
case, encoded in the arbitrary selection of μ. We do not need
to give any physical meaning to the value of μ.
In the next section, we obtain a vacuum state that

produces vanishing renormalized vacuum expectation val-
ues of the pressure and the density (27) mode by mode at a
given time η0. Since the subtraction terms Cρ and Cp will
be prescribed with μ ¼ μ�, the terms hρkiren and hpkiren will
also inherit a dependence of μ�. It is important to note that
once this parameter has been fixed it cannot be arbitrarily
changed in future calculations without changing the cou-
pling constants accordingly.
We use this dependence with μ� to construct a well-

defined vacuum state. We show that only a subclass of
values of μ > μmin, where μmin depends on the configura-
tion of the classical fields, are valid to construct a well-
defined vacuum state.. Nonetheless, it is always possible to
construct it for interesting physical scenarios.

IV. INSTANTANEOUS VACUUM FOR THE
MINIMAL COUPLED SCALAR FIELD

To construct the vacuum state, we follow the same
approach as in Ref. [27] for the case of a minimally coupled
scalar field. It can be done as follows. To choose a vacuum
at η ¼ η0 implies choosing a particular set of initial
conditions fhkðη0Þ; h0kðη0Þg. In this context, they can be
conveniently parametrized as

hkðη0Þ ¼
1

aðη0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Wkðη0Þ

p ;

h0kðη0Þ ¼
�
−iWkðη0Þ þ

Vkðη0Þ
2

−
a0ðη0Þ
aðη0Þ

�
hkðη0Þ: ð30Þ

To ensure that the solutions are normalized, bothWk and Vk
have to be real, and Wk has to be also positive for all k.
Comparing (30) with (17), we can easily translate the
adiabatic condition into a condition for the initial values
Wkðη0Þ and Vkðη0Þ. For large k, they should behave as2

2Here, we useWk for the instantaneous vacuum and not for the
adiabatic expansion. Wð4Þ refers to the adiabatic expansion up to
adiabatic order 4.
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Wkðη0Þ ¼ Wð4Þðη0Þ þOðk−4−ϵÞ;

Vkðη0Þ ¼
∂ηWð4Þ

Wð4Þ

����
η0

þOðk−4−ϵÞ: ð31Þ

However, as we have already pointed out, this requirement
is not enough to select a unique expression for the modes
(30). For this reason, we impose the condition that the

stress-energy tensor vanishes, mode by mode, after renorm-
alization [27], such that [see (27)]

hρkiðη0Þ ¼ Cρðμ�; k; η0Þ;
hpkiðη0Þ ¼ Cpðμ�; k; η0Þ: ð32Þ

Inserting the ansatz (30) into the mode expansion (15) and
(16), we can solve (32) for Wk and Vk, arriving at

Wkðη0Þ ¼
2k2 þ 3Qðη0Þaðη0Þ2

6aðη0Þ4ðCρðμ�; k; η0Þ − Cpðμ�; k; η0ÞÞ
; ð33Þ

Vð�Þ
k ðη0Þ ¼

2a0ðη0Þ
aðη0Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Wkðη0Þ2 − k2 − aðη0Þ2Qðη0Þ þ 4aðη0Þ4Cρðμ�; k; η0ÞWkðη0Þ

q
: ð34Þ

It can be argued [27] that VðþÞ
k ðη0Þ is the appropriated

solution in expanding cosmologies, while Vð−Þ
k ðη0Þ has to

be used in the contracting case. This is required to obtain a
large-k expansion for the modes compatible with the
adiabatic regularity condition. We remark that, since the
Cρ and Cp are built from the adiabatic subtractions,
the asymptotic condition (31) is automatically satisfied
after resolving this sign ambiguity. Although we have been
able to solve (32) algebraically, the consistency of the
solutions is not ensured. As stressed above, these solutions
will be consistent if and only if Wkðη0Þ and Vkðη0Þ are
finite and real and Wkðη0Þ is also positive. The condition
for Vkðη0Þ translates to

