
Numerical fluid dynamics for FRG flow equations: Zero-dimensional QFTs
as numerical test cases. I. The OðNÞ model

Adrian Koenigstein ,1,* Martin J. Steil ,2,† Nicolas Wink ,3,‡ Eduardo Grossi ,4,§ Jens Braun,2,5,6,∥
Michael Buballa ,2,5,¶ and Dirk H. Rischke1,7,**

1Institut für Theoretische Physik, Goethe University, Max-von-Laue-Straße 1,
D-60438 Frankfurt am Main, Germany

2Technische Universität Darmstadt, Department of Physics, Institut für Kernphysik,
Theoriezentrum, Schlossgartenstraße 2, D-64289 Darmstadt, Germany

3Institut für Theoretische Physik, University Heidelberg,
Philosophenweg 16, D-69120 Heidelberg, Germany

4Center for Nuclear Theory, Department of Physics and Astronomy, Stony Brook University,
Stony Brook, New York 11794, USA

5Helmholtz Research Academy Hesse for FAIR, Campus Darmstadt, D-64289 Darmstadt, Germany
6ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt, Germany

7Helmholtz Research Academy Hesse for FAIR, Campus Riedberg,
Max-von-Laue-Straße 12, D-60438 Frankfurt am Main, Germany

(Received 10 December 2021; accepted 12 July 2022; published 13 September 2022)

The functional renormalization group (FRG) approach is a powerful tool for studies of a large variety of
systems, ranging from statistical physics over the theory of the strong interaction to gravity. The practical
application of this approach relies on the derivation of so-called flow equations, which describe the change
of the quantum effective action under the variation of a coarse-graining parameter. In the present work, we
discuss in detail a novel approach to solve such flow equations. This approach relies on the fact that RG
equations can be rewritten such that they exhibit similarities with the conservation laws of fluid dynamics.
This observation can be exploited in different ways. First of all, we show that this allows to employ
powerful numerical techniques developed in the context of fluid dynamics to solve RG equations.
In particular, it allows us to reliably treat the emergence of nonanalytic behavior in the RG flow of the
effective action as it is expected to occur in studies of, e.g., spontaneous symmetry breaking. Second, the
analogy between RG equations and fluid dynamics offers the opportunity to gain novel insights into RG
flows and their interpretation in general, including the irreversibility of RG flows. We work out this
connection in practice by applying it to zero-dimensional quantum-field theoretical models. The
generalization to higher-dimensional models is also discussed. Our findings are expected to help
improving future FRG studies of quantum field theories in higher dimensions both on a qualitative
and quantitative level.
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I. INTRODUCTION

In statistical mechanics and quantum field theory (QFT)
the central objective is to compute the expectation values of
physical observables from a partition of probabilities among
the various microscopic states of a given model or theory.
On a technical level, the calculation of expectation values
oftentimes corresponds to the evaluation of nested sums (for

discrete systems) or complicated high-dimensional integrals
(for continuous systems) in the framework of partition
functions or functional integrals. In most cases such com-
putations cannot be done analytically. Variousmethodswere
developed to overcome this difficulty. Focusing on high-
energy physics, stochastic methods have been developed to
study quantum chromodynamics from first principles (see
Refs. [1–4] for reviews), but also systematic approximation
schemes such as (chiral) perturbation theory (see Refs. [5,6]
for reviews) or the large-N expansion [7–9] have been
employed, where (at least) parts of the calculations can still
be performed analytically. Within the last decades non-
perturbative holographic and functional methods, such as
the AdS=CFT correspondence [10,11], Dyson-Schwinger
equations (see Ref. [12] for a review), and the (functional)
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renormalization group ((F)RG) (see Ref. [13] for a recent
review) have significantly gained importance and nowadays
provide a viable complement to Monte-Carlo simulations
and semianalytic methods. However, despite great success
within various areas of physics, holographic and functional
methods are sometimes still criticized for the lack of
providing reliable systematic and numerical error estimates.
In this work, we will provide important steps to amend this
shortcoming for the FRG approach.
Although the mathematical formulation of the FRG

approach is in principle exact, a first source of systematic
errors is introduced by the fact that one has to make certain
approximations (truncations) in order to actually perform
calculations. However, since the method is nonperturbative,
the identification of, e.g., a small expansion parameter is
challenging, if at all possible. A lot of work has already been
invested into this question, e.g., approximation errors can be
evaluated by comparing different truncation schemes and
truncation orders against each other [14–16]. Furthermore,
the comparison with other nonperturbative methods [17],
effective field theories [14,18–21], or with Monte-Carlo
studies [22–25] can provide estimates on the reliability of the
results.
A second source of systematic errors arises from the way

the RG flow equations are solved in practice. In recent work
by two of us and collaborators [26,27], it was pointed out
that the possible appearance of nonanalytic behavior in
field space as well as the influence of the boundary
conditions require great care in the numerical solution of
RG flow equations. In particular, it was shown that these
equations can be cast into a conservative form, such that
analogies to fluid-dynamical flow equations become mani-
fest and allow to access to the highly developed toolbox of
numerical fluid dynamics, e.g., in the case of Refs. [26,27]
including the discontinuous Galerkin method. In conse-
quence, this suggests that a systematic analysis of the
quality of the different numerical methods to solve RG flow
equations as well as an analysis of the structure of the RG
flow equations themselves is in order. The question of
numerical errors in FRG calculations was systematically
addressed in Ref. [26] by a comparison of numerical results
with analytically known solutions for the OðNÞ model in
the large-N limit [28–30]. Furthermore, phenomena like
shock waves in the derivative of the effective potential
along the field space direction during the RG flow, which
are directly related to phase transitions [26,27,31,32], were
resolved and interpreted in a fluid-dynamical framework.
The goal of the present work is threefold. On the one

hand, we will continue to elaborate on the analogies
between RG flow equations and (numeric) fluid dynamics,
including precision and stability tests for numerical
schemes. On the other hand, we will contribute to the
ongoing discussion on truncation schemes of the FRG
framework. In addition, this article is supposed to pro-
vide a low-level introduction to the FRG method within the

fluid-dynamic mindset also for nonexperts and (under)
graduate students.
In order to provide reliable estimates of the precision of

numerical methods and the quality of truncation schemes,
the standard approach is to compare numerical results and/
or results from truncations against analytically known
results. However, analytically known results for nontrivial
QFTs or statistical mechanics are scarce. Fortunately, there
is a class of nontrivial QFTs, where either analytic results
are known or numerical results can be easily obtained with
arbitrary precision: zero-dimensional QFTs. In this work,
we choose the zero-dimensional OðNÞ model as a testing
ground to systematically analyze the precision of the
numerical methods which are used to solve the RG flow
equations. Furthermore, we will use zero-dimensional QFT
to demonstrate the similarities between RG flow equations
and conservation laws from fluid dynamics (which also
generalize to an arbitrary number of space-time dimensions
and different field content). We will elucidate the different
roles played by advective and diffusive contributions in the
RG flow equations as partial differential equations (PDEs).
Furthermore, we start a discussion of the relation between
the RG time, entropy production in the RG flow, the
dissipative character of the FRG equation, and the irre-
versibility of RG transformations during the RG flow. This
discussion is deepened in part II and III of this series of
publications [31,33].
In order to numerically solve the RG flow equations, in

this work we apply the Kurganov-Tadmor scheme, a finite-
volume method which is well-established in numerical
fluid dynamics. We test the accuracy of the FRG results
against direct evaluations of expectation values from the
partition function, which can be calculated to in principle
arbitrary precision in zero space-time dimensions. We note
that the RG flow equations arising in the FRG framework
for certain zero-dimensional models, and in particular the
OðNÞ model, are exact PDEs. Therefore, they do not
involve any systematic error of the first kind mentioned
above, namely truncation errors. Possible errors are there-
fore solely of the second kind, introduced by the numerical
scheme used to solve the flow equations.
As a next step, wewill analyze the FRGTaylor expansion

as a truncation to the FRG approach and contrast our
findings with the general properties of the FRG equation
as a nonlinear PDE in zero space-time dimensions. In a
follow-up publication,wewill also introducemore elaborate
zero-dimensional models including Grassmann numbers
(mimicking fermionic degrees of freedom in d ¼ 0) [34].
In this context, we will apply the methods developed in the
present work to investigate several truncation schemes by
comparing against exact results for a constructed fermion-
boson-model. Generalizing our findings from zero dimen-
sions to higher-dimensional QFTs is not necessarily trivial.
Nevertheless, we will comment on this issue at various
places throughout this work. We thus hope that this paper
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will contribute to ongoing debates on subtleties of the RG
flow equations. Furthermore, we hope to establish reliable
minimal requirements for numerical methods to solve RG
flow equations, which can be used as benchmark tests for
future numerical toolboxes.
The length of this paper is explained by the fact that we

have tried to make the presentation self-contained as much
as possible. This should enable the reader not familiar with
the FRG approach to understand all arguments and inter-
mediate steps without resorting to the literature. The more
experienced reader can certainly skip or skim over some
parts, as indicated below.
The remainder of this paper is organized as follows. In

Sec. II we give an introduction to the FRG approach for
zero-dimensional QFTs. In Sec. III we focus on the zero-
dimensional OðNÞ model and its respective RG flow
equation. Readers familiar with the FRG approach and
the OðNÞ model can omit these two sections. The relation-
ship between RG flow equations and fluid dynamics is
discussed in Sec. IV. Readers familiar with fluid dynamics
may be interested in the analogy between the FRG and fluid
dynamics discussed in Sec. IVA, but can skip over the
remainder of this section that focuses on details of the
numeric implementation. Section V presents our numerical
results. Readers familiar with both the FRG approach and
fluid dynamics should focus on this section and the Sec. IV
A. We conclude this work with a discussion and an outlook
for future studies in Sec. VI. In the Appendices, we list
useful formulas for the calculation of numerical derivatives
and present a discussion of the absence of spontaneous
symmetry breaking in zero space-time dimensions.

II. THE FUNCTIONAL RENORMALIZATION
GROUP—AN INTRODUCTION

IN ZERO DIMENSIONS

This section provides an introduction to the functional
renormalization group and a detailed derivation of the FRG
equation [35–37] for a zero-dimensional QFT. Our dis-
cussion is geared toward nonexperts. Readers who are
familiar with the FRG method might still find this dis-
cussion instructive, because we will introduce the FRG
without any direct reference to regularization and renorm-
alization, only based on properties of (functional) integrals.
This sheds light on the details and structure of the flow
equations and the technical subtleties in their solution. In
addition we use this introduction to establish some notation
and special features of zero-dimensional field theory.
As already mentioned in the introduction, the efficient

and sufficiently precise calculation of correlation functions
is key to understanding the properties of a particular model
or theory. Usually this is done by introducing a partition
function or functional integral that provides a probability
distribution for the microstates of the model and serves
as a generating functional for the n-point-correlation
functions [38–41]. The partition function is based on an

energy function that can be a discrete or continuous
Hamilton function or an action, which determines the
microscopic properties of the model. Another way of
calculating the n-point correlation functions is to calculate
the effective infrared action of the model, for example via
the FRG equation. Both methods are discussed in this
section.

A. The partition function in zero dimensions

Consider a zero-dimensional QFT with a single real
bosonic scalar field or degree of freedom ϕ. While all
definitions generalize to arbitrary QFTs in zero or higher
dimensions and arbitrary space-time backgrounds, in
zero dimensions the field ϕ does not depend on the
space-time position. The same applies to derivatives of
the field or space-time integrals, which simply do not
exist. This implies that the action S½ϕ� of the model
is identical to the Lagrangian L½ϕ�. The action, the
Lagrangian, and also the Hamiltonian H½ϕ� are simply
functions of ϕ instead of functionals.1 Furthermore,
because of the absence of a space-time derivative and thus
of kinetic terms,S½ϕ� ¼ L½ϕ� ¼ H½ϕ� ¼ UðϕÞ, whereUðϕÞ
is the potential. Therefore, the only requirement for these
functions is that they must be bounded from below, in order
to exclude “negative-energy states”2 and to obtain positive
normalizable probability distributions. Apart from this
requirement, for the moment we do not demand any addi-
tional properties, like symmetries (e.g., Z2, ϕ → −ϕ) or
analyticity.
If we choose a specific model with action S½ϕ� all

expectation values of arbitrary functions fðϕÞ that do not
grow exponentially in ϕ are defined and can be calculated
via the following expression

hfðϕÞi≡
R∞
−∞ dϕfðϕÞe−S½ϕ�R

∞
−∞ dϕe−S½ϕ�

; ð1Þ

where e−S½ϕ� provides the partition of probabilities among
the microstates. Note that due to the zero-dimensional
nature all expectation values for such a model reduce to
proper one-dimensional integrals over ϕ. Such integrals can
be computed to extremely high precision using standard
techniques of numerical integration [42,43]. It is worth
emphasizing that the current discussion holds also for
nonanalytic S½ϕ� and/or fðϕÞ. Some specific choices of

1Nevertheless, we will stick to the notation of functionals using
square brackets, in order to facilitate the generalization to a
nonzero number of space-time dimensions, as long as we do not
focus on particular zero-dimensional examples.

2We put “negative-energy states” in quotation marks, because
all quantities in zero-dimensional field theory are dimensionless,
hence bare numbers without physical dimensions. For conven-
ience, we will still use the well-established notions from higher-
dimensional QFT in our discussion.
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S½ϕ� and fðϕÞ even allow for an analytic evaluation of
Eq. (1), see, e.g., Ref. [44]. The possibility to compute
expectationvalues to high precisionmakes zero-dimensional
field theory of great interest as a testing ground for approx-
imations and/or numerical methods.
Some explicit examples of zero-dimensional field

theories used as a testing ground for methods in statistical
mechanics and QFT can be found in Refs. [44–66]. In
Ref. [55], for example, the asymptotic convergence and
the vanishing convergence radius of perturbation theory
of ϕ4-theory is discussed. Approximation schemes such
as the large-N, the FRG vertex expansion, or the FRG
Taylor expansion were analyzed in Ref. [44]. Zero-
dimensional field theory was also used to study den-
sity-functional theory [56,57,59] and applied to fermionic
fields [54]. Recently, it was used to study and visualize
2PI effective actions [60]—also in the FRG framework
[61,63,64].
Usually the calculation of expectation values is facili-

tated by a suitably defined generating functional

Z½J�≡N
Z

∞

−∞
dϕe−S½ϕ�þJϕ; ð2Þ

from which one can derive all correlation functions by
taking the corresponding number of derivatives with
respect to the external source J,

hfðϕÞi ¼ fð δ
δJÞZ½J�
Z½J�

����
J¼0

: ð3Þ

One should note that if fðϕÞ is nonanalytic, then Eq. (3) is
to be understood symbolically. Otherwise, it is defined
through a Taylor series in δ

δJ. Irrespective of that, Eqs. (1)
and (2) are always well defined and Eq. (2) can be always
calculated for arbitrary J. One can even show in zero
dimensions that Z½J� ∈ C∞, hence, Z½J� is a smooth
function, see Ref. [52] and Appendix B. We shall come
back to this crucial point later on in our discussion of the
Coleman-Mermin-Wagner-Hohenberg theorem [67–69].
The normalization N is not an observable quantity. For

our purposes, it is convenient to choose

Z½0�¼! 1;↔ N −1 ¼
Z

∞

−∞
dϕe−S½ϕ�: ð4Þ

As already mentioned above, calculating expectation
values in a zero-dimensionalQFTviaEq. (1) is (numerically)
rather straightforward. In contrast, for higher-dimensional
models or theories with nontrivial field-content etc. calcu-
lating functional integrals similar to Eq. (1) with sufficient
precision is usually extremely challenging or might even be
impossible with limited computational resources. Therefore,
alternative methods or approximation schemes apart from

“direct numerical integration,” like in lattice simulations, are
of great interest. One of these alternatives, which is at the
heart of this work, is the FRG.
In the following, we will therefore focus on the FRG as a

specific method for calculating n-point correlation func-
tions in QFT and statistical mechanics. In contrast to the
usual motivation of the FRG, arising in the discussion of
renormalization and the integration of momentum shells
from ultraviolet to infrared energy scales, we will take a
different path to arrive at the FRG equation, which does not
require any knowledge of renormalization. To this end, we
will follow and extend the discussion in Refs. [44,51–54]
and discuss its technical properties as an alternative way of
solving the integrals in Eqs. (1) and (2).

