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We demonstrate that the reformulation of renormalization group (RG) flow equations as nonlinear
heat equations has severe implications on the understanding of RG flows in general. We demonstrate by
explicitly constructing an entropy function for a zero-dimensional Z2-symmetric model that the
dissipative character of generic nonlinear diffusion equations is also hard-coded in the functional RG
equation. This renders RG flows manifestly irreversible, revealing the semigroup property of RG
transformations on the level of the flow equation itself. Additionally, we argue that the dissipative
character of RG flows, its irreversibility and the entropy production during the RG flow may be linked
to the existence of a so-called C-=A-function. In total, this introduces an asymmetry in the so-called RG
time—in complete analogy to the thermodynamic arrow of time—and allows for an interpretation of
infrared actions as equilibrium solutions of dissipative RG flows equations. The impossibility of
resolving microphysics from macrophysics is evident in this framework. Furthermore, we directly link
the irreversibility and the entropy production in RG flows to an explicit numerical entropy production,
which is manifest in diffusive and non-linear partial differential equations (PDEs) and a standard
mathematical tool for the analysis of PDEs. Using exactly solvable zero-dimensional Z2-symmetric
models, we explicitly compute the (numerical) entropy production related to the total variation
nonincreasing property of the PDE during RG flows toward the infrared limit. Finally, we discuss
generalizations of our findings and relations to the C-=A-theorem as well as how our work may help to
construct truncations of RG flow equations in the future, including numerically stable schemes for
solving the corresponding PDEs.
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I. INTRODUCTION

Our modern understanding of quantum field theories
(QTFs) and particularly phase transitions is built upon the
analysis of renormalization group (RG) trajectories. In fact,
RG theory facilitates our understanding by connecting
microscopic and macroscopic physics in a continuous
manner. This is often visualized at the example of block

spin transformations [1,2] which provides an intuitive
picture of so-called RG flows in position space. A modern,
functional approach to RG theory is provided by the
functional renormalization group (FRG). It allows for
nonperturbative studies of QTFs with applications ranging
from biophysics over condensed matter to high-energy
physics and quantum gravity, see Ref. [3] for a recent
overview.
In Refs. [4–7] it is shown that renormalization group

flows can be seen as flows in the literal sense. The RG time
t ¼ − lnðkΛÞ, where k is the RG scale in units of energy
and Λ is some ultraviolet (UV) reference scale, can be
identified with an abstract time and directions in field space
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correspond to spatial directions,1 cf. Refs. [14–18] for
similar identifications in related flow equations. With this at
hand, it becomes appealing to look for further connections
between the research fields of (numerical) fluid dynamics
and RG theory.
Such a connection is discussed in this paper. To be

specific, we shall show that the numerical entropy, which is
of utmost importance in the theoretical treatment of partial
differential equations (PDEs), see, e.g., the textbooks
[19–25], has a very close connection to an entropy in
the RG flow2 and further possible connections to the so-
called C-=A-functions for RG theories, cf. Refs. [27–41]
and Sec. V for more details on C-=A-functions.
One of the most important direct consequences of this is

that the same “(thermodynamic) arrow of time” or “thermo-
dynamic time asymmetry” [42] identified by the entropy of
a PDE, is also present from an RG perspective.
In nature as well as in the PDEs that describe our

physical world, entropy is produced by diffusion (dissipa-
tion) as well as discontinuities of all kind. Consequently the
evolution of such systems and also their numerical sol-
utions are irreversible and usually only weak solutions are
accessible numerically [19–25]. As we will demonstrate in
this paper, the total variation nonincreasing property and
related numerical entropy, used to guarantee the stability of
numeric solution schemes, can be promoted to a “physical”
entropy function sharing some characteristics with a
C-function and its properties transfer from the PDE to
the QFT and vice versa. Therefore, RG flows are also not
reversible.3 This makes the semigroup character of the
RG, see, e.g., Ref. [44], explicit. This semigroup character
also becomes manifest in Kadanoffs block-spin picture
[1,2,45,46]. The irreversibility of RG flows is not just an
abstract concept but presents on a practical level in rather
simple truncations of the functional renormalization
group (FRG) equation.
These statements may have no severe practical impli-

cations for studies of, e.g., QCD and condensed-matter
systems, where the RG flow is in general followed from
small (UV limit) to large length scales (IR limit). In these
cases, the dynamics in the long-range limit is predicted
from a given known UV action by integrating out high

momentum modes along the “natural” RG-time direction.
However, in situations where RG flows are followed
from large to small length scales, such as studies of the
asymptotic safety scenario in QFTs (see Refs. [28,47–50],
Refs. [51,52] for a recent review in the context of (quantum)
gravity, and Refs. [53,54] for applications in condensed-
matter physics), the question of irreversibility of RG flows
and the associated production of entropy may indeed be
very relevant.
Whereas RG flows are indeed reversible for certain

classes of truncations (of the underlying effective action),
we shall demonstrate in the present work (with the aid of
simple models) that it becomes formally impossible to
reverse RG flows in cases where no truncations of the
effective action are made. Even more, already for often
employed truncation schemes (e.g., local potential approx-
imations), we shall see that irreversibility associated with
numerical entropy production can already be a manifest
feature of RG flows. Of course, irreversibility of RG flows
does not imply that it is not possible to construct theories
which are valid on all scales. It only implies that the
search for such theories may in general be more compli-
cated. In any case, generalizations of the arguments
presented in our present work may help to provide a fresh
view on these aspects (and/or revive some already existing
arguments [14–18,27,28]).
As we shall discuss below, fixed points still play an

important role within the fluid dynamic interpretation of
RG flows. In fact, fixed points can be identified with
steady-flow solutions and/or (thermal) equilibrium situa-
tions on the level of the rescaled dimensionless flow
equations, which have advective and diffusive character.
One major benefit of the connection revealed in this

paper is that a measure for the irreversibility of the RG flow
is explicitly provided via the identification with numerical
entropy and especially total variation [21,22,25,55,56].
Hence, the construction and analysis of such a measure,
at least in certain truncations, might be greatly simplified.4

In future, this might also help to single out adequate
truncation schemes for RG flow equations as those trun-
cations, which maintain the irreversible character of the
flow of the full untruncated system.
This paper is organized as follows: In Sec. II, we briefly

discuss the methodological framework of our present study.
This includes both the functional RG approach and its
correspondence to fluid dynamics. Moreover, we introduce
the zero-dimensional Oð1Þ model which underlies our
numerical studies. Numerical entropy and the total varia-
tion nonincreasing property is then discussed in detail in
Sec. III. Explicit computations and a detailed analysis of
numerical entropy production in a variety of test cases are

1A specific example is the RG flow of (the field-space
derivative of) a local potential, which can involve advective
and diffusive contributions as well as source/sink terms [4–13].

2In this context we also have to mention the subsequent
publication [26] by J. Cotler and S. Rezchikov who were able to
interpret the Polchinski equation as an “optimal transport gradient
flow of a field-theoretic relative entropy” thus establishing a firm
and explicit connection between an information-theoretic entropy
and (F)RG flows.

3Note that similar arguments, which link the dissipative
character of RG flow equations to the irreversibility of the RG
flow, were already brought up in Refs. [16,27] already before or
parallel to the development of the functional RG framework
pioneered in Ref. [43].

4We note that observations similar to ours have already been
pointed out in the works of Refs. [14–16,28] for related (partially
linearized) flow equations.
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presented in Sec. IV. In Sec. V, we then give a discussion of
the possibility of a generalization of our present findings
with respect to the irreversibility of RG flows, entropy
production and the C-theorem to higher-dimensional the-
ories. Finally, our conclusions and a brief outlook can be
found in Sec. VI.

II. FUNCTIONAL RG, FLUID DYNAMICS, AND
THE ZERO-DIMENSIONAL Oð1Þ MODEL

A. FRG framework

This section is dedicated to a brief summary of the key
aspects of the FRG and the zero-dimensional Oð1Þ model
within this framework. For a comprehensive discussion, we
refer to Part I of our series of publications on numerical
fluid dynamics and FRG flow equation [6] as well as to
Refs. [4,5,7,8,13] and upcoming publications [11,12]. For
more general reviews on the FRG method, we refer to
Refs. [3,28,57–62].
The FRG framework is built on an exact RG equation

[43,63–65], which is a functional partial integro-differential
equation for the scale-dependent effective average action
Γ̄t½Φ�:

∂tΓ̄t½Φ� ¼ STr

��
1

2
∂tRt

�
ðΓ̄ð2Þ

t ½Φ� þ RtÞ−1
�
: ð1Þ

The equation holds for arbitrary dimensions and arbitrary
field content, which is summarized in the “super”-field Φ,
cf. Refs. [66–69]. Here,

t ¼ − ln
�
k
Λ

�
ð2Þ

is the RG time (note our sign convention), while k=Λ
constitutes the ratio of the RG scale k and the UV cutoff
scale Λ. The latter is the scale, where the exact renorm-
alization group (ERG) equation is initialized with the
classical action Γ̄t¼0½Φ� ¼ S½Φ�. The “super”-trace stands
for a trace in field space, momentum-/position-space, as
well as all internal spaces, e.g., color, flavor etc. and Rt
denotes an monotonically decreasing scale-dependent IR
regulator function, see, e.g., Refs. [28,57,70–73] for details.
Solving the ERG equation (1) by integrating the full set of
PDEs that can be generated from the ERG via suitable
projections, from t ¼ 0 to t → ∞, thus calculating the full
quantum IR effective action Γ½Φ�≡ Γ̄t→∞½Φ�, is equivalent
to calculating all 1PI-n-point-correlation (vertex) functions
via a partition function/functional integral [57,61,74–80].
The ERG equation (1) is the direct mathematical imple-
mentation of Wilson’s idea of the renormalization group
[45,46,81]: Obtaining the macrophysics from the micro-
physics via gradually integrating out momentum-shells
from the UV to the IR, which corresponds to a coarse-
graining process in position space, e.g., Kadanoff’s

block-spin transformations [1,2,62]. Earlier formulations
of the RG in terms of similar flow equations can be found in
Refs. [14–17,81–83].

