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Using anOðNÞ-symmetric toy model QFT in zero space-time dimensions we discuss several aspects and
limitations of the 1

N-expansion. We demonstrate how slight modifications in a classical UVaction can lead
the 1

N-expansion astray and how the infinite-N limit may alter fundamental properties of a QFT. Thereby
we present the problem of calculating correlation functions from two totally different perspectives: First,
we explicitly analyze our model within an 1

N-saddle-point expansion and show its limitations. Second, we
picture the same problem within the framework of the functional renormalization group. Applying novel
analogies between (F)RG flow equations and numerical fluid dynamics from parts I and II of this series of
publications, we recast the calculation of expectation values of our toy model into solving a highly
nonlinear but exact advection(-diffusion) equation. In doing so, we find that the applicability of the
1
N-expansion to our toy model is linked to freezing shock waves in field space in the FRG-fluid dynamic
picture, while the failure of the 1

N-expansion in this context is related to the annihilation of two opposing
shock waves in field space.

DOI: 10.1103/PhysRevD.106.065014

I. INTRODUCTION

In all kinds of applications of (quantum-)statistical phys-
ics, like particle or solid state physics, strongly interacting
systemsuncovered fundamental shortcomings of perturbative
methods for the calculation of expectation values (observ-
ables) from path integrals or partition functions, which are
usually not exactly solvable [1–3]. Consequently, various
alternative nonperturbative approaches were developed
within the last decades. Among others, these comprise
“brute force” lattice Monte-Carlo simulations [4–6], Com-
plex-Langevin equations [7,8], Dyson-Schwinger equations
[9–12], the functional renormalization group [13–15], holo-
graphic methods [16,17] etc..
Another rather old “nonperturbative” approach is the so-

called 1
N-expansion—sometimes also denoted as large-N

expansion, the ’t Hooft limit, or in some contexts the mean-
field approximation. This method relies on a systematic
expansion of characteristic quantities of the theory, like
expectation values, correlation functions, and observables,
in powers of 1

N. Here, N is the number of different kinds of
interacting degrees of freedom of the theory (particle or

field types, spins, molecules, color charges etc.), which is
considered to be large in this context (1 ⋘ N). Hence,
extensive quantities need to be rescaled by appropriate
powers of N in advance to allow for a meaningful 1

N-
expansion. Although involving an expansion in a small,
dimensionless parameter, namely 1

N, the method is con-
sidered to be nonperturbative, because it is also applicable
to systems of strong interactions, where an expansion in
couplings is doomed to fail. In consequence, various great
successes and precise predictions trace back to this method,
see, e.g., Refs. [16,18–25] or the review [26]—in some
cases maintaining predictive power even for systems, where
N is surprisingly small. However, also the large-N expan-
sion and especially retaining only its zeroth order contri-
bution—the infinite-N limit—comes with some limitations
and certain fundamental characteristics of a (quantum) field
theoretical or statistical model, like the convexity of the 1

N-
rescaled effective action, may be altered.
In order to elucidate some of these aspects and interest-

ing consequences, we study the large-N expansion and the
infinite-N limit within two totally different setups. On the
one hand, we perform a conventional saddle-point expan-
sion of the path integral (partition function) by assuming
that N is large (or even infinite) [24,27]. On the other
hand, we study the same problem within the functional
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renormalization group approach, also considering large
and/or (in)finite N, cf. Refs. [23,25,28–36] for the infinite-
N limit in the FRG framework.
To keep our discussion as simple as possible we work

with a sober and exactly solvable toy model: the zero-
dimensional OðNÞ model—an ultra local and strongly
coupled QFT in a single space-time point.1 The property
of being exactly solvable (in terms of conventional one-
dimensional integrals) promotes the model to a perfect
testing ground for methods of (quantum-)statistical physics
and we are by far not the first scientists, who are using this
toy model for this purpose, cf. Refs. [3,24,37,39–51]. Even
a lot of aspects of the large-/infinite-N limit have been dis-
cussed already within this setup, cf. Refs. [24,38,52–56]—
especially for quartic actions (potentials).
Within this work, we use the zero-dimensional OðNÞ

model to highlight the following aspects:
(1) Considering a rather simple—but nonanalytic—one-

parameter family of classical actions (potentials) we
demonstrate that there is a narrow line between a
straightforward applicability of the large-N saddle-
point expansion and a total failure of this method. In
our zero-dimensional pedagogical and tailor made
example, this point of failure is easy to detect.
However, it may serve as a warning for applications
of the large-N limit and the corresponding saddle-
point expansion of the path integral in higher-
dimensional scenarios, where it is not necessarily
easy to judge, if all requirements for a meaningful
1
N-expansion are fulfilled.

(2) Switching perspectives to the FRG formalism, we
make use of the fact that the corresponding RG flow
equation is exact for the zero-dimensional OðNÞ
model. Being “exact” in this context means that
truncating the flow equation is not necessary (for
finite and infinite N) since the partial differential
equation (PDE) for the RG flow can be solved
numerically. To do so, we apply the novel fluid
dynamic reformulation of this RG flow equation in
terms of a highly nonlinear advection-diffusion
equation, which was demonstrated and discussed
in parts I and II of this series of publications [57,58]
and Refs. [25,36,59]. Within this fluid dynamic
framework, we show that the RG flow in the
infinite-N limit is purely advection driven, while
diffusive contributions enter only at finite N. This
also generalizes to higher space-time dimensions.
As a direct consequence, dependingon the classical

action (potential)—UV initial condition, the infinite-
N-RG flows tend to formor sustain nonanalyticities of

different kinds, e.g., shock and rarefaction waves or
jump discontinuities, cf. Refs. [25,36].
We find that for our toy model with nonanalytic

classical action, shock and rarefaction waves are
present and the problem presents at the UV initial
scale involves two Riemann problems. But we do
not stop by turning the calculation of ordinary
N-dimensional integrals with spherical symmetry
for expectationvalues into a fluid dynamical problem.
Wealso demonstrate that the (non-)applicability of the
large-N saddle point expansion translates into the
(collision) freezingof interacting shockwaves in these
fluid dynamic RG flows.

(3) Still working in the FRG-fluid dynamic framework,
we also demonstrate that the inclusion of the radial
σ-mode, thus switching from infinite-N to arbitrary
but finite N, totally changes the physics of the
system. In the infinite-N limit, we explicitly show
by numerical calculations that convexity and smooth-
ness are not necessarily realized for 1

N-rescaled IR
potentials, which effectively violates the Coleman-
Mermin-Wagner-Hohenberg theorem [60–62], re-
spectively a special zero-dimensional version of the
theorem [37,57]. Interestingly, as soon as N is finite,
the highly nonlinear diffusive contribution of the
radial σ mode unavoidably restores convexity and
smoothness of the 1

N-rescaled IRpotentials.Hence, the
large-N expansion with finite N and the infinite-N
limit (only retaining the zeroth order of the
1
N-expansion)may lead to two fundamentally different
results. A qualitative similar result is found in a
parallel work [59] by the authors and their collabo-
rators in the context of the Gross-Neveumodel [22] in
1þ 1 space-time dimension.

(4) As a last aspect, we also highlight further direct
consequences of our fluid dynamic interpretation of
RG flows. Utilizing the method of characteristics
[63–65] and the Rankine-Hugoniot condition [66,67],
wedirectly trace the locations of shock and rarefaction
waves in the field space derivative of the scale-
dependent potential during the RG flows. Appli-
cations of the aforementioned methods in (F)RG
studies can be found in, e.g., Refs. [25,28,29,68,69].
Interacting shock and rarefaction waves, but also

diffusive processes go hand in hand with the rise of
entropy in fluid dynamic problems—as it is well
known from our everyday life. Remarkably, this is
also observed in our RG flows, wherewewere able to
identify a numerical entropy function. This entropy
production manifests the irreversibility of RG flows
and the corresponding semigroup property of RG
transformations.

At this point, we remark that our work was partially
influenced by the excellent publication [25] on the infinite-
N limit of the FRG flow equations of the OðNÞ model in

1The zero-dimensional OðNÞ model is also referred to as
OðNÞ-vector model and can be seen as the high-temperature limit
of a quantum mechanical system [37]. It was also considered as a
statistical model for the formation of polymers [38].
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three Euclidean space-time dimensions and the interpreta-
tion of these RG flows as advection equations, which can
develop different kinds of discontinuities [25]. The appli-
cation of the method of characteristics in the large-N limit
of FRG flow equation predates the explicit identification
and detailed understanding of infinite-N FRG flow equa-
tions as advection equations and goes back (to the best of
our knowledge) to Refs. [28,29]. The authors of Ref. [25],
E. Grossi and N. Wink, were also involved in the first two
parts of this series of publications [57,58] and also worked
together with F. Ihssen and J. M. Pawlowski on calculations
in the quark meson model in the infinite-N limit [36,70],
which was also based on a fluid dynamic interpretation of
RG flows.
In addition, we thank the referee for pointing out that

there are recent works, which also deal with the short-
comings of the standard infinite-N limit in the context of
FRG and link this to nonanalytic structures in the fixed-
point potential [34,35]. An interesting future prospect is
certainly to draw connection between our works in the
fluid-dynamic framework and these results.

II. THE ZERO DIMENSIONAL OðNÞ-MODEL

In this work we consider a purely bosonic, zero-
dimensional QFT consisting of N real scalar “fields”
ϕ⃗ ¼ ðϕ1;ϕ2;…;ϕNÞ, which transform according to

ϕ⃗ ↦ ϕ⃗0 ¼ Oϕ⃗; ð1Þ

where O ∈ OðNÞ. Due to the absence of space and time
dimensions, the fields ϕ⃗ are strictly speaking not fields but
merely plain numbers, without any space-time dependence.
Space-time derivatives and integrals do not exist. The most
general action Sðϕ⃗Þ of such an ultralocal model, which is
invariant under OðNÞ rotations, is given by the ordinary
function

Sðϕ⃗Þ ¼ Uðϕ⃗Þ ¼ UðρÞ; ð2Þ

with the OðNÞ invariant

ρ≡ 1

2
ϕ⃗2; ð3Þ

and the scalar self-interaction potential U, which merely
needs to be bounded from below and grow at least linearly
in ρ to have well-defined expectation values. All non-
vanishing correlation functions, e.g., the two-point function

hϕiϕji ¼
1

N
δijhϕ⃗2i; ð4Þ

can be expressed in terms of ordinary N-dimensional
integrals,

hðϕ⃗2Þni≡ 1

Z0

Z
∞

−∞
dNϕðϕ⃗2Þne−Uðϕ⃗Þ; ð5Þ

with the normalization

Z0 ≡
Z

∞

−∞
dNϕe−Uðϕ⃗Þ: ð6Þ

Using (hyper-)spherical coordinates—theOðNÞ-invariant—
these expectation values of ðϕ⃗2Þn can be computed in terms
of one-dimensional integrals

hðϕ⃗2Þni ¼ 2n
R
∞
0 dρ ρ

ðN−2Þ
2 ρne−UðρÞR

∞
0 dρ ρ

ðN−2Þ
2 e−UðρÞ

: ð7Þ

Connected and 1PI-correlation functions are related to
correlation functions, see, e.g., Eqs. (70)–(75) in Ref. [57]
for explicit expressions of the first three nonvanishing
connected and 1PI-correlation functions of the zero dimen-
sional OðNÞ model or Ref. [24].
For related works on this toy model QFT, we again refer

to Refs. [3,24,24,37–49,52–58].

A. Free theory

For later reference, we recapitulate some results for the
massive noninteracting free theory. The action of the
corresponding OðNÞ model is given by

U0ðρÞ≡m2ρ; ð8Þ

with the positive nonzero “mass”m. The expectation values
(7) can be computed analytically in terms of Gamma
functions resulting in

hðϕ⃗2Þ0i ¼ h1i ¼ 1; ð9Þ

hðϕ⃗2Þni ¼ N þ 2n − 2

m2
hðϕ⃗2Þn−1i; ð10Þ

for n > 1. For the 1PI-correlation functions this result
implies

Γð2Þ ¼ m2; and ∀ n ≠ 2 ΓðnÞ ¼ 0; ð11Þ

where we used the shorthand notation ΓðnÞ ≡ ΓðnÞ
φi…φi of

Refs. [24,57]. In their interpretation as interaction vertices
this result for ΓðnÞ is rather intuitive for a “massive non-
interacting” theory, which has only a nonvanishing 1PI
two-point function, because the underlying probability
distribution is Gaussian.

B. Reformulation for large-N

For computations at large N and in the limit N → ∞ the
rescaling
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ρ ↦ y ¼ 1

N
ρ; UðρÞ ↦ VðyÞ ¼ 1

N
UðρÞ; ð12Þ

has proven particularly useful, see, e.g., Refs. [24,25],
because both y and VðyÞ are of OðN0Þ. The expression (7)
for hðϕ⃗2Þni reads

hðϕ⃗2Þni ¼ 2nNn
R∞
0 dy y

ðN−2Þ
2 yne−NVðyÞR

∞
0 dy y

ðN−2Þ
2 e−NVðρÞ

;

¼ 2nNn
R∞
0 dy yn−1e−N½VðyÞ−1

2
lnðyÞ�R

∞
0 dy y−1e−N½VðyÞ−1

2
lnðyÞ� ; ð13Þ

in terms of y and VðyÞ and we note hðϕ⃗2Þni ¼ OðNnÞ. For
certain potentials VðyÞ the involved integrals

INn ½V�≡
Z

∞

0

dy yn−1e−N½VðyÞ−1
2
lnðyÞ� ð14Þ

can be solved in terms of known functions, see, e.g.,
Refs. [24,24,57] as well as Sec. II C, and/or they can be
computed in the limit N → ∞ by means of a saddle-point
expansion, see Sec. III and Appendix B.

C. An instructive toy model

In this subsection we present an explicit OðNÞ model,
respectively its 1

N-rescaled self-interaction potential VðyÞ,
which turns out to be a rather instructive toy model when
studied at large and infinite N. We consider a family of
piecewise linear potentials

VðyÞ ¼
8<
:

y for 0 ≤ y ≤ 2;

−ayþ 2ðaþ 1Þ for 2 < y ≤ 8;

y − 6ðaþ 1Þ for 8 < y;

ð15Þ

with a parameter a ≥ 0. The first derivative of VðyÞ
presents as a simple piecewise constant function in the
1
N-rescaled invariant y

vðyÞ ¼ ∂yVðyÞ ¼
8<
:

1 for 0 ≤ y ≤ 2;

−a for 2 < y ≤ 8;

1 for 8 < y;

ð16Þ

which is very similar to the one studied in Ref. [25]. The
potential (15) and its y-derivative (16) are plotted in Fig. 1
for illustrative purposes.2 In the context of conservation
equations and fluid dynamics in general, initial value pro-
blems with piecewise constant initial conditions involving
a single discontinuity are referred to as Riemann problems

and canonical examples can be found in the textbooks
[64,71–76].WhenconsideringEq. (16) as the initial condition
of a conservation equation, see Appendix E 2, we are faced
with two Riemann problems (one at y ¼ 2 and one at y ¼ 8)
at the UV initial scale.
This model has several interesting properties:
(1) The expectation values of Eq. (13) can be evaluated

in terms of known functions. In the limit N → ∞ the
1PI-correlation functions can be computed analyti-
cally for alla ≥ 0.Wewill discoverwithin this section
that there are two distinct parameter regimes, which
are particularly interesting when studying this pro-
blem within the saddle-point and FRG frameworks.

(2) For certain parameters a, which are smaller than
some critical value ac, the 1PI-correlation functions
ΓðnÞ—the underlying expectation values (13)—can
be computed by means of a saddle-point expansion.
For a ≥ ac the saddle-point expansion is not appli-
cable. This is discussed in detail in the following
Sec. III.

(3) The model under consideration presents initially as
two Riemann problems in the FRG (fluid dynamic)
framework. The two distinct parameter regimes,
0 ≤ a ≤ ac and a > ac, present with qualitatively
different FRG flows. The interpretation involving

FIG. 1. The potential VðyÞ from Eq. (15) (upper panel) and its
derivative vðyÞ ¼ ∂yVðyÞ from Eq. (16) (lower panel) for differ-
ent values of the parameter a and where ac is given by Eq. (17).