B. Solving integrals with flow equations

The starting point is the observation that there is one
well-known nontrivial class of actions S½ϕ� for which the
calculation of integrals like Eq. (1) is straightforward,
even in higher dimensions and even for more complicated
field content. These actions are QFTs for “(massive) free
particles” and correspond to Gaussian-type integrals. In the
present case the Gaussian-type action takes the following
simple form,

S½ϕ� ¼ m2

2
ϕ2: ð5Þ

where m is called a “mass” for convenience, although it is
actually a dimensionless quantity in zero space-time
dimensions.
For nontrivial actions S½ϕ�, Eq. (1) can still be approxi-

mated by a Gaussian integral, as long as S½ϕ� contains a
mass term (5) with a coefficient m2 that is much larger than
all other scales contained in S½ϕ�. If this is the case, the
Gaussian part of the integrand e−S½ϕ� completely dominates
the integrals in Eqs. (1) and (2). The reason is that the mass
term ∼ϕ2 is dominant for small and moderate ϕ, and most
of the area under the curve e−S½ϕ� lies in the region of small
ϕ, similar to a pure Gaussian integral. For very large values
of ϕ other terms in the action S½ϕ� may become more
important. Nevertheless, if m2 is large enough, the corre-
sponding area under the curve e−S½ϕ� is completely negli-
gible in regions where ϕ is large, because S½ϕ� is bounded
from below such that e−S½ϕ� tends to zero exponentially fast
for ϕ → ∞. In summary, the Gaussian part with the huge
mass term dominates the integral and even nontrivial S½ϕ�
can be approximated by Gaussian integrals.
This observation generalizes to higher dimensions and

arbitrary field content, but is more apparent in a zero-
dimensional field theory with one degree of freedom. This
is illustrated in Figs. 1 and 2, which are discussed in the
following subsubsection.

ADRIAN KOENIGSTEIN et al. PHYS. REV. D 106, 065012 (2022)

065012-4



1. The scale-dependent partition function

Based on the above observation, let us now introduce the
following quantity:

Zt½J�≡N
Z

∞

−∞
dϕe−S½ϕ�−ΔSt½ϕ�þJϕ; ð6Þ

which is called the scale-dependent generating functional
or scale-dependent partition function. It differs from the
usual partition function (2) only by a scale-dependent mass
term

ΔSt½ϕ�≡ 1

2
rðtÞϕ2: ð7Þ

We directly adopt the common notation from the FRG
community and call rðtÞ the regulator (shape) function,
which depends on the RG scale (“time”) t ∈ ½0;∞Þ, see,
e.g., Refs. [70,71]. We will discuss this interpretation of

rðtÞ and t in Sec. II D. For now, we only demand that the
function rðtÞ has such properties that Zt½J� interpolates
between an almost Gaussian-type partition function3 with
extremely massive free fields at t ¼ 0 and the actual
partition function Z½J� that we are interested in at
t → ∞. In order to achieve this behavior, rðtÞ has to have
the following properties:
(1) In the limit of t → 0, rðtÞ (S½ϕ�) should behave like a

mass (term), similar to what we discussed at the
beginning of this section, and be much larger than all
other scales in S½ϕ�. Oftentimes in the literature rðtÞ
is set to infinity at t ¼ 0. We will see, cf. Sec. II C,
that this is not suitable.

(2) For t → ∞, rðtÞ is supposed to vanish, such that
limt→∞Zt½J� ¼ Z½J�. The same applies to expect-
ation values calculated from Zt½J�, which become
expectation values of Z½J�. For practical calculations
it is sufficient to assume that, for t → ∞, rðtÞ becomes
much smaller than all scales in S½ϕ�, because then
the contribution ΔSt½ϕ� to the whole integrand
e−S½ϕ�−ΔSt½ϕ� is negligible and the integrand is almost
identical to e−S½ϕ�. The value limt→∞ rðtÞ ¼ rIR ≳ 0 is
usually referred to as (numerical) IR cutoff.

FIG. 2. The same as in Fig. 1, but for the action (10).FIG. 1. The integrand (upper panel) and exponent (lower panel)
from Eq. (6) (at J ¼ 0) as a function of the field variable ϕ
for various RG times t ¼ 0; 1; 2;…; 15 and for the action (9).
We choose the exponential regulator (8) with ultraviolet (UV)
cutoff Λ ¼ 103, which is notably larger than the absolute value
of the mass term and the quartic coupling. The infrared (IR)
cutoff scale rIR was chosen at t ¼ 15, which corresponds to
rIR ≃ 3.06 × 10−4. This value is significantly smaller than all
scales in S½ϕ�.

3This is also why the UV fixed point of RG flows is denoted as
the trivial or Gaussian fixed point.
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(3) The interpretation of rðtÞ (S½ϕ�) as a mass (term) is
guaranteed by further demanding monotonicity,
∂trðtÞ ≤ 0 ∀ t. We will provide additional argu-
ments for monotonicity in Sec. II B 2.

(4) In order to be able to smoothly deform the integral in
Eq. (2) and for the following derivation of evolution
equations, we further require rðtÞ ∈ C1.

Apart from these four properties there are no further
requirements on rðtÞ in zero dimensions.4 A specific choice
which is used in large parts of our work is the so-called
exponential regulator (shape) function

rðtÞ ¼ Λe−t; ð8Þ

with an UV cutoff Λ, which must be chosen much larger
than all scales in S½ϕ�.
In order to get a better intuition of the effect of rðtÞ on the

integral (6), in Fig. 1 we show the integrand at J ¼ 0,
e−S½ϕ�−ΔSt½ϕ�, and the respective exponent for different
values of t for the analytic action

SðϕÞ ¼ −
1

2
ϕ2 þ 1

4!
ϕ4 ð9Þ

and in Fig. 2 the same quantities for the nonanalytic action

SðϕÞ ¼

8>><
>>:

−ϕ2; if jϕj ≤ 5
4
;

−ð5
4
Þ2; if 5

4
< jϕj ≤ 2;

1
48
ðϕ4 − 91Þ if 2 < jϕj:

ð10Þ

The figures show how the integrands are deformed from
Gaussian-shaped integrands to the integrands e−S½ϕ�. One
observes that, as long as rðtÞ is much larger than all other
parameters in S½ϕ�, the Gaussian-like mass term dominates,
while for increasing t the regulator rðtÞ becomes negligible.
The most interesting part, where the integrands change their
shapes significantly, is where rðtÞ is of the same order as
the scales in SðϕÞ.

2. A flow equation for the scale-dependent
partition function

The change of the integrals with t between the two
limiting cases at t ¼ 0 and t → ∞ is called RG flow. If this
RG flow is known, we can obtain the function ZðJÞ≡
limt→∞Zt½J� ¼ Z½J� right from the Gaussian-like partition
function Zt¼0½J� without the need to calculate the ϕ-
integral in the partition function (2) directly. For zero
dimensions this does not seem to be an advantage, because
the integrals in field space are (at least numerically) simple

to compute. For higher dimensions, however, circum-
venting the challenging functional integration is a tremen-
dous benefit.
The RG flow of Zt½J� is characterized by taking the

derivative with respect to the RG time t,

∂tZt½J� ¼ −
�
1

2
∂trðtÞ

�
N
Z

∞

−∞
dϕϕ2e−S½ϕ�−ΔS½ϕ�þJϕ

¼ −
�
1

2
∂trðtÞ

�
δ2Zt½J�
δJδJ

≡ −
�
1

2
∂trðtÞ

�
Zð2Þ

t;JJ½J�; ð11Þ

which is a PDE for a function Zðt; JÞ in the ðt; JÞ-plane,

∂tZðt; JÞ ¼ −
�
1

2
∂trðtÞ

�
∂
2
JZðt; JÞ: ð12Þ

With slight modifications, this also applies to higher-
dimensional QFTs. Solving this equation with appropriate
initial and boundary conditions results in a function ZðJÞ
from which one can calculate expectation values by taking
ordinary (numerical) derivatives with respect to J at
J ¼ 0, cf. Eq. (3).
The structure of this equation is that of a linear

one-dimensional diffusion equation (heat equation)
[54,74,76,77], where t corresponds to the temporal direc-
tion, while J corresponds to the spatial direction. The term
− 1

2
∂trðtÞ corresponds to a time-dependent (positive defi-

nite) diffusion coefficient.5 This also motivates the name
RG “time” for the parameter t. We will come back to the
concept of RG “time” in the true sense of the word and the
diffusive, irreversible character of RG flows in Sec. IVA.
In zero dimensions, the Eq. (12) is a PDE in two

variables. For the remainder of this subsection we will
discuss properties and practical issues considering this
exact PDE. We will neither discuss any kind of expansions
in J nor its application in higher dimensions. However,
some of the issues and questions raised in the following are
also relevant for higher-dimensional theories.
Finding the correct initial and boundary conditions

for numerical solutions of Eq. (12) as an exact PDE
is challenging. By construction Zt¼0½J� approaches a
Gaussian integral,

4For the subtleties associated with the choice of regulators in
higher-dimensional theories, we refer the interested reader to
Refs. [70–75]. Note that for higher-dimensional field theories the
fourth requirement turns into ΔSt½ϕ� ∈ C1.

5Note that in zero dimensions one can get rid of ∂trðtÞ by an
appropriate reparametrization of the time coordinate t, which
nevertheless keeps the structure of the equation unchanged. In
higher dimensions this elimination of rðtÞ is in general not
possible. The positivity of the diffusion coefficient is directly
related to the stability of solutions of the heat equation [78,79]
and positivity—here guaranteed by the regulator properties—is
necessary for a stable solution [74,75].
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Zt¼0½J� ¼ N
Z

∞

−∞
dϕe−

1
2
rð0Þϕ2þJϕe−SðϕÞ

¼ N
Z

∞

−∞

dϕ̃ffiffiffiffiffiffiffiffiffi
rð0Þp e

−1
2
ϕ̃2þJ ϕ̃ffiffiffiffiffi

rð0Þ
p ½1 −OðSðrð0Þ−1

2ÞÞ�

¼ N

ffiffiffiffiffiffiffiffiffi
2π

rð0Þ

s
e

J2
2rð0Þ½1 −OðSðrð0Þ−1

2ÞÞ�; ð13Þ

with ϕ̃≡ ffiffiffiffiffiffiffiffiffi
rð0Þp

ϕ and independent of the explicit shape of
S½ϕ�. Considering different actions S½ϕ� with couplings of
the same order of magnitude we can choose the same
regulator with an rð0Þ larger than all internal scales
involved in the different actions. The initial condition
Zð0; JÞ is then independent of the explicit action under
consideration.
According to the integral formulation (6), Zðt; JÞ

changes for different actions when t > 0. In the differential
formulation of the Eq. (12) those changes are generated by
the diffusion term on the right-hand side. However, we
argued that it is permissible to use identical initial con-
ditionsZð0; JÞ for different actions involving similar scales
[as long as these are much smaller than rð0Þ]. This then
results in an identical diffusion on the right-hand side of
Eq. (12) when the latter is computed by means of a second
derivative ofZð0; JÞ. If one uses identical large-J boundary
conditions for the solution of the PDE (12) for different
actions, this would imply that, despite different S½ϕ�, the
RG time evolution leads to identical ZðJÞ for t → ∞,
which in general cannot be correct.
In order to resolve this problem, particular action-

dependent spatial boundary conditions seem to be neces-
sary for a direct numerical solution starting at t ¼ 0 with a
Gaussian for Zð0; JÞ. It is not obvious how to derive or
formulate such boundary conditions from the asymptotics
of Eq. (12) alone. In light of this, a numerical solution of
Eq. (12) in the ðt; JÞ plane by means of a spatial
discretization in J direction and an integration in t direction
appears to be conceptually questionable.
However, this invalidates by no means the flow equation

for Zðt; JÞ in general. Augmenting it (at t ¼ 0) with
information from the integral formulation (6) or, equiv-
alently, other additional information, could enable practical
computations using the PDE (12). But it is at this point
(at least to us) not obvious how one would implement a
numerical solution strategy for the PDE (12) avoiding
integrals of the action.
There is another well-known drawback in using the

partition function Z½J� for calculating n-point correlation
functions (or expectation values) hϕni. The latter are rather
inefficient in storing information, because they contain
redundant information in the form of disconnected and
reducible terms, see Refs. [38–40,80] or the mathematical
theory of moment- and cumulant-generating functionals
in statistics for details [81]. This is further discussed in

Sec. II E. However, the redundant information in hϕni is not
necessarily a strong argument against the use of the flow
equation (12) in practical computations, since the irreduc-
ible information can be extracted from the correlation
functions hϕni.
In order to resolve both the problem of initial and

boundary conditions for Zðt; JÞ as well as the issue of
redundant information in hϕni, we now consider two
different generating functionals, which are better suited
for practical calculations of n-point correlation functions or
expectation values, respectively. To this end, we employ the
Schwinger functional,

W½J�≡ lnZ½J�; W½0� ¼ 0; ð14Þ

and its Legendre transform, the effective action,

Γ½φ�≡ sup
J
fJφ −W½J�g: ð15Þ

Here, “sup” denotes the supremum with respect to the
source J. The Schwinger functional generates all connected
n-point correlation functions while the effective action
generates all one-particle irreducible (1PI) n-point vertex
(correlation) functions, see Sec. II E or Refs. [38–40,80] for
details.
In general W½J� is convex with a positive definite

Hessian Wð2Þ
JJ ½J�, which implies convexity for Γ½φ�, since

the Legendre transform of a convex function is convex by
definition, see, e.g., Refs. [82,83] for details. In the present
case the convexity of W½J� ¼ WðJÞ becomes apparent
considering its second derivative,

∂
2
JWðJÞ ¼ hϕ2iJ − hϕiJhϕiJ ¼ hðϕ − hϕiJÞ2iJ; ð16Þ

which, as the expectation value of a positive quantity,
is always positive.6 In zero dimensions, also smoothness,
Z½J� ∈ C∞, directly translates to W½J� ∈ C∞ and
Γ½φ� ∈ C∞, because all derivatives W½J� and Γ½φ� can be
entirely expressed in terms of derivatives of Z½J�, see
Sec. II E. We will need both properties several times during
our discussion, see also the discussion in Appendix B.
Having these definitions at hand, we shall start the

next section by defining scale-dependent generating func-
tionalsWt½J� and Γt½φ�. From these, we will also derive and
discuss two flow equations which are similar to Eq. (11).
The final result of the next subsection is the FRG equa-
tion (known as Wetterich equation), which is the exact
analogue to Eq. (11) on the level of Γt½φ�. It provides the
opportunity to circumvent the direct calculation of integrals
of type (1).

6Note that also Z½J� is convex, which can be seen by
investigating its second derivative.
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C. The functional renormalization group equation

In this subsection we derive and discuss the functional
renormalization group (FRG) equation [35–37] (also
known as exact renormalization group equation) for our
zero-dimensional toy-model QFT. All formulas presented
in this section can be generalized to higher dimensions and
arbitrary field content, see, e.g., Refs. [73,84–88].