B. The zero-dimensional Oð1Þ-model

For what concerns this paper, we study one of the
probably most simplistic QFTs imaginable within this
framework—a zero-dimensional Z2 symmetric model or
Oð1Þ model.5 Still, as the interested reader will experience
by studying this and the parallel publications of our series
[6,7], as well as Refs. [84–105], this model (and its
extension, the zero-dimensional OðNÞ (vector) model) is
nontrivial and can serve as a minimalistic tool to highlight
and test fundamental features of and basic methods for
QFTs, not only for pedagogical purposes, but also as real
benchmark scenarios.
For the zero-dimensional Oð1Þ model, the most general

“truncation” to solve the ERG equation (1) is the local
potential approximation

Γ̄t½φ� ¼ Uðt;φÞ; ð3Þ

where Uðt;φÞ is simply a function of t and the real scalar
(mean) field φ that is called the scale-dependent effective
potential. Space-time or momentum-space dependences
of the field or integrations over the former as well as
derivatives of the field do not exist. The entire QFT consists
of a scalar ϕ (field), which can assume arbitrary real values
and can be thought of as a self-interacting “particle” in a
single point. The theory is therefore maximally coupled and
ultra-local. The only additional requirement, which we
impose on hϕi ¼ φ and Uðt;φÞ, is that the (mean) field
transforms as follows

φ ↦ φ0 ¼ −φ ð4Þ

under Z2-transformations and that Uðt;φÞ is in turn
invariant under these transformations

Uðt;φÞ ¼ Uðt;−φÞ: ð5Þ

The RG flow from t ¼ 0 to t → ∞ is initialized with the
classical action (here the classical potential),

Γ̄t¼0ðφÞ ¼ Uðt ¼ 0;φÞ ¼ SðφÞ ¼ UðφÞ; ð6Þ

which also represents an ordinary function of φ with
Z2-symmetry. Still, in order to render the corresponding
partition function as well as the expectation values (9)
convergent, UðφÞ has to be bounded from below and, for

5Although being technically imprecise, we mainly refer to the
model as theOð1Þmodel, thus the special case N ¼ 1 of anOðNÞ
symmetry, where the symmetry is only realized in terms of
discrete transformations.
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jφj → ∞, it has to grow at least with φ2. Nevertheless, there
is no need to claim smoothness or analyticity for UðφÞ,
as discussed in detail in part I and III of this series of
publications [6,7] and Sec. IV of this work.
The corresponding ERG equation (1) simplifies drasti-

cally for the zero-dimensional Oð1Þ model,6

ð7Þ

However, it retains its fundamental one-loop structure and
all its characteristic properties as a nonlinear parabolic PDE
and initial value problem in one “temporal” t ∈ ½0;∞Þ
and one “spatial” σ ∈ ð−∞;∞Þ direction. Furthermore, it
remains an exact equation without any truncation.
A major difference to higher-dimensional Oð1Þ models

(e.g., when using the LPA-optimized regulator [70,71]) is
the absence of an additional t-dependent factor on the right-
hand side (rhs) of the equations, cf. Refs. [43,65,106],
which, however, does not conceptually spoil any of our
further reasoning. For what follows, we always use a zero-
dimensional version of the monotonically decreasing
exponential regulator

rðtÞ ¼ Λe−t: ð8Þ

Here, the UV cutoff must be chosen sufficiently large,
cf. Refs. [6,107,108]. A peculiar feature of the zero-
dimensional version of the ERG equation (1) is that an
integration to t → ∞ is indeed possible (which can be seen
via reparametrization of the RG time and there is no need
for a numerical IR cutoff [6,92]). Nevertheless, we will use
nonvanishing IR cutoffs for our numerical calculations in
Sec. IV, to be as close as possible to higher dimensional
scenarios.
Having performed the t-integration down to the IR limit,

we can extract the vertex functions Γð2nÞ at the physical
point7 hϕi ¼ φ ¼ σ ¼ 0 by taking (numerical) derivatives
of Uðt ¼ 0; σÞ with respect to σ. These vertex functions are
in direct relation to the expectation values, see Refs. [6,92],

hϕ2ni ¼
R
∞
−∞ dϕϕ2ne−SðϕÞR∞
−∞ dϕe−SðϕÞ

; n ∈ N0; ð9Þ

which can be calculated numerically up to machine
precision (or sometimes even be evaluated analytically).
(Here, ϕ denotes the “fluctuating quantum field”.) This fact
makes zero-dimensional QFTs an interesting test ground
because numerical FRG calculations can be compared
against easily attainable exact results from (numerical)
integration of Eq. (9), cf. Refs. [84–105].

C. Fluid-dynamic reformulation of the RG flows

In this section, we briefly summarize the main findings
of our parallel and upcoming publications [6,7,11,12] and
Refs. [4,5] on the reformulation of the RG flow equation in
terms of a fluid-dynamical conservation law.
Taking a derivative with respect to σ of the flow

equation (7), we obtain a scalar one-dimensional (here
parabolic) conservation law,

∂tuðt; xÞ ¼
d
dx

��
1

2
∂trðtÞ

�
1

rðtÞ þ ∂xuðt; xÞ
�
; ð10Þ

where σ ¼ x is identified with a spatial dimension and
uðt; xÞ≡ ∂xUðt; xÞ is the conserved quantity. In fact,
Eq. (10) is a nonlinear diffusion/heat equation,8,9 which
can actually be generalized to arbitrary dimension. This
conservative formulation and interpretation in terms of
(numerical) fluid dynamics has tremendous consequences
and benefits for understanding and solving the RG flow
equation:

(i) Conservative formulations of RG flow equations
provide direct access to the highly developed tool-
box of numerical fluid dynamics.

(ii) An interpretation of the RG flow equations as flow
equations in the narrow sense of the word makes the
dynamics during the flow intuitively understandable.
Advective contributions (pions in the OðNÞ-
scenario) transport the conserved quantity uðt; xÞ
along the field space direction σ ¼ x (bulk motion)
and can cause nonanalyticities like shocks and rare-
faction waves in field space [4,5,113], as is well
known for nonlinear hyperbolic conservation laws
[19–25,114,115]. The nonlinear diffusive contribu-
tion (the radial sigma mode) smears out cusps and
jumps in uðt; xÞ and corresponds to undirected
movement of uðt; xÞ depending on the local “con-
centration differences”, the gradient ∂xuðt; xÞ, via a

6Note that we evaluated φ on a “background-field configura-
tion” σ, which is actually not needed for the zero-dimensional
Oð1Þ model because the field φ is already space-time-
independent. Still, we adopt the conventions used in Ref. [6]
and higher-dimensional scenarios.

7There is no (spontaneous) symmetry breaking in zero di-
mensions [6,91]. This is a consequence of a special version of
the Coleman-Mermin-Wagner-Hohenberg theorem [109–111]
or on the level of Eq. (9) simply a consequence of the discrete
Z2-symmetry.

8In part I of this series of publications [6] we demonstrate that
the conservative formulation generalizes to zero-dimensional
OðNÞ models, which turn out to be a nonlinear advection-
diffusion equations, and can even be generalized to higher
dimensional models involving fermions in terms of advection-
diffusion-source/sink equations [4–13].

9Note that the similarities betweenRGflowequations and the heat
equation were already observed before, cf. Refs. [15,28,83,99,112],
but did—to the best of our knowledge—never result in a compre-
hensive picture.
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highly nonlinear diffusion coefficient. On the level
of the LPA approximation, also fermionic con-
tributions to the flow can be easily understood in
this framework in terms of source/sink terms, see,
e.g., Ref. [12].

The reformulation of the flow equation (7) as a diffusion
equation (10) has direct implications for the goal of the
present paper. As outlined in our parallel discussion in
Sec. IV of Ref. [6], diffusion is one specific dissipative
process. Dissipative processes go hand in hand with
entropy production and irreversibility.10 We can therefore
conclude that the irreversibility of the RG transforma-
tions during the RG flow is hard coded in the diffusive
character of the ERG equation (1), not only in zero space-
time dimensions, but for any dimension and any QFT,
cf. Refs. [14,15,15,16]. Hence, the rise of entropy during
the RG flow might therefore be directly linked to C-=A-
theorems. This is explained in the next sections in the
context of our minimalistic toy model QFT.

III. (NUMERICAL) ENTROPY
AND THE TOTAL VARIATION

The first part of this section deals with the explicit
construction of a (numerical) entropy for the conserva-
tion law (10). This entropy has to be a functional of the
conserved quantity uðt; xÞ and/or its derivatives11 that is
monotonically rising during the RG flow. Monotonicity is
explicitly proven for valid initial conditions Uðt ¼ 0; xÞ.
Since uðt; xÞ is by definition a function of all couplings of
the theory, the (numerical) entropy function might therefore
be linked to a zero-dimensional version of C-=A-function.
In fact it might have some practical advantages compared to
some practical approaches toward C-=A-functions studied
in literature, since uðt; xÞ does not even need to be
expandable in explicit couplings at all, but still contains
all degrees of freedom.
In the second part of this section, we derive a discrete

formulation of this entropy functional and demonstrate that
it can be directly related to the total variation (TV) of
uðt; xÞ and the total variation diminishing/nonincreasing
property (TVD=TVNI) of commonly used numeric

schemes for conservation laws [19,55,56], which is, why
we denote it as a “numerical” entropy.