∞ > rkðη0Þ ¼ −Wkðη0Þ2 − k2 − aðη0Þ2Qðη0Þ
þ 4aðη0Þ4Cρðμ�; k; η0ÞWkðη0Þ ≥ 0: ð35Þ

Both expressions rk and Wk depend on the expansion
parameter aðηÞ and QðηÞ evaluated at η ¼ η0 and its four
and two first time derivatives, respectively, and on k and μ�,
so in general, it is not trivial to ensure that these conditions
are satisfied.
For instance, take the case of a free field, Q ¼ m2. In

Ref. [27], it was proven that for the standard adiabatic
regularization prescription (μ� ¼ m) the conditions are
indeed satisfied for some physically motivated cosmologi-
cal models. However, in the case of a time-dependent
effective mass, e.g., Q ¼ m2 þ 3λϕ̄2, this particular pre-
scription is no longer valid. This can be seen in Fig. 1, in
which we have represented the magnitudes Wk and rk for
the case of λϕ̄2 ¼ ϕ2� cos2 ½mðη − η0Þ� with m ¼ 10−4 ϕ� ¼
10−1 in natural Planck units at η ¼ η0 in the Minkowski
limit. There is a minimum value of the parameter μ� ¼ μmin

that allows having both positive rkðη0Þ andWkðη0Þ for all k,
but it is a higher value than the standard adiabatic
regularization presupposes μ� ¼ m.

A natural question that arises is whether we can find
always a μ� big enough to make both magnitudes positive
irrespective of the possible values of Q and a and its
derivatives. The answer is affirmative since the behavior
for large μ� is

Wðη0Þ ¼
�
16

9
k2 þ 8

3
a2ðη0Þm2ðη0Þ

�
a−1ðη0Þμ−1� þOðμ−3� Þ;

rðη0Þ ¼
1

3
ðk2 þ 3a2ðη0Þm2ðη0ÞÞ þOðμ−2� Þ: ð36Þ

Note that for k → ∞ the positiveness of both magnitudes is
always ensured. This is because, for k → ∞, the modes
behave like the adiabatic expansion, as required by the
adiabatic or Hadamard condition. Nevertheless, there are
two disadvantages of this procedure. First, there is not a
unique value for μ� such that both conditions hold. Second,
even if we choose the minimum value that guarantees these
conditions, there is not a simple analytical value of μmin
which makes the potential physical interpretation of the

FIG. 1. We have plotted the value ofWk (left) and rk (right) for
different values of k and μ� in the case of Q ¼ m2 þ
3ϕ2� cos2 ½mðη − η0Þ� with m ¼ 10−4, ϕ� ¼ 10−1, and aðηÞ ¼ 1
in natural Planck units. The colored patches are the regions where
Wk ≥ 0 (left) and rk ≥ 0 (right), while the blank regions
correspond to negative values of these functions.
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scale complicated. We will show how to compute μmin in
two physically motivated physical models.

A. Example: Massless scalar field with a quartic
potential during preheating phase

A typical case commonly used to describe the production
of particles during the preheating phase is a massless scalar
field, falling down the potential λϕ4 [28], i.e., Q ¼ 3λϕ̄2.
Under some physically motivated approximations, during
the first oscillations, the expanding parameter and the
classical scalar field take the form (see Refs. [42–44])