1. The scale-dependent Schwinger functional

Webegin the derivationby introducing the scale-dependent
Schwinger functional starting from definition (6),

Wt½J�≡ lnZt½J�: ð17Þ

It follows from our previous discussion that for t → ∞ the
Schwinger functional (14) is recovered,

lim
t→∞

Wt½J� ¼ W½J�; ð18Þ

while Wt¼0½J� is given by the logarithm of Eq. (13).
The insertion of the regulator (7) into Zt½J� does not

spoil the convexity and smoothness (in zero dimensions) of
the Schwinger functional: Wt½J� and Zt½J� are convex and
smooth for all t.
Completely analogous to Eq. (11) one can derive a PDE

for Wt½J� ¼ Wðt; JÞ in the ðt; JÞ plane,

∂tWðt;JÞ¼−
�
1

2
∂trðtÞ

�
ð∂2JWðt;JÞþ ½∂JWðt;JÞ�2Þ; ð19Þ

which describes the flow ofWðt; JÞ from t ¼ 0 to t → ∞.7

We could now repeat the discussion about the issues of
initial and boundary conditions for the solution of this
PDE. However, the problems are almost identical to those
of Eq. (12), because on the level of the PDE, we only
substituted the function Zðt; JÞ by Wðt; JÞ via the loga-
rithm, which does not change the structure of the problem
fundamentally. Formulating appropriate initial and boun-
dary conditions in the spatial J direction therefore remains
as complicated as before. Note that the PDE (19) became
more complicated when compared to Eq. (12) due to the
nonlinear term on the right-hand side. In summary, the
scale-dependent Schwinger functional is, from a practical
point of view, as badly suited as Zðt; JÞ to perform the
(numeric) calculation of the functional integral via a flow
equation starting from a Gaussian-type integral.

In the following we will focus on the scale-dependent
effective (average) action and its respective flow equation,
which does not suffer from the issues of particular initial
and boundary conditions. As an added benefit, the effective
action is also the most efficient functional in terms of
storing information of a theory at hand. Formulating proper
initial and boundary conditions for the flow equations for
Zðt; JÞ andWðt; JÞ and if possible implementing adequate
numerical schemes in the context of zero-dimensional field
theories would certainly be interesting from an academic
point of view. Translating the initial and boundary con-
ditions for the scale-dependent effective (average) action to
Zðt; JÞ and Wðt; JÞ could be a possible and potentially
feasible strategy. A comparison of the flows of Zðt; JÞ,
Wðt; JÞ, and Γðt;φÞ, both conceptually and for explicitly
specified actions, is a worthwhile subject of future work.

2. The scale-dependent effective action

We now define the scale-dependent effective action Γt½φ�
via the Legendre transform of Eq. (17) with respect to the
sources J at a RG timescale t,

Γt½φ�≡ sup
J
fJφ −Wt½J�g ð20Þ

≡JtðφÞφ −Wt½JtðφÞ�; ð21Þ

where we introduced the source JtðφÞ which realizes the
supremum.
Note that, analogous to Zt½J� and Wt½J�, the convexity

and smoothness (in zero dimensions) of Γt½φ� is not spoiled
by the t dependence, because the properties of the Legendre
transformation still ensure both.
To obtain an explicit relation for the scale-dependent

source JtðφÞ, which realizes the supremum in Eq. (20), we
consider the functional derivative of Eq. (20) at the
supremum to find the important relation

Wð1Þ
t;J ½JtðφÞ�≡ δWt½J�

δJ

����
J¼JtðφÞ

¼ φ; ð22Þ

which will be used frequently in the following. Taking the
functional derivative of Eq. (21) with respect to φ and using
Eq. (22) we ultimately find

Γð1Þ
t;φ ½φ�≡ δΓt½φ�

δφ
¼ JtðφÞ; ð23Þ

which is referred to as the quantum equation of motion.
Due to the strict convexity of Γt½φ� the function JtðφÞ is
bijective and as such can be inverted, which can be
achieved by considering Eq. (22) at fixed value J for Jt:

φtðJÞ≡ δWt½J�
δJ

; ð24Þ

7In terms of its structure Eq. (19) is also known as the Pol-
chinski equation in the context of the RG for higher-dimensional
QFTs. However, in the original work [89] an effective action
LðΛ;ϕÞ takes the role of W and it is formulated in terms of the
fields ϕ instead of the sources J. For relations between the
original Polchinski equation and the flow equations studied in
this work and selected applications of the Polchinski equation,
see, e.g., Refs. [90–93].
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where φtðJÞ is the so-called scale-dependent classical field
(sometimes also referred to as scale-dependent mean field).
The subtle relations between, and scale dependences of,

φtðJÞ and JtðφÞ are rarely discussed in literature and
usually suppressed in the notation. The relation between
φt and Jt will be of particular importance in the discussion
of n-point correlation functions in Sec. II E. The scale
dependence of φtðJÞ from Eq. (24) is not related to a
rescaling (RG transformation) using, e.g., a wave-function
renormalization for φ.
Before we derive the FRG equation, which is the flow

equation for Γt½φ� and a PDE for the function Γðt;φÞ in the
ðt;φÞ plane, we check whether we will run into the same
issues (related to initial and boundary conditions) as before.
Hence, first of all, we must derive the initial condition for
the PDE for Γðt;φÞ. To this end, we study the limit t → 0 of
Γt½φ�. We use the definitions (6), (17), (20), and (21) to
obtain

e−Γt½φ� ¼ e− supJfJφ−Wt½J�g

¼ elnZt½JtðφÞ�−JtðφÞφ

¼ N
Z

∞

−∞
dϕe−S½ϕ�−ΔSt½ϕ�þJtðφÞðϕ−φÞ: ð25Þ

We now shift the integration variable8 ϕ ↦ ϕ0 ¼ ϕ − φ.
Using Eq. (7), we find

e−Γt½φ�þΔSt½φ�

¼ N
Z

∞

−∞
dϕ0e−S½ϕ

0þφ�−ΔSt½ϕ0�−rðtÞϕ0φþΓð1Þ
t;φ ½φ�ϕ0

: ð26Þ

In the next step, we introduce the scale-dependent effective
average action,

Γ̄t½φ�≡ Γt½φ� − ΔSt½φ�; ð27Þ

which also tends to the effective action Γ½φ� for t → ∞,
because the second term vanishes in this limit, cf. Eq. (8).
At any finite value of t (including t ¼ 0), Γ̄t½φ� differs

from Γt½φ� and is no longer guaranteed to be convex, which
can be seen directly from the second term in Eq. (27).
Convexity is only recovered for t → ∞. However, the
second term in Eq. (27) does not violate the smoothness
of Γ̄t½φ� in zero dimensions for all t, because ΔSt½φ�≡
StðφÞ ∈ C∞ in φ.
We express Eq. (26) in terms of the scale-dependent

effective average action (27) and, for the sake of conven-
ience, revert the notation ϕ0 → ϕ,

e−Γ̄t½φ� ¼ N
Z

∞

−∞
dϕe−S½ϕþφ�−ΔSt½ϕ�þΓ̄ð1Þ

t;φ ½φ�ϕ: ð28Þ

In the next step one formally introduces the normalization
of a Gaussian integral with mass rðtÞ and takes the
logarithm, which results in

Γ̄t½φ� ¼ − ln
Z

∞

−∞
dϕ

ffiffiffiffiffiffiffiffi
rðtÞ
2π

r
e−S½ϕþφ�−1

2
rðtÞϕ2þΓ̄ð1Þ

t;φ ½φ�ϕ

− ln

"
N

ffiffiffiffiffiffiffiffi
2π

rðtÞ

s #
: ð29Þ

We are now ready to study the limit t → 0, which
corresponds to the initial condition for a possible flow
equation for Γt½φ� or Γ̄t½φ�, respectively. Focusing on the ϕ
integral in the first term on the right-hand side of Eq. (29),
we employ the fact that the regulator terms act like a
Gaussian representation of the Dirac delta distribution,

lim
t→0

ffiffiffiffiffiffiffiffi
rðtÞ
2π

r
e−

1
2
rðtÞϕ2 ≈ δðϕÞ; ð30Þ

as long as rðtÞ is much larger than all scales in S½ϕ�. Thus,
denoting

cðtÞ≡ − ln

"
N

ffiffiffiffiffiffiffiffi
2π

rðtÞ

s #
; ð31Þ

we find as t → 0

Γ̄t½φ� → − ln
Z

∞

−∞
dϕδðϕÞe−S½ϕþφ�þΓ̄ð1Þ

t;φ ½φ�ϕ þ cðtÞ

¼ S½φ� þ cðtÞ; ðt → ∞Þ ð32Þ

This means that the initial condition for a flow of Γ̄t½φ� is
given by the classical action S evaluated for the classical
field φ and some additional t dependent, but φ independent
term cðtÞ. This choice for an initial condition of a PDE for
Γ̄t½φ� has subtle consequences:
Although cðtÞ does not depend on φ, it is large,

cðtÞ ∼ 1
2
ln rðtÞ. Consequently, as far as the initial condition

for the PDE for Γt½φ� or Γ̄t½φ� is concerned, it seems as if we
run into the same problem as before: The initial condition is
dominated by the artificial mass of the regulator rðtÞ,
independent of the specific action S½ϕ�, and differences in
the specific choice for S½ϕ� enter the initial condition only
as small deviations from the large term cðtÞ. Furthermore,
cðtÞ contains the normalization constant N , which was
fixed according to Eq. (4).
However, precisely because cðtÞ appears like the nor-

malization N , it should be irrelevant for all physical
observables. Indeed this is the case, because all φ inde-
pendent terms in Γt½φ� do not enter the n-point correlation

8It is the same shift that is used in the background field
formalism [94,95], where the full fluctuating quantum field ϕ is
split into a background field configuration φ and additional
fluctuations ϕ0 about the background field. This is why φ is called
the classical or mean field.
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functions, since the latter are calculated as derivatives of
Γ½φ� with respect to φ at t → ∞, see Sec. II E. This implies
that an additive, φ independent term in the three effec-
tive actions Γ½φ�, Γt½φ�, and Γ̄t½φ� is irrelevant and only
relative differences in the effective actions are observable.
Therefore, we can simply omit cðtÞ and take as initial
condition for the PDE for Γ̄t½φ� the value S½φ�, which
perfectly incorporates the difference between different
models with distinct actions S½ϕ�.
One problem in disregarding cðtÞ remains: one has to

ensure that a PDE for Γ̄t½φ� must not contain any terms
without field derivatives of Γ̄t½φ�. Otherwise cðtÞ would
influence the flow in a time-dependent manner. Fortunately,
this does not happen, as we will see later, and the FRG
equation (37) does not contain terms without field deriv-
atives of Γ̄t½φ� on the right-hand side.
This, however, brings up another question: After Eq. (27)

we argued that Γ̄t½φ� does not need to be convex, but
must still be smooth for all t. Let us for example consider
the nonanalytic action (10) as an initial condition,
Γ̄t¼0½φ� ¼ S½φ�. This action does not cause any problems
for the convexity and the smoothness of Zt½J� andWt½J� at
arbitrary t, see for example Appendix B and Fig. 36. The
nonconvexity of S½φ� is also not a problem for Γ̄t½φ�, which
does not necessarily need to be convex at finite t.
Nevertheless, the smoothness of Γ̄t½φ� is violated by this
choice of S½φ� at t ¼ 0. This issue originates from relation
(30), which is exactly fulfilled only in the limit Λ → ∞ for
the UV cutoff. This, however, leads to a trivial theory of
infinitely massive particles at t ¼ 0, cf. Eq. (6). If one
chooses a reasonably large but finite Λ and does not use
Eq. (30), one would ensure that Γ̄t½φ� is also smooth at
t ¼ 0. However, then the initial condition is not exactly
S½φ�, but rather an extremely complicated expression. In
consequence, if we use the approximation (30) even for
finite Λ, one has to pay the price of introducing errors into
the initial condition as well as violating the smoothness of
Γ̄t½φ� at t ¼ 0. In return one has a well-defined initial
condition S½φ� for the PDE for Γ̄t½φ�. However, if Λ is
chosen to be much larger than all scales in S½ϕ�, the errors
from the initial condition are minor and expected to be of
magnitude

error ≈
largest scale in S

Λ
: ð33Þ

We will come back to this issue in Sec. V in the context of
RG consistency [96–100].
Additionally, we will find that also the smoothness of

Γ̄t½φ� is recovered automatically for all t > 0 by the
structure of the PDE for Γ̄t½φ�, because it always contains
diffusive contributions which immediately smear out kinks
in the initial condition right in the first time step. We
will also come back to this issue later on, after we have

derived the FRG equation (37) and discussed its diffusive,
irreversible character.

3. The exact renormalization group equation

In analogy to the previous flow equations, the FRG
equation, which is the flow equation for Γ̄t½φ�, is obtained
by taking the derivative of Γ̄t½φ� with respect to t and using
the definitions (20) and (27) to express the derivative of
Γ̄t½φ� by the scale-dependent Schwinger functional,

∂tΓ̄t½φ� ¼ ∂tðΓt½φ� − ΔSt½φ�Þ
¼ ∂tðJtðφÞφ −Wt½JtðφÞ� − ΔSt½φ�Þ
¼ ½∂tJtðφÞ�φ − ∂tWt½JtðφÞ�

− ½∂tJtðφÞ�Wð1Þ
t;Jt

½Jt� −
�
1

2
∂trðtÞ

�
φ2

¼ −∂tWt½JtðφÞ� −
�
1

2
∂trðtÞ

�
φ2; ð34Þ

where we used the chainrule and Eq. (22).
We now use the flow equation for the Schwinger

functional (19) to substitute the first term on the right-
hand side. Again employing the identity (22), the last term
in the last line of Eq. (34) cancels with the nonlinear term in
Eq. (19), such that

∂tΓ̄t½φ� ¼
�
1

2
∂trðtÞ

�
Wð2Þ

t;JJ½JtðφÞ�: ð35Þ

It remains to replace the second derivative of the scale-
dependent Schwinger functional by a corresponding
derivative of Γ̄t½φ�. This is done via the identity

1 ¼ δJtðφÞ
δφ

δφ

δJtðφÞ
¼ Γð2Þ

t;φφ½φ�Wð2Þ
t;JJ½JtðφÞ�; ð36Þ

which follows from Eqs. (22) and (23). Plugging this into
Eq. (35) and using Eq. (27) with Eq. (7) we obtain the
FRG equation, exact renormalization group equation or
Wetterich equation [35–37]

∂tΓ̄t½φ� ¼
�
1

2
∂trðtÞ

�
½Γ̄ð2Þ

t;φφ½φ� þ rðtÞ�−1; ð37Þ

which is a flow equation—a PDE—for the scale-dependent
effective average action Γ̄ðt;φÞ in the ðt;φÞ plane,

∂tΓ̄ðt;φÞ ¼
1
2
∂trðtÞ

∂
2
φΓ̄ðt;φÞ þ rðtÞ ; ð38Þ

with the initial condition Γ̄ðt¼0;φÞ¼S½φ�. Some remarks
are in order:
(1) In contrast to the PDEs for Zðt; JÞ and Wðt; JÞ the

FRG equation can be initialized with a suitable

ADRIAN KOENIGSTEIN et al. PHYS. REV. D 106, 065012 (2022)

065012-10



initial condition at t ¼ 0 that produces distinct flows
for different actions S½ϕ�, as was discussed in the
previous subsubsection.