2In Sec. IV, Fig. 3, we also plot the potential and its derivative
as functions of the rescaled field x, where 1

2
x2 ≡ y≡ 1

2N ϕ⃗
2, which

might be a more familiar variable choice for some readers.
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Riemann problems, its numerical solution, and its
consequences are discussed in detail in Sec. IV.

For now, we turn to the computation of the correlation
functions of the model under consideration. Solutions in
terms of known functions for the necessary integrals (14)
for the potential (15) are presented in Appendix A.
In the limit N → ∞ the direct computations of

Appendix A revealed two distinct regimes in parameter
space separated by

ac ¼
1

4
−
1

3
lnð2Þ ≈ 0.018951: ð17Þ

For the infinite-N limit of the expectation values (7) we
find,

lim
N→∞

1

Nn hðϕ⃗2Þni ¼
�
1; for 0 ≤ a ≤ ac;

16n; for ac < a;
ð18Þ

For the corresponding 1PI-correlation functions this
implies in the limit N → ∞

Γð2Þ ¼
�
1; for 0 ≤ a ≤ ac;
1
16
; for ac < a;

ð19Þ

as well as for all a ≥ 0

∀ n ≠ 2 ΓðnÞ ¼ 0: ð20Þ

Thus, in the limit N → ∞ and in terms of 1PI-vertices the
current model under consideration presents as a massive
noninteracting theory for all a ≥ 0, cf. Eq. (11). The
situation for 0 ≤ a < ac and the corresponding “mass”
as well as the origin of the critical value ac can be
understood intuitively in the context of the saddle-point
expansion discussed in Sec. III. The situations for a ¼ ac
and a > ac are more involved and not accessible with a
saddle-point expansion. However, a study in the FRG
framework is possible and rather instructive as we will
demonstrate in Sec. IV. In terms of correlation functions the
theory undergoes a first-order phase transition at ac when
varying the external parameter a, cf. Sec. III C of Ref. [25]
and references therein.

For finite N higher order n-point functions do not vanish
and the theory is of “interactive type”, but in the scope
of this paper we nevertheless mainly focus on Γð2Þ—
especially when it comes to numerical computations.
In Table I we summarize several (exact) reference values

for Γð2Þ for later use.

III. THE SADDLE-POINT
EXPANSION AT LARGE-N

In this section we will analyze the instructive toy model
of Sec. II C within a saddle-point approximation for large
N. In Appendix B we discuss the large N saddle-point
expansion of integrals like (14) concluding in the asymp-
totic series (B9) for hðϕ⃗2Þni. To apply the series (B9) to the
interaction potential (15) of the model under consideration,
we first have to compute the global minimum y0 of the
exponents of the integrands in Eq. (13),

fðyÞ ¼ VðyÞ − 1

2
lnðyÞ; ð21Þ

and check for analyticity of fðyÞ and gðyÞ ¼ yn−1 around
y0. The function fðyÞ for the model under consideration is
plotted in Fig. 2 for different parameters a.
There is always a minimum on the first section

(0 ≤ y ≤ 2) of the piecewise linear potential

0¼! ∂yfðyÞjy¼y0

¼
�
∂yVðyÞ −

1

2y

�����
y¼y0

¼ 1 −
1

2y0
: ð22Þ

TABLE I. Reference values for Γð2Þ ¼ Nðhϕ⃗2iÞ−1 for selected
N and a computed with the expressions (A1) and (A2) as well as
their largeN asymptotics. The exact analytical results are in some
cases rather lengthy and therefore we present in those cases only
six decimal digits for readability.

N a ¼ 0 a ¼ ac a ¼ 2ac

2 0.356907 0.327332 0.299162
32 0.962306 0.475285 0.087158
∞ 1 1 0.0625

FIG. 2. The function fðyÞ ¼ VðyÞ − 1
2
lnðyÞ for the potential

(15) for selected values of the parameter a with ac ¼ 1
4
− 1

3
lnð2Þ≈

0.018951. The local minima of fðyÞ are located at y0 ¼ 1
2
and

y0;2 ¼ 8, where y0 (y0;2) presents as the unique global minimum
for 0 ≤ a < ac (a > ac). At a ¼ ac both minima coincide and
present both as global minima of fðyÞ. The nonanalyticity of fðyÞ
in y0;2 ¼ 8 inherited from the piecewise definition of VðyÞ is
clearly visible in the plot.
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It follows that

y0 ¼
1

2
; Vðy0Þ ¼

1

2
; fðy0Þ ¼

1

2

�
1 − ln

�
1

2

��
; ð23Þ

and for the second and third derivatives, we find

∂
2
yVðyÞjy¼y0 ¼ 0; ∂

2
yfðyÞjy¼y0 ¼ 2; ð24Þ

∂
3
yVðyÞjy¼y0 ¼ 0; ∂

3
yfðyÞjy¼y0 ¼ −8: ð25Þ

We note that VðyÞ and therefore also fðyÞ are smooth, thus
C∞, and analytic around y0 ¼ 1

2
. Also gðyÞ ¼ yn−1 is

analytic and C∞ around y0 ¼ 1
2
. We can therefore use

the asymptotic series (B9) to compute the nonvanishing
expectation values,

1

N
hϕ⃗2i ¼ 1; ð26Þ

1

N2
hðϕ⃗2Þ2i ¼ 1þ 2

N
; ð27Þ

1

N3
hðϕ⃗2Þ3i ¼ 1þ 6

N
þ 8

N2
; ð28Þ

..

. ð29Þ

and the corresponding 1PI-correlation functions

Γð2Þ ¼ 1; ∀ n ≠ 2 ΓðnÞ ¼ 0: ð30Þ

Both are exact results (without taking any limits) and we
find that 1

Nn hðϕ⃗2Þni ¼ 1þOðN−1Þ, while the maximal
correction to 1 is always of OðN−ðn−1ÞÞ. Considering the
corresponding Γð2nÞ we recover the 1PI-correlation func-
tions of a free massive theory, see Eq. (11) with m2 ¼ 1,
which—as an exact and N-independent result—also holds
trivially in leading order in the limit N → ∞. This is a
rather unsurprising result since the 1

N-rescaled potential
VðyÞ manifests as a linear potential with slope 1—
corresponding to a noninteracting theory with m2 ¼
1—for 0 ≤ y ≤ 2.
The previous large-N saddle-point approximation is

however limited to potentials (15) with 0 ≤ a < ac. For
a ≥ ac the function fðyÞ ¼ VðyÞ − 1

2
lnðyÞ develops a

global minimum at y0;2 ¼ 8, which becomes the unique
global minimum for a > ac while at a ¼ ac both y0 and
y0;2 are global minima, see Fig. 2. For a ≥ ac the saddle-
point expansion breaks down since at a ¼ ac the function
fðyÞ has no unique minimum and for a > ac the function
fðyÞ is nonanalytic in its global minimum (the “expansion
point”) y0;2 ¼ 8. The value of ac and the related qualita-
tively distinct scenarios were established in Sec. II C. In the

corresponding exact computations of Appendix A the
threshold ac ¼ 1

4
− 1

3
lnð2Þ ≈ 0.018951 appears when consi-

dering the limit N → ∞ of rather complicated symbolic
expressions. On the other hand, within the framework of
the saddle-point expansion the value of ac can be derived
and understood in a very instructive way as the breakdown
point of the saddle-point expansion,

f

�
y0 ¼

1

2

�
¼! fðy0;2 ¼ 8Þ

1

2
−
1

2
ln

�
1

2

�
¼ 8 − 6ðac þ 1Þ − 1

2
lnð8Þ; ð31Þ

which is solved by

ac ¼
1

4
−
1

3
lnð2Þ ≈ 0.018951: ð32Þ

For a below ac the model presents as a free massive theory
in its saddle-point and the analytical results in the limit
N → ∞ of Sec. II C make perfect sense.
In this paper we are not interested in a quantitative

review of the large-N saddle-point expansion beyond the
limit N → ∞. For such a discussion in the context of zero-
dimensional OðNÞ models we refer the interested reader to
the excellent and pedagogical Ref. [24].
At and beyond the critical value ac—at and beyond the

corresponding first-order phase transition—the saddle-
point expansion is no longer applicable and alternative
methods are required for the computation of correlation
functions. Apart from the direct symbolic computations of
Sec. II C the FRG is a potent tool for computations at
arbitrary finite and infinite N, as we will demonstrate in the
next section. This becomes in particular interesting, when
exact reference results are no longer accessible and when
it is hard to judge if a possible expansion point for the
1
N-expansion is (non)analytic. This is the case for a lot of
higher-dimensional models (also involving fermionic
degrees of freedom cf. [59]).

IV. FRG AND FLUID DYNAMICS

This section is dedicated to the FRG analysis of our zero-
dimensional OðNÞ-symmetric toy model for the piecewise
UV initial potential (15) in terms of a fluid-dynamic
problem. However, we do not provide a detailed introduc-
tion to the FRG formalism at this point. Instead we only
recapitulate some key aspects of (zero-dimensional) FRG
and almost directly start off with the RG flow equation of
the zero-dimensional OðNÞ model with arbitrary action
Sðϕ⃗Þ ¼ Uðϕ⃗Þ. For detailed reviews and introductions to the
FRG and generic applications, we refer to Refs. [13–15,77–
81]. For a pedagogical introduction into the FRG in zero
dimensions, we refer to part I of this series of publications
[57] or Ref. [24].
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A. The RG flow equation

In Sec. II of Ref. [57] we motivated the overall technical
idea of the FRG: By introducing an artificial parameter
dependent “masslike” term, the regulator,3 e.g.,

rðtÞ ¼ Λe−t; t ∈ ½0;∞Þ; ð33Þ

in the generating functional for correlation functions

Zt½J⃗�≡
Z

∞

−∞
dNϕe−

1
2
rðtÞϕ⃗2−Uðϕ⃗ÞþJ⃗·ϕ⃗; ð34Þ

we are able to continuously deform partition functions for
arbitrary theories into Gaussian-type partition functions
and vice versa by simply changing the so-called RG time t
and choosing a large UV cutoff Λ. For t ¼ 0 the generating
functional (34) is completely dominated by the artificial
mass rðtÞ and almost perfectly Gaussian (as long as Λ is
much larger than the typical model scales). For t → ∞
Eq. (34) transforms back into the original problem. The
same holds true for the corresponding expectation values.
However, Gaussian type integrals can easily be solved,
which leads to the idea to describe the continuous defor-
mation via an evolution equation for Zt½J⃗� in terms of a
PDE and to initialize this PDE at the Gaussian point t ¼ 0
(the UV). At the end of our discussion in Sec. II of [57] we
demonstrated that it is more convenient to formulate this
process on the level of the generating functional for the 1PI-
correlation functions, namely the effective action,

Γ½φ⃗�≡ sup
J⃗

fJ⃗ · φ⃗ − lnZ½J⃗�g; ð35Þ

It was shown, that there exists an evolution equation for a
scale (RG-time) dependent version of Γ½φ⃗�, namely the
scale-dependent effective average action Γ̄t½φ⃗�. This evo-
lution equation is called the exact renormalization group
(ERG) equation,

∂tΓ̄t½φ⃗� ¼ Tr
��

1

2
∂tRt

�
ðΓ̄ð2Þ

t ½φ⃗� þ RtÞ−1
�
: ð36Þ

Here, Γ̄ð2Þ
t ½φ⃗� is the full scale- and field-dependent two-

point function, while Rt ¼ rðtÞ1N×N is the regulator func-
tion that is diagonal in field space. The trace is exclusively a
field space trace for our model.
Equation (36) is the zero-dimensional N-boson version

of the much more general functional ERG equation, which
can be applied to arbitrary QFTs. The most general version
of Eq. (36) is a modern implementation of K. G. Wilson’s

concept of the RG [82–84] originally developed by
U. Ellwanger, T. R. Morris, and C. Wetterich [85–88]
and was successfully applied to a broad range of problems
in quantum statistical physics—included all kinds of
strongly correlated systems, cf. Refs. [13–15,77–81] and
references therein.
Equation (36) is usually initialized with the classical

action in the UV at t ¼ 0, Γ̄t¼0½φ⃗� ¼ S½φ⃗�, while after the
evolution to t → ∞, the full quantum effective action is
approached in the IR, Γ̄t→∞½φ⃗� ¼ Γ½φ⃗�.
Usually it is far too complicated or even impossible to

solve the functional ERG equation in higher-dimensional
theories directly and the evolution in theory space needs to be
truncated to some subspace by using an ansatz for Γ̄t½φ⃗�. This
is done by utilizing the symmetries of the system and suitable
projection prescriptions, see e.g., Refs. [13,80,89–100]. For
our zero-dimensional scenario the ERG equation (36) man-
ifests directly as a PDE for the effective average actionwhich
is a only a function and not a functional in zero space-time
dimensions. For the zero dimensional OðNÞ model it is
possible to solve the PDE (36) prescribing the RG flow in its
full generality without the need for truncations of Γ̄t½φ⃗�
[24,57,58,101]. For the zero-dimensional OðNÞ model, the
most general form of the effective average action reads

Γ̄t½φ⃗� ¼ Uðt; φ⃗Þ; ð37Þ

were Uðt; φ⃗Þ is the scale dependent effective potential. We
merely take advantage of the OðNÞ symmetry and, w.l.o.g.
(without loss of generality), choose the field vector φ⃗ ¼
ðσ; 0;…; 0Þ in the functional equation (36). We end up with
an RG flow equation for the scale-dependent effective
potential Uðt; σÞ,

∂tUðt; σÞ ¼ ðN − 1Þ
1
2
∂trðtÞ

rðtÞ þ 1
σ ∂σUðt; σÞ þ

1
2
∂trðtÞ

rðtÞ þ ∂
2
σUðt; σÞ

ð38Þ
that is initialized with the classical potential Uðt ¼ 0; σÞ ¼
SðσÞ ¼ UðσÞ.

B. The RG and (numerical) fluid dynamics

It turns out that it is usually not appropriate to solve the
PDE (38) in terms of Uðt; σÞ directly. In Refs. [25,36,57–
59] it is demonstrated that by taking a derivative with
respect to σ of Eq. (38), one can transform the RG flow into
a typical conservation law for uðt; σÞ≡ ∂σUðt; σÞ,

∂tuðt;σÞ ¼
d
dσ

�
ðN − 1Þ

1
2
∂trðtÞ

rðtÞ þ 1
σuðt;σÞ

þ
1
2
∂trðtÞ

rðtÞ þ ∂σuðt;σÞ
�
.

ð39Þ

Conservation laws like this are well known from (numeri-
cal) fluid dynamics. More precisely, the conservation law at

3In contrast to FRG calculations in nonzero spacetime dimen-
sions all regulators in zero-dimensions are equivalent up to a
reparametrization. Therefore the explicit choice of regulator does
not alter any results.
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hand can be classified as an advection-diffusion equation
for the “fluid” uðt; σÞ in one temporal and one spatial
dimension. Hereby, t ∈ ½0;∞Þ plays the role of a mani-
festly positive effective time coordinate, while field space
σ ∈ ð−∞;þ∞Þ is interpreted as an effective infinite spatial
domain. Formally, we identify the highly nonlinear, explic-
itly position-dependent advection flux,

ð40Þ

which originates from the pion4 loops and the highly
nonlinear diffusion flux5

ð41Þ

that stems from the σ loop contribution to the RG flow—the
“radial mode.”
Nonlinear advection-diffusion equations tend to form

different kinds of nonanalyticities and solutions to these
problems usually only exist in a weak-formulation of the
PDE [64,72–74,76]. In our everyday life, we are familiar
with phenomena like thunder storms, supersonic aircraft,
uncontrolled decompression in pipeline systems etc.. The
theoretical description of such phenomena in a fluid
dynamic setup involves discontinuities like shocks, rar-
efaction waves etc.. However, it was found that similar
phenomena can also occur in RG flows [25,36,57–
59,68,69]. The discussion of shocks and rarefaction waves
in RG flows along field space direction and their inter-
pretation and interplay with the failure of the large-N
expansion is a central aspect of this work.
In order to solve highly nonlinear PDEs like Eq. (39)

numerically including an adequate resolution of potential
nonanalytical behavior, it is best to directly address those,
who gained most experience on similar types of problems:
experts from numerical and computational fluid dynamics.