aðzÞ¼ a�

�
1þH�a�

ω�
z

�
; φ̄ðzÞ¼ cd

�
zffiffiffi
2

p ;−1
�
: ð37Þ

Here, we have defined a convenient change of variables,

η → z ≔ λ1=2ϕ�η≡ ω�η; ϕ̄ → φ̄ ≔ aϕ−1� ϕ̄; ð38Þ
where a� and ϕ� are the values of the expanding param-
eter and background scalar field at the initial time z ¼ 0,
respectively, and H� ≡Hðz ¼ 0Þ is the Hubble parameter
at the initial time. Under this configuration, and in order to
construct the instantaneous vacuum, the only free para-
meters areH�, μ�, ϕ�, and k. Furthermore, since we are only
interested in the sign of expressions (33) and (35), we can
rescale both expressions, Wk → W̃k ¼ ω−1� Wk and rk →
r̃k ¼ ω−2� rk, such that they only depend on H̃� ¼ ω−1� H�,
μ̃� ¼ ω−1� μ�, and κ ¼ ω−1� k. In Fig. 2, we plot both W̃k and r̃k
for different values of κ and μ̃� and forH� ¼ 0.69ω�, which
is the physical value obtained by solving the coupled
inflaton and scale factor equations numerically at the end
of the inflationary phase [43]. We see again that the
condition (35) imposes a minimum value of μ�, for which
the condition of (33) is automatically satisfied.
There are several comments in order. First, we have

checked that a similar consistent result is obtained for a
variety of values for H�, namely, that there is always a
minimum value for μ� that satisfies both the conditions (33)
and (35). Second, we have also checked that this result is
independent of the vanishing value of φ̄0. This can be seen

in Fig. 3, in which we have plotted the same expressions as
in Fig. 2 but for z ¼ 0.5 where both φ̄ and φ̄0 have a
nonvanishing value. This result confirms the robustness of
this method.
Finally, it is tempting to associate the minimum value for

μ� in Fig. 2 with some combination of physical values. Let
us take a closer look at this particular case. The equation of
motion of hk in terms of the new variables (38) takes the
form

∂
2

∂z2
ðaðzÞhkðzÞÞ

þ
�
κ2þ3φ̄2ðzÞþð6ξ−1ÞaðzÞ

00

aðzÞ
�
ðaðzÞhkðzÞÞ¼ 0: ð39Þ

For our specific case (37), the term involving the time
derivative of the expanding parameter vanishes for all z.
The only physical relevant scale would be then φ̄ðzÞ. In this
case, the most clear assignation would be μ̃� ∼ φ̄ðzÞ.
However, since we have constructed the vacuum state from
the modes from the stress-energy tensor, additional time
derivatives appear, and therefore both Wk and rk will also
depend on H�. A possible combination of both magnitudes
to generate this minimum value would be rather unnatural.
Since it is not possible to find a trivial expression for the
minimum value of μmin, there is still freedom of choosing
any other μ� > μmin. To decide which value is the optimal, it
is useful to construct the remainder magnitude appearing in
the semiclassical equations, i.e., the renormalized two-
point function at η0,

hδϕ2irenðη0Þ¼
1

2π2

Z
dkk2

1

2a2
W−1

k ðη0Þ−Φð0Þðη0Þ−Φð2Þðη0Þ

≡ ω2�
4a2π2

Z
sκdκ; ð40Þ

where Φð0Þ and Φð2Þ are defined in (25). Here, sκ only
depends on H̃�, κ, and μ̃�. In Fig. 4, we plot sκ for several

FIG. 3. We plot the quantities W̃k (left) and r̃k (right) for
H� ¼ 0.69ω� at z0 ¼ 0.5. The x axis is κ, and the y axis is μ�. The
colored patches are the regions where W̃k ≥ 0 (left) and r̃k ≥ 0
(right), while the blank regions correspond to negative values of
these functions.

FIG. 2. We plot the quantities W̃k (left) and r̃k (right) for
H� ¼ 0.69ω� at z0 ¼ 0. The x axis is κ, and the y axis is μ�. The
colored patches are the regions where W̃k ≥ 0 (left) and r̃k ≥ 0
(right), while the blank regions correspond to negative values of
these functions.
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permitted values of μ̃� and H̃� ¼ 0.69. We see that
if we increase the value of μ�, the fluctuations at this
initial time also increase. The initial value of the two-
point function is very important since it enters expli-
citly into the semiclassical equations for the classical scalar
field

φ̄00 þ φ̄3 þ ð3λa2hδϕ2irenÞφ̄ ¼ 0: ð41Þ
In the next section, we will see how the minimum value
of μ� can prevent the backreaction from being very strong
at the initial time, a desirable feature when computing
the quantum fluctuations and the backreaction during
preheating.