(2) The spatial boundary conditions, i.e., for φ → �∞
are provided by the asymptotics of the FRG equa-
tion (38) itself and by the requirement that S½φ�must
be bounded from below: The action S½φ� of an
(interacting) field theory must at least grow like φ2

for large jφj and the dominant contribution for large
jφj must be even in φ. For actions S½φ� that grow
asymptotically faster than φ2 the denominator on the
right-hand side of the PDE (38) already diverges at
t ≈ 0, such that

lim
jφj→∞

∂tΓ̄ðt;φÞ ≈ 0: ð39Þ

It follows that for jφj → ∞ the function Γ̄ðt;φÞ does
not change at all, but keeps its initial value S½φ�.
These are perfectly valid boundary conditions for
a PDE. The scenario for initial conditions with
limjφj→∞ S½φ� ∼ φ2 is more delicate. We will return
to this issue and a detailed discussion of boundary
conditions, when we discuss the numerical imple-
mentation and solution of Eq. (38) in Sec. IV D in
the context of numerical fluid dynamics.

(3) The structure of the PDE (38) is again a diffusion
equation. In contrast to the PDEs (12) and (19) it is
nonlinear in the second-order spatial derivatives of
Γðt;φÞ that appear in the denominator. By applying
the same formalism to models with different field
content, the FRG equation can also acquire con-
vective/advective terms and source terms. We will
thus find that the FRG equation shares many proper-
ties with other notable advection-diffusion equa-
tions, e.g., the Navier-Stokes equation [101]. This is
discussed in Sec. IV, where our numerical approach
to the FRG equation is presented in more detail.
However, it should be already mentioned at this
point that analyzing and solving nonlinear advec-
tion-diffusion-source/sink equations like Eq. (38) is
a state-of-the-art problem in numerical mathematics.
Thus, some care is required in the search for well-
established numerical solution schemes for PDEs of
this type.

(4) In zero dimensions, similar to the flow equations for
Zðt; JÞ and Wðt; JÞ, one can reparametrize the flow
time t in terms of r in Eq. (38) and get rid of the
prefactor ∂trðtÞ. Additionally, one could eliminate
rðtÞ in the denominator in Eq. (38) by shifting
Γ̄ðt;φÞ → Γ̄ðr;φÞ − 1

2
rφ2 and switching from t to r

as flow parameter, which corresponds to the zero-
dimensional analogue of the rescaled “dimension-
less” flow equation in fixed-point form, but is not
suited for the practical calculations in this work.

This reparametrization effectively corresponds to
different choices of regulator (shape) functions in
zero dimensions. However, for higher-dimensional
problems, different choices of regulators do not need
to be related to each other via simple reparametriza-
tion of the RG time. In any case, the effective
dynamics in the PDE during the RG flow strongly
depends on the parametrization of the RG scale as
well as the explicit choice of regulator, which has
two direct consequences: First, although the dynam-
ics and t evolution of observables (the n-point
correlation functions) during the RG flow might
be highly interesting and must also be studied to
ensure that the UV and IR cutoff scales are chosen
appropriately, one must clearly state that only the IR
value of Γ½φ� is mathematically and physically
meaningful and suitable for extracting information
on the n-point correlation functions. This is dem-
onstrated and discussed again in the context of
numerical precision tests of the OðNÞ model in
Sec. V. Second, from a numerical point of view,
some parametrizations or choices of regulators
might be more challenging for the numerical inte-
grators than others and must be adopted to the
specific problems at hand. On the level of the
PDE this corresponds to the time-dependent strength
of the diffusion, see below.

(5) Unrelated to the present discussion, a formulation of
the FRG equation using mean fields carrying an
explicit scale dependence (in higher dimensions often
related to a running wave-function renormalization)
is also possible with a careful consideration and
distinction between total and partial derivatives with
respect to t. Generalizations including composite
mean fields are also possible, see, e.g., Ref. [73].

Using a zero-dimensional field theory with one degree of
freedom, we have therefore demonstrated that it is possible
to transform the problem of solving functional integrals like
Eqs. (1) and (2) for a model with action S½ϕ� into solving
the PDE (38) in t and φ with initial condition S½φ�. The
FRG equation thus directly implements the idea of trans-
forming Gaussian-type functional integrals into arbitrary
functional integrals, but on the level of the effective action
Γ½φ� rather than the partition function Z½J�. Both formu-
lations of the problem of calculating n-point correlation
functions—the functional-integral formulation and the
FRG formulation—are mathematically equivalent. This,
however, is, as we have seen, a highly nontrivial statement
and demands numerical precision tests, which are part of
this work.
In Ref. [73] it is shown that the FRG framework can be

generalized to models or theories with arbitrary field content
in arbitrary dimensions and space-time background (even a
formulation for space-time itself, i.e., quantum gravity is
possible [85,86], see Ref. [13] for a recent review).
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Before we introduce the zero-dimensional OðNÞ model
and explain the relation of the FRG to fluid dynamics,
followed by our main discussion of zero-dimensional QFTs
as a testing ground for numerical methods and truncation
schemes, we discuss two further issues. The first contextu-
alizes our previous discussion with an interpretation of the
FRG from the RG perspective (also for higher-dimensional
field theories). Furthermore, it briefly discusses the gener-
alization of the FRG equation to different field content. This
can also be found in Refs. [13,73,74,87,88,102–104]. The
second issue discusses the relation between the n-point
correlation functions of the different generating functionals
ZðtÞ½J�,WðtÞ½J�, and ΓðtÞ½φ�. This is needed for a comparison
of the exact results from the partition functionZ½J�with our
results from the FRG based on Γ½φ�. Readers familiar with
these issues may skip the following two sections.

D. Contextualization with FRG
in higher-dimensional space-time

The structure of the FRG equation (38) is already very
general and extends with only minor modifications to
arbitrary fields and dimensions. Derivations can be found
in, e.g., Refs. [73,88,102]. The FRG equation reads

∂tΓ̄t½Φ� ¼ STr

��
1

2
∂tRt

�
ðΓ̄ð2Þ

t ½Φ� þ RtÞ−1
�
: ð40Þ

The supertrace in Eq. (40) entails sums over internal indices
and different fields and integrals over momenta, taking
minus signs for fermionic fields properly into account. The
fundamental difference between ERG Eq. (40) and its
counterpart in zero dimensions (37), is that the ERG
equation in d > 0 is a functional differential equation for
the classical fieldsΦ. It does not naturally present as a PDE
which necessitates truncations in practical computation
to project the ERG equation onto a finite set of coupled
ODEs and/or PDEs. The regulator Rt for computations in
d > 0 is no longer a simple scalar function but an operator
with a particular, nontrivial structure in position/momen-
tum space. While different regulator choices are still
possible in higher dimensions, corresponding RG flows
are no-longer related by simple rescaling and a suitable
regulator choice for the problem at hand becomes particu-
larity important when considering explicit truncated FRG
flow equations see, e.g., Refs. [70,71]. More details can be
found in, e.g., Refs. [13,73,74,87,88,102–105]. The equa-
tion is based upon momentum locality, i.e., the integrand of
the momentum integral on the right-hand side is peaked
around the RG scale k ≈ q (for conventional regulators),
see, e.g., Fig. 1 in Ref. [102] or Fig. 3.1 of Ref. [106],
where q is the loop momentum and

t ¼ − ln

�
k
Λ

�
: ð41Þ

The FRG equation can be interpreted as a direct imple-
mentation of Wilson’s approach to the RG [107–109].
In general, the space-time dimensionality has to be taken

into account when considering the convergence properties
of different expansion schemes. For example, the vertex
expansion is believed to work very well for QCD in d ¼ 4
dimensions (see, e.g., Ref. [110] for a recent overview),
however, as we will discuss below, the convergence of the
expansion is in general not guaranteed. The vertex expan-
sion is an expansion in terms of moments of the quantum
effective action, explained in detail in Sec. III C 2. Here, the
moments are the irreducible parts of scattering kernels.
The convergence of this expansion is given by two main

ingredients,
(1) phase-space suppression,
(2) finite couplings.

The first point means that higher-order vertices, which
originate from quantum effects and are typically not present
in the classical action, come with increasing suppression
factors, e.g., due to the angular integrations. The second point
simply relates to the fact that all couplings have to stay finite.
Otherwise the argument related to phase-space suppression
simply does not work. There are several scenarios where
this can be the case. The main one being the presence of
resonances, where couplings can be divergent. Also large
densities might circumvent the effect of phase-space suppres-
sion, but are not our main concern in this work. The last, and
for this work most important effect, is that of the dimension.
In particular, for zero-dimensional space-time the

angular integrations are not present, and hence the entire
argument of phase-space suppression does not work. Zero-
dimensional QFT is ultralocal—defined only in a single
point—and thus extremely coupled in field space. This, of
course, has to be kept in mind when considering con-
vergence properties of vertex expansions.
Still, also a parallel work in 1þ 1 spacetime dimensions

by some of us and collaborators [32] generically supports
these statements and the increasing importance of local
interactions in low spacetime dimensions.

E. n-point correlation functions

In this section we discuss the scale-dependent correlation
functions,which can be extracted from the (scale-)dependent
generating functionals ZðtÞ, WðtÞ, and ΓðtÞ. We restrict the
discussion to a zero-dimensional quantum theory with a
single real scalar. The concepts and expressions can be
generalized to theories including arbitrary fields and gen-
eralize to higher dimensions. For a broader discussion in
the context of QTFs we refer the interested reader to the
textbooks [38–40,94,111]. For a comprehensive discussion
of correlation functions and their relations in the FRG see,
e.g., Refs. [83,103].
Correlation functions can be extracted by taking suc-

cessive functional derivatives of the generating functional,
cf. Eq. (1):
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hϕnit;J ≡ ZðnÞ
t;J���J½J�
Zt½J�

: ð42Þ

(The nonobservable normalization, which we fixed by
means of Eq. (4) cancels.)
According to Eq. (24), the one-point correlation function

hϕit;J ¼
Zð1Þ

t;J ½J�
Zt½J�

¼ Wð1Þ
t;J ½J� ð43Þ

equals the scale-dependent classical field φtðJÞ.
The two-point correlation function

hϕ2it;J ¼
Zð2Þ

t;JJ½J�
Zt½J�

¼ Wð2Þ
t;JJ½J� þ hϕi2t;J ð44Þ

is of particular interest in QFT since it is related to the
transition amplitude between two states. In d > 0 such an
amplitude between ϕðx1Þ and ϕðx2Þ encodes the particle
motion between the space-time points x1 and x2. hϕ2it;J
includes the disconnected9 contribution hϕi2t;J. This infor-
mation is already stored in the 1-point correlation function.
Higher-order n-point correlation functions include discon-
nected parts consisting of products of lower m-point
functions with m < n [81]. The disconnected contributions
correspond to scattering processes where only a subset of
the fields interact with each other and are as such irrelevant
for observables. Loosely speaking, Zt½J� contains redun-
dant information in the form of these disconnected
diagrams.
The Schwinger functional Wt½J� does not contain this

redundant information. Functional derivatives of Wt½J�
generate connected n-point functions:

hϕnict;J ≡WðnÞ
t;J…J½J�: ð45Þ

The first two connected n-point functions are

hϕict;J ¼ hϕit;J ¼ Wð1Þ
t;J ½J�; ð46Þ

hϕ2ict;J ¼ hϕ2it;J − hϕi2t;J ¼ Wð2Þ
t;JJ½J�: ð47Þ

Higher-order n-point functions are interpreted as interac-
tion vertices. For example, the connected three-point
correlation function is given by

hϕ3ict;J ¼ hϕ3it;J − 3hϕ2it;Jhϕit;J þ 2hϕi3t;J: ð48Þ

The Schwinger functional, as the generating functional of
connected correlation functions, still contains redundant
information since connected correlation functions can be
decomposed into 1PI10 vertex functions. 1PI vertex func-
tions encode all information about a QFT.
The effective action Γt½φ� is the generating functional of

1PI vertex functions [38–40,80,94,111–113]. We now
introduce a central object in functional approaches to
QFT: the full scale-dependent propagator

Gφφ
t ½φt�≡Wð2Þ

t;JtJt
½Jt� ¼ ðΓð2Þ

t;φtφt
½φt�Þ−1; ð49Þ

where the last equality follows from Eq. (36). Recalling
Eqs. (23) and (24) we then obtain

δ

δJt
¼ δφt

δJt

δ

δφt
¼ Wð2Þ

t;JtJt
½Jt�

δ

δφt
≡Gφφ

t ½φt�
δ

δφt
; ð50Þ

Here we dropped the explicit φ (J) dependence of the
source realizing the supremum Jt (the scale-dependent
mean field φt) for readability only and will do so for the
remainder of this section. Equation (50) is basically a chain
rule, which allows us to convert functional Jt derivatives
into φt derivatives. The correlation function hϕnit;Jt for
n ≥ 1 can be rewritten by successively pulling out func-
tional Jt derivatives,

hϕnit;Jt ¼
ZðnÞ

t;Jt���Jt ½Jt�
Zt½Jt�

¼
�

δ

δJt
þ φt

�
Zðn−1Þ

t;Jt…Jt
½Jt�

Zt½Jt�

¼
�Yn−1

i¼1

�
δ

δJt
þ φt

��
φt; ð51Þ

where the φt terms account for the derivatives of the
normalization 1=Zt½Jt�. Using the chain rule (50) in
Eq. (51) we arrive at

hϕnit;Jt ¼
�Yn−1

i¼1

�
Gφφ

t ½φt�
δ

δφt
þ φt

��
φt; ð52Þ

which expresses the correlation function hϕnit;Jt com-
pletely in terms of φt, Gφφ

t ½φt�, and 1PI vertices for

n ≥ 3. The higher (n ≥ 3) 1PI vertices ΓðnÞ
t;φt���φt

½φt� emerge
in Eq. (52) from the functional derivatives of the propa-
gator. Taking the φt derivative of Eq. (36) (for φ≡ φt,
J ≡ Jt), we derive9“Connected” and “disconnected” in this context refers

to the connectivity of the Feynman-diagram representation of
the correlation functions. In a connected Feynman diagram all
external lines are connected in the diagram through at least one
internal line.

10One-particle irreducible (1PI) in this context refers to Feyn-
man diagrams, which cannot be split into two disconnected
diagrams by cutting a single internal line.
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δ

δφt
Gφφ

t ½φt� ¼
δ

δφt
ðΓð2Þ

t;φtφt
½φt�Þ−1

¼ −Gφφ
t ½φt�Γð3Þ

t;φtφtφt
½φt�Gφφ

t ½φt�; ð53Þ

where we have used Eq. (49) and where

δ

δφt
ΓðnÞ
t;φt���φt

½φt� ¼ Γðnþ1Þ
t;φt���φtφt

½φt�: ð54Þ

From the definition (45) and Eq. (50) it is even simpler to
derive

hϕnict;Jt ¼
�Yn−1

i¼1

�
Gφφ

t ½φt�
δ

δφt

��
φt; ð55Þ

which establishes a decomposition of connected correlation
functions in terms of φt, G

φφ
t ½φt�, and 1PI vertices for

n ≥ 3. Equation (55) is simpler than Eq. (52) because
disconnected contributions arising from the term ∼φt in the
parenthesis in Eq. (52) are absent.
In terms of Γt½φt� the first three (connected) correlation

functions are given by

hϕ1it;Jt ¼ hϕ1ict;Jt ¼ φt; ð56Þ

hϕ2ict;Jt ¼ Gφφ
t ½φt�; ð57Þ

hϕ2it;Jt ¼ Gφφ
t ½φt� þ φ2

t ; ð58Þ

hϕ3ict;Jt ¼ −ðGφφ
t ½φt�Þ3Γð3Þ

t;φtφtφt
½φt�; ð59Þ

hϕ3it;Jt ¼−ðGφφ
t ½φt�Þ3Γð3Þ

t;φtφtφt
½φt�þ3Gφφ

t ½φt�φtþφ3
t : ð60Þ

We will need these relations among the different n-point
correlation functions to compare our numerical results from
solving the RG flow equation with fluid-dynamical meth-
ods to the direct computation of the correlation functions
from the partition function Z½J�.