Therefore, we decided to choose a highly potent and well-
established discretization scheme, in order to tackle
Eq. (39) and its variations (see below) numerically. We
employ two semidiscrete finite volume schemes using a so-
called monotonic upstream-centered scheme for conserva-
tion laws (MUSCL) reconstruction. Most computations are
performed using the KT scheme developed by A. Kurganov
and E. Tadmor in Ref. [108]. For computations in the
rescaled invariant y we use a variation of the KT scheme:
the KNP scheme presented by A. Kurganov, S. Noelle, and
G. Petrova in Ref. [109]. For a detailed discussion on
especially the KT numerical scheme, as well as its explicit
implementation in the context of RG flows, we refer to
Ref. [57]. In Ref. [57,59], we also discuss at length and test
the explicit implementation of the extremely important
spatial (field space) boundary conditions for RG flow
equations of type (39), which is not repeated at this point.

C. The 1
N-rescaled RG flow equation

Now that we have introduced the RG flow equation for
the derivative of the effective potential uðt; σÞ ¼ ∂σUðt; σÞ
in Eq. (39) and briefly recapitulated its relation to numeri-
cal fluid dynamics from Refs. [25,36,57–59], we have to
slightly modify this PDE to facilitate the large- and infinite-
N studies of this publication. To this end, we make use of
the rescalings (12) of extensive quantities,

σ ↦ x ¼ 1ffiffiffiffi
N

p σ; Uðt; σÞ ↦ Vðt; xÞ ¼ 1

N
Uðt; σÞ: ð42Þ

and additionally introduce vðt; xÞ≡ ∂xVðt; xÞ,

uðt; σÞ ↦ vðt; xÞ ¼ 1ffiffiffiffi
N

p uðt; σÞ: ð43Þ

On the level of the RG flow equation, this results in a slight
modification of the prefactors of the fluxes (40) and (41),

∂tvðt; xÞ ¼
d
dx

�
N − 1

N

1
2
∂trðtÞ

rðtÞ þ 1
x vðt; xÞ

þ 1

N

1
2
∂trðtÞ

rðtÞ þ ∂xvðt; xÞ
�
;

ð44Þ

which makes it easily possible to take the infinite-N limit
and to compare RG flows for infinite and finite values of N.
Already at this point we find that increasing N makes
the problem more and more advection driven. In the limit
N → ∞ the diffusion flux vanishes completely and we are
left over with the infinite-N flow equation,

∂tvðt; xÞ ¼
d
dx

� 1
2
∂trðtÞ

rðtÞ þ 1
x vðt; xÞ

�
: ð45Þ

This PDE presents as an advective hyperbolic conservation
law and is very similar to its higher-dimensional counter-
part [25,28,29].

4In this article, we use the terminology of high-energy physics
for the zero-dimensional counterparts of the Nambu-Goldstone
modes [102–104], which are called Anderson-Bogoliubov modes
[105–107] in condensed matter physics. Of course, there is no
real notion of massless modes in zero-dimensions, because there
is no particle propagation. The same holds true for the “massive”
radial σ mode.

5A particularly important feature of the diffusion flux is the
nonlinearity of the diffusion coefficient D½t; ∂σu�, which is
obtained as the prefactor of ∂2σu, when executing the σ-derivative
in Eq. (39). The inverse dependence on the difference between
regulator rðtÞ and gradient ∂σu effectively ensures the convexity
of the effective potential Uðt → ∞; σÞ, as is also discussed in
Refs. [57–59] and Sec. IV F.
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Of course, we can also formulate the RG flow equa-
tion (44) as a fluid dynamic problem in the 1

N-rescaled
invariant y ¼ 1

2
x2,

∂tvðt; yÞ ¼
d
dy

�
N − 1

N

1
2
∂trðtÞ

rðtÞ þ vðt; yÞ

þ 1

N

1
2
∂trðtÞ

rðtÞ þ vðt; yÞ þ 2y∂yvðt; yÞ
�
; ð46Þ

as is done in Refs. [25,36]. This PDE might even
appear more natural to readers, who are familiar with
common FRG literature in higher space-time dimensions,
cf. Refs. [25,28,29]. Overall the structure of the equation
keeps its conservative form in terms of an advection-
diffusion equation.6

The main difference is that the advective contribution
lost its unpleasant position dependence, which is now
found in the second formerly diffusive contribution. The
diffusive term has changed more drastically and can no
longer exclusively be interpreted as a nonlinear diffusion
flux. In Refs. [57–59] we argue at length, that, due to
several reasons, we currently believe that a formulation in x
instead of y is favorable as soon as we allow for diffu-
sive contributions to the RG flow—hence at finite N. In
Sec. IV D of Ref. [57] we discuss the difficulties arising
when attempting to formulate the inevitable spatial boun-
dary condition at y ¼ 0, when using the (rescaled) invariant
y. An oversimplified argument is that there is no physical
meaning of negative values of y, which makes a correct
formulation of a boundary condition, that correctly captures
possible influx due to diffusion, extremely challenging—if
not impossible. In a formulation in x, this is not a problem
at all, since negative x formally exist and antisymmetric
boundary conditions can be used for uðt; xÞ at x ¼ 0 [57–
59]. Additionally, it is understandable that a sober split of
advection and diffusion fluxes is no longer possible in y, by
simply executing the total y-derivative on the right-hand
side (rhs) of Eq. (46) for the last term. Hence, as long as N
is finite, one has to live with the challenging x-dependence
in the advection flux of the PDE (44), which can however
be handled by suitable discretizations, as demonstrated at
length in part I of this series of publications [57].
However, in the infinite-N limit the second term of the

PDE (46) vanishes and the problem again reduces to a
hyperbolic nonlinear advection equation—without any
explicit position dependences,

∂tvðt; yÞ ¼
d
dy

� 1
2
∂trðtÞ

rðtÞ þ vðt; yÞ
�
≡ −

d
dy

G½t; v�: ð47Þ

Because the newly defined advection flux G½t; v� has
manifestly negative sign,7 there cannot be any influx at
y ¼ 0 into the spatial domain y ∈ ½0;∞Þ of the problem
resolving the conceptual issues with the y ¼ 0 boundary
and allowing practical computations in the rescaled in-
variant y.
Though, as is explained in detail in Appendix E there is

another remaining pitfall in this formulation: Using equi-
distant discretizations of the computational domain in y
implies a very low spatial resolution at small field values
x ¼ 1ffiffiffi

N
p σ. This becomes relevant for computations close

to ac within our testing scenario or in generic higher-
dimensional models in their symmetric phase.
In summary, for the scope of this work, we will stick to

version (44) and (45) of the RG flow equations in the main
text and results using Eq. (47) are only presented in
Appendix E.

D. UV initial condition

As explained above, the RG flows for V or v respectively
need to be initialized with the UV potential or rather its
spatial derivative.
For the infinite-N RG flow equation (47) formulated in y,

the UV initial condition for vðt; yÞ is given by Eq. (16).
On the level of the fluid-dynamic reformulation of the
RG flow in y, cf. Appendix E 2, Eq. (47) together with the
initial condition (16) present as two Riemann problems
[25,64,73,74,76] involving jump discontinuities at y ¼ 2
and y ¼ 8, cf. Appendix E 2.
For the RG flow equations (44) and (45) the initial

conditions (15) and (16) have to be transformed to the
variable x. For the one parameter family of UV potentials,
this reads

VðxÞ ¼

8>><
>>:

1
2
x2 for jxj ≤ 2;

−a 1
2
x2 þ 2ðaþ 1Þ for 2 < jxj ≤ 4;

1
2
x2 − 6ðaþ 1Þ for 4 < jxj:

ð48Þ

Hence, our UV potential is actually a piecewise quadratic
function of x ¼ 1ffiffiffi

N
p σ, while its x-derivative is given by the

piecewise linear function

vðxÞ ¼ ∂xVðxÞ ¼
8<
:

x for jxj ≤ 2;

−ax for 2 < jxj ≤ 4;

x for 4 < jxj:
ð49Þ

6This generalizes in x and y to arbitrary dimensions and also to
the fixed-point form of the RG flow equation [57–59]. Regarding
fixed-points in the infinite-N limit for the OðNÞ model in the
FRG context we refer the interested reader to Refs. [32,110] for a
detailed discussion of the situation in d ¼ 3 dimensions.

7For all y ∈ Rþ and t ∈ Rþ G½t; v� < 0, since ∂trðtÞ < 0,
holds for all well-defined initial conditions, which realize rðtÞ þ
vðt; yÞ > 0 at t ¼ 0. The latter inequality is guaranteed dynami-
cally at t > 0 by the flow equation as long as it is realized in
the UV at the initial scale t ¼ 0, cf. part I of this series of
publications [57].
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For illustrative purpose, we plot vðxÞ and VðxÞ in Fig. 3 for
selected values of a.

E. RG flows at infinite N—shocks and rarefaction
waves in advective flows

Next, we turn to the results for the RG flows for Eq. (49)
in the limit N → ∞. Before presenting the numerical
results, which are obtained by a numerical solution of
the PDE (45) with the KT scheme [108], we use the so-
called method of characteristics to discuss analytic results
for solutions of the purely hyperbolic conservation law
(45). This helps to better understand the underlying
processes in the fluid-dynamical framework and the results
of our numeric calculations.
In the FRG framework the method of characteristics was

used by N. Tetradis and D. Litim in Refs. [28,29] to obtain
analytical solutions to FRG flow equations of the OðNÞ
model in dimensions d > 0 in the infinite-N limit. K.-I.
Aoki, S.-I. Kumamoto, D. Sato, and M. Yamada also used
the method of characteristics and the Rankine-Hugoniot
condition in their studies [68,69] of weak solutions and
dynamical symmetry breaking. Unfortunately (or luckily
for the authors of Refs. [25,36,57–59,101]), their otherwise

remarkable work lacks the fluid dynamical interpretation
and with it an instructive way to understand characteristic
curves in this context. The latter was put forward in the
context of the FRG for the first time in Ref. [25].

1. Characteristic curves

In Fig. 4 we plot the characteristic curves of the fluid.
These are defined as those (parametric) curves ðt; xðtÞÞ in
the domain ½0;∞Þ × ð−∞;þ∞Þ of the problem, where the

ratio vðt;xðtÞÞ
xðtÞ stays constant.8 In Appendix C we derive these

implicit analytic solutions for the PDE (45) with initial
condition (49) in great detail and the explicit solutions for
xðtÞ and vðt; xðtÞÞ are given by Eqs. (C17) and (C18). If
needed, xðtÞ and vðt; xðtÞÞ can be used to reconstruct the
full solution of the PDE, vðt; xÞ, for t ∈ ½0;∞Þ and
x ∈ ð−∞;þ∞Þ, which usually needs to be done numeri-
cally since the involved expressions can usually not be
inverted analytically. Though, this method only works
as long as the solution vðt; xÞ is not multivalued, which
means that it is valid until any characteristics intersect
at some point x in position space (here field space).
Once the analytical solution becomes multi-valued, the
physical solution exists only in a weak sense, see, e.g.,
Refs. [64,72–74,76] for details. Intersecting characteristics
correspond to the formation of a shock wave, since several
fluid elements are approaching the same point in the spatial
domain at different velocities [64,72–74,76]. The move-
ment of this shock wave, its (parametric) curve ðt; ξsðtÞÞ is
described by the Rankine-Hugoniot shock condition
[66,67]. A derivation is presented in Appendix D. On
the other hand, there might also be positions in field space
that “separate” the characteristic curves into distinct
regimes and that are the origin of infinitely many character-
istic curves. These are so-called rarefaction waves, which
each cause a rarefaction fan of infinitely many character-
istic curves. As their name suggests, they are associated to
points x (in field space), where fluid elements are moving
apart from each other and cause a rarefaction of the fluid (in
physical fluids corresponding to a reduction of density as a
direct opposite of a compression wave). A rarefaction fan
can be described by the spatially closest characteristic
curves that are moving to the left (−) and right (þ) apart
from each other, ðt; ξ∓r ðtÞÞ.
Now we are equipped with the vocabulary to efficiently

interpret and analyze Fig. 4. W.l.o.g. we choose the initial
condition (49) with a ¼ 0. (The plots and the discussion for
different choices of a are qualitatively very similar.)
Furthermore, we only restrict our plot of the characteristics

FIG. 3. The potential VðxÞ from Eq. (48) (upper panel) and its
x-derivative vðxÞ ¼ ∂xVðxÞ from Eq. (49) (lower panel) for
different values of the parameter a and where ac is given
by Eq. (17).

8If formulated in terms of the 1
N-rescaled invariant y, these are

the (parametric) curves ðt; yðtÞÞ on ½0;∞Þ × ½0;∞Þ, where
vðt; yðtÞÞ is constant, see, e.g., Ref. [25]. Both formulations
can be transformed into each other by simple coordinate trans-
formations, see Appendix C.
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and parts of the discussion to positive x. For negative x the
dynamics is perfectly mirrored about the t axis in Fig. 4.
The initial condition vðt ¼ 0; xÞ ¼ vðxÞ corresponds to

the initial values of vðt; xðtÞÞ on the characteristic curves
at t ¼ 0 along the x-axis. The color-coding indicates the
value of vðt; xðtÞÞ according to Eq. (C10) along the curves
ðt; xðtÞÞ, where blue corresponds to vðt; xðtÞÞ ¼ 0 and
yellow corresponds to vðt; xðtÞÞ ¼ 4.5.
First, and in general, we observe that all characteristic

curves only move toward smaller jxj, while vðt; xðtÞÞ only
decreases (increases) along each characteristic curve at
positive (negative) x. This implies that the fluid vðt; xÞ
only moves toward x ¼ 0. This can already be seen from
the manifestly (positive) negative sign of the local fluid
velocity ∂vF½t; x; v� for (negative) positive x, cf. Eqs. (40)
and (47) or our discussion in Ref. [57]. Hence, we find that
right moving waves of the fluid from negative x and left
moving waves of the fluid from positive x annihilate in
x ¼ 0, which is also manifestly encoded in the antisym-
metry vðt; xÞ ¼ −vðt;−xÞ.
Second, we observe that the fluid elements, which start

off in the interval 2 < jxj < 4, move faster toward x ¼ 0
than the fluid elements, that start at jxj < 2. As soon as the

former try to overtake the latter, the solution gets multi-
valued and a shock form. Actually, this happens already at
t ¼ 0, but we can also see how more and more character-
istics “join” and “accelerate” the shock wave. The move-
ment of the shock wave, ðt; ξsðtÞÞ is described analytically
by Eq. (D14) and depicted as a black solid line in Fig. 4.
Third, there is another important phenomenon going on

about jxj ¼ 4. We find that fluid elements at jxj < 4 are
traveling fast toward x ¼ 0, while the characteristic curves
that start at jxj > 4move slower toward x ¼ 0 and that only
for a very short period of (RG) time, before the character-
istic curve closest to jxj ¼ 4 freezes at jxj ≃ ffiffiffiffiffi

15
p

≈ 3.873.
This effectively causes a rarefaction wave in vðt; xÞ, which
is described analytically by

ξ−r ðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 −

1

Λe−t − a
þ 1

Λ − a

r
; ð50Þ

v−r ðtÞ ¼ −aξ−r ðtÞ; ð51Þ

ξþr ðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 −

1

Λe−t þ 1
þ 1

Λþ 1

r
; ð52Þ

vþr ðtÞ ¼ ξþr ðtÞ; ð53Þ

where v∓r ðtÞ are the values of the fluid at the edges of the
rarefaction fan. The rarefaction fan is marked in Fig. 4 by
black-dashed lines that are analytically described byEqs. (50)
and (52). The rarefaction wave also forms already at t ¼ 0.
Interestingly, there is a (RG) time and field space position

ðt; xÞ ≃ ð25.718; 1.115Þ,where the rarefaction fan catches up
the shockwave (indicated by the red-dashed horizontal line).
Up to this point, our analytical solutions for the shock ξsðtÞ
and the left tip of the rarefaction wave ξ−r ðtÞ are valid and we
could in principle even integrate backwards in (RG) time and
reconstruct the UV potential. However, when the shock and
the rarefaction wave meet and interact, some highly non-
linear dynamics is going on and we can no longer trust our
analytical solutions. At later (RG) times, we totally have to
rely on adequate numerical solutions.
Interestingly, it is exactly this complicated nonanalytic

dynamics, which makes the RG flow manifestly irreversible
and produces some abstract form of entropy, see Appendix E
and especially Fig. 11 as well as Refs. [57,58], because infor-
mation about the UV initial potential is unavoidably lost.9

Actually, this is the dynamics that fundamentally encodes the
irreversibility of RG transformations on the level of the PDE,
cf. also Refs. [84,111,112] for similar discussions.
However, most remarkably in the context of the infinite-

N limit: We find numerically that it is the complicated
interplay between the shock and rarefaction waves (at
positive and negative x), which either causes the shock

FIG. 4. Selected characteristic curves ðt; xðtÞÞ, see Eq. (C17),
for a ¼ 0 and Λ ¼ 1010 in blue, green and yellow, shock position
ξsðtÞ, see Eq. (D14), as solid black line, and the tips of the rare-
faction fan ξ∓r ðtÞ, see Eqs. (50) and (52) originating at ðt ¼ 0;
ξ∓r ð0Þ ¼ 4Þ as dashed black lines. The changing color on the
characteristic curves indicates the change of vðt; xðtÞÞ along
them, see Eq. (C18), where blue corresponds to vðt; xðtÞÞ ¼ 0
and yellow corresponds to vðt; xðtÞÞ ¼ 4.5. The shock wave and
the rarefaction fan collide at ðt; xÞ ≈ ð25.718; 1.115Þ (the time is
marked with the red-dashed line) rendering the expressions ξ�r ðtÞ
and ξsðtÞ as well as the characteristics that intersect with the
shock and rarefaction wave invalid for later times.