V. INSTANTANEOUS VACUUM
FOR A DAUGHTER FIELD WITH

A QUADRATIC POTENTIAL

Another widely used model in the context of preheating
consists of a massless quantum scalar field X (the daughter
field) coupled to the classical massive scalar inflaton field
via 1

2
g2ϕ2X2. It is easy to check that the quantization is

equivalent to the one carried out in Sec. II. The quantized
field X can be expanded in terms of modes hk as in (12) but
now obeys equation (13) with Q ¼ g2ϕ̄2ðηÞ (for a more
detailed description, see, for example, Ref. [31]). We can
also compute the two-point function, the energy density
and the pressure using the formulas given in Eqs. (24), (15)
and (16), respectively. In this context, it is convenient to
introduce the natural variables

η→ z≔
Z

η

η0

ω�aðη0Þdη0; ϕ→φ≔ a3=2ϕ−1� ϕ;

hk → χk ≔ a3=2ϕ−1� hk; ð42Þ
with ω� ≡m. With these changes, the equation for the
daughter field modes χk becomes (assuming ξ ¼ 0)

χ00k þ
�
Δþ κ2

a2
þQ�

�
χk ¼ 0; ð43Þ

where κ¼ω−1� k, ΔðzÞ ¼ − 3
4
ða0aÞ2 − 3

2
a00
a , andQ� ¼ g2ϕ2�

ω2�a3
φ̄2≡

qa−3φ̄2 together with the Wronskian condition χkχ
�0
k −

χ�kχ
0
k ¼ iϕ−2� ω−1� .3 The equation for the background, ignor-

ing backreaction effects, reads

φ̄00 þ ðΔðzÞ þ 1Þφ̄ ¼ 0: ð44Þ

Ignoring the backreaction of the daughter field at this
point (we will come to this issue later on), we can solve the
semiclassical equations during the first oscillations around
the potential and obtain [43,44]

aðzÞ ¼
�
1þ 3

2

H�
ω�

z

�
2=3

; φ̄ ¼ cosðzÞ; ð45Þ

which leads to Δ ¼ 0. Here, we have fixed the initial
conditions φ̄ð0Þ ¼ 1 and φ̄0ð0Þ ¼ 0.
Again, the vev of the stress-energy tensor and the two-

point function of the quantized field X diverge, and
adiabatic regularization can be used to obtain finite results.
We will not repeat the process again since it is straightfor-
ward using the method explained in Sec. III, by fixing
Q ¼ g2ϕ̄2, m ¼ 0, and ξ ¼ 0. The subtraction terms can be
found in the Appendix.
In this context, the instantaneous vacuum for the

daughter field can be defined exactly as before (30) and
conveniently reexpressed in terms of the new variables
introduced in (42). We can also scale the frequency as
ω → ω̃ ¼ a−1ω−1� ω≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2a−2 þ μ̃2�
p

where μ̃� ¼ ω−1� μ�.
Therefore, the rescaled functions W̃k ¼ a−1ω−1� Wk,
Ṽk ¼ a−1ω−1� Vk, and r̃k ¼ a−2ω−2� rk depend only on q,
κ, μ̃�, and H̃� ¼ ω−1� H�,

W̃kðz0Þ ¼
2aðz0Þ−2κ2 þ 3Q�ðz0Þ

6aðz0Þ3ω−1� ðCρðμ̃�; κ; z0Þ − Cpðμ̃�; κ; z0ÞÞ
; ð46Þ

Ṽð�Þ
k ðz0Þ ¼

2a0ðz0Þ
aðz0Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−W̃kðη0Þ2 − aðz0Þ−2κ2 −Q�ðz0Þ þ 4aðz0Þ3ω−1� Cρðμ̃�; κ; z0ÞW̃kðz0Þ

q
: ð47Þ

FIG. 4. Value of sκ defined in (40) for different values of μ� and
H̃� ¼ 0.69.