III. THE OðNÞ MODEL IN ZERO DIMENSIONS
AND ITS TREATMENT WITHIN THE FRG

Zero-dimensional OðNÞ models are predominantly studied
for pedagogical and conceptual purposes [44–56,58,60,62–64].
In Ref. [44] the model was used to compare the quality of
perturbation theory, the large-N expansion, and theFRGvertex/
Taylor expansionwith the exact result. The primary focus of the
presentwork is topush this analysis even further and to study the
limits of untruncated RG flow equations as well as the FRG
Taylor expansion.
OðNÞ models in higher dimensions play an impor-

tant role in understanding spin systems, like the Ising
model [104,114,115], and magnetization phenomena.

Furthermore, they are often used as toy models and are
of utmost importance for understanding the Anderson-
Brout-Englert-Guralnik-Hagen-Higgs-Kibble mechanism
and the formation of a chiral condensate in strong-
interaction matter. In the context of numerical methods
for the FRG, two of us used the OðNÞ model in d ¼ 3 to
study numerical solutions of RG flow equations in the
large-N limit [26].
This section is structured as follows: In Sec. III A we

introduce the OðNÞ model on the level of the classical
action and the functional integral. We further comment
on the calculation of expectation values and 1PI vertex
functions from the functional integral, which are our
observables of interest. Thereafter, in Sec. III B, we com-
ment on symmetry restoration during the RG flow, for
scenarios in which the classical action S½φ⃗� ¼ UðtUV; φ⃗Þ
possesses a nontrivial minimum. In Sec. III C, we introduce
the exact FRG formulation of the model, which includes
the derivation of the RG flow equation as an exact PDE and
generalization of Eq. (38). We close this section by deriving
the FRG Taylor expansion for the OðNÞ model, which is a
commonly used expansion scheme in FRG studies.

A. The zero-dimensional OðNÞ model

Consider a zero-dimensional theory of N bosonic scalars
ϕa, which transform according to

ϕa ↦ ϕ0
a ¼ Oabϕb; ð61Þ

whereO ∈ OðNÞ and a; b ∈ f1;…; Ng. In vector notation,
this reads

ϕ⃗ ↦ ϕ⃗ 0 ¼ Oϕ⃗; ð62Þ

where ϕ⃗ ¼ ðϕ1;ϕ2;…;ϕNÞ. If the action S½ϕ⃗� of the model
possesses an OðNÞ symmetry, it can contain all possible
terms that are functions of the OðNÞ invariant

ρ≡ 1

2
ϕaϕa ≡ 1

2
ϕ⃗ 2 ð63Þ

This implies that the most general action obeying this
symmetry is given by

S½ϕ⃗� ¼ Uðϕ⃗Þ ¼ UðρÞ; ð64Þ

where UðρÞ is the effective potential, in analogy to models
from higher-dimensional space-times. This effective poten-
tial might for example include a bosonic “mass term” m2ρ
as well as other interaction terms containing arbitrary
powers of ρ. Although one may now be tempted to assume
that the effective potential UðρÞ must be a power series or
an analytic function of ρ, as long as it fulfills all symmetries
it can be any continuous function of ρ which is bounded
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from below, cf. the discussion in Sec. II for the special case
of the Oð1Þ model.
In the remainder of this section we will summarize

relevant relations for the OðNÞ model. For a more detailed
discussion, we refer the interested reader to Ref. [44] and
references therein.
All generating functionals of the theory retain the OðNÞ

symmetry of the action, which makes them functionals
of the invariants 1

2
J⃗2 for Z and W and ϱ≡ 1

2
φ⃗2 for Γ. This

entails that all n-point correlation functions for odd n
vanish by symmetry and all n-point correlation functions of
a given order of even n are proportional to each other, e.g.,
for the four-point function we find

hϕiϕiϕjϕji ¼
1

3
hϕiϕiϕiϕii; ð65Þ

for i ≠ j and i; j ∈ f1;…; Ng (no summation over repeated
indices implied here). For the proof, use that δ

δJi
Zð1

2
J⃗2Þ ¼

JiZ0ð1
2
J⃗2Þ and set the source J⃗ ¼ 0 at the end of the

calculation. Using the OðNÞ symmetry on the right-hand
side of

hϕi1 � � �ϕini ¼
1

Z½0�
Z

∞

−∞
dNϕϕi1 � � �ϕine

−Uðϕ⃗ 2=2Þ; ð66Þ

one can relate correlation functions of even order 2n to the
expectation value hðϕ⃗ 2Þni. For the two-, four-, and six-
point functions, which are studied in this work, we find

hϕiϕji ¼
1

N
δijhϕ⃗ 2i; ð67Þ

hϕiϕjϕkϕli ¼
1

NðN þ 2Þ ðδijδkl þ δikδjl þ δilδjkÞhðϕ⃗ 2Þ2i;

ð68Þ

hϕiϕjϕkϕlϕmϕni ¼
1

NðN þ 2ÞðN þ 4Þ ðδijδklδmn

þ all permutationsÞhðϕ⃗ 2Þ3i: ð69Þ

Connected correlation functions and 1PI vertex func-
tions are related to correlation functions as outlined in
Sec. II E. Using the fact that, for odd n, all n-point cor-
relation functions and all n-point 1PI vertex functions
vanish by symmetry, the following relations hold for the
two-, four-, and six-point functions (no summation over
repeated indices):

hϕiϕiic ¼ hϕiϕii ¼ ðΓð2Þ
φiφiÞ−1; ð70Þ

hϕiϕiϕiϕiic ¼hϕiϕiϕiϕii − 3hϕiϕii2 ¼ −hϕiϕii4Γð4Þ
φiφiφiφi ;

ð71Þ

hϕiϕiϕiϕiϕiϕiic ¼ hϕiϕiϕiϕiϕiϕii − 15hϕiϕiϕiϕiihϕiϕii
þ 30hϕiϕii3

¼ −hϕiϕii6Γð6Þ
φiφiφiφiφiφi

þ 10hϕiϕii−1ðhϕiϕiϕiϕiicÞ2: ð72Þ

Inserting Eqs. (67)–(69) into Eqs. (70)–(72) and solving for
the 1PI vertex functions yields

Γð2Þ ≡ Γð2Þ
φiφi ¼ N

1

hϕ⃗ 2i
; ð73Þ

Γð4Þ ≡ Γð4Þ
φiφiφiφi ¼ 3N2

1

hϕ⃗ 2i2
�
1 −

N
N þ 2

hðϕ⃗ 2Þ2i
hϕ⃗ 2i2

�
; ð74Þ

Γð6Þ ≡ Γð6Þ
φi…φi

¼ 60N3
1

hϕ⃗ 2i3
�
1−

9N
4ðN þ 2Þ

hðϕ⃗ 2Þ2i
hϕ⃗ 2i2

þ 3N2

2ðN þ 2Þ2
hðϕ⃗ 2Þ2i2
hϕ⃗ 2i4

−
N2

4ðN þ 2ÞðN þ 4Þ
hðϕ⃗ 2Þ3i
hϕ⃗ 2i3

�
:

ð75Þ
In summary, computing arbitrary correlation functions

(or 1PI vertex functions) of the zero-dimensional OðNÞ
model boils down to computing expectation values hðϕ⃗ 2Þni.
The latter can be computed using Eq. (66). Because of the
OðNÞ symmetry of the integrand, this is most easily done
in spherical coordinates. Performing the integration over
spherical coordinates, we haveZ

∞

−∞
dϕ1 � � �

Z
∞

−∞
dϕN ¼ 2π

N
2

ΓðN
2
Þ
Z

∞

0

dρð2ρÞN2−1: ð76Þ

Then the expectation value is a simple one-dimensional
integral,

hðϕ⃗ 2Þni ¼ 2n
R
∞
0 dρρ

N
2
−1ρne−UðρÞR∞

0 dρρ
N
2
−1e−UðρÞ : ð77Þ

For certain potentials UðρÞ, the integral (77) can even
be computed symbolically in terms of known functions
[31,44,56], whereas for generalUðρÞ a numerical evaluation
to high precision is straightforward using standard methods
[42,43]. Thus, the zero-dimensionalOðNÞmodel is an ideal
testing ground for alternative methods to calculate correla-
tion functions, such as, e.g., the FRG.

B. Symmetry restoration during the RG flow

Besides being invariant under OðNÞ transformations the
classical action (potential) S½ϕ⃗� ¼ Uðϕ⃗Þ is also invariant
under the discrete Z2 transformation
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ϕa → −ϕa; ð78Þ

which, as already mentioned above, implies that all n-point
functions with odd n vanish, e.g., the one-point function
φa ¼ hϕai ¼ 0.
However, it is possible to consider actions (potentials)

S½ρ� ¼ UðρÞ which possess nontrivial minima ρ0 ≠ 0. This
means that the RG flow of Γ̄t½φ⃗� of such models is
initialized in a symmetry-broken regime in the UV, where
the OðNÞ symmetry is broken to its OðN − 1Þ subgroup.
(For the Oð1Þ model, this reduces to a breaking of the Z2

symmetry.) Following the discussion in Appendix B, this
property of the classical action neither translates to the full
quantum effective action Γ½φ⃗� in the IR nor to the n-point
functions, due to a limiting case of the Coleman-Mermin-
Wagner-Hohenberg theorem [67–69]. The theorem states
that there is no long-range order in d ≤ 2 dimensions if the
interactions between the constituents are sufficiently short
of range. Therefore, there is no breaking of a (continuous)
symmetry in such systems in the IR, i.e., after integrating
out all quantum fluctuations, even when starting with a
classical action in the UV that has nontrivial minima. This
is the equivalent of the statement that φa¼hϕai¼0. The
“Nambu-Goldstone modes” [112,116,117],11 which we will
also call pions12 π⃗ in the zero-dimensionalOðNÞmodel, and
the radial σ mode “vaporize” any condensate and smear out
all cusps in Γ̄t½φ⃗� during the RG flow. In the IR all modes are
then “massive” again.
There are two reasons, why this feature of symmetry

restoration on the level of Γ̄t½φ⃗� is desirable for our
numerical tests:
(1) Symmetry breaking/restoration associated with con-

densation/“vaporization” is an essential property of
all kinds of QFTs [38–40] and we have to show that
it is correctly captured by our numerical tools. This is
especially important, because it was shown by
two of us and collaborators [26,27] that nonana-
lytic behavior in the effective potential Uðt; φ⃗Þ,
cf. Refs. [22,118], which is directly associated with
dynamical symmetry breaking/restoration, is real-
ized as shock and rarefaction waves in field space
during the RG flow.

(2) The possibility of dynamical symmetry restoration
on the level of Γ̄t½φ⃗� is also a desired feature in order
to demonstrate that it is of utmost importance to

choose theUVcutoffΛ and the IR cutoff rIR aswell as
initial and boundary conditions in numerical FRG-
flow calculations carefully. For our example it is
expected that if the IR cutoff time tIR is chosen too
small, such that the regulator rðtÞ is still too large, the
system might still be in the symmetry-broken phase
(indicated by a nontrivial minimum). This means that
the scale-dependent effective average action Γ̄tIR ½φ⃗� at
thisRGscale cannot be interpreted as the full quantum
effective action Γ½φ⃗�, because the Coleman-Mermin-
Wagner-Hohenberg theorem is still violated. The
same applies to a problematic implementation boun-
dary conditions, especially at ϱ ¼ 0, which can lead to
a violation of the Coleman-Mermin-Wagner-Hohen-
berg theorem, such that the system is not in the
restored phase in the IR.
For a direct physical consequences of these subtle-

ties, we refer to the parallel works [31,32] by two of us
and collaborators.

In a follow-up publication [34], we will generalize the zero-
dimensional OðNÞ model to a model involving fermions
(Grassmann numbers) and bosons. The more complicated
interactions may also allow for dynamical symmetry
breaking via attractive fermion interactions during the
RG flow. Of course, the system must return to the restored
phase in the limit t → ∞.

C. FRG formulation and flow equations

This subsection is dedicated to the FRG formulation of
the OðNÞ model of the previous Sec. III A. To this end,
we demonstrate how to arrive at the exact untruncated
RG flow equation of the OðNÞ model. Furthermore, we
introduce a commonly used truncation scheme for RG
flow equations—the FRG Taylor expansion, see, e.g.,
Refs. [13,44,74,87,88,102,104]. We start our discussion
with general remarks on the derivation of RG flow
equations and truncation schemes.
From Sec. II and especially Secs. II C and II D we

have learned that the FRG equation (40) constitutes an
exact PDE for the RG time evolution of the full field-
dependent effective average action Γ̄t½Φ� with initial con-
dition Γ̄t¼0½Φ� ¼ S½Φ�. Here, Φ stands for the field space
vector of all fields of the specific model under consid-
eration. However, if there is more than one field space
degree of freedom, the direct (numerical) solution of the
FRG equation (40) as a PDE is exceedingly difficult,
because of the high dimensionality of the field space. In
higher space-time dimensions, space-time or momentum
dependences of the fields complicate this issue and promote
Eq. (40) to a functional integro-partial-differential equation
with a functional S½ΦðxÞ� or S½Φ̃ðpÞ� as initial condition.
Instead of solving Eq. (40) directly (independent of the

dimensionality and the field content), one usually speci-
fies some ansatz function for the effective average action
Γ̄t½Φ�, which involves only a finite number of t dependent

11We put the term “Nambu-Goldstone modes” in quotation
marks, because in zero dimensions the concept of “masslessmodes”
can only refer to the curvature masses in the corresponding bosonic
field direction,which are obtained from the effective potentialUðρÞ.
But the actual particle masses in a higher-dimensional QFT are
derived from thepoles of the real-timepropagators,which simplydo
not exist in zero dimensions.

12We adopt the high-energy terminology. Condensed-matter
physicists associate the pions with quasiparticles—the Anderson-
Bogoliubov modes.
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couplings (vertices). The ansatz function for Γ̄t½Φ� must
respect all symmetries of the model and the functional
integral. Afterwards, one works out a projection prescrip-
tion, which extracts these couplings from Γ̄t½Φ�. Usually
this is done by
(1) Taking a suitable number of (functional) derivatives

in field (and/or momentum) space,
(2) Evaluating the resulting expression on a specific

(usually constant) field configuration (and/or at
specific external momenta, energies etc.),

(3) Applying contractions of open field space and space-
time indices with suitable tensors.