A. Construction of the (numerical) entropy

The construction of our (numerical) entropy function is
directly inspired by the construction of entropy/energy
functionals for the Bateman-Burgers equation [118,119] or
the heat-equation [120].
Let y ∈ R and

s∶ R → R; y ↦ sðyÞ; ð11Þ

be a continuously twice differentiable convex function
on R, hence

sðyÞ ∈ C2ðRÞ; s00ðyÞ ≥ 0; ð12Þ

for all y ∈ R. Furthermore, we require that sðyÞ shall not
grow faster than y2 for jyj → ∞, which is explained below.
Using sðyÞ we define the functional

S½fðxÞ�≡ −
Z

∞

−∞
dxsðfðxÞÞ; ð13Þ

to which we shall refer as entropy functional. In general, the
bounds of integration are chosen according to the domain
of our problem at hand. Next, we prove that, choosing
fðxÞ ¼ ∂xuðt; xÞ, Eq. (13) indeed plays the role of an
(numerical) entropy for the partial differential equation (10).
Hence, it measures similarly to C-=A-functions for the RG
flows the degrees of freedom and irreversibility. To this
end, we explicitly demonstrate that S½∂xuðt; xÞ� is a mono-
tonically increasing during the RG flow, thus being a
monotonic function on t ∈ ½0;∞Þ:

d
dt
S½∂xuðt; xÞ� ≥ 0: ð14Þ

The only further ingredient, which is needed for the proof is
the spatial derivative of the flow-equation (10):

∂t½∂xuðt; xÞ� ¼ −
d
dx

��
1

2
∂trðtÞ

�
∂
2
xuðt; xÞ

½rðtÞ þ ∂xuðt; xÞ�2
�
: ð15Þ

Taking spatial derivatives of uðt; σÞ should be allowed at
any t ∈ ð0;∞Þ because of the smoothening character of the
diffusion—at least in zero space-time dimensions.12 Only
for t ¼ 0 the initial condition may violate smoothness,

10This argument also generalizes to the OðNÞ model involving
advection and the large-N limit [116]. The corresponding
flow equation in the limit N → ∞ is a purely hyperbolic
advection equation. Interacting and arising nonanalyticities like
shocks and rarefaction waves in nonlinear advection equations
are sources of entropy and as such lead so irreversible flows,
cf. Refs. [4,5,7,113,117] for examples of nonanalytical dynamics
in RG flows.

11The purely diffusive character of Eq. (10) is expected to
smoothen u during the RG flow which renders uðt; xÞ differ-
entiable (but not necessarily analytic) at least for 0 < t < ∞. This
does not need to be the case for hyperbolic conservation laws
where taking derivatives of uðt; xÞ has to be handled with great
care, e.g., around shocks.

12The generalization of this argument to higher-dimensional
OðNÞ-type models might be delicate, because the nonlinear
diffusion can also cause nonanalyticities in potentials in the IR
if these end up in the symmetry broken phase. Here it might be
unavoidable to base and repeat the entire discussion using a
rigorous weak/integral formulation of the PDEs under consid-
eration.
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see part I of this series of publications [6] for a detailed
discussion of this subtle issue. Below, we normalize the
entropy and subtract the entropy of the initial condition

S½∂xuðt ¼ 0; xÞ�, such that this should not spoil any of our
subsequent arguments.
Let us now evaluate Eq. (14):

d
dt
S½∂xuðt; xÞ� ¼ −

d
dt

Z
∞

−∞
dxsð∂xuðt; xÞÞ

¼ −
Z

∞

−∞
dxð∂t½∂xuðt; xÞ�Þs0ð∂xuðt; xÞÞ

¼
Z

∞

−∞
dx

�
d
dx

��
1

2
∂trðtÞ

�
∂
2
xuðt; xÞ

½rðtÞ þ ∂xuðt; xÞ�2
��

s0ð∂xuðt; xÞÞ

¼
Z

∞

−∞
dx

�
−
1

2
∂trðtÞ

� ½∂2xuðt; xÞ�2
½rðtÞ þ ∂xuðt; xÞ�2

s00ð∂xuðt; xÞÞ þ
��

1

2
∂trðtÞ

�
∂
2
xuðt; xÞ

½rðtÞ þ ∂xuðt; xÞ�2
s0ð∂xuðt; xÞÞ

�
∞

−∞
.

ð16Þ

Next, we analyze both terms in the last line separately.
(1) We note that all factors in the integrand of the first

term are greater or equal to zero: For the regulator
insertion, we have

−
1

2
∂trðtÞ ≥ 0; ð17Þ

because rðtÞ is a monotonically decreasing function.
The numerator and the denominator are obviously
positive. In fact, for the denominator of the fraction

rðtÞ > ∂xuðt; xÞ; ð18Þ

for all t anyhow, as long as the initial condition
uðt ¼ 0; xÞ and the UV cutoff Λ are chosen accord-
ingly, cf. Ref. [6]. Finally,

s00ð∂xuðt; xÞÞ ≥ 0; ð19Þ

holds by construction according to Eq. (12).
In total, we find that the integrand of the first term

is always greater or equal to zero, which directly
transfers to the integral itself.

(2) For the second term, we first use that, for large jxj,
the potential Uðt; xÞ and all its derivatives do not
change during the RG flow, see also part I of this
series of publications [6]. Furthermore, we use
that sðyÞ maximally grows like y2 for jyj → ∞ by
definition. This implies that its derivative s0ðyÞ
increases asymptotically as y at most. Additionally,
we use that Uðt; xÞ is at least proportional to x2

for jxj → ∞ in order to have well-defined expect-
ation values (9). Consequently, we have to distin-
guish two scenarios. If Uðt; xÞ ∼ x2 for large jxj, the
second term vanishes identically, due to the third
spatial derivative of Uðt; xÞ, namely ∂

2
xuðt; xÞ, in

the numerator. Otherwise, if Uðt; xÞ grows faster

than x2 for large jxj, the denominator ½rðtÞ þ
∂xuðt; xÞ�2 will always grow faster than the product
½∂2xuðt; xÞ�s0ð∂xuðt; xÞÞ for jxj → ∞. We conclude
that the second term always vanishes, provided that
the initial conditions come with the assumed large-
jxj-asymptotic behavior.

In total, we have shown the statement of Eq. (14), which
promotes S to an entropy (functional) of our system that can
only increase.
For what follows, we choose the twice differentiable

convex function sðyÞ ¼ y2. This implies

S½∂xuðt; xÞ� ¼ −
Z

∞

−∞
dx½∂xuðt; xÞ�2: ð20Þ

S can be viewed as measure for the richness of structure of
the potential—the information encoded in the potential—
by integrating the square of the gradient of uðt; xÞ over all
positions x in field space.
With the definition (20) the following practical pro-

blem arises: For practical purposes S½∂xuðt; xÞ� formally
diverges at any time t because ∂xuðt; xÞ is at least constant
for jxj → ∞. This problem can be cured, by subtracting
the entropy S½∂xuðt ¼ 0; xÞ� of the initial condition. Since
uðt; xÞ does not change for large jxj during the entire RG
flow, the infinite but constant contributions cancel and we
can observe the relative rise in entropy. This should be a
valid approach, since we are only interested in these relative
changes anyhow. We therefore define and consider the
normalized entropy

C½∂xuðt; xÞ� ¼ S½∂xuðt; xÞ� − S½∂xuðt ¼ 0; xÞ�; ð21Þ

which is finite. The alphabetic character “C” is chosen
because this function quantifies irreversibility similarly to
C-=A-functions. We are aware of the fact that a real C-=A-
function should be based on the dimensionless rescaled
flow equation. This issue is discussed in Sec. VA.
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Equation (21) for the C-function makes the loss of
information/richness of structure of the effective potential
uðt; xÞ during RG time evolution explicit. C monotonically
increases with RG time t because the richness of structure/
information decreases with t. A loss of information about a
system (effective potential uðt; xÞ) during RG time evolu-
tion goes hand in hand with the impossibility to reconstruct/
recover earlier states of the system (which had more
information) and thus the RG time evolution is irreversible.
In the present setup the purely diffusive flow equation of
the zero-dimensional Oð1Þ model is responsible for this
loss of information as large gradients are smeared out by
diffusion during RG time evolution, cf. Sec. IV for explicit
numerical examples.

B. Discrete formulation and relation to the total
variation nonincreasing property

In this subsection we discuss a discretized version of
Eq. (21), which is suited for practical computations. In the
following and without loss of generality we consider a
finite volume (FV) discretization [21,22,25,55] of uðt; xÞ in
x with n volume cells of constant width Δx, centered at xi,
i∈f0;1;…;n−1g, see our parallel discussion in Sec. IVof
Ref. [6] for details. The RG flow is described by the temporal
evolution of the n volume averages ūiðtÞ, which are formally
defined as the spatial averages of uðt; xÞ over ½xi−1

2
; xiþ1

2
�,

where xi�1
2
≡ xi � Δx

2
. For the purpose of calculating

C½∂xuðt; xÞ�, we reconstruct the first derivatives from the
set of volume averages fūiðtÞg by a first order finite differ-
ence (FD) forward stencil,

∂xuðt; xiÞ ¼
ūiþ1ðtÞ − ūiðtÞ

Δx
þOðΔxÞ: ð22Þ

For the scope of this work this has proven sufficient since the
purely diffusive character of the PDE smoothens uðt; xÞ.13

We use a grid with the first volume cell of the computa-
tional domain centered at zero, x0 ¼ 0, and the last centered
at a finite xmax, hence xn−1 ¼ xmax. xmax is chosen large
enough, such that uðt; xmaxÞ ¼ uðt ¼ 0; xmaxÞ holds to a
sufficient level for all t, compare our discussion in Ref. [6]
as well as Refs. [4,121–123]. This enables a computation of
C½∂xuðt; xÞ� considering only x ∈ ½−xmax;þxmax� since the
difference S½∂xuðt; xÞ� − S½∂xuðt ¼ 0; xÞ� practically van-
ishes for jxj ≥ xmax. We therefore study the following
quantity:

C½∂xuðt; xÞ� ¼ −2
Z

xmax

0

dx½∂xuðt; xÞ�2

þ 2

Z
xmax

0

dx½∂xuðt ¼ 0; xÞ�2; ð23Þ

leveraging the Z2-symmetry of the problem at hand.
Inserting Eq. (22) and performing the integrals over the
constant segments in the volume cells leads to our semi-
discrete formulation

C½fūiðtÞg� ¼ −
2

Δx

�Xn−1
i¼0

½ūiþ1ðtÞ − ūiðtÞ�2
ð1þ δi;0 þ δi;n−1Þ

−
Xn−1
i¼0

½ūiþ1ð0Þ − ūið0Þ�2
ð1þ δi;0 þ δi;n−1Þ

�
; ð24Þ

where the factor ð1þ δi;0 þ δi;n−1Þ takes into account the
fact that we only integrate over the right half of the first and
the left half of the last volume cell.
Practical computations of solutions to the PDE (10) on

the compact interval x ∈ ½0; xmax� require carefully chosen
boundary conditions [6,7] to be consistent with solutions
of the pure initial value problem posed by Eq. (10) on the
interval x ∈ ð−∞;þ∞Þ [122,124]. In the present finite
volume setup we implement boundary conditions with
“ghost cells” at x−2, x−1, xn, and xnþ1, where the corre-
sponding cell averages are chosen due to the Z2-anti-
symmetry of uðt; xÞ in cases of ū−2ðtÞ and ū−1ðtÞ and by
means of linear extrapolation in the cases of ūnðtÞ and
ūnþ1ðtÞ, see Sec. IV D of part I of this series of publications
[6] for details. For the computation of C½fūiðtÞg� we require
only the ghost-cell average ūnðtÞ ¼ 2ūn−1ðtÞ − ūn−2ðtÞ as
well as the cell averages at xi for i ∈ f0; 1;…; n − 1g.
The entropy functional (20) introduced in Sec. III A is

closely related to the total variation [56]—which is simply
the arc length—of the solution uðt; xÞ,

TV½∂xuðt; xÞ�≡
Z

xmax

0

dxj∂xuðt; xÞj; ð25Þ

on the (computational) interval ½0; xmax�. The TV qualita-
tively differs only by a global sign from the entropy
functional S, where the sign used for the TV is compatible
with the mathematical convention for (numerical) entropy.

13However, for nonsmooth/nondifferentiable initial conditions
at t ¼ 0, such as Eqs. (27) and (30) of our numeric examples, a
naive finite difference stencil is of course generically ill-
conditioned at the discontinuities. As a direct consequence, the
absolute value of S½∂xuðt ¼ 0; xÞ� strongly depends on the
explicit discretization points and the “capturing of the disconti-
nuity” in the respective volume cells. For t → ∞ (as a direct
consequence of the Coleman-Mermin-Wagner-Hohenberg theo-
rem [109–111]), uðt; xÞ is smooth and the finite difference
approximation is well-behaved as long as Δx is not too small.
We conclude that the absolute values of our entropy function (21)
will strongly depend on Δx for nondifferentiable initial con-
ditions in the IR because we use S½∂xuðt ¼ 0; xÞ� as normaliza-
tion, while the qualitative behavior (monotonic rise) is
independent of the discretization, which is also true for the
discrete total variation (26). For the smooth initial conditions (28)
and (29), we observed little dependence of the absolute values of
the C½∂xuðt; xÞ� on Δx, as expected. Similar discussions will arise
for OðNÞ-type models in higher-spacetime dimensions, when
their RG flows end in the symmetry broken phase with a
nonanalytic IR-potential.
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The use of the absolute value j∂xuðt; xÞj in Eq. (25) instead
of the square ½∂xuðt; xÞ�2 used for S presents only as
quantitative difference, which is not of any practical
relevance in this work.
On a FV grid, a typical discretized version of Eq. (25) is

given by, cf. Refs. [21,22,25,56],

TV½fūiðtÞg�≡
Xn−1
i¼0

jūiþ1ðtÞ − ūiðtÞj; ð26Þ

where a first order forward FD stencil is used to discre-
tize the first derivative. The differences C½fūiðtmÞg� −
C½fūiðtmþ1Þg� and TV½fūiðtmþ1Þg� − TV½fūiðtmÞg� on a
discrete trajectory ūiðtÞ of an admissible solution at dif-
ferent times separated by one time step Δt, where tmþ1 ¼
tm þ Δt, are both greater or equal to zero for all tm. Thus
total variation—arc length—is nonincreasing14 and the
corresponding entropy in the sign convention of this paper
is nondecreasing—monotonically increasing.
(Weak) solutions of broad classes of hyperbolic and

parabolic conservation laws are total variation nonincreas-
ing during time evolution when considered on a finite
interval, see, e.g., Refs. [21,24,56] and especially Ref. [125].
The flow Eq. (10) under consideration in this paper is a
nonlinear, parabolic pure diffusion equation and the con-
struction of the normalized entropy functional C of Eq. (21)
can be adapted to prove directly that solutions of the flow
Eq. (10) are TVNI. The notion of numerical entropy (and TV
as a possible candidate for it) is very important in the study,
construction and numerical computation of physical weak
solutions of conservative equations, see, e.g., the textbooks
[19–25] for further details.

IV. NUMERICAL ENTROPY PRODUCTION
IN ZERO-DIMENSIONAL MODELS

In this section we present explicit numerical results for
the RG flows of the (numerical) entropy function (21) for
some selected zero-dimensionalOð1Þmodels (different UV
initial conditions). As examples, we choose the test cases
which are introduced and discussed in great detail in Sec. V
of part I of this series of publications [6]. All information on
the explicit numerical treatment is presented in Sec. IV of
part I of this series of publications [6], where the Kurganov-
Tadmor (KT) central scheme [55] is discussed and applied
to RG flow equations. The numerical parameters for the RG
flows of this paper are stated in the figures and their
respective captions. An elaborated discussion on the choice
and tests of numerical and model parameters can also be
found in Sec. V of part I of this series of publications [6].
For the sake of completeness and as proof of reliability of
our numerical scheme and the choice of our numerical

parameters, we nevertheless provide a comparison in Table I
between numerical results for the 1PI-two-point-function
Γð2Þ calculated via the solution of the flow equation (10) with
theKT-scheme and “exact” results calculated via expectation
values (9) from the partition function.
Note that all plots of the entropy in this section are based

on a direct implementation of Eq. (24).

A. Test case I: Nonanalytic initial condition

As our first test case, we choose a UV potential
associated with a broken Z2 symmetry. Moreover, it shall
come with infinitely many degenerate minima as well as
nonanalytic points at jσj ¼ 2 and jσj ¼ 3,

UðσÞ ¼

8>><
>>:

− 1
2
σ2; if jσj ≤ 2;

−2; if 2 < jσj ≤ 3;

þ 1
2
ðσ2 − 13Þ; if 3 < jσj;

ð27Þ

see Fig. 4 of Ref. [6] and also top panel of Fig. 1 for
visualizations. This UV potential amounts to a piecewise
linear discontinuous initial condition uðt ¼ 0; xÞ for the RG
flow equations (10). The corresponding RG flow of uðt; xÞ
is presented in Fig. 1. The diffusive character of the σ-mode
is clearly visible from the fact that it smoothens the
discontinuities at x ¼ 2 and x ¼ 3, without any directed
propagation (advection) of the conserved quantity uðt; xÞ.
As discussed in Refs. [6,91], the system has to restore the
Z2 symmetry in the ground state as dictated the Coleman-
Mermin-Wagner-Hohenberg theorem [109–111]. In par-
ticular, the potential has to become convex [80,127]. This
can be directly observed in the plot of the RG flow and
read off from Table I—the two-point function is positive
at σ ¼ 0.
In Fig. 2 we present the RG flow of the (discretized

numerical) entropy function for our first test case. As

TABLE I. The table lists the “exact” results for Γð2Þ of the Oð1Þ
model (second column) for the various UV initial potentials of
our test cases (first column), which are calculated by a brute force
high-precision one-dimensional numerical integration of the
expectation values (9) using NIntegrate in Mathematica [126]
with a PrecisionGoal and AccuracyGoal of 10. Here, we shall
present the first ten digits. The last column lists the relative errors
of the numerical solution of the RG flow equation with diffusion
obtained with the second order accurate KT-central scheme [55]
using the parameters listed in the corresponding Figs. 1, 3, 4, 7,
and 9, see also Ref. [6] for a detailed discussion of such errors.