3Here, the prime refers to the derivative with respect to z.
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We aim to explore the values of μ̃� for which the
instantaneous vacuum is well defined, i.e., W̃k > 0 and
r̃k ≥ 0. For this example, we will only focus on r̃k since it
can be checked that for all the studied cases the condition
on r̃k is more restrictive than the one imposed on W̃k.
The value of H̃� can be computed by solving Einstein’s
equations during the first oscillations of the scalar field and
yields H̃� ¼ 0.5 [43]. In Fig. 5, we represent r̃k for different
values of κ and μ̃�. We have repeated the analysis for
different values of q.
As in the λϕ4 model, not all values of μ� are allowed for

constructing the modes of the instantaneous vacuum
consistently. In Fig. 5, we also see that the minimum value
required is μ̃min ∼

ffiffiffi
q

p
. However, we note that in this

example the choice μ̃� ¼ ffiffiffi
q

p
does not satisfy the require-

ment r̃k > 0. That is, μ̃min should be greater (although
sometimes it is very close) than

ffiffiffi
q

p
. In general, it will be

a nontrivial combination of the parameters q and H̃�.
However, as we noted in the case of λϕ4, increasing the
value of μ� increases the value of hX2iren for the instanta-
neous vacuum state at η ¼ η0. As we will see, this can have
dramatic consequences in the backreaction to the classical
scalar field, and the choice of a consistent value of μ� has to
be done carefully.

A. Backreaction effects

For simplicity let us restrict to Minkowski spacetime.
The equation of motion for the background field φ̄
including backreaction effects is

φ̄00 þ ð1þ g2hx2irenÞφ̄ ¼ 0; ð48Þ

where hx2iren is the renormalized two-point function for the
daughter field hX2iren [see Eq. (24)] in terms of the rescaled
variables, which at z ¼ 0 for the instantaneous vacuum (30)
becomes

hx20iren ¼ ð3ðμ̃2� − qφ̄2
0Þ2 þ 2qφ̄02

0 þ 2qφ̄0φ̄
00
0Þ
Z

d3κ
ð2πÞ3 Sκ

≡ 1

2π2
ð3ðμ̃2� − qφ̄2

0Þ2 þ 2qφ̄02
0 þ 2qφ̄0φ̄

00
0ÞIðμ̃�; q; φ̄Þ;

ð49Þ

where Sκ ¼ ð2κ2þ3μ̃2�Þ
16ω̃5ð2κ2þ3qφ̄2

0
Þ and φ̄0, φ̄0

0, and φ̄00
0 refer to the

initial values of the background φ̄ðzÞ and its two first
derivatives, respectively. From the expression above and
using (48), we find

φ̄00
0 ¼ −

1þ g2

2π2
I½3ðμ̃2� − qφ̄2

0Þ2 þ 2qφ̄02
0 �

1þ g2

π2
Iqφ̄2

0

φ̄0: ð50Þ

To quantify the backreaction of the produced quantum
fluctuations during a finite amount of time, e.g., during the
first oscillations of the background scalar field of the
preheating phase, it is necessary to ensure that the quantum
fluctuations are not very large at the initial time, such that
the classical solutions (45) are valid. This is, in general, not
an easy problem since, for possible physical values of
the couplings and the scalar field, the backreaction effects
can become very large at initial times. For example, in
Ref. [31], a possible vacuum state was proposed, and the
two-point function hx2iren was calculated. It is not difficult
to check that this vacuum state can be recovered from the
instantaneous vacuum by choosing μ2� ¼ qφ2