9One might also argue that an infinite number of new
couplings or interaction vertices is generated at this point.
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waves to freeze at some nonzero jxj or to crash into each
other and annihilate in x ¼ 0, depending on the choice of
a—smaller, equal, or greater than ac. This means that the
(non-)applicability of the large-N saddle point expansion of
Sec. III, which was caused by a (non)analytic “expansion
point”—the underlying first-order phase transition, trans-
lates into freezing or the annihilation shock waves in field
space in RG flow equations. For further details on the
relation between first-order phase transitions and the
interaction/freezing of shock and rarefaction waves we
refer the interested reader to Sec. III C of Ref. [25].
However, to proceed with this discussion and to understand
this interrelation, we have to leave the sure ground of
analytical solutions and turn to high precision numerical
computations of this challenging dynamics.

2. Numerical results at infinite N

Next, we apply the KT scheme [108] from numerical
fluid dynamics to the problem posed by the PDE (45) with
initial condition (49). All details on the numeric imple-
mentation are provided in Ref. [57]. The corresponding
(numerical) parameters are either incorporated in the
figures or their corresponding captions. Additionally, we
discuss the choice of some of our (numeric) parameters and
some aspects of the implementation in Appendix F.
We obtain the following numeric results for the RG flows

of vðt; xÞ: In Fig. 5 we plot the RG flow of vðt; xÞ from the
UV initial condition (49) (see Fig. 3) at t ¼ 0 to the IR at
t → ∞. Of course, for practical (numerical) calculations
one has to stop the integration at some finite t in the IR.10

Here we chose t ¼ 60, which corresponds to an IR cutoff
rIR ≈ 10−18, which is 18 orders of magnitude below model
scales (which are considered to be of order one in 1

N-
rescaled quantities). Our UV cutoff Λ was chosen to be ten
orders of magnitude above model scales to guarantee RG
consistency [57,113] to a sufficient level. In total, we are
integrating over 28 orders of magnitude in the regulator
scale and corresponding tests for UV-cutoff independence
are presented in Appendix F.11

Figure 5 shows RG flows for vðt; xÞ for different values
of a. In the upper panel a ¼ 0 and therefore clearly below
ac, such that this RG flow corresponds to the situation,
where the 1

N-expansion is applicable. The middle panel

FIG. 5. The RG flow of the derivative of the rescaled effective
potential vðt; xÞ for the zero dimensionalOðNÞ-model in the limit
N → ∞ for the initial condition (49) with a ¼ 0, a ¼ ac and
a ¼ 2ac in the upper, middle and lower panel respectively. Blue
curves represent the UV initial conditions at t ¼ 0, red curves
correspond to the IR potentials at t ¼ 60 and the violet curves are
at intermediate, selected RG times t chosen around the respective
collision of the shock ξsðtÞ with the left tip of the rarefaction fan
ξ−r ðtÞ. The squares mark the shock ðξsðtÞ; vðt; ξsðtÞ�ÞÞ, while the
disks mark the tips of the rarefaction fan ðξ�r ðtÞ; vðt; ξ�r ðtÞÞÞ. The
left tip of the rarefaction fan and the shock are only marked up to
the RG time when they meet since the underlying analysis based
on the method of characteristics and Rankine-Hugoniot condition
breaks down after their collision.

10Zero-dimensional RG is exceptional and it is actually not
needed to introduce a numerical IR cutoff rIR [24,57], which can
be seen by simple reparametrization of the RG time. Never-
theless, we use an extremely small IR cutoff, to be as close as
possible to higher dimensional applications of the FRG-fluid
dynamic framework.

11Again, zero-dimensional QFTs are special. Due to their ultra
locality, they are extremely coupled in field space, which makes
an RG flow over several orders of magnitude unavoidable to
reach a freeze out of all dynamics. In higher-dimensional
calculations, we expect this problem to be less severe, due to
increasing importance of momentum-dependences of vertices
and an increasing phase space, see also our discussion in
Ref. [57]. However, in our parallel work on the (1þ 1)-
dimensional Gross-Neveu model [59], we find that also in a
realistic QFT an integration over several orders of magnitude is
needed to capture all relevant physical effects.
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shows the RG flow exactly at the threshold a ¼ ac, where
the exponent (21) has two degenerate minima (31),
with one being a nonanalytic point, preventing a saddle
point expansion. The bottom panel in Fig. 5 corres-
ponds to a situation, where a > ac and the saddle-point
expansion again fails as it is not applicable to this initial
condition.
As already mentioned at the end of the previous sub-

section, we find that the different situations within the
saddle-point expansion are realized by freezing or colliding
and annihilating shock waves, caused by the interplay with
the rarefaction wave. This is clearly seen in Fig. 5, where
the position ξsðtÞ of the shock wave is marked with squares
and the positions ξ−r ðtÞ and ξþr ðtÞ of the tips of the
rarefaction fan are marked with disks—up to the RG time,
where they meet and interact rendering the analytic
expressions invalid.
Explicitly, we find that for a ¼ 0 (upper panel Fig. 5)

the opposing shock waves ultimately freeze at jxj ¼
jξsðt ¼ 60Þj ≈ 0.496. We obtained this value using com-
putations at different numerical spatial resolutions Δx by
varying the number of volume cells n while keeping the
computational extend fixed to x ∈ ½0; 5�. The explicit
value of jxj ≈ 0.496 has been extracted from the fit

jξsðt → ∞Þj ≈ jξsðt ¼ 60Þj ¼ 0.496þ 0.788Δx0.869: ð54Þ

obtained from 41 data points with n varying between 64
and 2048. The nonvanishing value of jξsðt → ∞Þj ≈
0.496 has the effect that the x-derivatives of vðt; xÞ
at x ¼ 0 never change during the RG flow and
∂xvðt; xÞjx¼0 ¼ 1 for all times t, while all higher
x-derivatives vanish. Yet, these derivatives are in direct
correspondence to the 1PI-correlation functions ΓðnÞ,
which are extracted from vðt; xÞ in the IR at the physical
point x ¼ 0 by differentiation with respect to x,

N
n−1
2 Γðnþ1Þ ¼ ∂

n
xvðt; xÞjt→∞;x¼0: ð55Þ

Hence, although having highly nonlinear dynamics
involving the interaction shocks and rarefaction waves
for jxj≳ 0.496, the function vðt; xÞ never changed its
shape for −0.496≲ x≲ 0.496 and always resembles
a massive free QFT in this part of field space.
Metaphorically speaking and to stay in the fluid
dynamic picture: It is as if the physical point x ¼ 0
in field space is “sitting in the eye of a cyclone.”
Increasing a toward the critical threshold ac one

observes that the shock waves freeze closer and closer
to x ¼ 0. Considering the metaphor of the previous para-
graph, as a approaches ac from below the radius of the eye
of the cyclone vanishes. At a ¼ ac (middle panel Fig. 5)
one still observes a freezing of the shock wave in the IR at
jxj ≈ 0.095, which however is an artifact of the finite spatial

resolution Δx of the numerical scheme. This effect can be
removed by successively decreasing the finite-volume
computational cells Δx. We find that for a ¼ ac the shock
freezes at x ¼ 0, because the shock position in the IR scales
as follows with Δx for this situation,

jξsðt → ∞Þj ≈ jξsðt ¼ 60Þj ¼ 0.983Δx0.413; ð56Þ

again obtained from a fit to 41 data points with the number
of volume cells n varying between 64 and 2048 while
keeping xmax fixed.
However, as soon as a > ac (middle panel Fig. 5) the

interplay of the rarefaction waves and the shock waves no
longer hinders the shock waves to collide and annihilate at
x ¼ 0. In turn, this has two direct consequences: First, in
the hydrodynamic language, the additional interaction of
two discontinuities (the annihilation of the shock waves)
again unavoidably leads to a loss of information and an
abstract production of entropy on the level of the PDE. This
is discussed in Appendix E. Second, in the quantum field
theoretical picture the annihilation of the shock waves
caused a change in the slope of vðt; xÞ at the physical point
x ¼ 0. This directly affects the 1PI-correlation functions,
which are again extracted in the IR via Eq. (55). Indeed, we
find that our numeric calculations reproduce the exact
results (19) and (20).
In summary and again metaphorically speaking, the

slight change in the slope a of the initial condition (49)
at t ¼ 0 on the interval x ∈ ½2; 4� causes a tremendous
change of the nonlinear dynamics of the fluid vðt; xÞ,
also at other positions in field space and later RG times,
which can be seen as a “butterfly effect” in a QFT. The
small deviations in the initial condition in the UV—in
the metaphor the minor perturbations caused by a
distant butterfly flapping its wings—have tremendous
impact on the solution in the IR at the physical point—
whether or not the formed cyclone has an eye or not.
This further supports the notion of a first-order phase
transition at ac and the corresponding mechanism
discussed in Ref. [25].
For better visualization of this dynamics, we present

two supplemental 3D-plots for the RG flows of the
upper and bottom panel of Fig. 5. The curves from
Fig. 5 are slices of constant intermediate times of the
3D-plots in Figs. 6 and 7. The color coding of all figures
is identical.
In addition to this rather qualitative discussion, we also

provide explicit numerical errors, which can be used to
judge to quality of the KT scheme [108] and our
implementation in the context of RG flows. In Table II
we list the relative errors of the 1PI-two point function Γð2Þ
extracted from the numerical RG flows of vðt; xÞ using
Eq. (F1) using the exact results (19) and (20) as reference
values.
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We close our discussion on the analysis of the
infinite-N RG flows by noting that, in contrast to the 1

N-
saddle point expansion or perturbative methods, the

FRG in its fluid dynamic framework is applicable and
also produces reliable results in a highly nonperturbative
regime. Furthermore, the FRG-fluid dynamic framework,
naturally copes with different kinds of nonanalyticities,
while all kind of “expansion-type” methods12 tend to
collapse in the vicinity of relevant nonanalytical physics
that is only correctly described by fully fledged non-
perturbative setups.

F. RG flows at finite N—diffusion
as a game changer

Next, we turn to the RG flows of our initial potential (15)
at finite N. To this end, we use the fluid-dynamic RG flow
equation (44) including advective and diffusive contribu-
tions by the pions and the σ-mode. As explained above, we
cannot use Eq. (46) in the presence of diffusion, because the
problem of diffusive influx at the (y ¼ 0)-boundary, if
formulated in y, is not settled yet [57]. However, the KT
scheme [108] with our FRG adapted boundary conditions
in x [57–59] can be directly applied to Eq. (44). Thus, we
can start our discussion without further reference to the
numerical implementation.
The main scope of this subsection is to demonstrate

the astonishing role of the radial sigma mode in terms of
highly nonlinear and unconventional diffusion in RG
flows of scale-dependent effective potentials Vðt; xÞ or
rather their derivatives vðt; xÞ ¼ ∂xVðt; xÞ. To this end, let
us again focus solely on the purely diffusive contribution
of the RG flow equation (44) and rewrite it in terms of a
nonlinear heat equation by executing the σ-derivative on
the rhs,

∂tvðt; xÞ ¼
d
dx

�
…þ 1

N

1
2
∂trðtÞ

rðtÞ þ ∂xvðt; xÞ
�

¼ …þD½t; ∂xv�∂2xvðt; xÞ; ð57Þ

where we defined the manifestly positive diffusion
coefficient [note the definition (33) of the regulator rðtÞ],

FIG. 7. RG flow of vðt; xÞ for a ¼ 2ac as 3D-plot correspond-
ing to the flow displayed in the lower panel of Fig. 5. The left and
right tips ðξ∓r ðtÞ; t; vðt; ξ∓r ðtÞÞÞ of the rarefaction fan are plotted
as yellow lines while the shock ðξsðtÞ; t; vðt; ξsðtÞ�ÞÞ is marked
with green lines. The left tip of the rarefaction fan and the shock
are only marked up to ðt; xÞ ≈ ð25.270; 1.146Þ, where they meet
and the analysis based on the method of characteristics and
Rankine-Hugoniot condition breaks down.

TABLE II. Relative numerical errors for the 1PI-two-point
function, see Eq. (F1), for the results plotted in Fig. 5 with
corresponding exact reference values from the last row of Table I.
The scaling of these errors with the number of volume cells can
be found in Table V for a ¼ 2ac.

N a ¼ 0 a ¼ ac a ¼ 2ac

∞ 7.994 × 10−15 1.199 × 10−14 3.333 × 10−3

FIG. 6. RG flow of vðt; xÞ for a ¼ 0 as 3D-plot corresponding
to the flow displayed in the upper panel of Fig. 5. The left and
right tips ðξ∓r ðtÞ; t; vðt; ξ∓r ðtÞÞÞ of the rarefaction fan are plotted
as yellow lines while the shock ðξsðtÞ; t; vðt; ξsðtÞ�ÞÞ is marked
with green lines. The left tip of the rarefaction fan and the shock
are only marked up to ðt; xÞ ≈ ð25.718; 1.115Þ, where they meet
and the analysis based on the method of characteristics and
Rankine-Hugoniot condition breaks down.