Thus, inserting the ansatz for Γ̄t½Φ� into the FRG equa-
tion (40) and applying these projection rules to both sides of
the equation yields a coupled set of PDEs and/or ODEs for
the couplings. This system of differential equations must be
initialized at t ¼ 0 with the values of the couplings taken
from the specific choice of the classical action S½Φ�. The
system for the t dependent couplings is then evolved to
t → ∞. If needed, the values of the couplings at t → ∞ can
afterwards be reinserted in Γ̄t½Φ� to obtain the effective action
Γ½Φ� in the IR. We will present this procedure explicitly for
the zero-dimensional OðNÞ model in the next paragraphs.
However, by considering an ansatz function for Γ̄t½Φ�,

which consists of a finite number (of usually an infinite set)
of all the possible interaction terms that respect the
symmetries of the system, one effectively introduces an
approximation. In the context of the FRG this is called a
truncation. The concept of a truncation of the system can
directly be seen from Eq. (40): Taking an appropriate
number of field space derivatives of this equation to project
on a specific coupling, the right-hand side of this equation
depends on higher-order interaction vertices. These are up
to two orders higher than the ones on the left-hand side,

because of Γ̄ð2Þ
t ½Φ� already involves two field space

derivatives. The highest-order couplings in the system of
PDEs for the couplings are, however, set to zero by
definition via the ansatz for Γ̄t½Φ�, because only a finite
number of couplings is evolved with t. As a result Eq. (40),
which originally corresponds to a coupled system of
infinitely many ODEs and PDEs for couplings of all orders
in field and momentum or position space, is reduced to a
finite set of PDEs for the couplings involved in the ansatz
for Γ̄t½Φ�, see Refs. [13,74,87,88,102,104] for general
discussions or, e.g., Refs. [14,18,119–121] for specific
applications. After all, the quality of the ansatz completely
determines the quality of the approximation to the actual IR
effective action Γ½Φ� after the RG flow of the truncated
system is solved.
In general, finding reliable truncations for a given pro-

blem is a challenging problem. In particular, the identi-
fication of a small parameter to justify the truncations is a
difficult task. In fact, such a parameter may not even
exist. It may also turn out that a given truncation yields
reliable results for one observable but not for another.

The latter observation may even be considered a feature as
it allows us to identify mechanisms underlying specific
phenomena. In any case, there are construction schemes for
systematic ansätze for the effective action. Commonly used
truncation schemes are for example the derivative expan-
sion [87,115,122,123], which relies on the expansion of
Γ̄t½Φ� in powers of derivatives (momenta) but includes all
orders of field-dependent vertices at the same momentum
order. Another expansion scheme is the vertex expansion,
which expands Γ̄t½Φ� in terms of (momentum-dependent)
n-point functions. Oftentimes different expansion schemes
are combined, in order to keep the system of PDEs
tractable [14,18–20]. Moreover, truncations can always
be benchmarked against perturbative studies, see, e.g.,
Refs. [102,124] for instructive examples.
One measure for the quality of these expansion schemes

is comparing terms of different order. It is expected and
can also be observed for certain systems and situations,
see e.g., Refs. [14–16,125–128], that the expansions seem
to converge and deviations in the observables are decreas-
ing by increasing the expansion order. In the FRG com-
munity, this is often referred to as apparent convergence.
Another indication for the quality of the truncation is the
comparison of FRG results with results from other methods
[17,22,23,129–131], e.g., Monte-Carlo simulations, or the
comparison of critical exponents derived from the FRG and
other methods.
In this context, zero-dimensionalQFTs play avery special

role: Due to the absence of space-time and momentum
dependences of the fields, the effective average action
Γ̄t½Φ� ¼ Γ̄tðΦÞ is merely a function (not a functional) of
the fieldsΦ and of the t dependent couplings accompanying
all possible terms which respect the symmetry of the model.
This structure can, however, be summarized in terms of
effectiveΦ and t dependent terms. It is therefore possible to
express the effective average action in terms of a finite
amount of terms, which nevertheless incorporate all possible
interactions to all orders in the fields and do not even need to
be analytic functions of the fields. In consequence, truncat-
ing the system is superfluous and the PDEs, which are
derived via projections from the FRGequation, constitute an
exact and complete system. Solving this system must
therefore lead to the exact effective action Γ½Φ� in the IR
and is therefore completely equivalent to solving the func-
tional integral. In other words, calculating n-point correla-
tion functions via the (functional) integral or via the FRG
equation (if done properly) must yield identical results
without truncation errors.
This feature makes zero-dimensional QFT particularly

interesting for several reasons:
(1) It can be used to test the quality of numerical

schemes which are used to solve the flow equations.
(2) It can be used to estimate the errors resulting from

the choices of various parameters entering the RG
flow equations like UV and IR cutoff scales, etc..
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(3) It can be used to test commonly used truncation
schemes by artificially truncating the system to a
noncomplete set of ordinary first-order differential
equations.

All these tests can be performed on a quantitative level, by
studying the relative errors of the FRG results for n-point
correlation functions compared to the exact results from the
functional integral. We provide results for various precision
tests in Sec. V.
For the remainder of this section, we will proceed as

follows: First, we will derive the untruncated exact
RG flow equation for the zero-dimensional OðNÞ model.
Afterwards, we introduce a commonly used truncation
scheme—the FRG Taylor (vertex) expansion.

1. The exact RG flow equation of the
zero-dimensional OðNÞ model

For the special case of the zero-dimensional OðNÞ
model, the most general ansatz for the effective average
action is given by a scale-dependent effective potential

Γ̄t½φ⃗� ¼ Uðt; φ⃗Þ ¼ Uðt; ϱÞ: ð79Þ

This ansatz can describe arbitrary OðNÞ invariant effective
actions and can include terms at all orders of ϱ ¼ 1

2
φ⃗2.

However, it is in principle not restricted to analytic
(Taylor-expandable) functions. Truncations of Γ̄t½φ⃗� are
not required.
In order to arrive at the exact flow equation for Uðt; φ⃗Þ

one has to perform the following steps:
(1) Insert the function (79) into the FRG equation (40).
(2) Invert the full field-dependent two-point function

ðΓ̄ð2Þ
t;φφ½φ⃗� þ RtÞij: ð80Þ

(3) Take the trace in field space.
(4) Remove the redundant N − 1 field space directions

in φ⃗.
For the last step, the RG flow equation can be evaluated on
a constant background field configuration13 φ1 ¼ … ¼
φN−1 ¼ 0 and φN ¼ σ. Without loss of generality, the
φN direction was singled out as the direction of the radial
σ mode and the constant background field.
The inversion of the full field-dependent two-point func-

tion (80) can be performed analytically [28,103,104,132]
by introducing the complete, orthogonal, and idempotent
field space projection operators

P⊥
ijðφ⃗Þ≡ δij −

φiφj

φ⃗2
; Pk

ijðφ⃗Þ≡ φiφj

φ⃗2
: ð81Þ

The projection operators are used to decompose the full
field-dependent two-point function (80) into components
perpendicular (⊥) and parallel (k) to φ⃗, which can be inverted
separately. The regulatorRt is matrix-valued and diagonal in
field space,

ðRtÞij ¼ δijrðtÞ; ð82Þ

where rðtÞ again is denoted as regulator shape function,
cf. Eqs. (7) and (8). One finds that

ðΓ̄ð2Þ
t;φφ½φ⃗� þ RtÞ−1ij ¼ Pk

ijðφ⃗Þ
1

rðtÞ þ ∂ϱUðt; ϱÞ þ 2ϱ∂2ϱUðt; ϱÞ

þ P⊥
ijðφ⃗Þ

1

rðtÞ þ ∂ϱUðt; ϱÞ ; ð83Þ

which can be inserted directly into the FRG equation (40).
After taking the field space trace and evaluating the

resulting equation on the constant background field con-
figuration, we arrive at the RG flow equation for the
effective potential

ð84Þ

This RG flow equation is an exact nonlinear PDE for the
effective potentialUðt; σÞ, which is of first order in RG time
t and of first and second order in the field space direction σ.
It also includes an explicit σ dependence. A detailed
analysis of the structure of this PDE, including its relation
to conservation equations and fluid dynamics is provided in
Sec. IVA.
For now, we conclude this section with a few comments

on the widely used diagrammatic notation of the PDE and
its relation to the RG flow equation (38) from Sec. II:
Similar to Feynman diagrams which are commonly used in
perturbation theory, the propagators14 are depicted as lines;
blue-jagged lines for the σ propagator,

1

rðtÞ þ ∂
2
σUðt; σÞ ; ð85Þ

13Here we adopt terminology from higher-dimensional FRG:
The word “constant” is therefore somewhat misleading in a QFT
which cannot vary in space-time, but it is used anyhow.

14The term “propagator” is of course misleading for a QFT in a
single point, where “propagation” in the true sense of the word is
not possible. Nevertheless, we again adopt the notation from
higher-dimensional QFT and statistical mechanics.
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and red-dashed lines for the π propagators

1

rðtÞ þ 1
σ ∂σUðt; σÞ : ð86Þ

The crossed circle (⊗) stands for the regulator insertion
1
2
∂trðtÞ. (The factor 1

2
is often not included in the regulator

insertion, but written in front of the diagrams. See, e.g.,
Refs. [16,24,44,102,104,133,134] for different notations.)
The factor N − 1 is the multiplicity of the pion-loop
contribution [indicated by the vector over the pion field
in the diagram, cf. Eq. (84)] and corresponds to the number
of pions in the system.
For the special case N ¼ 1, the OðNÞ model reduces to

the Oð1Þ model. Such a theory of a single scalar field in
zero dimensions, was used in the introductory section II on
FRG. In this limit, the pion contributions to the flow
equation vanish. As already stated in Sec. II, we find that
for nonzero pion contributions (N > 1) the flow equation
for Uðt; σÞ acquires a term that is of first order in the spatial
derivative, ∂σUðt; σÞ, which no longer has diffusive char-
acter, but corresponds to advection in field space. This is
further discussed in Sec. IV.

2. FRG Taylor (vertex) expansion of the OðNÞ model

The FRG Taylor (vertex) expansion is based on the
assumption that the effective (average) action Γ̄t½φ⃗� can be
expanded in a series in field space with RG-time dependent
expansion coefficients [87]. In zero dimensions, this
effectively reduces to an expansion of the effective poten-
tial Uðt; ϱÞ, cf. Eq. (79). Consequently, it is also equivalent
to a Taylor expansion of the effective potential, which is
well known from higher-dimensional truncation schemes
[14–16,18–20,87,104,122,133,135,136]. Throughout this
work, we will therefore use the term “FRG Taylor expan-
sion” to refer to this approach. The RG-scale dependent
expansion coefficients Γ̄ð2nÞðtÞ correspond directly to the

scale-dependent vertex functions Γ̄ð2nÞ
t;φi…φj

of the QFT. For
d > 0, these expansion coefficients are usually position or
momentum dependent whereas in d ¼ 0 the coefficients
depend only on the RG time t.
The assumption of expandability and thus differenti-

ability significantly restricts the form of the effective action
Γ̄t½φ⃗� ¼ Uðt; φ⃗Þ, cf. Refs. [130,131]. In fact, it neither
allows for the formation of any nonanalytic behavior
throughout the RG flow nor for any nonanalytic initial
conditions. However, nonanalytic initial conditions are not
forbidden, as we will see in Sec. V. Furthermore, it is well
known that nonanalyticities can (and in some models have
to) form in the effective potential during the RG flow
[26,27,118,137]. Considering these caveats, an expansion
in vertices of a given theory has always to be considered
with care. Still, this expansion scheme is used in certain
applications.

In our work, we restrict our analysis of the precision of
this truncation scheme to RG flows with rather specific
properties: We study initial conditions that are analytic.
Furthermore, we know, cf. Appendix B, that the IR
effective action is smooth for the special case of zero
dimensions, which is a necessary condition for the con-
vergence of a (Taylor) series. It should, however, be noted
that smoothness is only a necessary but not a sufficient
condition for the convergence of a Taylor series.15 Only
analyticity would formally imply the convergence of a
Taylor series at all φ⃗. Additionally, we argue that for
sufficiently small N, the diffusive contributions to the RG
flow are important, which smear out any possible cusps. In
summary, we expect that for these extremely special
scenarios it is unlikely that nonanalyticities will form
and disappear again during the RG flow. Nevertheless,
we do not know if a small finite number of expansion
coefficients is always enough to reach a reliable approxi-
mation of Γ̄t½φ⃗� during the RG flow or if it is always
necessary to flow the effective potential as a PDE without
additional assumptions. This (rather limited) applicability
of the FRG Taylor expansion to analytic initial conditions
will be tested by calculating the relative errors of 1PI n-
point vertex functions in the FRG Taylor expansion in
comparison with the exact results and the results from the
flows of a full field-dependent Uðt; σÞ in Sec. V.
The FRG Taylor expansion of the zero-dimensional

OðNÞmodel is given by the following ansatz [44,51,52,56],

Γ̄t½φ⃗� ¼
Xm
n¼0

Γ̄ð2nÞðtÞ
ð2n− 1Þ!!

1

n!

�
φ⃗2

2

�
n

¼ Γ̄ð0ÞðtÞ þ Γ̄ð2ÞðtÞ φ⃗
2

2
þ Γ̄ð4ÞðtÞ

3

1

2

�
φ⃗2

2

�
2

þ…; ð87Þ

where Γ̄ð2nÞðtÞ are t dependent expansion coefficients and
m is the truncation order. The factors of ð2n − 1Þ!! and n!

were introduced in order to have Γ̄ð2nÞðtIRÞ ¼ Γð2nÞ
φi…φi in the

IR, where Γð2nÞ
φi…φi are the 1PI 2n-point vertex functions in

the IR, with all indices being identical (no summation over
i here), see also Eqs. (73)–(75). In order to arrive at the
corresponding flow equations, we proceed in a similar
manner as before in Sec. III C 1: We insert our ansatz (87)
into the full field-dependent two-point function (80) and
use the field space projection operators (81) to invert the
latter. We obtain

ðΓ̄ð2Þ
t;φφ½φ⃗� þ RtÞ−1ij ¼ P⊥

ijðφ⃗ÞGππ
t ðφ⃗Þ þ Pk

ijðφ⃗ÞGσσ
t ðφ⃗Þ; ð88Þ

15A textbook example for a smooth function which has a
nonconverging Taylor series around x ¼ 0 is

fðxÞ ¼
�
e−1=x if x > 0;
0 else:
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where

Gππ
t ðφ⃗Þ≡

�
rðtÞ þ

Xmþ1

n¼1

Γ̄ð2nÞðtÞ
ð2n − 1Þ!!

1

ðn − 1Þ!
�
φ⃗2

2

�
n−1
�
−1
;

Gσσ
t ðφ⃗Þ≡

�
rðtÞ þ

Xmþ1

n¼1

Γ̄ð2nÞðtÞ
ð2n − 3Þ!!

1

ðn − 1Þ!
�
φ⃗2

2

�
n−1
�
−1
;

are the field-dependent propagators of the pion and sigma
field in the Taylor expansion.
This result can be inserted into the FRG equation (40),

where the trace in field space is evaluated to

∂tΓ̄t½φ⃗� ¼
h1
2
∂trðtÞ

i
½ðN − 1ÞGππ

t ðφ⃗Þ þ Gσσ
t ðφ⃗Þ�: ð89Þ

Finally, we insert the ansatz (87) for the effective average
action into the left-hand side of this equation and expand
the propagators G∘∘

t ðφ⃗Þ up to order n ¼ m in the expan-
sion coefficients Γ̄ð2nÞðtÞ. This can also be achieved by
successively taking derivatives with respect to the fields
and setting φ⃗ ¼ 0 afterwards. By comparing the expan-
sion coefficients on the left- and right-hand sides of the
equation, one arrives at a coupled set of ordinary differ-
ential equations for the Γ̄ð2nÞðtÞ with 0 ≤ n ≤ m. The flow
equation for Γ̄ð2mÞðtÞ contains Γ̄ð2mþ2ÞðtÞ on the right-hand
side. We truncate the system by neglecting the flow of
Γ̄ð2mþ2ÞðtÞ, taking ∂tΓ̄ð2mþ2ÞðtÞ ¼ 0.
For an automatization of the derivation of the flow

equations (the system of ODEs) via computer algebra
routines such as Mathematica [138], it is advisable to
formulate the FRG Taylor expansion in the invariant
ϱ ¼ 1

2
φ⃗2,

Γ̄t½ϱ� ¼
Xm
n¼0

Γ̄ð2nÞðtÞ
ð2n − 1Þ!!