0. In this case,
it was proven that possible values of q can produce a large
value of quantum fluctuations, and therefore only certain
values are optimal to study the backreaction effect.
In the case of the instantaneous vacuum, this issue can be

overcome, and we can construct a vacuum state that has
small fluctuations, given any possible values of g and q. To
see this, we assume the initial conditions φ̄0 ¼ 1 and
φ̄0
0 ¼ 0. In this case, the initial backreaction contribution

can be completely suppressed (i.e., φ00
0 ¼ −1) by fixing

μ̃2� ¼ qþ
ffiffiffi
2

3

r ffiffiffi
q

p
: ð51Þ

On the other hand, it can be easily shown that as long as μ̃�
starts to increase the backreaction effects grow without
bound for arbitrarily large values of μ̃�. In fact, the
asymptotic behavior of φ00

0 for large μ̃� is (50)

FIG. 5. We plot the quantity r̃k for q ¼ 1, q ¼ 10 (first row) and
q ¼ 103 and q ¼ 104 (second row). The value of H̃� is fixed to be
H̃� ¼ 0.5. The colored patches are the regions where r̃k ≥ 0,
while the blank regions correspond to negative values of this
function.
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φ00
0 ¼ −

g2

8π2
μ̃2� þOðμ̃�Þ: ð52Þ

We conclude that μ̃� has to be large enough to ensure
W̃k > 0 and r̃k ≥ 0 but small enough to minimize the initial
backreaction effects.

VI. CONCLUSIONS

In this work, we have generalized the extended adiabatic
regularization to an interacting λϕ4 theory at one-loop
order. This extended version includes an arbitrary mass
parameter μ. We have used this arbitrariness to consistently
construct a natural instantaneous vacuum state, requiring
that the stress-energy tensor vanishes mode by mode. An
important result is that not all values of μ are admissible to
construct this vacuum state.
We have constructed the vacuum state for two well-

known models in cosmology, in particular during the
preheating stage after the inflationary period, namely, the
massless λϕ4 and the daughter field coupled to a massive
scalar field with quadratic potential. A significant result is
that we can tune the value of μ such that the initial
fluctuations encoded in hδϕ2iren are not too strong, a
feature highly desirable for computing the backreaction
of the produced quanta during the preheating phase.
Finally, we would like to comment on another interesting

advantage of the instantaneous vacuum. Assume we have
constructed a solution for the quantized scalar field, e.g.,
the daughter field described in Sec. V, in terms of the modes
hkðηÞ imposing the instantaneous vacuum condition (32) at
some initial time η0. We can always construct another mode
sum expansion for the scalar field in terms of h̃kðηÞ which
satisfies (32) at a different time ηf. Both solutions are
related in the following way:

hkðηÞ ¼ αkh̃kðηÞ þ βkh̃
�
kðηÞ; ð53Þ

h0kðηÞ ¼ αkh̃
0
kðηÞ þ βkh̃

�0
k ðηÞ; ð54Þ

where αk and βk are time-independent coefficients, nor-
malized as jαkj2 − jβkj2 ¼ 1 (see, for example, Ref. [45]).
Note that the existence of h̃k will depend on the value μ�
used to construct the subtraction terms. One can check that
for the typical examples of a background scalar field the
value of μ� used to construct hk also serves to construct h̃k.
For simplicity, we restrict to Minkowski spacetime, but the
same argument can be made for nonflat spacetimes. The
renormalized energy density of the modes hk at ηf > η0 can
be written in terms of h̃k as