12Also “expansion-type” schemes in the FRG framework, like
a Taylor expansion of the local potential, tend to collapse [57],
due to the Wilbraham-Gibbs phenomenon [114–117], which is a
well-known issue from the field of signal processing.
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D½t; ∂xu�≡ −
1

N

1
2
∂trðtÞ

½rðtÞ þ ∂xvðt; xÞ�2
: ð58Þ

The identification of the sigma loop contribution with a
nonlinear version of the heat equation has several
numerical and conceptual implications.
Numerically, one has to ensure that the spatial discre-

tization scheme is able to handle nonlinear diffusion, i.e.,
parabolic type contributions in the PDE. This is the case
for the KT scheme with diffusion fluxes [108] as was tested
in various applications, also in the context of RG flow
equations [57,58].
On a conceptual level, the diffusive contribution to the

flow of vðt; xÞ clearly introduces a dissipative process
into the RG flow and renders the RG flow manifestly
irreversible right from the beginning—as is absolutely
natural and similar to all diffusive processes in our
everyday life, e.g., heat conduction, diffusive mixture
of fluids, etc.. Furthermore, diffusion (dissipation) is a
natural source of entropy and thereby introduces an
abstract “thermodynamic arrow of time” [118] into a
system. For us, this “arrow of time” singles out the RG
time t ∈ ½0;∞Þ, increasing from the UV to the IR, as a
natural timelike parameter and the natural evolution
parameter of the dissipative PDE (44). In part II of this
series of publications [58], we comment at length on this
issue and draw direct connections between the manifestly
dissipative character of the ERG equation (36) and so-
called C-theorems [78,111,112,119–134].
In the context of this work, however, we are mainly

interested in the influence of the nonlinear diffusion on the
explicit shape of vðt; xÞ and its drastic consequences for
the reliability of 1

N-expansions and the infinite-N limit. To
this end, we present our numerical solutions of Eq. (44)
with initial condition (49) (see Fig. 3) for two choices of N.
W.l.o.g. we choose N ¼ 2 and N ¼ 32 and present respec-
tive RG flows for a ¼ 0, a ¼ ac, and a ¼ 2ac in Figs. 8 and
9. The figures are structured analogously to Fig. 5 (for
infinite N). For our numerical computations we used the
same UV and IR cutoffs as for the infinite-N case.
Nevertheless, we had to change the size of the computa-
tional interval from [0, 5] to [0, 10] in order to exclude
boundary effects due to the diffusion. Furthermore, it
suffices to use n ¼ 1000 computational finite volume cells
on this interval, because it is no longer necessary to resolve
the sharp shock fronts at extremely high resolution to
obtain small numerical errors. For details on these two
aspects, we refer to our lengthy and detailed discussion in
part I of this series of publications [57], where we explicitly
performed lots of tests for numerical parameters of finite N
computations.
Qualitatively, we observe the following: Even though

N ¼ 32 seems to be rather large (especially in the context
of the “large-Ncolor or large-Nflavor discussions” in the
context of QCD, QCD-inspired models or holographic

methods, where “N” is typically between 1 and 6) the RG
flow of the 1

N-rescaled vðt; xÞ entirely changes, if one
compares corresponding panels of Figs. 8 and 5 directly.
Although the underlying shock, stemming from the still
rather strong advective pion modes, dominates the overall
shape of vðt; xÞ in Fig. 8 for all three choices of a, the
diffusive character sets in rather early during the beginning
of the RG flow and smears out the infinite negative slope
of vðt; xÞ at the shock wave. Inspecting the nonlinear

FIG. 8. The RG flow of the derivative of the rescaled effective
potential vðt; xÞ for the zero dimensional OðNÞ model with N ¼
32 for the initial condition (49) with a ¼ 0, a ¼ ac, and a ¼ 2ac
in the upper, middle, and lower panel respectively. Blue curves
represent the UV initial conditions at t ¼ 0, red curves corre-
spond to the IR potentials at t ¼ 60 and the violet curves are at
intermediate, selected RG times t.
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diffusion coefficient (58) this is expected for all finite N.
Huge negative gradients ∂xvðt; xÞ lower the difference
rðtÞ þ ∂xvðt; xÞ, which in turn drastically increases the
diffusion coefficient leading, in combination with large
∂
2
xvðt; xÞ, to strong diffusion in regions where vðt; xÞ has
large negative slopes, e.g., next to the shock front. On the
other hand, if ∂xvðt; xÞ has large positive slope, as is the
case close to the rarefaction fan, the diffusion coefficient is
drastically suppressed, even if ∂2xvðt; xÞ is large, such that

the advection still dominates close to the rarefaction wave.
For large x ≫ 5 both, the D½t; ∂xv� and ∂

2
xvðt; xÞ tend to

zero (as is the case for 1
x vðt; xÞ for the advection). For all

other regions in x we find complicated variations of these
conceptual behaviors.
Concerning the freezing or colliding of the shock wave,

which was observed for infinite-N in Fig. 5, we find that
remnants of the freezing shocks are still visible in Fig. 8
(upper and middle panel). However, the gradient ∂xvðt; xÞ
no longer changes its sign at the right of the remnants of the
freezing shock waves, such that overall the potential Vðt; xÞ
turns convex in the IR.
Turning to Fig. 9 for the N ¼ 2 scenario, where only one

pion and one sigma mode are included in the calculation,
we find that the overall the dynamics is very similar to
the N ¼ 32, but even more dominated by the diffusive
σ-contribution to the RG flow. The freezing shock waves
are no longer visible in the IR for a ¼ 0 and a ¼ ac and the
rarefaction wave is totally washed out. The latter effect is
the reason, why the computational interval had to be
increased.
Before we turn to the overall interpretation of these

findings, we remark that we also compared our numerical
results for the 1PI-two-point functions for all three choices
of a and N ¼ 2 and N ¼ 32 against exact results. In
Table III we present the corresponding relative errors which
are discussed further in Appendix F 2.
In summary, we find that the radial σ-mode and the

corresponding diffusion is a game changer in a QFTwhen
switching from infinite to finite N. By directly comparing
the infinite-N and finite-N results of the RG flows, we
observe that for infinite-N the 1

N-rescaled potential Vðt; xÞ
does not turn convex in the IR and may still involve non-
analyticities in terms of cusps. This is in direct opposition
to the zero-dimensional version of the Coleman-Mermin-
Wagner-Hohenberg theorem [37,57,60–62], which states
that the zero-dimensional IR potential has to be convex
and smooth. On the other hand, we find that independent
of the specific choice of N—as long as N is finite—the
highly nonlinear diffusion of the σ-mode restores con-
vexity and smoothness of the IR potential. Depending on
the specific choice of N this may however happen at later
times in the RG flow, respectively at lower RG scales, thus

FIG. 9. The RG flow of the derivative of the rescaled effective
potential vðt; xÞ for the zero dimensional OðNÞ model with N ¼
2 for the initial condition (49) with a ¼ 0, a ¼ ac, and a ¼ 2ac in
the upper, middle, and lower panel respectively. Blue curves
represent the UV initial conditions at t ¼ 0, red curves corre-
spond to the IR potentials at t ¼ 60 and the violet curves are at
intermediate, selected RG times t.

TABLE III. Relative numerical errors for the 1PI-two-point
function Γð2Þ, see Eq. (F1), for the results plotted in Figs. 9 and 8
with corresponding exact reference values from the first two rows
of Table I. The scaling of these errors with the number of volume
cells can be found in Tables VIII and IX for N ¼ 2 and N ¼ 32
with a ¼ 2ac.

N a ¼ 0 a ¼ ac a ¼ 2ac

2 6.403 × 10−5 5.463 × 10−5 4.535 × 10−5

32 4.227 × 10−3 6.405 × 10−4 8.521 × 10−3
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deeper in the IR.13 We conclude from these nonperturba-
tive FRG studies, that calculations at infinite-N and large-
N, may lead to totally different results for certain aspects
of a QFT.

V. CONCLUSION AND OUTLOOK

In the present work, we have discussed several funda-
mental aspects of and methods for QFTs using an simple
(0þ 0)-dimensional OðNÞ-symmetric toy model that is
exactly solvable, meaning that all correlation functions can
be calculated analytically or numerically up to arbitrary
precision as reference values. By inspecting a nonanalytic
piecewise quadratic potential (48) (see also Fig. 3), we
elucidated on the restricted applicability and validity of the
large-N expansion as well as the infinite-N limit. Thereby
we approached the task of calculating expectation values
hðϕ⃗2Þni and the respective 1PI-correlation functions ΓðnÞ
with different methods.
On the one hand, we studied the large-N and infinite-N

limit within a saddle-point expansion of the partition
function (path integral). On the other hand, we used the
FRG and analyzed the same problem in terms of an exact
untruncated RG flow equation. For our FRG analysis we
made use of analytical and numerical tools from the field of
computational fluid dynamics by interpreting the RG flow
equation as a nonlinear advection-diffusion equation
involving different nonanalyticities, like shock and rarefac-
tion waves.
Overall our result is that one should exercise great

caution, when applying the large-N expansion or large-
N limit, because of two main pitfalls. The first pitfall is the
drastically limited applicability of the large-N approxima-
tion within certain methods, like the saddle-point expan-
sion, where analyticity of the expansion point needs to be
guarantied (but is hardly ensured in higher-dimensional
systems). The second pitfall is, that the infinite-N limit
(only retaining the zeroth order of the large-N expansion)
may alter fundamental aspects of a QFT, like the convexity
of (effective) potentials, while other observables, like
specific correlation functions, might not be totally off

the exact results. Both effects as well as the exact results
can be adequately resolved within our modern fluid
dynamic formulation of the FRG.
The major challenges arising in the application and

generalization of our findings to higher d-dimensional
QFTs are related to the issue of truncations necessary
for practical FRG computations in d > 0. Some further
details can be found in parts I and II of this series of
publications [57,58], the planed part IVof this series [101]
and the set of publications [25,36,59,70,137] already using
a fluid dynamic formulation of the FRG for computations
in higher d–dimensional QFTs. Notwithstanding this early
successes in d > 0 a lot of research and development is
required both on a conceptual as well as a practical level,
when it comes to a fluid dynamic formulation of the FRG in
nonzero space-time dimensions.
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APPENDIX A: ANALYTICAL SOLUTION FOR
THE INSTRUCTIVE TOY MODEL

Within this appendix we present results for the integral
INn ½V� of Eq. (14) for the potential (15),

13A similar effect is observed in a parallel study [59] by the
authors and their collaborators S. Rechenberger, J. Stoll and N.
Zorbach on the Gross-Neveu(-Yukawa) model in 1þ 1 dimen-
sions, where, as long as the numberN of fermions is finite and not
infinite, the diffusion by the σ-mode completely changes the
dynamics of the system, ensures convexity of the IR potential
and even unavoidably restores the Z2-symmetry of the model
at nonzero temperatures. Both effects are not present in the
infinite-N limit, see, e.g., Refs. [22,135,136], where the diffusion
in field space stemming from the bosonic quantum fluctuations of
the σ-mode are totally suppressed.
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INn ½V�ð15Þ

¼ N−ðN
2
þnÞ

�
Γ
�
N
2
þ n

�
− Γ

�
N
2
þ n; 2N

�

þ e6Nðaþ1ÞΓ
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�
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�
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�
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���
; ðA1Þ

and in the special case a ¼ 0,

INn ½V�ð15Þja¼0

¼ N−ðN
2
þnÞ

�
Γ
�
N
2
þ n

�
− Γ

�
N
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þ n; 2N

�
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�
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�
;

ðA2Þ

where

Γða; zÞ≡
Z

∞

z
dt ta−1e−t; ΓðzÞ≡ Γðz; 0Þ; ðA3Þ

is the (incomplete) gamma function. To determine the
leading order contribution to hðϕ⃗2Þni in the limit N → ∞
assuming finite n, we employ the asymptotic series, see,
e.g., Secs. 6.1.41 and 6.5.32 of Ref. [143] or Secs. 5.11 and
8.11 of Ref. [144],

ΓðzÞ ¼ e−z
ffiffiffiffiffiffi
2π

z

r
zz
�
1þ 1

12z
þ 1

288z2
þ…

�
; ðA4Þ

Γða; zÞ ¼ e−zza−1
�
1þ a − 1

z
þ ða − 2Þða − 1Þ

z2
þ…

�
;

ðA5Þ

valid for large real z and in case of Γða; zÞ for a ≃
OðzÞ [145].

For a ¼ 0 we find

lim
N→∞

1

Nn hðϕ⃗2Þni ¼ lim
N→∞

2nINn ½V�
IN0 ½V�

����
a¼0

¼ 1; ðA6Þ

while for a > 0

lim
N→∞

1

Nn hðϕ⃗2Þni ¼ lim
N→∞

2nINn ½V�
IN0 ½V�

¼ lim
N→∞

17e6Na16
N
2
þn þ 256

ffiffiffiffiffiffiffi
Nπ

p
e
n2
Nþ3N

2

17e6Na4N þ 256
ffiffiffiffiffiffiffi
Nπ

p
e
3N
2

¼
�
1 for a ≤ ac;

16n for ac < a;
ðA7Þ

where ac ≡ 1
4
− 1

3
lnð2Þ ≈ 0.018951. For a > ac the first

terms in the denominator and numerator of Eq. (A7) (third
line) dominate, while for a < ac the second terms dominate.
For a ¼ ac Eq. (A7) (third line) can be simplified ultimately

to e
n2
N under the limitN → ∞ and thus yielding 1 in the limit.

APPENDIX B: SADDLE-POINT
EXPANSION AT LARGE-N

In this appendix we present the so-called saddle-point
expansion for integrals of the type

IN ½f; g�≡
Z

∞

0

dy gðyÞe−NfðyÞ: ðB1Þ

Assuming that fðyÞ has a unique global minimum at y0 and
further assuming analyticity (expandability to arbitrary
order) of fðyÞ and also gðyÞ in y0, it is possible to derive
an asymptotic series of IN ½f; g� for large N if the series
expansions of fðyÞ and gðyÞ around y0 grow like poly-
nomials.We focus here on the one-dimensional integral (B1)
see, e.g., Ref. [27] for further details and generalizations.
For largeN the integrand of Eq. (B1) is peaked around y0

and we therefore consider an expansion around y0 using the
computational coordinate z defined by

y ¼ y0 þ
zffiffiffiffi
N

p : ðB2Þ

We proceed with the computation of IN ½f; g� at large N:

IN ½f; g� ðB3Þ

¼
Z

∞

0

dy gðyÞe−NfðyÞ

¼ 1ffiffiffiffi
N

p
Z

∞

−y0
ffiffiffi
N

p dz g

�
y0 þ

zffiffiffiffi
N

p
�
exp

�
−Nf

�
y0 þ

zffiffiffiffi
N

p
��

ðB4Þ

¼ 1ffiffiffiffi
N

p
Z

∞

−y0
ffiffiffi
N

p dz g

�
y0 þ

zffiffiffiffi
N

p
�
exp

�
−Nfð0Þ −

1

2
fð2Þz2 −

1

6
ffiffiffiffi
N

p fð3Þz3 −
1

24N
fð4Þz4 −Oðz5Þ

�
ðB5Þ
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≃ e−Nfð0Þ 1ffiffiffiffi
N

p
Z

∞

−∞
dz e−

1
2
fð2Þz2g

�
y0 þ

zffiffiffiffi
N

p
��

1 −
1

6
ffiffiffiffi
N

p fð3Þz3 þ 1

72N
½ðfð3ÞÞ2z6 − 3fð4Þz4� þOðN−3

2Þ
�

¼ e−Nfð0Þ 1ffiffiffiffi
N

p
Z

∞

−∞
dz e−

1
2
fð2Þz2

�
gð0Þ þ 1ffiffiffiffi

N
p

�
gð1Þ −

1

6
gð0Þfð3Þz2

�
z

þ 1

N

�
1

2
gð2Þ −

1

6
gð1Þfð3Þz2 þ 1

72
gð0Þðfð3ÞÞ2z4 − 1

24
gð0Þfð4Þz2

�
z2 þOðN−3

2Þ
�

ðB6Þ

¼ e−Nfð0Þ

ffiffiffiffiffiffiffiffiffiffiffi
2π

Nfð2Þ

s X∞
i¼0

Ci½f; g�N−i; ðB7Þ

where we abbreviated nth derivatives of f and g evaluated
at y0 with superscripts (n). In the preceding set of equalities
we first expanded the exponent in powers of N after
switching to the coordinate z. We split of the contributions
of OðN1Þ and OðN0Þ in the exponent and then expanded
the exponential in an asymptotic series in N, while shifting
the lower integration bound.14 Afterwards, we continued by
expanding g and collecting terms of OðN−n

2Þ. Ultimately,
we were left with a sum over Gaussian integrals ofOðN−nÞ
and vanishing contributions of odd integrands ofOðN−2nþ1

2 Þ
in Eq. (B6) and performed those integrals, which left us
with the desired power series (B7) with coefficients Ci½f; g�
of OðN0Þ, e.g.,

C0½f; g� ¼ gð0Þ;

C1½f; g� ¼
gð2Þ

2fð2Þ
−

gð1Þfð3Þ

2ðfð2ÞÞ2 þ
5gð0Þðfð3ÞÞ2
24ðfð2ÞÞ3 −

gð0Þfð4Þ

8ðfð2ÞÞ2 :

ðB8Þ

The computation of higher order coefficients is straightfor-
ward and tedious by hand, but is easy to implement in
computer algebra systems like MATHEMATICA [138].
The presented saddle-point expansion of IN ½f; g� can be

used in combination with Eq. (13) for a large-N expansion
of the expectation values hðϕ⃗2Þni

1

Nn hðϕ⃗2Þni ¼ 2nIN ½VðyÞ − 1
2
lnðyÞ; yn−1�

IN ½VðyÞ − 1
2
lnðyÞ; y−1�

¼ 2nyn0 þ
1

N
n2nyn0½2ðn − 3Þy20Vð2Þðy0Þ þ n − 2y30V

ð3Þðy0Þ − 1�
½2y20Vð2Þðy0Þ þ 1�2 þOðN−2Þ; ðB9Þ

which holds for VðyÞ − 1
2
logðyÞ which are analytic around

their respective unique global minimum y0. Corresponding
expressions for the 1PI-correlation functions can be derived
using the relations between ΓðnÞ and hðϕ⃗2Þni, see, e.g.,
Eqs. (70)–(75) of Ref. [57] or Ref. [24].