UV potential Γð2Þ jΓð2Þ
FRG=Γð2Þ − 1j

Equation (27) 0.1768130358 6.0 × 10−6

Equation (28) (neg. mass) 0.1995098930 1.1 × 10−5

Equation (28) (pos. mass) 1.3324252475 1.4 × 10−5

Equation (29) 0.1740508127 2.5 × 10−5

Equation (30) 0.2046977422 5.8 × 10−6

14In literature total variation diminishing (TVD) is often used
as a less precise synonym for total variation nonincreasing
(TVNI), cf. Sec. 9.2.2 of Ref. [25].
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expected from our discussion in Sec. III, the entropy grows
monotonically. It increases by two orders of magnitude
starting at zero in the UVuntil it reaches (again) a plateau in
the IR. We find that the entropy grows most when the
regulator (8) reaches the model scales. Loosely speaking,
this is where most of the dynamics takes place, see Fig. 1
(approximately between t ≈ 4 and t ≈ 16). This is the RG
time frame in which the diffusion smears out the disconti-
nuities. From a fluid and thermodynamic perspective and
directly on the level of the PDE, the whole process is
intuitively understandable: Diffusion goes hand in hand
with strong dissipation and a loss of information about the
initial state of the system—the UV, cf. Ref. [16,27]. This is
directly comparable to heat conduction, where the infor-
mation about the initial temperature distribution gets lost
during the flow toward “thermal” equilibrium [21,42,120].
In the RG framework, this translates to integrating out
degrees of freedom from the UV to the IR and a growth in
the number of coupling constants in Uðt; σÞ, which is
directly related to the growth of entropy. The entropy
plateau in the IR is identified with the interacting IR regime
and an “thermal” equilibrium on the level of the diffusive
PDE, whereas a plateau in the UV is associated with a
Gaussian UV fixed point [76,128]. As expected the entropy
stops changing at these points. IR solutions therefore
correspond either to steady-flow solutions (in advection
dominated systems for a large number of “Goldstone”
modes [129–131]) or to (thermal) equilibrium solutions (in
diffusion dominated Oð1Þ-symmetric systems) in the fluid
dynamical picture [6].
Note that t ∈ ½0; 60� corresponds to a integration over 26

orders of magnitude in rðtÞ, starting 6 orders of magnitude
above the model scales (which are of order one) and ending
up 20 orders of magnitude below the model scales. In part I
of this series of publications [6], we discussed that large/
low UV/IR cutoffs are needed to ensure cutoff independ-
ence of the IR effective action, which is also known as RG
consistency [107]. Interestingly, we find that the almost
total absence of a plateau in the entropy in the UV of our
first case implies that we almost violated RG consistency.15

For all other test cases this is avoided by choosing larger
UV cutoffs Λ, see below.
Before we continue with our next test case, we again note

that the absolute value of C½∂xuðt; xÞ� in the IR in Fig. 2 has
no quantitative meaning, due to the ill-conditioned behav-
ior when applied to the discontinuous initial condition (27)
of the numerical derivative (22). However, this does not
spoil our qualitative arguments at all.

FIG. 1. RG flow of the effective potential Uðt; σÞ (upper panel)
and its derivative uðt; σÞ ¼ ∂σUðt; σÞ (lower panel) for the zero-
dimensional OðN ¼ 1Þ-model with initial condition Eq. (27)
evaluated at t ¼ 0; 2; 4;…; 60 (integer values for t were only
chosen for convenience and readability). The blue curve corre-
sponds to the UV while the red curve to the IR. We used the
exponential regulator Eq. (8) with UV cutoff Λ ¼ 106. For
convenience only, the plot does not show the region x ¼ 5 to
x ¼ 10 because the tiny differences between uðt; σÞ and uðtUV; σÞ
are not visible in this region and vanish for large x ¼ σ anyhow.
The lower panel is identical to Fig. 8 (upper panel) of Ref. [6].

FIG. 2. The plot shows the monotonic growth of the (numeri-
cal) entropy/the C-function C½∂xuðt; xÞ� during the RG flow of the
test case (27) and corresponds to Fig. 1.

15The absence of the zero-entropy plateau can also be seen by
closer inspection of Fig. 16 of Ref. [6], where Λ ¼ 106 is barely
on the plateau of RG consistent UV scales.
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B. Test case II: ϕ4-theory

The second test case is the zero-dimensional analogue
of higher-dimensional ϕ4-models. We consider two UV
initial conditions, differing in the sign of the masslike
ϕ2-contribution,

UðσÞ ¼ ∓1

2
σ2 þ 1

4!
σ4: ð28Þ

Hence, depending on the sign, we either start the RG flow
with a broken Z2-symmetry in the ground state or with a
Z2-symmetric ground state. For a visualization of the initial
condition with negative mass term, see Fig. 18 of Ref. [6].16

This initial condition is chosen because of its relevance in
higher dimensions, e.g., for studies of spontaneous sym-
metry breaking and symmetry restoration (ranging from
applications in statistical mechanics and condensed-matter
theory to high-energy physics). Additionally, in contrast to
our first test case (27), due to the analyticity of Eq. (28), a
generic expansion of the potential in polynomials at any σ
is possible in the UVat t ¼ 0. This property can be used to
study the convergence of a common FRG truncation
scheme, the Taylor expansion of the effective action. In
Sec. V of Ref. [6], we find that only for positive masslike
terms, where the physical point does not move during the
RG flow, the FRG Taylor expansion about the IR minimum
σ ¼ 0 exhibits “apparent” convergence by increasing the
expansion order. For negative mass terms (also using a
fixed expansion point at the IR minimum σ ¼ 0), we do not
find convergence while increasing the expansion order. In
Sec. Vof Ref. [6], we argue that during the RG flow, while

FIG. 3. RG flow of the effective potential Uðt; σÞ (upper panel)
and its derivative uðt; σÞ ¼ ∂σUðt; σÞ (lower panel) for the zero-
dimensional OðN ¼ 1Þ-model with initial condition Eq. (28)
(with negative mass term) evaluated at t ¼ 0; 2; 4;…; 60 (integer
values for t were only chosen for convenience and readability).
The blue/magenta curve corresponds to the UV while the red
curve to the IR. We used the exponential regulator Eq. (8) with
UV cutoff Λ ¼ 1012. For convenience only, the plot does not
show the region x ¼ 5 to x ¼ 10 because the tiny differences
between uðt; σÞ and uðtUV; σÞ are not visible in this region and
vanish for large x ¼ σ anyhow.

FIG. 4. RG flow of the effective potential Uðt; σÞ (upper panel)
and its derivative uðt; σÞ ¼ ∂σUðt; σÞ (lower panel) for the zero-
dimensional OðN ¼ 1Þ-model with initial condition Eq. (28)
(with positive mass term) evaluated at t ¼ 0; 2; 4;…; 60 (integer
values for t were only chosen for convenience and readability).
The blue/magenta curve corresponds to the UV while the red
curve to the IR. We used the exponential regulator Eq. (8) with
UV cutoff Λ ¼ 1012. For convenience only, the plot does not
show the region x ¼ 3 to x ¼ 10 because otherwise the
differences between the UV and the IR curves would not be
visible at all for the entire domain.

16RG flows for both choices of sign within a low-order FRG
Taylor expansion are also provided in, e.g., Refs. [91,92,95] for
the zero-dimensional OðNÞ model.
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the physical point moves from σ ¼ � ffiffiffi
6

p
to σ ¼ 0, pre-

sumably an excessively large or even infinitely many new
couplings are generated in Uðt; σÞ. This renders FRG
Taylor expansion at a finite order a potentially problematic
approximation scheme in such a scenario.
In this subsection, we reinforce our findings about the

nonconvergence of expansions of the potential during the
RG flow by studying the (numerical) entropy production
during the RG flows. The RG flows of uðt; xÞ for both
initial conditions are depicted in Fig. 3 (for negative mass
term) and in Fig. 4 (for positive mass term).17

Both RG flows are by visual inspection not really
spectacular: For the “negative mass”-case, we find that,
according to the Coleman-Mermin-Wagner-Hohenberg theo-
rem [109–111], the diffusion via the σ-mode restores the
Z2-symmetry and drives the potential convex during the RG
flow before the system equilibrates in the IR. For the RG flow
of the “positive mass”-case we only find minimal changes in
the shape of uðt; xÞ also originating from the nonlinear
diffusionduring theRG flow.Hence, the equilibrated solution
in the IR is relatively close to the UV initial potential.
The plots of the corresponding entropies in Fig. 5 (for

negative mass term) and Fig. 6 (for positive mass term) are
more instructive. In both cases we find a clear monotonic
rise of the (numerical) entropy exactly in the RG time
period, in which most of the dynamics takes place.
Furthermore, we clearly find plateaus in the UV and the
IR, which correspond to the trivial UV regime and the
nontrivial interacting IR regime. This plateaulike behavior
signals RG consistency. In comparison with our first test
case (27), where we used exactly the same discretization
points (volume cells), the monotonic growth of entropy is
less drastic and significantly smaller. This is expected

because the jumps in uðt ¼ 0; xÞ at x ¼ 2 and x ¼ 3 in
the first test case (27) lead to greater changes in the discrete
total variation [the arc length in x of uðt; xÞ] than the rather
small changes of the profiles of uðt; xÞ for the ϕ4-models,
compare Sec. III B. Also from a fluid dynamic perspective,
this is intuitively understandable because the smoothening
of huge gradients (rarefaction waves) is a substantial source
of entropy and obviously an irreversible process, whereas
only a small transport of a fluid is not a source of excessive
but rather small entropy production, even though it is
diffusion driven. Still, also for both ϕ4-cases the entropy
increases during the RG flow, which first signals an increas-
ing number of coupling constants generated during
the RG flow, and second also renders the RG flows
irreversible.
The second observation has severe consequences: Any

RG flow in a FRG Taylor expansion employs a finite set of
coupled ODEs for the couplings (vertices). Since the
system is finite, it seems to be theoretically possible
integrate in either RG time direction. In higher dimensions,
one can formally integrate to larger or lower (energy) scales
(associated with resolutions in position space), compare
with, e.g., the perturbative β-functions of QCD, QED etc.
[132–135]. However, this is in principle not compatible
with the irreversibility of RG flows as shown in our present
work (as, e.g., signaled by the rise of entropy) and may only
be reliable within small subspaces of the theory space
associated with a given theory. In fact, the computation of
fundamental couplings at small scales (high energies) from
effective couplings at large scales (low energies) is in
general not possible, cf. Ref. [2]. We conclude that the
increase of entropy, which we also observe during the RG
flow of our analytic initial conditions (28) reveals potential
limitations of Taylor expansion of effective actions because
most likely an extremely large number (or even infinite
number) of couplings is generated in the RG flow and

FIG. 5. The plot shows the monotonic growth of the (numeri-
cal) entropy/the C-function C½∂xuðt; xÞ� during the RG flow of the
test case (28) (with negative mass term) and corresponds to Fig. 3.

FIG. 6. The plot shows the monotonic growth of the (numeri-
cal) entropy/the C-function C½∂xuðt; xÞ� during the RG flow of the
test case (28) (with positive mass term) and corresponds to Fig. 4.