ϱn

n!
: ð90Þ

Equation (89) becomes

∂tΓ̄t½ϱ� ¼
�
1

2
∂trðtÞ

�
½ðN − 1ÞGππ

t ðϱÞ þ Gσσ
t ðϱÞ�; ð91Þ

while

Gππ
t ðϱÞ≡

�
rðtÞ þ

Xmþ1

n¼1

Γ̄ð2nÞðtÞ
ð2n − 1Þ!!

ϱn−1

ðn − 1Þ!
�
−1
; ð92Þ

Gσσ
t ðϱÞ≡

�
rðtÞ þ

Xmþ1

n¼1

Γ̄ð2nÞðtÞ
ð2n − 3Þ!!

ϱn−1

ðn − 1Þ!
�
−1
: ð93Þ

The coupled set of ODEs for the expansion coefficients
Γ̄ð2nÞðtÞ is given by [44,52],16

∂tΓ̄ð0Þ ¼ N
2

∂trðtÞ
rðtÞ þ Γ̄ð2Þ ;

∂tΓ̄ð2Þ ¼ −
N þ 2

6

∂trðtÞ
½rðtÞ þ Γ̄ð2Þ�2 Γ̄

ð4Þ;

∂tΓ̄ð4Þ ¼ N þ 8

3

∂trðtÞ
½rðtÞ þ Γ̄ð2Þ�3 ½Γ̄

ð4Þ�2

−
N þ 4

10

∂trðtÞ
½rðtÞ þ Γ̄ð2Þ�2 Γ̄

ð6Þ;

..

. ð94Þ

Recall that

∂tΓ̄ðnÞ ¼ 0 ð95Þ

for n ≥ 2mþ 2 in this approximation.

IV. FRG FLOW EQUATIONS
AND (NUMERICAL) FLUID DYNAMICS

In this section, we discuss the formulation of the RG
flow equation as an advection-diffusion equation, as well as
its interpretation in the context of fluid dynamics, including
its numerical implementation.
The fluid-dynamical formulation of the exact RG flow

equation for the effective potential Uðt; ϱÞ of models of
OðNÞ type (in the large-N limit [28]) is also presented in a
recent and a parallel publication by some of us and
collaborators [26,27]. It was shown that the RG flow
equation can be recast in the form of a pure advection
equation (a hyperbolic conservation law) for the derivative
of the effective potential uðt; ϱÞ ¼ ∂ϱUðt; ϱÞ, where uðt; ϱÞ
serves as the conserved quantity (the fluid), the RG time t
as a temporal coordinate and ϱ as a spatial coordinate. In
this section, we generalize this result and discuss various
consequences for the numerical implementation and inter-
pretation of FRG flow equations.17

A. Conservative form of FRG flow
equations—advection-diffusion equations

The formulation of FRG flow equations in terms of a
fluid-dynamical language has two major advantages:
(1) It provides an intuitive explanation for all kinds of

phenomena observed in FRG flow equations, e.g., the

16We do not indicate t dependences of the Γ̄ð2nÞðtÞ for reasons
of readability.

17Generalizations of the fluid-dynamical picture of FRG flow
equations from the large-N results of Ref. [26] to systems with
finite N as well as the inclusion of fermions were already
presented by us in various talks (see, e.g., Refs. [139,140])
and discussed in a master thesis [141] cosupervised by some of
us, as well as a PhD thesis by one of us [142], see also Ref. [27].
Furthermore, also in Ref. [118] a formulation of the flow equation
as a conservation law and a discussion of shock waves based on
the characteristics is presented, however, without really elabo-
rating on a fluid-dynamical interpretation and its consequences.
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flattening of the effective potential for small σ in the
IR, which occurs in conjunction with a nondifferen-
tiable point of the effective potential at the ground
state. Such nonanalytic behavior cannot be handled
and systematically analyzed by commonly used
numerical schemes such as the Taylor expansion or
related discretization schemes for the effective poten-
tial, since the latter strongly rely on differentiability.
However, these phenomena have a direct impact on
the physics, for instance on the occurrence of phase
transitions [22,26,27,83,118,130,131,143], and there-
fore must be resolved and analyzed accurately also on
a numerical level.

(2) The formulation of the FRG flow equations in terms
of fluid-dynamical concepts provides access to the
highly developed and extremely powerful toolbox of
numerical fluid dynamics, which finds applications
in a wide area of fields, ranging from the natural
sciences and engineering all the way to economics.
How to adopt these methods to flow equations
arising in the FRG framework is discussed in detail
in Secs. IV B and IV C.

Interestingly, the idea of interpreting RG flow equations as
“flow” equations in the true sense of the word is not new and
explains the term “RG flow equations”: A discussion of
analogies between “RG flow” and hydrodynamical flow can
be found in widely used textbooks [39,144] and is discussed
via the example of field-independent coupling constants in
the context of perturbative renormalization. Furthermore, the
RG flow was already associated with gradient flow and
dissipative processes in Refs. [74,145–148,148,149], even
though a stringent fluid-dynamical interpretation and for-
mulation was not presented.
It is therefore also not accidental that the (F)RG

community has chosen the term “RG time” for the
logarithm of the RG scale k over the UV cutoff Λ,
t̃ ¼ lnðkΛÞ. In contrast, we find that t ¼ −t̃ ∈ ½0;∞Þ can
be naturally identified as a temporal coordinate in the fluid-
dynamical picture of (F)RG flow equations, see below.
It was also discussed, see, e.g., Refs. [54,74,76],

that—on the level of the scale-dependent generation func-
tionals Zt½J� or Wt½J�—the corresponding PDEs can be
considered as a (nonlinear) functional diffusion equa-
tions for the source fields J (cf. Eqs. (11) and (19) for
the respective zero-dimensional versions). Sometimes
Eq. (11) is even explicitly denoted as a (nonlinear)
heat equation, which is also a specific fluid-dynamical
problem [77–79,150].
Considering the obvious analogies between RG flow

equations arising in the FRG framework and fluid-dynamical
equations, it is remarkable that the FRG equation (40) was so
far not more systematically investigated and compared
to equations well known from fluid dynamics. For the
related RG flow equations the situation is slightly different
and the mathematical analysis on the level of PDEs was

more systematic, see, e.g., Refs. [74,148,149,151,152].
Furthermore, certain phenomenawell known in fluid dynam-
ics, such as discontinuities (shockwaves), rarefactionwaves,
or cusps, occur in the solution of such PDEs. These require a
careful numerical treatment to resolve them, but their
occurrence was very often ignored by numerical approaches
to solve the FRG equations by erroneously assuming that the
solution Uðt; σÞ is continuous and differentiable. Still, there
are some publications which use numerical schemes to
systematically capture nonanalytic behavior or discuss the
limitations of numerical methods in the presence of these
effects, see, e.g., Refs. [118,137].
In order to make the fluid-dynamical analogy more

apparent, we present a formulation of the RG flow
equation (84) for the effective potential Uðt; σÞ in terms
of a conservation law. Furthermore, we discuss its fluid-
dynamical interpretation on a qualitative level and classify
the various contributions to the PDE (the RG flow) in the
fluid-dynamical picture. This sets the stage for an adequate
qualitative interpretation of the RG flow equation and
possible numerical approaches, which are presented in
the next two Secs. IV B and IV C.

1. The conservative form

Starting from the RG flow equation (84) of the effective
potential Uðt; σÞ, we have several options to recast the flow
equation in a conservative form, two of which are:
(1) Following Refs. [26,27,118,139,141,142], we can

take an overall derivative of Eq. (84) with respect to
the OðNÞ invariant ϱ ¼ 1

2
σ2 and express the result-

ing equation in terms of ϱ and uðt; ϱÞ≡ ∂ϱUðt; ϱÞ,

∂tuðt;ϱÞ¼
d
dϱ

��
1

2
∂trðtÞ

�
N−1

rðtÞþuðt;ϱÞ

þ
�
1

2
∂trðtÞ

�
1

rðtÞþuðt;ϱÞþ2ϱ∂ϱuðt;ϱÞ
�
:

ð96Þ

(2) Another option is to formulate the problem on the
level of the background field σ itself [140] and by
alternatively defining uðt; σÞ≡ ∂σUðt; σÞ. Taking
an overall derivative of Eq. (84) with respect to σ
yields,

∂tuðt; σÞ ¼
d
dσ

��
1

2
∂trðtÞ

�
N − 1

rðtÞ þ 1
σ uðt; σÞ

þ
�
1

2
∂trðtÞ

�
1

rðtÞ þ ∂σuðt; σÞ
�
: ð97Þ

In both cases one ends up with a one-dimensional
conservation law, where u plays the role of the conserved
quantity (the fluid), t can be identified with the time
variable and ϱ or σ are identified as the spatial variable.
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The conservative form of the RG flow equation (84)
for the effective potential U on the level of its deriva-
tive u is not restricted to zero space-time dimensions
or models with purely bosonic field content, see also
Refs. [26,27,118,139–142]. As a matter of fact, this for-
mulation generalizes to arbitrary dimensions and also to
models which include fermionic degrees of freedom
on the level of the local potential approximation (LPA).
In particular, the flow equation for the effective potential
for models of strong-interaction matter, such as the
quark-meson, the Nambu-Jona-Lasinio, and the Gross-
Neveu(-Yukawa) model can be formulated in this fashion.18

In this context, it is also worthwhile to note that Eq. (97)
can be derived not only by taking a derivative of the FRG
flow equation for the effective potential Uðt; σÞ with
respect to the background field σ. It is also possible to
already start by directly deriving the flow equation for

uðt; σÞ via a projection on the one-point function Γ̄ð1Þ
t ðσÞ,

ð98Þ

This corresponds to an interchange in the order of oper-
ations (evaluating the FRG equation on the background
field configuration and taking derivatives with respect to
the background field versus taking functional derivatives of
the FRG equation and afterwards evaluating on the back-
ground field) and it is nontrivial (especially for flow
equations for more complex models in higher dimensions
and with truncation beyond LPA) that the resulting equa-
tions are identical.
Before we turn to the fluid-dynamical interpretation of

the conservation laws (96) and (97), we comment on the
question whether one of the two formulations (96) and (97)
is preferable or even others should be considered. The
answer to this question is not yet settled. From our present
understanding, a formulation of the conservation equation
in terms of σ is preferable, for reasons of numerical
implementability. This is discussed at length in the context
of the PDE boundary conditions for the RG flow equation
in Sec. IV D and also in part III of this series of publications
[31]. Therefore, our discussion in the next sections is based
on Eq. (97), and hence we identify σ with the spatial
coordinate x and uðt; σÞ≡ ∂σUðt; σÞ as the conserved
quantity.

2. Advection-diffusion equation, irreversibility
of RG flows, and entropy production

This section is dedicated to the fluid-dynamical inter-
pretation of the RG flow equation (97). To this end, we split
the flux (current) on the right-hand side of the conservation
law (97) and rewrite the whole equation in terms of an
advection-diffusion equation in one spatial dimension
x ¼ σ and one temporal dimension t,

∂tuðt; xÞ þ
d
dx

F½t; x; uðt; xÞ� ¼ d
dx

Q½t; ∂xuðt; xÞ�: ð99Þ

The pionic contributions to the RG flow,

F½t; x; uðt; xÞ� ¼ −
�
1

2
∂trðtÞ

�
N − 1

rðtÞ þ 1
x uðt; xÞ

; ð100Þ

are identified with a nonlinear, position-dependent advec-
tion flux, while the contribution of the radial σ mode,

Q½t; ∂xuðt; xÞ� ¼ þ
�
1

2
∂trðtÞ

�
1

rðtÞ þ ∂xuðt; xÞ
; ð101Þ

corresponds to a nonlinear diffusion flux. This decom-
position in F and Q can be understood as follows:

Advection.—If we ignore the contribution of the σ mode
for a moment (which—after rescaling—corresponds to
the large-N limit of the OðNÞ model [26–28,31]), we
can rewrite the left-hand side of Eq. (99) as follows,

18Meanwhile, we and our collaborators [27,32,141,153] were
also working on the conservative formulation of (F)RG flow
equations in higher dimensions in more advanced truncations as
well as on conservative formulations of (F)RG flow equations for
zero-dimensional systems involving fermions (Grassmann num-
bers) [34].
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∂tuðt; xÞ þ
d
dx

F½t; x; uðt; xÞ�
¼ ∂tuðt; xÞ þ ∂uF½t; x; uðt; xÞ�∂xuðt; xÞ
þ ∂xF½t; x; uðt; xÞ� ¼ 0: ð102Þ

This is a nonlinear advection equation for uðt; xÞ in its
primitive form including an internal source term, where
∂uF½t; x; uðt; xÞ� is identified with the velocity of the
characteristics (the local u-dependent flow velocity of
the quantity u) and ∂xF½t; x; uðt; xÞ� acts like an x and u
dependent internal source term. Hence F½t; x; uðt; xÞ� is not
purely advective nevertheless we will continue to refer to it
as advection term.
The identification of Eq. (102) as an advection equation

is easily understood by comparison with the one-dimen-
sional linear advection equation,

∂tuðt; xÞ þ v∂xuðt; xÞ ¼ 0: ð103Þ

Here v corresponds to the a (constant) fluid velocity.
Another prominent example is the inviscid Bateman-
Burgers equation [78,79,150,154–156], where the velocity
is itself proportional to u.
However, for our RG flow, the local flow velocity is

highly nonlinear in t, x, and u and explicitly reads

∂uF½t; x; uðt; xÞ� ¼
ðN − 1Þ 1

2
∂trðtÞ

x½rðtÞ þ 1
x uðt; xÞ�2

: ð104Þ

Considering for example the exponential regulator
shape function (8), one finds that the advection velocity
∂uF½t; x; uðt; xÞ� is always negative (positive) for x > 0
(x < 0). In a fluid-dynamical picture, this means that the
conserved quantity uðt; xÞ is always propagated from larger
values of jxj toward the point x ¼ 0 by advection.
Furthermore, the closer the fluid uðt; xÞ is to x ¼ 0, the
faster the fluid moves, due to the factor 1

x. Since uðt; xÞ is
antisymmetric in x [because of the OðNÞ symmetry of
Uðt; φ⃗Þ], this implies that “waves” of positive and negative
uðt; xÞ collide with huge velocity at x ¼ 0 and annihilate.
At large jxj, the fluid velocity tends to zero.
We also observe that the advection velocity (104) is

proportional to the number of pions, N − 1. Hence, in the
large-N limit the system is completely advection driven,
while for small N the diffusive contributions (101) gain in
importance. In the case N ¼ 1, there is no advection at all
and the dynamics of the fluid uðt; xÞ is purely diffusive.
Both limiting cases N ¼ 1 and N → ∞ are discussed at
length in the subsequent parts II and III in this series of
publications [31,33] respectively.
It is also well known [78,79,150,156] that systems which

involve nonlinear advection tend to exhibit nonanalytical
behavior in the form of shock and rarefaction waves. We
will return to this issue below.