APPENDIX C: METHOD OF CHARACTERISTICS

In this appendix we derive the expressions for the
characteristic curves of Eqs. (45) and (47) using the method
of characteristics and to be specific the Lagrange–Charpit
equations, see Ref. [65] for details or Refs. [63,64] for a
general overview.

The quasilinear hyperbolic PDE of the form

aðt; z; vÞ∂tvðt; zÞ þ bðt; z; vÞ∂zvðt; zÞ ¼ cðt; z; vÞ ðC1Þ

presents as an ordinary differential equation (ODE) along
so called characteristic curves, which are given by the
Lagrange–Charpit equations [65] (also called characteristic
equations)

∂tðτÞ
∂τ

¼ aðtðτÞ; zðτÞ; vðτÞÞ; ðC2Þ

∂zðτÞ
∂τ

¼ bðtðτÞ; zðτÞ; vðτÞÞ; ðC3Þ

∂vðτÞ
∂τ

¼ cðtðτÞ; zðτÞ; vðτÞÞ; ðC4Þ

with the curve-parameter τ and initial conditions

14Since we are interested in an asymptotic power series for
large N shifting the lower integration bound in line (B4) is valid
since contributions stemming from this shift decay exponentially
and as such faster than any power.
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tðτ ¼ 0Þ ¼ t0; ðC5Þ

zðτ ¼ 0Þ ¼ z0; ðC6Þ

vðτ ¼ 0Þ ¼ v0ðt0; z0Þ; ðC7Þ

related to the original PDE (C1). Solving this ODE system
yields the functions tðτÞ, zðτÞ and vðτÞ, which can be used
to extract information about the actual solution of the
PDE (C1) including in some cases the full solution itself.
For the remainder of this appendix we will focus on the

solution of the characteristic equations (C2)–(C4) for the
FRG flow Eqs. (45) and (47) of the zero dimensional OðNÞ
model in the limitN → ∞. Since the equations in x and y are
related by the coordinate transformation y ¼ 1

2
x2, the solu-

tions and also characteristics curves are directly related. For
simplicity we solve the characteristic equations for the flow
equation (47) in the rescaled invariant y and then compute the
corresponding curves in x using the coordinate transforma-
tion. A direct solution of the characteristic equations for the
flow equation (45) in x is also possible and shares a lot of
computations with the slightly simpler computation in y.
After performing the y derivative in Eq. (47) comparing

coefficients with Eq. (C1) yields for the Eqs. (C2)–(C4)
explicitly

∂tðτÞ
∂τ

¼ 1; ðC8Þ

∂yðτÞ
∂τ

¼ −
Λe−tðτÞ

2½Λe−tðτÞ þ vðτÞ�2 ; ðC9Þ

∂vðτÞ
∂τ

¼ 0; ðC10Þ

with the UV initial conditions

tðτ ¼ 0Þ ¼ 0; ðC11Þ

yðτ ¼ 0Þ ¼ y0 ≥ 0; ðC12Þ

vðτ ¼ 0Þ ¼ vð0; y0Þ; ðC13Þ

specifying the characteristic curves. The ODEs for tðτÞ and
vðτÞ decouple and can be trivially integrated

tðτÞ ¼ τ; ðC14Þ

vðτÞ ¼ vð0; y0Þ: ðC15Þ

Due to the direct equivalence of t and τ we continue by
using the RG time t as the curve-parameter in the following.
The ODE (C9) for yðτÞ is independent of y itself and can be
integrated directly after inserting the solutions (C14) and
(C15) for t and v. The solution for yðtÞ follows as

yðtÞ ¼ y0 −
Z

t

0

dτ
Λe−τ

2½Λe−τ þ vð0; y0Þ�2

¼ y0 −
1

2½Λe−t þ vð0; y0Þ�
þ 1

2½Λþ vð0; y0Þ�
: ðC16Þ

Using the coordinate transformation y ¼ 1
2
x2 and the

associated relation for the first derivative ∂yVðt; yÞ ¼
1
x ∂xVðt; xÞ we can compute the characteristic curves xðtÞ
and vðtÞ for the flow Eq. (45) from Eqs. (C16) and (C15),

xðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
2yðtÞ

p
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 −

1

Λe−t þ vð0;x0Þ
x0

þ 1

Λþ vð0;x0Þ
x0

s
; ðC17Þ

vðtÞ ¼ vð0; x0Þ
x0

xðtÞ: ðC18Þ

A particularity of the flow equation in x is that the
conserved quantity vðt; xÞ (the derivative ∂xVðt; xÞ) is
not constant along the characteristics, dv

dt ≠ 0, due to the
contribution stemming from xðtÞ in Eq. (C18).

APPENDIX D: RANKINE-HUGONIOT
CONDITION AND SHOCK POSITION

The Riemann problems posed by the initial condition
(16) with the flow Eq. (47) include a shock discontinuity in
the UV (t ¼ 0) at y ¼ 2, since vð2−Þ > vð2þÞ and
G½t; v� < 0. For a discussion see Sec. IV E. This appendix
is dedicated to the computation of the position of the shock
as a function of flow time t using the so-called Rankine-
Hugoniot condition [66,67], see, e.g., the textbooks
[64,72,74] for a detailed discussion of this construction
method. A computation in the invariant y for a structurally
identical flow equation and initial condition can be found in
Appendix C. 1 of Ref. [25]. We present a derivation for
the complementary problem [initial condition (49) with the
flow Eq. (45)] in x for the sake of completeness in the
following.
Assume that there is a single shock wave (discontinuity)

at the position ξsðtÞ between xLðtÞ < ξsðtÞ < xRðtÞ. Inte-
gration over the conservation law (45) yields

Z
xRðtÞ

xLðtÞ
dx ∂tvðt; xÞ ¼ −

Z
xRðtÞ

xLðtÞ
dx

d
dx

F½t; x; vðt; xÞ�

¼ −ðF½t; xRðtÞ; vðt; xRðtÞÞ�
− F½t; xLðtÞ; vðt; xLðtÞÞ�Þ: ðD1Þ

For the lhs, we split the integral about the shock ξsðtÞ
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Z
xRðtÞ

xLðtÞ
dx∂tvðt;xÞ¼

Z
ξsðtÞ

xLðtÞ
dx∂tvðt;xÞþ

Z
xRðtÞ

ξsðtÞ
dx∂tvðt;xÞ

¼−vðt;ξsðtÞÞ∂tξsðtÞþvðt;xLðtÞÞ∂txLðtÞ

þ d
dt

Z
ξsðtÞ

xLðtÞ
dxvðt;xÞ

−vðt;xRðtÞÞ∂txRðtÞþvðt;ξsðtÞÞ∂tξsðtÞ

þ d
dt

Z
xRðtÞ

ξsðtÞ
dxvðt;xÞ; ðD2Þ

where we used Leibniz integral rule in the third line. Next,
we study the limits xLðtÞ → ξ−s ðtÞ and xRðtÞ → ξþs ðtÞ. We
find that the two integrals with the total time derivatives
vanish and by defining

vLðtÞ ¼ lim
xLðtÞ→ξ−s ðtÞ

vðt; xLðtÞÞ; ðD3Þ

FLðtÞ ¼ lim
xLðtÞ→ξ−s ðtÞ

F½t; xLðtÞ; vðt; xLðtÞÞ�; ðD4Þ

vRðtÞ ¼ lim
xRðtÞ→ξþs ðtÞ

vðt; xRðtÞÞ; ðD5Þ

FRðtÞ ¼ lim
xRðtÞ→ξþs ðtÞ

F½t; xRðtÞ; vðt; xRðtÞÞ�; ðD6Þ

the equation for the shock speed reads

∂tξsðtÞ ¼
FRðtÞ − FLðtÞ
vRðtÞ − vLðtÞ

; ðD7Þ

and is refereed to as the Rankine–Hugoniot (jump) condi-
tion for the shock.
For the explicit problem under consideration the

initial positions at t ¼ 0 of the two shocks are x ¼ 2
and x ¼ −2. W.l.o.g. we consider the shock at x ¼ 2 since
the discussion for the shock at x ¼ −2 follows from the
symmetry of the problem. Consider the characteristic
curves (C17) and vðt; xðtÞÞ, thus Eq. (C18), left and right
of the shock we find

vLðtÞ ¼
vUV;L
xUV;L

xLðtÞ ¼ ξ−s ðtÞ; ðD8Þ

vRðtÞ ¼
vUV;R
xUV;R

xRðtÞ ¼ −aξþs ðtÞ; ðD9Þ

and for the corresponding fluxes Eq. (45) yields

FLðtÞ ¼ −
1
2
∂trðtÞ

rðtÞ þ vLðtÞ
xLðtÞ

¼ −
1
2
∂trðtÞ

rðtÞ þ 1
; ðD10Þ

FRðtÞ ¼ −
1
2
∂trðtÞ

rðtÞ þ vRðtÞ
xRðtÞ

¼ −
1
2
∂trðtÞ

rðtÞ − a
: ðD11Þ

Inserting those explicit results into the Rankine–Hugoniot
(jump) condition (D7) results in

∂tξsðtÞ ¼
FRðtÞ − FLðtÞ
vRðtÞ − vLðtÞ

¼ 1

ξsðtÞ
1

aþ 1

� 1
2
∂trðtÞ

rðtÞ − a
−

1
2
∂trðtÞ

rðtÞ þ 1

�
; ðD12Þ

where we are allowed to set ξþs ðtÞ ¼ ξ−s ðtÞ ¼ ξsðtÞ. Using
the monotonicity of the regulator shape function rðtÞ, see
Eq. (33), we find

∂rðξ2s ðrÞÞ ¼
1

aþ 1

�
1

r − a
−

1

rþ 1

�
; ðD13Þ

which can be integrated from the UV (r ¼ Λ) down to an
arbitrary value rðtÞ ≥ 0 yielding

ξsðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2s;UV þ 1

aþ 1

�
ln

�
rðtÞ − a
Λ − a

�
− ln

�
rðtÞ þ 1

Λþ 1

��s
;

ðD14Þ

with ξ2s;UV ¼ 22 ¼ 4.
For a ≥ 0 (and Λ ≫ a) we find ξsðt0Þ ¼ 0 for a finite

t0 > 0, which indicates that the shocks originating from −2
and þ2 in the UV annihilate at x ¼ 0 at the RG time t0
based on the discussion of this appendix. The applicability
of the construction discussed in this appendix is however
limited as outlined in Sec. IV E.

APPENDIX E: THE FRG FLOW EQUATION
FORMULATED IN THE OðNÞ-INVARIANT

IN THE LARGE-N LIMIT

Before we discuss our numerical results for the flow
equation (47) formulated in the 1

N-rescaled invariant
y≡ 1

2
x2 in Sec. E 2 of this Appendix, we briefly introduce

the employed numerical KNP scheme in the next Sec. E 1.

1. First and second order KNP scheme

For computations involving the flow equation in Eq. (47)
in the 1

N-rescaled invariant y, the KNP scheme introduced
by A. Kurganov, S. Noelle, and G. Petrova in Ref. [109]
has several advantages in the present context over the KT
scheme developed by A. Kurganov and E. Tadmor in
Ref. [108] and employed for the numerical computations in
the main part of this work. We will discuss the advantages
of the KNP scheme for the flow equation (47) in the
rescaled invariant y in this appendix.
The application of the KNP scheme, namely its numeri-

cal advection flux, to the flow equation (45) in x is
straightforward. While we present all formulas for the
KNP scheme for the advection flux G of Eq. (47) in this
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appendix, directly replacing G with F and x with y15 yields
valid expressions for the application of the KNP scheme to
Eq. (45). Conversely the direct application of the KT to the
flow equation in y is not straightforward even at infinite N
due to the left boundary at y ¼ 0. This is discussed at length
Sec. IV D of part I of this series [57].
The numerical advection flux of the KNP can be

expressed in semidiscrete form

∂tv̄j ¼ −
1

Δy

�
HKNP

jþ1
2

−HKNP
j−1

2

�
; ðE1Þ

for the volume cell v̄j at continuous time t. The dif-
ference of numerical fluxes HKNP

j�1
2

at the cell interfaces

yj�1
2

depends in general on the five-point stencil
fv̄j−2; v̄j−1; v̄j; v̄jþ1; v̄jþ2g. The explicit numerical flux
of the KNP scheme is given by

HKNP
jþ1

2

≡
aþ
jþ1

2

G½t; v−
jþ1

2

� − a−
jþ1

2

G½t; vþ
jþ1

2

�
aþ
jþ1

2

− a−
jþ1

2

−
aþ
jþ1

2

a−
jþ1

2

aþ
jþ1

2

− a−
jþ1

2

	
vþ
jþ1

2

− v−
jþ1

2



: ðE2Þ

where a�
jþ1

2

are right- and left-sided local speeds and v�
jþ1

2

are reconstructed function values at the cell interface yjþ1
2

[109]. For the second order accurate KNP scheme we use
the same piecewise linear, total variation diminishing
(TVD) MUSCL reconstruction [64,73,146] employed in
the KT scheme [109]

v−
jþ1

2

¼ v̄j þ
Δy
2

ð∂yvÞj; ðE3Þ

vþ
jþ1

2

¼ v̄jþ1 −
Δy
2

ð∂yvÞjþ1; ðE4Þ

in which the slopes ð∂yvÞj are approximated from cell
averages using

ð∂yvÞj ¼
v̄jþ1 − v̄j

Δy
ϕ

�
v̄j − v̄j−1
v̄jþ1 − v̄j

�
; ðE5Þ

with a TVD limiter ϕðrÞ. Here, we follow Ref. [108] and
use the so-called minmod limiter [147]

ϕðrÞ ¼ max½0;minð1; rÞ�: ðE6Þ

The right- and left-sided local speeds at the cell interface
yjþ1

2
are used to estimate the maximal propagation of a

possible discontinuity in the case vþ
jþ1

2

≠ v−
jþ1

2

[109] and are

given for a scalar advection equation in one spatial
dimension by

aþ
jþ1

2

≡max

�
∂G
∂v

½t; vþ
jþ1

2

�; ∂G
∂v

½t; v−
jþ1

2

�; 0
�
; ðE7Þ

a−
jþ1

2

≡min

�
∂G
∂v

½t; vþ
jþ1

2

�; ∂G
∂v

½t; v−
jþ1

2

�; 0
�
: ðE8Þ

with the partial derivatives ∂G
∂v as the eigenvalues of a trivial

1 × 1 Jacobian, cf. Eq. (3.2) of Ref. [109], for a scalar
advection equation in one spatial dimension.
Boundary conditions for the advection flux of the KNP

(and KT) scheme are readily implemented by means of
so-called ghost cells. For the left computational boundary
at y ¼ 0 those ghost cells would be located at negative y
and a formulation of physically meaningful boundary
conditions in this point is not obvious, for more details
see Sec. IV D of part I of this series of publications [57]. At
the right boundary located at a finite ymax ghost cells can
computed using linear extrapolation without any practical
problems as long as ymax is large enough [57,59]. Coming
back to the problematic left boundary we recall from the
discussion surrounding the flow Eq. (47) that

∂G
∂v

¼ −
1

2

Λe−t

ðΛe−t þ vÞ2 ðE9Þ

is manifest negative for all y ∈ Rþ and t ∈ Rþ for all valid
initial conditions/UV initial scales realizing Λe−t þ v > 0
in the UV, cf. part I of this series of publications [57]. This
however implies in Eq. (E7) a vanishing right sided local
speed aþ

jþ1
2

¼ 0. Physically this means that the fluid is only

propagated to the left which simplifies the expression (E2)
for the numerical flux of the KNP scheme immensely