17Note that the plot ranges for the “positive mass”-case are
different from all other plots of RG flows of uðt; xÞ in this section.
Otherwise, the tiny changes during the RG flow would not be
visible at all.
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would be required to correctly describe the RG flow.18,19

In practical computations with the zero-dimensional
OðNÞ model a complete inversion of the RG flow—
integrating up from the IR to the UV—is possible only
under certain conditions. In Sec. V B 2 of part I of this
series of publications [6] we performed tests with the ϕ4

model discussed in this subsection and found that a
complete and accurate practical inversion is only possible
for theϕ4 model with positive mass termwhen considering a
small set of running couplings. Numerical instabilities
related to massive oscillations in the higher-order couplings
prevent a numerical inversion of the RG flow for larger
systems of couplings. In the ϕ4 model with negative mass
term a numerical reconstruction of the nonconvex UV
potential by integrating up from the convex IR potential
seems to be practically impossible with the employed Taylor
expansions. While an inversion of the RG flow seems
theoretically possible on first sight when considering the
finite ODE systems of the FRGTaylor (vertex) expansion the
practical/numerical realization is not obvious.
When considering an expansion in vertices, it might be

possible that higher-order couplings/vertices are strongly
suppressed (especially when considering higher dimen-
sional QFTs), such that an expansion of the ERG equa-
tion (1) in vertices is applicable and meaningful in practice,
see, e.g., Refs. [108,136–138]. This should go hand in hand
with only a small growth of an entropy for the exact RG
flow. Exactly this seems to be the case for our “positive
mass” case (28), which shows almost no dynamics at all
and yields the smallest increase in entropy of all our test
cases. A reason, why here a rather small number of
couplings might be sufficient to describe the entire RG
flow is that the potential is convex during the entire flow

and has a single unique nonmoving minimum. Hence, the
UV regime of this model and the IR regime do not differ
much and, as long as the quartic coupling is extremely
small, also perturbation theory [93] leads to results which
are consistent with the exact values for the lowest 1PI-n-
point-correlation (vertex) functions [92].

C. Test case III: ϕ6-potential

The third test case describes a potential that is analytic
with a Z2-symmetric ground state in the UV. However, the
potential exhibits two nontrivial local minima and behaves
asymptotically ∝ ϕ6,

UðσÞ ¼ 1

2
σ2 −

1

20
σ4 þ 1

6!
σ6; ð29Þ

such that it is not convex in the UV. A plot of the UV
potential can be found in Fig. 27 of Ref. [6]. This initial

FIG. 7. RG flow of the effective potential Uðt; σÞ (upper panel)
and its derivative uðt; σÞ ¼ ∂σUðt; σÞ (lower panel) for the zero-
dimensional OðN ¼ 1Þ-model with initial condition Eq. (29)
evaluated at t ¼ 0; 2; 4;…; 60 (integer values for t were only
chosen for convenience and readability). The blue curve corre-
sponds to the UV while the red curve to the IR. We used the
exponential regulator Eq. (8) with UV cutoff Λ ¼ 106. For
convenience only, the plot does not show the region x ¼ 5 to
x ¼ 10 because the tiny differences between uðt; σÞ and uðtUV; σÞ
are not visible in this region and vanish for large x ¼ σ anyhow.18At this point, one might be tempted to apply our definition of

the normalized (numerical) entropy directly to some ∂xuðt; xÞ that
is reconstructed from the flow of the coefficients of a Taylor
expansion of the potential to study the validity of the expansion.
However, this is not possible, because the FRG Taylor expansion
in general provides only an adequate local description of the
potential, while our (numerical) entropy or the TV requires
knowledge about the global shape of the potential or its
derivatives, respectively.

19This reasoning might also resolve some issues, which are
discussed in Ref. [34]. In Ref. [34], it is argued that the “C-
theorem folklore” about the existence of a monotonically rising
C-function prevents the RG flow from entering limiting cycles (or
even chaotic behavior) is wrong. However, their arguments are
entirely based on examples of β-functions with a finite number of
couplings. As explicitly shown in Ref. [34], such systems can
indeed show limiting cycles and still have monotonic flows etc. as
shown by the authors. Similar to what is explained at several
occasions in our work, such systems do however not show
irreversibility in the sense of a true diffusive/dissipative process
or via the interaction/generation of discontinuities in field
space—“the theory-space of couplings” [4,7]. The only irrevers-
ible character of these systems might indeed be that they can enter
limiting cycles, show chaotic behavior or enter fixed points on a
finite set of couplings.
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condition of the RG flow is chosen in Ref. [6] to test
whether the poor convergence of the FRG Taylor expansion
of the ϕ4-potential with negative mass term (28) is merely
an artifact of the moving scale-dependent global minimum
in the RG flow and to figure out whether the FRG Taylor
expansion should have actually be performed at a moving
expansion point, i.e., about the moving global minimum
instead of expanding around the IR minimum σ ¼ 0 during
the entire flow. However, although the global minimum at
σ ¼ 0 is not moving at all in the RG flow of the ϕ6-case
(29), the Taylor expansion completely fails here,20 see
Ref. [6]. In Ref. [6], we conclude that there has to be a time
interval during the RG flow, where uðt; xÞ exhibits a highly
nonlocal dynamics. The latter cannot be captured by a local
expansion with a finite number of couplings about a single
point, even though the expansion point is unique and does
not move.
Actually, this can be seen directly from the RG flow of

uðt; xÞ in Fig. 7 at approximately t ≈ 27, which is also the
time when the RG flow of the Taylor-/vertex expansion
collapses due to strongly oscillating and ultimately diverg-
ing couplings at t ≈ 27. At this RG time, the local minimum
(the second nontrivial zero-crossing) vaporizes via the
diffusion and merges with the global minimum at x ¼ 0.
Already from the curves in Fig. 7 one can observe that the
uðt; xÞ is hardly describable over the entire RG flow with
only a finite set of couplings. The breakdown of any
expansion can also be directly related to Wilbraham-Gibbs-
oscillations [139–142] in the flat region of uðt; xÞ. This was
already (indirectly) described before in the context of
FRG studies [143] and represents another direct interplay

between characteristic properties of the RG and the
numeric treatment of PDEs.
Interestingly, also the (numerical) entropy function signals

exactly the discussed nonlocal behavior at t ≈ 27. Exactly at
that point in time when the local minimum merges with the
global minimum, we observe the strongest increase of
entropy, see Fig. 8. We also find that by absolute measures,
the entropy production for the ϕ6-initial potential (29) is
greater than the entropy production observed for both quartic
initial conditions (28). Nevertheless, the entropy production
for the nonanalytic initial condition (27) is still greater than
the one in the ϕ6-case. This can be easily understood from
the relation of the numerical entropy to the total variation,
i.e., the arc length ofuðt; xÞwhich even formally diverges for
Eq. (27) in the UV.21

We conclude from this section that the (numerical)
entropy might be a tool to detect if the RG flow “moves”
far from the perturbative region, while going from t ¼ 0 to
t → ∞. In other words, it is a tool to discuss whether the
RG flow is governed by strong (nonperturbative) dynamics
and cannot be captured within any kind of local or
perturbative expansion. This is analogous to a thermal
system or fluid evolving through an out-of-equilibrium
state, before finally equilibrating or showing steady flow
behavior, in contrast to a temperature distribution or fluid
that is already close to its equilibrium state.

D. Test case IV: the σ = 0 boundary

Our final test case has originally been used in part I of
this series of publications [6] to test the correct imple-
mentation of (spatial) boundary conditions for PDEs of the
form (10):

UðσÞ ¼
�−ðσ2Þ13; if jσj ≤ ffiffiffi

8
p

;
1
2
σ2 − 6; if jσj > ffiffiffi

8
p

:
ð30Þ

The UV initial potential UðσÞ now exhibits a
nonanalyticity—a cusp—at σ ¼ 0 which leads to a pole
in the conserved quantity uðt ¼ 0; σÞ ¼ ∂σUðσÞ.22
Additionally, to put the tests of our numerical approach
to the extremes, we incorporated two nontrivial minima at
σ ¼ � ffiffiffi

8
p

, which are on top of that also nonanalytic
points, causing again discontinuities in uðt ¼ 0; σÞ. A
visualization of Eq. (30) is shown in Fig. 30 of Ref. [6].
Also in the context of this work, the test case (30) turns

out to be a highly interesting almost pathological example.
The RG flow of uðt; xÞ is shown in Fig. 9, where one can
see that the numerical scheme indeed perfectly copes with

FIG. 8. The plot shows the monotonic growth of the (numeri-
cal) entropy/the C-function C½∂xuðt; xÞ� during the RG flow of the
test case (29) and corresponds to Fig. 7.

20We thank J. Eser for discussions on this issue and a cross
check which reproduced our findings for this test case, using his
FRG code for Taylor-expanded effective actions [108,136–138].

21Absolute values of the numerical entropy as well as their
comparison should be considered with some care as explained
above.