hρirenðηfÞ ¼
1

ð2πÞ3
Z

d3kð2jβkj2Cρðμ�; k; ηfÞ

þ 2Reðαkβ�kðh̃0kðηfÞ2 þ ðk2 þ g2ϕ̄2Þh̃kðηfÞ2ÞÞ;
ð55Þ

with

βk ¼
i
2
ðh̃0kðηfÞhkðηfÞ − h̃kðηfÞh0kðηfÞÞ: ð56Þ

A similar expression holds for the pressure. The advantage
of this formulation is that, by construction, Eq. (55) is a
finite quantity. We can interpret here the jβkj2 as a measure
of the number of particles carrying an energy density Cρ,
which is nothing but the energy density subtracted from the
exact energy density at initial time η0. However, we must be
careful with this interpretation since another definition for
the vacuum state, i.e., another construction of h̃k, would
yield another result for jβkj2, meaning that the interpretation
is not unique. Only in particular cases where a unique
natural definition of the vacuum state is available can this
be done. For example, consider that after some time ηf the
classical field ϕ̄ ≈ ϕ̄f becomes constant. In this case, there
is a natural vacuum state of the form

fkðηÞ ¼
1ffiffiffiffiffiffiffiffi
2Ωk

p f0kðηÞ ¼ −i
ffiffiffiffiffiffi
Ωk

2

r
; ð57Þ

where here Ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ g2ϕ̄2

f

q
. This vacuum can be recov-

ered from the instantaneous vacuum by choosing the mass
scale to be μ2f ¼ g2ϕ̄2

f. However, we have already fixed the
μ� at the initial time η0, e.g., using (51). We can reformulate
the energy density in terms of the vacuum (57) as

hρirenðηfÞ ¼
1

ð4π2Þ
Z

∞

0

dkk2jβkj2Ωk þ ρvacðμ�; ϕ̄fÞ; ð58Þ

where

ρvacðμ�; ϕ̄fÞ

¼ 1

128π2

�
−μ4� þ 4μ2�g2ϕ̄2

f − 3g4ϕ̄4
f −

1

2
log

�
g2ϕ̄2

f

μ2�

�
ϕ̄4
f

�
:

ð59Þ

We see a clear distinction between the contribution to the
energy density associated with the particle production and
the energy density associated with the vacuum ρvac. Note
that, even if the particle production were negligible
jβkj2 ≈ 0, since the energy density at the initial time η0
is zero, we would have a net production of vacuum energy
due to the change of the classical scalar field. Of course,
the possibility of choosing a unique vacuum state is not
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guaranteed in a nonflat spacetime or even when the
classical scalar field is nonconstant. However, the formu-
lation proposed in this work allows us to quantify both
particle production and vacuum polarization effects in a
transparent way, using, for example, Eq. (55). Applying
this formulation to compute the backreaction of preheating
processes is the motivation for future projects.
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APPENDIX: ADIABATIC SUBTRACTIONS OF
THE STRESS-ENERGY TENSOR Cp AND Cρ

Defining s ¼ Q − μ2 and using ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2μ2

p
, the

adiabatic subtractions for the energy density and pressure
up to and including the fourth adiabatic order read

Cρ ¼
ω

2a4
þ s
4a2ω

þ ða0Þ2
4a6ω

−
3ξða0Þ2
2a6ω

þ a0ω0

4a5ω2
−
3ξa0ω0

2a5ω2
þ ðω0Þ2
16a4ω3

−
sσ

8a2ω3
þ σ2

16a4ω3
−
σða0Þ2
8a6ω3

þ 3ξσða0Þ2
4a6ω3

þ a0σ0

8a5ω3

−
3ξa0σ0

4a5ω3
−
3σa0ω0

8a5ω4
þ 9ξσa0ω0

4a5ω4
þ σ0ω0

16a4ω4
−
3sðω0Þ2
32a2ω5

−
σðω0Þ2
16a4ω5

−
3ða0Þ2ðω0Þ2
32a6ω5

þ 9ξða0Þ2ðω0Þ2
16a6ω5

−
15a0ðω0Þ3
32a5ω6

þ 45ξa0ðω0Þ3
16a5ω6

−
45ðω0Þ4
256a4ω7

þ sω00

16a2ω4
−

σω00

16a4ω4
þ ða0Þ2ω00

16a6ω4
−
3ξða0Þ2ω00

8a6ω4
þ 7a0ω0ω00

16a5ω5
−
21ξa0ω0ω00
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