HKNP
jþ1

2

jaþ
jþ1

2

¼0 ¼ G
h
t; vþ

jþ1
2

i
ðE10Þ

resulting in the numerical upwind advection flux for the
KNP scheme

∂tv̄j ¼
1

Δy

	
G
h
t; vþ

j−1
2

i
−G

h
t; vþ

jþ1
2

i

: ðE11Þ

It is this reduction to an upwind scheme in regions with
directed local speeds equivalent to monotonic advection
fluxes with either aþ

jþ1
2

¼ 0 or a−
jþ1

2

¼ 0, which has lead the

authors of Ref. [109] to call their scheme a central-upwind
scheme. Note that Eq. (E11) does no longer include the left-
sided local speed a−

jþ1
2

and only contains advection terms

evaluated at vþ
j�1

2

involving the reconstructions from the

cells to the right, cf. Eqs. (E4) and (E5). As a result the

15Note that F is explicitly position dependent and the advec-
tion fluxes F and local speeds a (consequently ∂uF) have to be
evaluated on the cell interfaces, cf. Eq. (E15) and part I of this
series of publications [57].
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numerical flux of Eq. (E11) is based on a right-leaning four
point stencil fv̄j−1; v̄j; v̄jþ1; v̄jþ2g, where v̄j−1 is required
together with v̄j and v̄jþ1 to compute ð∂yvÞj. For the
numerical flux of the first volume cell j ¼ 0 which we
choose to span over y−1

2
¼ 0 to y1

2
¼ Δy we require

fv̄−1; v̄0; v̄1; v̄2g, where only v̄−1 is a ghost cell. Since it
only appears in the flux limiting procedure, see (E5), it is
arguably not a ghost point related to physical boundary
conditions but rather a computational one necessary to
ensure formal second order accuracy of the MUSCL
reconstruction while preventing spurious oscillations
around discontinuities—TVD time steps.
Two naive strategies for a practical choice of v̄−1 come to

mind. The first one would be switching from a central
reconstruction to a right-sided reconstruction. Constructing
a right-sided TVD reconstruction or searching for one in
literature seemed unappealing for the brief discussion of
Sec. E 2. The second option is much simpler and related to
the fact, that the KNP schemewith the position independent
advection flux G of Eq. (47) has a meaningful first order
reduction. Switching from a piecewise linear to a piecewise
constant reconstruction in Eqs. (E3) and (E4)

v−
jþ1

2

¼ v̄j þOðΔyÞ; ðE12Þ

vþ
jþ1

2

¼ v̄jþ1 þOðΔyÞ; ðE13Þ

results in a first order accurate (in Δy) semidiscrete upwind
scheme [109,148,149]

∂tv̄j ¼
1

Δy
ðG½t; v̄j� −G½t; v̄jþ1�Þ; ðE14Þ

valid for monotone advection fluxes with ∂uG < 0. The
first order accurate KNP scheme is in this context equiv-
alent to the so-called Godunov upwind scheme [148,149].
Application of such first order upwind-schemes within
the FRG framework are discussed and presented in
Refs. [137,150]. To avoid the ghost cell v̄−1 altogether
we always use the first-order accurate KNP scheme (E14)
in the first volume cell v̄0 and either stick to the first-order
accurate scheme or use the second-order accurate KNP
scheme (E11) for all other cells.
In the following we will denote the first-order accurate

KNP scheme (E14) with KNP OðΔy1Þ and the second-
order accurate scheme of Eq. (E11) with KNP OðΔy2Þ. In
the first volume cell we always use the KNP OðΔy1Þ
scheme to avoid complications with the boundary at y ¼ 0,
while we use linear extrapolation (v̄n ¼ 2v̄n−1 − v̄n−2 as
well as v̄nþ1 ¼ 3v̄n−1 − 2v̄n−2 when using the OðΔy2Þ
scheme) at the right computational boundary ymax.
We conclude this subsection with a brief remark on the

KT scheme. Using the conservative, equal sided estimate
aþ
jþ1

2

¼ −a−
jþ1

2

¼ ajþ1
2
for the right- and left-sided local

speeds a�
jþ1

2

, the numerical advection flux (E2) of the

KNP scheme reduces to the advection flux the KT scheme

HKT
jþ1

2

≡
G½t; vþ

jþ1
2

� þ G½t; v−
jþ1

2

�
2

− ajþ1
2

vþ
jþ1

2

− v−
jþ1

2

2
; ðE15Þ

with

ajþ1
2
≡max

����� ∂G
∂v

½t; vþ
jþ1

2

�
����;
���� ∂G
∂v

½t; v−
jþ1

2

�
����
�
: ðE16Þ

In the first volume cell v̄−1 appears outside of the flux
limiting procedure and is also present in the first-order
accurate reduction of the KT scheme (E15) using
Eqs. (E12) and (E13) since the latter is based on a central
scheme based on the stencil fv̄j−1; v̄j; v̄jþ1g. Lacking the
more refined estimates for the right- and left-sided local
speeds a�

jþ1
2

of the KNP scheme it is not obvious how to deal

with the ghost cell at v̄−1. This is, why we chose the KNP
scheme for our numerical computations in y. The advection
flux of the KNP scheme is also suited for the position
depended advection fluxF of the flow equation (45) in x.We
have performed some heuristic tests with the KNP scheme
and the flow equation (45) in x and we come to the
preliminary conclusion that it is in terms of accuracy and
performance on par with the KT scheme in this scenario.
Nevertheless, further detailed tests might be of interest for
upcoming challenges in the context of FRG problems in
dimensions d > 0 with more sophisticated truncations.

2. Riemann problems and (numerical) entropy

a. Riemann problems

In Fig. 10 we present numerical results for the RG flow
in the rescaled invariant y using the flow equation (47) with
the piecewise constant initial condition of Eq. (16) obtained
with the KNP OðΔy1Þ scheme discussed in the previous
subsection of this appendix. The flow equation (47) with
the piecewise constant initial condition of Eq. (16) con-
stitutes two Riemann problems as outlined in the beginning
of this paper in Sec. I. The RG flows in y displayed in
Fig. 10 are equivalent to the ones in x presented in Fig. 5
hence we will not repeat the qualitative discussion of the
results but rather refer to Sec. IV E 2. In the following we
will instead focus on certain aspects and problems inherent
to the formulation and solution in the rescaled invariant y.
For small RG times t≲ 25 the RG flows present as

typical Riemann problems with a moving shock wave and
an rarefaction fan. In Fig. 10 the evolution for t≲ 25 is
for all a under consideration similar to the dynamics
studied in Fig. 2(a) of Ref. [25], which originally moti-
vated the chosen initial condition in this work. Beyond
t ≈ 25 the shock wave and the left tip of the rarefaction fan
start interacting leading to a freeze-out of the shock wave
for a ¼ 0 with vðt ¼ 0; y ¼ 0Þ ¼ 1 ¼ ∂xvðt ¼ 0; xÞjx¼0.
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For a ¼ 2ac the shock moves out of the computational
domain at y ¼ 0 and we recover vðt ¼ 0; y ¼ 0Þ ¼
1
16
¼ ∂xvðt ¼ 0; xÞjx¼0. So far in complete agreement with

the corresponding results in x of Sec. IV E 2. For a ¼ ac we
observe the remnant of the shock wave in the computa-
tional interval but the shock is strongly deformed by
numerical diffusion/the finite resolution of the com-
putation. We will come back to this issue after briefly
commenting on the numerical errors of the computation.

The relative numerical errors for the 1PI-two-point
function Γð2Þ corresponding to the IR results displayed
in Fig. 10 are presented for both the KNP OðΔy1Þ and the
KNP OðΔy2Þ schemes in Table IV. We choose to plot the
results of the KNP OðΔy1Þ scheme for their slightly better
accuracy for a ¼ ac. When comparing the errors to the ones
of Table II for the KT scheme and the flow equation in x the
only notable difference is in fact at a ¼ ac. The error
obtained with the KNP scheme is significantly worse by
more than twelve orders of magnitude for both KNP
OðΔy1Þ and KNP OðΔy2Þ.
The situation at a ¼ ac can be understood quite easily.

The presented numerical computations use n ¼ 1500
volume cells equidistantly distributed in the interval
y ∈ ½0; 12.5� resulting in Δy ¼ 1

120
≃ 8.33 × 10−3. Conse-

quently the first two volume cells are centered at y0 ¼
1

240
≃ 4.17 × 10−3 and y1 ¼ 1

80
¼ 1.25 × 10−2. Those two

volume cells are clearly visible in the middle panel of
Fig. 10 and contain the frozen shock for a ¼ ac. Form our
computation in x we found with the fit (56) that the shock
for a ¼ ac approaches x ¼ 0 with 0.983Δx0.413. For
n ¼ 1500 volume cell this amounts to a numerical shock
position of jxj ≈ 0.095 and consequently y ≈ 4.513 × 10−3

which is for a computation in y with n ¼ 1500 retaining
xmax ¼ 5 ⇔ ymax ¼ 12.5 approximately at the center of the
first volume cell. Having no volume cell to the right of
the shock makes it numerically impossible to resolve
vðt¼0;y¼0Þ¼1¼∂xvðt¼0;xÞjx¼0 accurately. Using
the fit (56) we can extrapolate that having the shock
centered in the second or third cell would already require
an extensive amount of volume cells namely n ¼ 3.7 × 105

or n ¼ 6.4 × 106 respectively while maintaining ymax ¼
12.5. Computations with 105 and more volume cells
overtax our current implementation and computational
capacities, see Appendix F for details.
Resolving dynamics at small x with an equidistant grid

of volume cells in y ¼ 1
2
x2 is in general difficult because

equidistant cells in y have a poor resolution around
x ¼ ffiffiffiffiffi

2y
p ¼ 0. A drastic example is the freezing shock

for a ¼ ac at x ¼ 0, where the scaling ∝ Δx0.413 is already
challenging. A situation with a scaling ∝ Δxp with p ≥ 1

2
is

TABLE IV. Numerical relative errors for the 1PI-two-point
function Γð2Þ, see Eq. (F2), for the results plotted in Fig. 10 and
equivalent results computed with the second order accurate KNP
scheme with corresponding exact reference values from the last
row of Table I. The scaling of these errors with the number of
volume cells can be found in Tables VI and VII for a ¼ ac and
a ¼ 2ac.

Scheme a ¼ 0 a ¼ ac a ¼ 2ac

KNP OðΔy1Þ 2.220 × 10−16 1.700 × 10−2 8.255 × 10−3

KNP OðΔy2Þ 2.887 × 10−15 5.695 × 10−1 2.787 × 10−3

FIG. 10. The RG flow of the derivative of the rescaled effective
potential vðt; yÞ for the zero dimensionalOðNÞmodel in the limit
N → ∞ for the Riemann problems of Eq. (16) with a ¼ 0, a ¼ ac
and a ¼ 2ac in the upper, middle, and lower panel, respectively.
Computations are equivalent to those presented in Fig. 5 but in
the invariant y using the KNP scheme of OðΔy1Þ. The markings,
color coding and parameters are the same as in Fig. 5. We choose
a logarithmic scale for the y-axis for better visibility around y ¼ 0
which is particularly useful for the visualization of the freezing
shocks in the IR for a ¼ 0 and a ¼ ac.
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also conceivable. Such a scenario would be impossible to
resolve with an equidistant grid in the rescaled invariant
y ¼ 1

2
x2. To improve or in some cases even facilitate

computations at all around x ¼ 0 in the rescaled invariant
y a nonuniform mesh in y seems necessary. The generali-
zation of the KT and KNP scheme to nonuniform grids
is straightforward in one spatial dimension, see, e.g.,
Ref. [151], but will not be discussed in this work.
Anyhow, nonuniform grids and potentially adaptive

mesh refinement techniques are of increasing importance
when considering flow equations with more than one
spatial domain. These improvements will for sure become
important within the next years of FRG computations, e.g.,
in low-energy effective models of QCD see, e.g.,
Refs. [152–155], with more than one condensate (quark-
antiquark and diquark).

b. Entropy and irreversibility

We now turn to the discussion of the (numerical) entropy
associated with the purely advective RG flows in the
rescaled invariant y at infinite N which is the main
motivation for this whole appendix. In part II of this series
of publications [58] we discussed the concept of (numeri-
cal) entropy of RG flows and its relation to the inherent
irreversibility of RG flows in detail. We further argued for a
connection between the (numerical) entropy of RG flows
and Zamolodchikov’s [112] or more recent [131,132]
formulations of the C–function.
In Ref. [58] we focused on the limiting case N ¼ 1 of the

zero-dimensionalOðNÞmodel discussing numerical entropy
and irreversibility of the purely diffusive RG flow equations
in this case. The focus of this paper is the opposite limit of
N → ∞ yielding purely advective flow equations. While a
(numerical) entropy production is almost intuitively under-
stood for diffusive problems the present situationmight seem
less obvious for a nonexpert reader. It is however well known
from the study of nonlinear advection equations, see, e.g., the
textbooks [64,71–76], that there is a meaningful notion of
numerical entropy and that its increase is linked to the
appearance and/or interaction of discontinuities like shocks
and rarefaction waves. An increase in numerical entropy
signals the irreversibility of the underlying flow, see, e.g.,
Refs. [64,76] for this in the context of nonlinear (especially
hyperbolic) conservation laws.
Defining or constructing an explicit numerical entropy

functional for general nonlinear conservation laws is a
difficult task especially when source terms are involved,
cf. Refs. [156–159] and references therein.
When considering the flow equations (44) and (46) in

x or y respectively, we note that the formulation in x (y)
involves a position dependent advection term (diffusion
term). When executing the x-derivative in Eq. (44) we can
differentiate between three contributions in the resulting
flow equation in primitive form: a parabolic diffusion term
∝ ∂

2
xvðt; xÞ with a nonlinear diffusion coefficient, a

hyperbolic advection term ∝ ∂xvðt; xÞ with a nonlinear,
position dependent advection velocity ∂vF and a nonlinear,
position dependent internal source term ∝ vðt; xÞ stemming
from the product rule. As a consequence of the latter term
the rhs of the flow Eq. (44) and hence ∂tvðt; xÞ is
nonvanishing for vðt; xÞ constant in x. Similarly the flow
Eq. (46) in y contains such a nonlinear, position dependent
internal source term ∝ vðt; yÞ arising form the derivative of
the explicitly y-dependent second term in Eq. (46). Those
internal source terms, explicit x- or y-dependences before
executing the derivatives, in the flow equations in primitive
form make the construction of explicit numerical entropy
functionals at finite N > 1 challenging.
At N ¼ 1 the formulation in x manifests as a pure

diffusion equation with a position independent diffusion
term in Eq. (44). Using standard techniques the authors of
this papers and collaborators were able to construct a class
of numerical entropy functionals for the N ¼ 1 flow
equation in x in part II of this series of publications
[58]. The so-called total variation (TV) [146]—which is
simply the arc length of vðt; xÞ—is among the class of
viable entropy functionals at N ¼ 1.
Incidentally in the opposite limit N → ∞ but using the

flow Eq. (47) in the rescaled invariant y the total variation is
again a viable entropy functional. This goes back to general
properties of (weak) solutions of purely hyperbolic non-
linear advection equations—like ourN → ∞ flow Eq. (47).
Among other general qualitative statements about monot-
onicity and convexity (weak) solutions of hyperbolic
nonlinear advection equations like Eq. (47) have a decreas-
ing arc length—they are total variation diminishing (TVD)
or more precisely total variation nonincreasing (TVNI)
[71,146]—during time evolution when considered on a
finite interval, for further details see also Refs. [73,75] and
especially Ref. [160]. In terms of volume averages the arc
length/total variation can computed using