22Potentials with cusps in field space can be found in the
context of, e.g., theories in 2þ 1 spacetime dimensions, such as
the Gross-Neveu model [53].
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the aforementioned somewhat artificial challenges and
correctly reproduces symmetry restoration, convexity and
smoothness of the potential in the IR regime.
Of specific interest regarding the (numeric) entropy is of

course also the pole of uðt ¼ 0; xÞ at x ¼ 0. Formally, the
arc length (the total variation) of uðt; xÞ, which is directly
related to our entropy function, diverges due to the pole at
t ¼ 0 for all t > 0. This divergence is of different nature
than the divergence caused by integrating from x ¼ −∞ to
x ¼ þ∞ in Eq. (20). Whereas the latter can be cured by
normalizing the entropy with respect to the entropy of
uðt ¼ 0; xÞ, the present divergence also occurs on the level
of the “normalized” entropy function (21) similar to the
other nonanalytic jumps in the UV. The reason for the
infinite entropy production while going from t ¼ 0 to t > 0
is exactly that the total variation between −xmax and þxmax
turns finite for uðt; xÞ during the flow because the potential

becomes convex and smooth. Moreover, symmetry resto-
ration in the ground state sets in for t → ∞. However, it is
still normalized against the infinite total variation of
uðt ¼ 0; xÞ. Interestingly, this problem can be traced back
to the initialization of the RG flow equations at t ¼ 0 with
the classical UV action Γ̄t¼0ðφÞ ¼ SðφÞ, which is actually
not totally exact but rather an almost perfect approximation
for sufficiently large Λ, see also our discussion in Ref. [6].
In Ref. [6], we argue that the extremely tiny errors
stemming from this approximation of the correct initial
condition are immediately “washed out” after the first RG
steps (after an infinitesimal RG time step ε > 0) because of
the diffusive character of the ERG equation (as long as Λ is
chosen sufficiently large). This implies that we can safely
ignore the problem of the infinite arc length at t ¼ 0, and
formally start considering the entropy from t ¼ ε
onward.
From a purely practical and numerical perspective, these

details may appear somewhat academic anyhow. Via the
finite-volume discretization, a smallest resolution Δx in
field space enters the problem which technically renders the
pole at σ ¼ 0 a huge but already finite jump captured in
three volume cells on the level of the cell averages ūiðtÞ at
t ¼ 0. Therefore, we can use uðt ¼ 0; xÞ as our reference
entropy for the normalization of Eq. (21) as it is numeri-
cally finite right from the beginning of the flow.
An explicit result for the RG flow of our (numerical)

entropy is shown in Fig. 10. Irrespective of the subtleties of
the preceding discussion, we find a rather large entropy
production at exactly those times when the pole vanishes
and the jumps at x ¼ � ffiffiffi

8
p

are smeared out via the
diffusion.
Additionally, we find that the total entropy production is

much larger for this test case than for the previous ones.
Again, this is of course directly related to the huge
gradients in the initial condition, which are tremendous

FIG. 10. The plot shows the monotonic growth of the (numeri-
cal) entropy/the C-function C½∂xuðt; xÞ� during the RG flow of the
test case (30) and corresponds to Fig. 9.

FIG. 9. The plot shows the RG flow of the effective potential
Uðt; σÞ (upper panel) and its derivative uðt; σÞ ¼ ∂σUðt; σÞ (lower
panel) for the zero-dimensional OðN ¼ 1Þ-model with initial
condition Eq. (30) evaluated at t ¼ 0; 2; 4;…; 60 (integer values
for t were only chosen for convenience and readability). The blue
curve corresponds to the UV while the red curve to the IR. We
used the exponential regulator Eq. (8) with UV cutoff Λ ¼ 106.
For convenience only, the plot does not show the region x ¼ 5 to
x ¼ 10 because the tiny differences between uðt; σÞ and uðtUV; σÞ
are not visible in this region and vanish for large x ¼ σ anyhow.
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sources of entropy via dissipation, directly analogous to the
heat equation.
In this section, we confronted our theoretical findings

with direct numerical computations. We verified the behav-
ior of the function C½∂xuðt; xÞ� from Eq. (21) by means of its
discretized version in Eq. (24) as a valid numerical entropy
in four test cases. Using the numerical entropy and the ERG
equation in the form (10), we made several at this point
almost intuitive connections between phenomena known in
fluid and thermodynamic processes and directly related
processes and aspects of RG flows. Most notable, the
diffusive character of the flow equation (10) results directly
in irreversible RG flows. This also establishes a connection
between steady-state/(thermal) equilibrium solutions and
the UV and IR regime. Moreover, the application of the
numerical entropy and total variation appears to be an
attractive monitor for RG consistency and the origin of an
“thermodynamic” time asymmetry.

V. IRREVERSIBILITY OF THE RG FLOW,
ENTROPY AND THE C-THEOREM—

GENERALIZATIONS

The (re)discoveries within this work unravel the con-
nection between the (numerical) entropy and total variation,
employed in applied mathematics, and the irreversibility
inherent to RG flows. Furthermore, they might even
provide some connections to C-=A-theorems within the
framework of truncated RG flow equations. This section is
dedicated to a discussion of these aspects of the RG and
first generalizations of our findings from our zero-dimen-
sional toy model to higher-dimensional theories.

A. The C-theorem, fixed points and generalizations
to (higher-dimensional) OðNÞ models

The original formulation of the C-theorem [27] states
that for a two-dimensional field theory the following
properties hold:
(1) There exists a positive function

Cðfgig; tÞ ≥ 0; ð31Þ

of all (possibly infinitely many) dimensionless
couplings fgig of the theory and RG time t, with
the additional property

d
dt
Cðfgig; tÞ ≥ 0: ð32Þ

(The choice of sign is convention.)
(2) The C-function takes a fixed value at (critical) fixed

points of the theory, these fixed values can be
identified with the central charge c (of the Virasoro
algebra)

Cðfg�i g; tÞ ¼ c: ð33Þ

The central charge is different for different fixed
points.

At first glance, it seems as if our numerical entropy (21)
shares a lot of these properties because all (infinitely many)
coupling constants are by definition dimensionless in d ¼ 0
and all included via uðt; xÞ in C½∂xuðt; xÞ�. Furthermore, the
function C½∂xuðt; xÞ� from Eq. (21) monotonically rises
during the RG flow and clearly signals irreversibility—a
central aspect of C-=A-theorems [27–41].23 However, there
is a crucial difference between our numerical entropy
C½∂xuðt; xÞ� and the C-function defined via Eqs. (31)–(33),
which is more apparent if the discussion is generalized to
higher dimensions.
As already briefly discussed, our previous results should

also apply to higher-dimensional Oð1Þ models. This is
directly understood by considering the LPA-flow equation
of the d-dimensional Oð1Þ model using the LPA-optimized
regulator [70,71]. The corresponding flow equation for
uðt; xÞ ¼ ∂xUðt; xÞ then reads

∂tuðt; xÞ ¼
d
dx

�
−

Adkdþ2ðtÞ
k2ðtÞ þ ∂σuðt; σÞ

�
; ð34Þ

where Ad ¼ Ωd

dð2πÞd, and Ωd ¼ 2π
d
2

Γðd
2
Þ is the surface of the

d-dimensional sphere and the definition (2) was used for
the RG scale kðtÞ. Apart from numerical and k-dependent
prefactors, which however do not affect the discussion for
the numerical entropy in Sec. III A aside from the caveats
already mentioned, the main differences between zero- and
higher dimensions are
(1) In the zero-dimensional case, the PDE (10) repre-

sents a complete untruncated description of the
QFT, while for higher-dimensional Oð1Þ models,
the corresponding equation constitutes a truncation
of the ERG equation (1). Still, on the level of the
PDE—thus within the LPA truncation—the defini-
tion of the numerical entropy function (21) can be
used as an entropy and a detector for irreversibility.
Additionally, it is not expected that a generic rise of
the entropy during the RG flow gets lost, if more
sophisticated truncations (like the inclusion of field-
dependent wave function renormalizations) are stud-
ied because already the ERG equation (1) itself has
the form of a nonlinear diffusion equation. The
numerical entropy (21) might even help to construct

23Generalizations of Zamolodchikov’s C-theorem [27], espe-
cially from two to four dimensions, are often refereed to as
A-theorems, referring to Ref. [30] in which an anomaly coef-
ficient—hence A-theorem—in four dimensions is proposed to
take the role of the central charge which has given the original
C-theorem in two dimensions its name.
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suitable truncation schemes as well as stable numeri-
cal methods.

(2) In contrast to the zero-dimensional model, the cou-
plings have in general nonzero energy dimensions.
Thus, our numerical entropy (21) cannot adequately
describe the second property of the C-theorem (33)—
namely capturing the properties of fixed points, which
are defined via the zeroes of the β-functions of all
dimensionless couplings and additionally a constant
C-=A-function. To capture the fixed-point structure,
one has to replace (34) by its rescaled version and
derive a corresponding numerical entropy functional.

Applying the transformations

y ¼ A
1
2

dk
−d−2

2 ðtÞx; ð35Þ

vðt; yÞ ¼ A
1
2

dk
−dðtÞuðt; xÞ ð36Þ

to Eq. (34), one arrives at the rescaled dimensionless RG
flow equation for the derivative of the scale dependent
effective potential,

∂tvðt; yÞ þ
d
dy

F½y; vðt; yÞ� ¼ d
dy

Q½∂yvðt; yÞ� þ S½vðt; yÞ�;