TV½vðt; yÞ�≡ TV½fv̄iðtÞg�≡
Xn−1
i¼0

jv̄iþ1ðtÞ − v̄iðtÞj; ðE17Þ

and a corresponding entropy functional may be defined as

C≡ TV½vðt ¼ 0; yÞ� − TV½vðt; yÞ�; ðE18Þ

for further details see part II of this series of publications
[58] and references therein. Since solutions of the under-
lying flow Eq. (47) are TVNI (∂tTV½vðt; yÞ� ≤ 0) the
entropy functional C is nondecreasing (∂tC ≥ 0).
Solutions of the flow Eq. (44) in x at N > 1 are in

general not TVNI. A fact we tested in numerical experi-
ments with several initial conditions at various N > 1
[57,58]. The loss of the TVNI property is most likely
directly linked to the explicit position dependences in the
flow equation manifesting as source terms when executing
the x-derivatives of the rhs of Eq. (44). Formal results
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supporting this can be found in Ref. [160]: nonlinear
parabolic differential equations of the type 0 ¼ ∂tv−
fðt; z; v; ∂zv; ∂2zvÞ have TVNI solutions if (among
some other restrictions) the flux f vanishes i.e., 0 ¼
fðt; z; v; 0; 0Þ on constant solutions 0 ¼ ∂zv ¼ ∂

2
zv. The

latter is not the case for flow equations in x at N > 1 and in
y for finite N as discussed earlier in this subsection. It is
intuitively obvious that source terms can increase the arc
length of a (weak) solution and implications in the context
of TVD schemes are discussed in, e.g., Refs. [156–159].
For N → ∞ solutions in x are still not TVNI but a

reformulation in y eliminates the explicit position depend-
ence in the advection flux and the resulting source term. The
solutions of the flow Eq. (47) in y are TVNI. A fact we tested
numerically in this appendix, see Fig. 11, for the Riemann
problems posed by the initial condition (16) with the flow
Eq. (47) and which is theoretically well established
cf. Refs. [71,146].
We conclude this appendix with a qualitative discussion

of the numerical entropy for the Riemann problems posed
by the initial condition (16) with the flow Eq. (47) for
different a. The numerical entropies associated to the flows
presented in Fig. 10 are plotted in Fig. 11.
The numerical entropy stays constant in the UV up until

the point where the shock wave and rarefaction fan intersect
namely at t ≈ 25.718, 25.469, and 25.270 for a ¼ 0,
a ¼ ac, and a ¼ 2ac respectively. Since both shock and
rarefaction wave are already present in the initial condition
vðt ¼ 0; yÞ their simple advection does not increase the
numerical entropy of Eq. (E18). The flow in the UV is
therefore arguable reversible, which can be seen from the
analytic solutions via the method of characteristics, but

practical computations involving a finite resolution Δy and
finite precision during time evolution prevent a reversion by
numerically integrating up in time t.
Between t ≈ 25 and t ≈ 35 we observe an increase in

numerical entropy related to the interaction of the shock and
the rarefaction fan. For a ≤ ac the rise in entropy is rather
small related to only marginal changes in arc length/total
variation during the flow, see upper and middle panel of
Fig. 10. For a > ac namely a ¼ 2ac we observe a steep
rise in entropy at t ≈ 27.275, which is the RG time at which
the shock leaves the computational domain for a ¼ 2ac.
Without the shock the arc length/total variation decreases
dramatically leading to the observed rise in numerical
entropy.
In the IR for t≳ 35 we again observe a plateau in the

numerical entropy, related to the fact, that kðtÞ for t≳ 35 is
sufficiently below the internal model scales of the problem
under consideration meaning that all relevant fluctuations
are already included. The plateaus in the numerical entropy
in the UV and IR are indicators of RG consistency and
sufficiently small numerical IR cutoffs respectively.

APPENDIX F: (NUMERICAL) PARAMETERS
OF THE FRG COMPUTATIONS

In this appendix we present further details on numerical
parameters used for the numerical FRG computations with
the KT and KNP scheme. To numerical integrate the RG
flow equations in x at finite and infinite N, see Eqs. (44)
and (45) respectively, we employ the KT scheme in its
semi-discrete form, see Sec. IV C of part I of this series of
publications [57] and the original publication [108] for
details. To numerical integrate the RG flow equations
in y infinite N, see Eq. (47), we employ the first and
second order KNP scheme in its semi-discrete form, see
Appendix E 1 and the original publication [109] for details.
The semidiscrete KT and KNP scheme require an

external numerical time stepper for evolution in t—the
solution of the ODE system for the cell averages fv̄iðtÞg.
For this purpose we employ the default numerical
ODE-solver NDSolve of MATHEMATICA [138] with a
PrecisionGoal and AccuracyGoal of 10.
Given a finite volume solution fv̄iðtÞg for the x-derivative

of the rescaled potential computed with the KT scheme, the
1PI-two-point function can be computed by means of
numerical differentiation using the first order difference
coefficient16

Γð2Þ
KT ¼ vðtIR; x1Þ − vðtIR; x0 ¼ 0Þ

Δx
¼ v̄1ðtIRÞ

Δx
; ðF1Þ

where x1 ¼ Δx and we used the fact that v̄0ðtÞ ¼ 0 due to
antisymmetry and the cell average of the second cell v̄1ðtIRÞ.

FIG. 11. The RG flow of the C-function, see Eq. (E18), for the
zero dimensional OðNÞ model in the limit N → ∞ for the
Riemanns problem of Eq. (16) with a ¼ 0, a ¼ ac, and a ¼
2ac obtained with the KNP scheme of OðΔy1Þ. We observe
plateaus in the UVand IR. The IR plateaus end for the individual
values of a ¼ 0, a ¼ ac, and a ¼ 2ac at the RG times when the
shock wave and rarefaction fan intersect namely at t ≈ 25.718,
25.469, and 25.270 respectively. The second jump in the curves
for a ≥ ac is due to the collision of the shock waves at x ¼ 0.

16Due to the antisymmetry of vðt; xÞ the first order and second
order finite difference stencils are identical.
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Higher order finite difference coefficients can also be
used, see part I of this series of publications [57]. When
computing in the invariant y, thus in the y-derivative of
the rescaled potential, the 1PI-two-point function can be
extracted directly from the volume averages fv̄S;iðtÞg

Γð2Þ
S ¼ vSðtIR; y ¼ 0Þ ¼ v̄S;0ðtIRÞ; ðF2Þ

with the cell average of the first cell v̄S;0ðtIRÞ computed
with the scheme S. Relative numerical errors for a solution
computed with the scheme S and related convergence rates
are given by

ϵS≡
����Γ

ð2Þ
S

Γð2Þ − 1

����; ðF3Þ

rS ≡
lnð ϵS;i

ϵS;i−1
Þ

lnðni−1ni
Þ ; ðF4Þ

where we compare to the exact reference values Γð2Þ
computed from the integral (7) of the instructive toy model
discussed in Sec. II C and presented in Tab. I. The con-
vergence rate rS compares errors obtained for computations
involving a differing number of volume cells ni−1 > ni with
otherwise unchanged numerical parameters.
All numerical computations have been performed on an

Intel© Core™ i7-8750H processor running up to 6 threads
simultaneously. The wall times displayed in this appendix
are not averaged over multiple runs and are given here to
allow a comparison of computational cost between numeri-
cal computations at finite and infinite N with the KT and
KNP schemes. The total single thread wall time for all
numerical computations discussed and displayed in this
paper is approximately 60 hours.

1. Computations in the large-N limit

We now turn to the discussion of spatial resolution Δx
and Δy for computations using the KT and KNP scheme in
the limit N → ∞. For the purely advective problems a
computational extend with xmax ¼ 5 and equivalently
ymax ¼ 1

2
x2max ¼ 12.5 have proven sufficient.

In the limit N → ∞ computation with the KT scheme,
cf. Sec. IV E 2, converge rapidly toward the exact results in
the IR for a ¼ 0 and a ¼ ac: only approximately 120 (290)
volume cells are required to reach relative errors on the
level of machine/double precession (≈10−15) for a ¼ 0

(a ¼ ac) and Λ ¼ 1010 with xmax ¼ 5. Corresponding
errors and convergence rates for a ¼ 2ac can be found
in Table V as well as Fig. 12. For a ¼ 2ac (and other
a > ac) we observe a convergence rate of the KT scheme in
the number/size of volume cells of ≈0.8. For the problem
under consideration the theoretical scaling of Δx2 and
respective convergence rate of 2 for the KT scheme is not

archived practically. Reduced practical convergence rates
are however not uncommon for involved equation systems
and also depend strongly on the monitor used to compute
them [108,109].
We turn to the discussion of the KNP scheme in this

context. The numerical challenges of a formulation in y
using the KNP scheme for a approaching ac related to the
freezing of the shock at x ¼ y ¼ 0 were discussed at length
in Sec. E 2. Numerical errors, convergence rates and
runtimes for the KNP scheme for a ¼ ac and a ¼ 2ac
can be found Tables VI and VII respectively. For a ¼ ac the
rate of convergence improves with the number of volume
cells as the freezing shock gets resolved better for larger n.
The first-order accurate version of the KNP scheme has a
better numerical error and rate of convergence for a given n
when compared to the second-order KNP scheme for
a ¼ ac. We observe that the KNP OðΔy1Þ scheme runs
marginally faster than KNP OðΔy2Þ scheme.

FIG. 12. The scaling of the relative error with decreasing grid
spacing Δx of the numerical results (blue dots) from the finite-
volume KT scheme for the two-point function Γð2Þ for the zero
dimensional OðNÞ model in the limit N → ∞ for the initial
condition (49) with a ¼ 2ac. The numerical derivatives at x ¼ 0
of vðtIR ¼ 60; xÞ were calculated using the first order difference
coefficient (F1). The yellow straight line is included for optical
guidance and represent a scaling with OðΔx0.83Þ.

TABLE V. Relative error ϵKT, corresponding rate of conver-
gence rKT, see Eqs. (F3) and (F4), and wall time in seconds for a
selected set of computations with varying number of grid points n
from Fig. 12. The average rate of convergence of 0.822 is
compatible with the trend of 0.83 displayed in Fig. 12.

n ϵKT rKT tWðsÞ
64 4.472 × 10−2 � � � 1.3 × 10þ0

128 2.474 × 10−2 0.854 4.1 × 10þ0

256 1.419 × 10−2 0.802 1.2 × 10þ1

512 8.004 × 10−3 0.826 6.1 × 10þ1

1024 4.502 × 10−3 0.830 4.1 × 10þ2

2048 2.586 × 10−3 0.800 5.6 × 10þ3
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For a ¼ 2ac the KNP OðΔy2Þ scheme performs very
similar to the KT scheme, cf. Tables VII and V, in terms of
numerical errors and convergence rates while running faster
(twice as fast for small number of volume cells up to more
than thirty times faster for 2048 volume cells) than KT
scheme. The KNP OðΔy1Þ scheme has a slower rate of
convergence and larger numerical errors at a similar
runtime when compared to the KNP OðΔy2Þ scheme.
For a ¼ 0 we again observe rapid convergence against

the exact results approximately 680 (740) volume cells are
required to reach relative errors on the level of double
precession for the KNP scheme of OðΔy2Þ [OðΔy1Þ].
Again we observe the cost of the relatively low resolution in
x ¼ ffiffiffiffiffi

2y
p

at small y when compared to a formulation in x
using the KT scheme, where only 120 cells are necessary to
reach double precession for a ¼ 0 in the N → ∞ limit.
A discussion of RG consistency related to sufficiently

high UV initial scales Λ along the lines of part I of this
series of publications [57] is not very illuminating for the
toy model under consideration. In Fig. 13 we plot the
numerical errors of the two-point function in the IR for KT
scheme runs with n ¼ 1500 volume cells at varying UV
initial scales. We hit a plateau beginning at Λ ≈ 3.2 × 103

where a further increase of the UV initial scale yields no
improvement of the numerical error since it is dominated by

the one related to the finite spatial resolution, cf. Tables II
and V. The UV initial scale Λ ¼ 1010 used for all other
computations of this work, lies deep in the plateau implying
that errors related to violations of RG consistency are

TABLE VI. Relative errors ϵ, corresponding rates of convergence r, see Eqs. (F3) and (F4), and wall times in seconds for varying
number n of volume cells for the RG flows of the toy model in the limit N → ∞ with a ¼ ac computed with the second and first order
KNP scheme formulated in the invariant y. The corresponding KNPOðΔy1Þ flow including parameters are displayed in the middle panel
of Fig. 10.

KNP OðΔy2Þ KNP OðΔy1Þ
n ϵKNPO2 rKNPO2 tWðsÞ ϵKNPO1 rKNPO1 tWðsÞ
64 7.069 × 10−1 � � � 4.746 × 10−1 4.610 × 10−1 � � � 2.896 × 10−1

128 6.857 × 10−1 0.044 1.400 × 10þ0 3.461 × 10−1 0.414 1.020 × 10þ0

256 6.593 × 10−1 0.057 4.495 × 10þ0 2.055 × 10−1 0.752 3.490 × 10þ0

512 6.276 × 10−1 0.071 1.713 × 10þ1 8.831 × 10−2 1.220 1.225 × 10þ1

1024 5.904 × 10−1 0.088 5.403 × 10þ1 3.249 × 10−2 1.440 4.681 × 10þ1

2048 5.477 × 10−1 0.108 1.603 × 10þ2 8.733 × 10−3 1.900 1.310 × 10þ2

TABLE VII. Relative errors ϵ, corresponding rates of convergence r, see Eqs. (F3) and (F4), and wall times in seconds for varying
number n of volume cells for the RG flows of the toy model in the limit N → ∞ with a ¼ 2ac computed with the second and first order
KNP scheme formulated in the invariant y. The corresponding KNPOðΔy1Þ flow including parameters are displayed in the lower panel
of Fig. 10.

KNP OðΔy2Þ KNP OðΔy1Þ
n ϵKNPO2 rKNPO2 tWðsÞ ϵKNPO1 rKNPO1 tW ðsÞ
64 4.102 × 10−2 � � � 4.888 × 10−1 9.271 × 10−1 � � � 3.147 × 10−1

128 2.266 × 10−2 0.856 1.585 × 10þ0 4.491 × 10−2 4.370 1.065 × 10þ0

256 1.252 × 10−2 0.856 4.713 × 10þ0 2.731 × 10−2 0.717 3.749 × 10þ0

512 6.953 × 10−3 0.848 1.665 × 10þ1 1.713 × 10−2 0.673 1.368 × 10þ1

1024 3.878 × 10−3 0.842 5.323 × 10þ1 1.072 × 10−2 0.676 5.144 × 10þ1

2048 2.161 × 10−3 0.844 1.674 × 10þ2 6.723 × 10−3 0.673 1.517 × 10þ2

FIG. 13. The UV initial scale Λ dependence of the relative error
of the numerical results (blue dots) from the finite-volume KT
scheme for the two-point function Γð2Þ for the zero dimensional
OðNÞ model in the limit N → ∞ with the initial condition (49)
with a ¼ 2ac. The numerical derivatives at x ¼ 0 of vðtIR; xÞwith
fixed rðtIRÞ ¼ 10−15 were calculated using the difference coef-
ficient (F1).
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several orders of magnitude smaller than the error related to
the spatial discretization used in this work.

2. Computations at finite N

In Tables VIII and IX we present results for numerical
errors, convergence rates and runtimes for the finite N KT
computations of Sec. IV F for completeness sake only. A
detailed discussion of numerical parameters, errors and RG
consistency at finiteN can be found in part I of this series of
publications [57].
At this point we only briefly comment on the numerical

errors and related convergence rates. For finite N the KT
scheme operates on average with higher practical conver-
gence rates than for infinite N. The results for small N,

namelyN ¼ 2 in TableVIII, are in agreementwith the results
of part I of this series of publications [57], cf. especially test
case I of Sec. VA. The oscillations in convergence rate and
errors are related to the finite volume discretization of
discontinuous initial conditions [57]. The overall numerical
errors at N ¼ 2 and a ¼ 2ac are up to three orders of
magnitude lower than the corresponding ones at N → ∞
even though the resolution Δx at N ¼ 2 is double the one at
N → ∞ for a given number of volume cells n since we use
xmax ¼ 10 at N ¼ 2 instead of xmax ¼ 5 used at N → ∞.
Comparing the results at N ¼ 2 and N ¼ 32 in Tables VIII
and IX respectively we note that an increase ofN comes at a
cost in both, runtime and numerical error. Computations at
larger finite N are numerically more challenging.
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