ð37Þ

where

F½y; vðt; yÞ�≡ d − 2

2
yvðt; yÞ; ð38Þ

Q½∂yvðt; yÞ�≡ −
1

1þ ∂yvðt; yÞ
; ð39Þ

S½vðt; yÞ�≡ dvðt; yÞ: ð40Þ

Note that also in its rescaled dimensionless version, the
flow equation (37) for the d-dimensional Oð1Þ model
has the structure of a nonlinear advection-diffusion-
source/sink equation, similar to related RG flow equations
in Refs. [14–18], where definition (38) corresponds to a
position-dependent advection flux,24 definition (39) corre-
sponds to a nonlinear diffusion flux, and, finally, definition
(40) corresponds to a source/sink term. We can therefore
completely stick to our fluid-dynamic interpretation in
terms of conservation laws. Most notably, the diffusive
character of the flow equation, thus irreversibility, is also
manifest in its rescaled form, independent of the spacetime
dimension d, see also Refs. [14–18] for related RG flow
equations.
Using Eq. (37), the fixed-point solutions are defined as

solutions of the equation with ∂tvðt; xÞ ¼ 0 because all

other terms of the flow equation do not explicitly depend on
t anymore. A corresponding (numerical) entropy function
for Eq. (37), analogously to Eq. (21) should therefore signal
irreversibility, associated with the change of the number of
degrees of freedom for increasing RG time. In particular, it
should also assume fixed values at fixed points of the RG
flow. We would therefore expect a direct relation between
(numerical) entropy in RG flows and Zamolodchikov’s
formulation [27] or more recent [38,39] formulations of the
C-function. In this respect, we note that it was possible to
formulate C-functions for the linearized version of the RG
flow equation of the LPA [14–16,28,36].
Unfortunately, due to the explicitly position-dependent

advection flux (37) as well as the source term (40), we were
not able to formulate an appropriate numerical entropy
measure yet.25 When performing the y-derivative of the
advection flux (38) in Eq. (37), thus considering the
advection term in its primitive form, we can distinguish
between a purely advective contribution ∝ ∂yvðt; yÞ and
an internal source term ∝ vðt; yÞ. Source terms like
S½vðt; yÞ� from Eq. (40) and from position dependences
in nonlinear advection or also diffusion fluxes make
the construction of numerical entropy functions (like the
TV) generally difficult. It is intuitively clear that source
and sink terms can change and crucially increase the arc
length—total variation—of solutions. The construction
of numerical entropy functions and related numerical
schemes for generic advection-diffusion-source/sink equa-
tions is still subject of ongoing research in numerical
mathematics [144–147].
A promising next step might be studies of two-dimen-

sional quantum field theories, where the advection flux (38)
vanishes for the Oð1Þ model also for the rescaled flow
equation (37). For this case, the system entirely lacks
advective contributions and the fields are not rescaled with
k. Especially the last property might be interesting with
respect to the spatial integration contained in the total
variation (25), which consequently is k-independent for
both—the dimensionful and dimensionless—formulations
of the RG flow equation. Furthermore, for d ¼ 2 one
operates closest to the original version of Zamolodchikov’s
C-theorem [27], which should provide some additional

24For the OðNÞ model with N > 1 the advection flux gains an
additional contribution −ðN − 1Þ=ð1þ v=yÞ.

25The explicit position dependency of the advection flux
also prevented us from formulating a numerical entropy for
the zero-dimensional OðNÞ model for finite N > 1. The corre-
sponding contribution to the entropy function (21) allows for
d
dt C½∂xuðt; xÞ� < 0 during RG flow for certain initial conditions
and N in the case of N > 1. For the zero-dimensional cases (28)
and (29) discussed in this paper we find d

dt C½∂xuðt; xÞ� < 0 during
the RG evolutions for N ≥ 8. For the cases (27) and (30) with
their σ2 asymptotics for large σ the inequality d

dt C½∂xuðt; xÞ� ≥ 0
seems to hold for all N and t. We further strongly believe that
there are also counterexamples for higher-dimensional OðNÞ
models. Nevertheless, our numerical entropy function (21) for
N ¼ 1 might be a good starting point for generalizations to finite
N > 1, other models and other truncations.
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guidance to relate the C-theorem to numeric aspects of the
PDEs that describe the RG flows.
Source terms arising from position-depended advection-

(in a formulation in x) and diffusion-terms (in a formulation
in the invariant 1

2
x2) when considering the PDEs in primi-

tive form prevent an obvious generalization of the presented
results to zero-dimensional OðNÞ models with a finite
amount N > 1 of scalars. In Appendix E 2 b of part III of
this series of publications [7] we discuss numerical entropy
and especially total variation/arc length as a candidate for the
flow equations of the zero-dimensionalOðNÞmodel at finite
and notably infiniteN. Reformulating the RG flow equation
in the rescaled invariant 1

2N σ
2 leads to a pure advection

equation (with a nonlinear but crucially position-indepen-
dent flux)which are known to be TVNI [19,56,125], thuswe
identify the difference between initial and current TV as a
numerical entropy functional in Eq. (E18) of Ref. [7].
Formulating a numerical entropy for the flow equation of

the zero-dimensional OðNÞ model at finite N > 1 might be
an important first step toward a formulation in higher
dimensions, since it would involve a treatment of source
terms ∝ uðt; xÞ. In this sense such a study would be similar
to the study in two dimensions proposed in the previous
paragraph. Here, a possible starting point might be the
observations by Refs. [86,87] that the zero-dimensional
analogues of Dyson-Schwinger equations for the OðNÞ
model can be recast into a Virasoro algebra. The Virasoro
algebra plays a central role in Zamolodchikov derivation of
the C-function for two-dimensional conformal field theories
[27], while the Dyson-Schwinger equations are in direct
relation to the RG equations. Also notable in this context is
the fact that the Virasoro algebra arising in the study of
zero-dimensional OðNÞ model appears with vanishing
central charge—in this limit strictly speaking as a Witt
algebra—which considering Zamolodchikov definition of a
C-function indicates the absence of fixed points in RG
flows of the zero-dimensional OðNÞ model. This will be
discussed elsewhere.

B. Pointwise monotonicity

Interestingly, the discussion of the previous paragraphs
shows many similarities with the findings of Refs. [40,41].
References [40,41] discuss that for purely bosonic models,
the effective average action itself is a “pointwise monotonic
function,” which can be directly seen from the signs of the
bosonic contributions in the flow equation (1).26 This
implies

∂tΓ̄k½Φ� ≥ 0; ∀ Φ: ð41Þ

However, Refs. [40,41] argue that Γ̄k½Φ� cannot be directly
used as a C-function because—similar to our numerical
entropy (21)—the above statement is only true for dimen-
sionful field arguments and dimensionful couplings.
However, as stated in [[40], p. 3], “the c-theorem and its
generalizations apply to the RG flow on theory space, T , a
manifold which is coordinatized by the dimensionless
couplings. The latter differ from the dimensionful ones
by explicit powers of k fixed by the canonical scaling
dimensions. As a consequence, when rewritten in terms of
dimensionless fields and couplings, the property (41) does
not precisely translate into a monotonicity statement about
the dedimensionalized theory space analog of [Γ̄k], hence-
forth denoted Ak. Rather, when the derivative ∂k hits the
explicit powers of k, additional canonical scaling terms
arise which prevent us from concluding simply “by
inspection” that Ak is monotonic along RG trajectories.
In fact, we run into the same problems as Refs. [40,41]. It

is the trivial rescaling of dimensionful couplings in terms
of the source term (40) that prevents us from immediately
writing down an entropy functional or adapted total
variation for our flow equation (37) (at least for d ¼ 2)
which could then be directly interpreted as a C-function. In
Refs. [40,41], it is also the term related to the trivial
rescaling which spoils the “pointwise monotonicity”.

VI. CONCLUSION AND OUTLOOK

In this article, we discussed several generic aspects of
(F)RG flow equations. We based the discussion of our main
findings on the rudimentary example of a zero-dimensional
scalar QFT with Z2-symmetry.
We started off by repeating and deepening the discussion

of similarities between RG flow equations and (numerical)
fluid dynamics, which was already started in part I of our
series of publications [6]. Based on the formulation of RG
flows as advection and diffusion driven dissipative flows in
the field space of the corresponding QFT along RG scale
(time), we argued that RG flows “produce” entropy. The
RG scale (time) defines a rather natural “thermodynamic”
arrow of time in this respect. We concluded that this
dissipative character of the RG, which causes irreversibility
of RG flows, is hard coded in the ERG equation (1). This
implies that the irreversibility of Kadanoff’s block-spin
picture is directly encoded in the PDEs (the field dependent
β-functions), which describe the RG flows. Hereby, the IR
solutions of RG flows represent equilibrium solutions of
fluid dynamic equations. The impossibility of an unam-
biguous resolution of the microphysics (UV) from the
macrophysics (IR) becomes apparent from this standpoint.
Furthermore, we explicitly demonstrated that the entropy

production and the irreversibility during the RG flow from
the UV to the IR are not only of abstract manner, but can—
at least for flow equations in certain truncations—be
quantified. Thereby, we directly related the entropy pro-
duction to the numerical entropy production from the

26Related statements about the general monotonicity of sol-
utions of broad classes of PDEs/conservations laws are directly
linked to the TVNI property, see e.g., Refs. [21,24,56] and
especially Ref. [125].
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research field of PDEs and numerical fluid dynamics as
well as to the total variation nonincreasing property. The
latter is used to ensure stability of numerical schemes for
broad classes of PDEs.
Using our zero-dimensional toy model, we explicitly

demonstrated for various test cases taken from our parallel
publication [6] how numerical entropy is produced by
diffusion in RG flows and nonanalyticities in the UV-initial
conditions.
Furthermore, we related certain aspects of the (numeric)

entropy production in RG flows to the concept of C-=A-
theorems in RG theory since both manifestly encode the
irreversible character of RG flows. However, our present
study is not yet conclusive in this respect. Another
interesting aspect related to the introduction of a numeric
entropy for RG flows was pointed out by the referee: the
present formulation based on the effective potential shares
some similarities with the macroscopic description of
systems in statistical mechanics. Instead of working with
an infinite set of couplings (microstates in statistical
mechanics) we switch to a description in terms of an
effective potential (a macroscopic formulation in statistical
mechanics). The inability (of a macroscopic observer) to
track the dynamics of an infinite set of couplings (micro-
states in statistical mechanics) leads to a macroscopic
entropy production/information loss and irreversible proc-
esses. An approach to formalize this notion in statistical
mechanics was made by Boltzmann [148] and later
Gibbs [149] with the introduction of H-theorems, see
e.g., Chap. VI and XII of the textbook [150] for further
details. Exploring this connection and possible relations
between C-=A- and H-theorems further could be a very
interesting prospect for further research.
Although certain aspects of our discussion are still on an

abstract level and could not yet be formalized in terms of
explicit equations, we believe that our present work provides
a fresh view on certain aspects of RG theory, embellished
with at least a few new insights. In particular, our approach
may help in the future to construct approximation schemes
for RG studies which fully preserve the fundamentally
dissipative character of RG flows.
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