Diffusion.—Next, we turn to the contribution of the radial σ
mode to the RG flow. We find that it enters the conservation
law (99) as a nonlinear diffusion flux (101), because it is
overall of second order in spatial derivatives of uðt; xÞ. The
characteristic property of diffusive processes is that they
transport a quantity, in this case uðt; xÞ, from regions where
its density or concentration is high to regions where it is low
[78,79,150,156]. Diffusive processes are therefore usually
important in regions of high gradients and smear out cusps,
shocks etc., which might form via advection. Besides this,
diffusive processes are generically undirected, which is also
the case for (101) and therefore also propagate the quantity
uðt; xÞ in both directions, depending on the local gradients of
uðt; xÞ, which is especially relevant for models in their
symmetry-broken phase with rather weak advection (small
N). The effective transport velocities via diffusion are usually
much slower than those via advection, which is, due to the
nonlinearity, not necessarily true for RG flow equations. A
famous example of a purely diffusive process is heat transport
via the heat equation [77–79]. The diffusion flux (99) can
indeed be formulated as a nonlinear time-dependent reali-
zation of the heat equation. By performing the spatial
derivative in the advection-diffusion equation (99) for the
purely diffusive (N ¼ 1) case, one finds

∂tuðt; xÞ ¼ −
1
2
∂trðtÞ

½rðtÞ þ ∂xuðt; xÞ�2
∂
2
xuðt; xÞ; ð105Þ

where

−
1
2
∂trðtÞ

½rðtÞ þ ∂xuðt; xÞ�2
; ð106Þ

plays the role of a nonlinear time dependent, strictly positive
diffusion coefficient. The positivity of the diffusion coef-
ficients ensures that uðt; xÞ is only dispersed and never
accumulates locally, i.e., that uðt; xÞ tends to equilibrate
toward a linear function in space. A positive diffusion
coefficient also ensures stability and uniqueness of (numeri-
cal) weak solutions, see, e.g., Refs. [78,79,150,157].
Directly comparing these findings with the linear heat

equation with constant diffusion coefficient, we can already
qualitatively predict the behavior of the diffusion transport
for the RG flow of uðt; xÞ, as long as N is small and the
system is diffusion-dominated. At a constant RG time t, we
find that the diffusion coefficient is much larger in regions
where the gradient ∂xuðt; xÞ is negative with a large
absolute value, compared to regions where it is positive,
because in the first case the denominator of Eq. (106) is
smaller than in the second case. This plays a crucial role for
systems that involve symmetry breaking, where ∂xuðt; xÞ is
negative for at least some small jxj, while asymptotically
for jxj → ∞ the sign of ∂xuðt; xÞ is always positive. Hence,
for diffusion-dominated problems in RG flow equations
(small number N of pions), the symmetry restoration is
driven by the negative gradients ∂xuðt; xÞ at small jxj.
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Furthermore, we find that for t → ∞, the numerator of the
diffusion coefficient (106) tends to zero such that the
diffusion stops, the system equilibrates and the dynamics
freezes, even though there are still gradients in uðt; xÞ. This
would not happen for the linear heat equation. The same is
true for t ¼ 0, where the diffusion coefficient is suppressed
by 1=Λ. However, the t dependence of the diffusion
coefficient of Oð1Þ models strongly depends on the
space-time dimension, which will be discussed elsewhere.

Irreversibility and entropy production.—Irreversibility and
entropy production: In a fluid-dynamical setting, it is very
easy to understand the role of the radial σ mode: Due to its
diffusive character, it is directly responsible for the irre-
versibility of the RG flow and RG transformations in
general. Diffusion is a particular example of a dissipative
process, which is irreversible and increases the entropy of
the system.19 The dissipative and irreversible character can
be seen as a “thermodynamic” version of the irreversible
Kadanoff block-spin transformations [104,109,158].Hence,
the dissipation clearly singles out theRG time t as a temporal
direction, because it introduces a “thermodynamic arrow of
time” and “thermodynamic time asymmetry” via entropy
production [159]. This also explains why

t ¼ − ln

�
k
Λ

�
ð107Þ

(including the minus sign) is a natural choice for
a temporal coordinate in higher dimensions, see also
Refs. [26,148,149,152,160].
Interestingly, the irreversibility and the dissipative char-

acter of the system is lost if one does not include the full
field dependence of the effective potential in the flow
equation, but instead uses a truncated system like the Taylor
expansion (94). Then, the system of coupled ODEs for the
vertices can theoretically be integrated in either direction in
RG time, as long as it consists of a finite number of
couplings.20 The most extreme examples are the RG flows

of one single t dependent coupling, e.g., the quartic
coupling of ϕ4 theory or the QCD β function [161–164],
see also the textbooks [39,40]. Here the integration to both
higher and smaller RG scales is possible, which is the well-
known result for the universal one-loop β function and is an
artifact of the restriction (truncation) to a finite number of
couplings [109]. However, this reversibility of RG trans-
formations is not possible for the field-dependent effective
potential, which is obvious from the advection-diffusion
equation (99), where entropy increases and the information
about the initial condition in the UV cannot be recovered
from the IR anymore.
This point of view was already shared, presented, and

discussed by K. G. Wilson: In Ref. [109] he pointed out
the differences between his “coarse-graining” version of
the (F)RG, which is also applicable in highly nonpertur-
bative regimes, and the RG flow equations used by C.
Callan, K. Symanzik, M. Gell-Mann, F. Low, G. t’Hooft, S.
Weinberg, H. Georgi, D. Politzer et al. to calculate the
running of a single (or small number of) coupling con-
stants, which solely describes a system correctly in a
perturbative regime.
The irreversibility of the RG flow and entropy

production is also directly related to the presence of
discontinuities in the solution, which can arise from
the advective contributions to the flow. As shown in
Refs. [26,27,31,118] for the large-N limit, a shock wave
arises when the weak solution of the PDE is multivalued.
The correct solution is usually constructed by means of the
Rankine-Hugoniot condition [78,79,150,156,165,166].
This would lead to ambiguities when one tries to invert
the flow (integrating backwards in time) in the presence of
a shock. Hence, shock formation is an irreversible process
and produces entropy. In summary, these are further strong
arguments why the assumption of expandability of the
effective average action in terms of vertices as well as the
truncation of the system should in general be considered
with care.
Therefore, it would be extremely interesting to explicitly

construct an entropy function for the flow equation, i.e., a
quantity that is either nondecreasing or nonincreasing
under the RG transformations during the RG flow (depend-
ing on the sign convention), and that is a functional of the
quantity uðt; xÞ. The entropy for the flow equation will be a
helpful instrument to design a stable numerical scheme for
generic truncations [78,79,150] and will also highlight
general properties of the RG flow. In this context we also
have to mention the recent publication [93] by J. Cotler and
S. Rezchikov who were able to interpret the Polchinski
equation as an “optimal transport gradient flow of a field-
theoretic relative entropy” thus establishing a firm and
explicit connection between an information-theoretic
entropy and (F)RG flows.
Additionally, a numeric entropy (function) might provide

a direct link to the C theorem (A theorem) [74,147,167–172],

19Interestingly, Ref. [147] comes to the same conclusion arguing
in reverse order: “Some of the information on the ultraviolet
behavior of the field theory is lost under renormalization trans-
formationswith t > 0, since in the field theory it is not legitimate to
examine correlations at scales smaller than the cutoff. We would
therefore expect that a motion of the spaceQ [a change of the set of
all couplings] under the influence of the renormalization group
would become an “irreversible” process, similar to the time
evolution of dissipative systems.” We remark that also Ref. [148]
stated that a termof secondorder in field space derivatives in related
RG flow equations “[…] corresponds to a dissipation in the flow
and is responsible for the semigroup property of the RG.”

20In momentum space this enables an integration to higher
energy scales, which corresponds to a reversion of the coarse-
graining in position space. More generally speaking, this implies
that it is possible to resolve the microphysics from the macro-
physics. Both is physically not possible and solely an artifact of
the truncation.
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which states that in certain QFTs there exists some positive
real function Cðfgig; tÞ, which depends on all coupling
constants of the QFT and which is monotonically increas-
ing21 during RG flows (transformations), while it stays
constant at (critical) fixed points,

d
dt
Cðfgig; tÞ ≥ 0: ð108Þ

Here, fgig denotes the set of all (possibly infinitely many)
dimensionless coupling constants. In contrast to previous
formulations [173–179], a nonlocal version, which is
directly linked to the numerical entropy function (similar
to versions presented in Refs. [74,148,160] for related field-
dependent flow equations), would not rely on expandability
in the couplings or vertices and could naturally display the
dissipative character of RG transformations, which was
already described by Refs. [147,148]. Fixed-point solutions
of the RG flow would directly correspond to steady-state or
thermal-equilibrium solutions [78] in the fluid-dynamical
picture.22 A caveat at this point is that a C function is based
on the rescaled dimensionless RG flow equations. Hence,
also a numerical entropy should be formulated in this
framework, if one seeks a direct link to a C function. The
dimensionless flow equations in the LPA can be recast in
terms of conservation laws, which might be a good
starting point.
An explicit discussion of (numerical) entropy for the

zero-dimensional Oð1Þ model as well as possible links to C
functions is discussed in great detail in part II of this series
of publications [33]. The situation for the OðNÞ model in
the limit N → ∞ is discussed in Appendix E of part III in
this series of publications [31]. The construction of an
explicit (numerical) entropy has proven to be elusive in the
case of finite N > 1 for the OðNÞ model [31,33] due to
the explicit position dependences in Eqs. (97) and (96) and
the related internal source terms, cf. Eq. (102).

Generalizations.—Before we turn to the numerical imple-
mentation of the RG flow equation for uðt; σÞ, we briefly
comment on the generalization of the fluid-dynamical
picture to RG flow equations in higher-dimensional
QFTs, systems with more (field-dependent) couplings,
and RG flow equations that involve fermions.

In higher-dimensional QFTs, the fluid-dynamical inter-
pretation of the RG flow of the effective potential survives,
see for example Ref. [26,27,32,140]. A difference is that in
higher dimensions the RG time enters as the negative
logarithm of the ratio of the RG scale k and the UV
reference scale Λ, see Eq. (107), while in zero dimensions
t just parametrizes some mass-like scale rðtÞ, see Eq. (8).
Furthermore, the fluxes gain further t dependent prefactors
via the momentum integrals of the trace in the FRG
equation. This leads to a different time scaling but does
not affect the overall discussion. The inclusion of further
field-independent but scale-dependent couplings (such as a
scale-dependent Yukawa coupling) adds ODEs to the
advection-diffusion equation for the effective potential,
which does not spoil its conservative fluid-dynamical
character. It is currently investigated by us and collaborators
[27,141] whether the inclusion as well as the conservative
formulation of further field-dependent couplings (such as a
field- and scale-dependent wave-function renormalization
Zðt; φ⃗Þ in higher-dimensionalmodels) is possible. However,
this analysis is beyond the scope of the presentwork andwill
be presented elsewhere. In any case, simply adding fermions
in the LPA does not destroy the fluid-dynamical character of
the RG flow equation at all: On the level of the LPA for the
RG flow equation of the effective potential, the contribu-
tions from fermion loops can be interpreted as a source/sink
term, which only depends on σ, i.e., the spatial position x.
For a detailed discussion of such fermionic source/sink
terms at zero and nonzero temperature and especially quark
chemical potential we refer the interested reader to Ref. [32].
Another possible generalization concerns models with more
than one invariant of the underlying symmetry group of the
model and respective condensation directions in field space,
see, e.g., Refs. [181–186]. Here, the fluid-dynamical frame-
work should still be applicable. However, a suitable iden-
tification of a complete basis of field-space directions with
“spatial directions” of the fluid-dynamical problem and a
clear separation of the single contributions into advection,
diffusion, and source terms might be challenging and calls
for future investigations—especially when it comes to an
actual numerical implementation. For first attempts of
generalizing our findings to a quark-meson-diquark model,
we refer to Ref. [187].
Summarizing we find that the fluid-dynamical interpre-

tation of flow equations has tremendous benefits, because it
allows for a rather intuitive understanding of the dynamics
of the system. Furthermore, it allows for a novel, physically
intuitive interpretation of the RG flow and provides an
understanding of its irreversibility. Finally, it opens up the
opportunity to employ extremely powerful numerical tools
from computational fluid dynamics, which are discussed in
the next two sections. Phenomena discussed within this
section are observed, quantified, and visualized in Sec. V,
in recent and parallel works [26,27,33], and in parallel and
upcoming publications [32,34,153].

21It can also be defined as a monotonically decreasing
function. This flip of sign corresponds to the difference of the
mathematicians’ and physicists’ definition of entropy. We chose
to the “thermodynamic convention” of increasing entropy for this
and subsequent publications.

22This actually brings up the interesting question whether
previous studies about global fixed-point solutions for field-
dependent flow equations, which seemed to deliver interesting
results, e.g., Refs. [91,148,180], should be reanalyzed from the
fluid-dynamical steady-flow perspective, especially regarding
their interpretation and the spatial discretization methods [78].
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B. Finite-volume method

In this section we discuss numerical solution schemes for
advection-diffusion equations23 with source terms of the
generic type

∂tuðt; xÞ þ
d
dx

F½t; x; uðt; xÞ�

¼ d
dx

Q½t; x; uðt; xÞ; ∂xuðt; xÞ� þ S½t; x; uðt; xÞ�: ð109Þ

Whether S acts as a source or sink in the dynamics of
uðt; xÞ depends on its explicit form. Nevertheless we will
refer to S as source term for convenience for the scope of
this paper. In the following, we occasionally suppress the t
and x dependences of u, F, Q, and S for the sake of
simplicity. Equation (109) is a partial differential equation
describing the evolution of the conserved quantity u≡
uðt; xÞ in one spatial (x) direction and one temporal (t)
direction. Depending on the problem at hand these two
directions are not necessarily identical with physical spatial
and temporal dimensions of reality, but for the following
discussion we denote them as such. The function F½u�≡
F½t; x; uðt; xÞ� is a (nonlinear) advection flux, Q½u; ∂xu�≡
Q½t; x; uðt; xÞ; ∂xuðt; xÞ� is a (nonlinear) diffusion(dissipa-
tion) flux and S½u�≡ S½t; x; uðt; xÞ� is a source term. The
concepts discussed in the following apply directly to
systems of M conserved quantities u → fu1;…; uMg and
can be generalized beyond one spatial dimension to dþ 1
dimensional space-time ðx; tÞ → ðx⃗; tÞ ¼ ðx1;…; xd; tÞ.
Equations or systems similar or even identical to
Eq. (109) are often referred to as conservation laws and
appear in many areas of the natural sciences, engineering,
and economics. They are extensively studied in the field of
computational fluid dynamics.

Consider the advection-diffusion equation (109) with
specified F, Q, and S in a finite computational domain
Ω ¼ V × ½t0; tN �, where V ⊂ R1 denotes the spatial volume,
with an initial condition uðt0; xÞ and Dirichlet (Neumann)
boundary conditions specifying ð∂xÞuðt; xÞjx∈∂V . The ques-
tion is how to evolve the initial condition in time from t0 to
tN > t0 to acquire a solutionuðtN; xÞ respecting the specified
boundary conditions. For most problems of the type (109) an
analytic solution is not known or is even known to be
nonexistent. Strategies for finding numerical (weak) solu-
tions are required. Numerical schemes in the broad class of
so-called finite-volume (FV) methods are very popular for
the numerical solution of PDEs describing the conservation
or balance of quantities. Alternative high-resolution shock-
capturing (HRSC) schemes in modern computational fluid
dynamics are among others finite-difference schemes includ-
ing flux limiters and numerical viscosity or finite-element
methods.
The concept that all numerical FV methods share is a

discretization of the computational domain into space-time
control volumes Vj × ½tn; tnþ1�, where the set of spatial
control volumes Vj covers the spatial computational
domain V. Integrating Eq. (109) over such a control volume
centered at x, using the divergence theorem (Gauss-
Ostrogradsky theorem) on the fluxes and introducing the
sliding cell average

ūðt;xÞ≡ 1

jVjj
Z
Vj

dξuðξ; tÞ; ð110Þ

where Vj ¼ fξ∶jξ − xj ≤ Δx=2g we arrive at an equivalent
integral form of Eq. (109),

ūðtnþ1;xÞ¼ ūðtn;xÞ− 1

Δx

�Z
tnþ1

tn
dτF

�
τ;xþΔx

2
;u

�
τ;xþΔx

2

��
−
Z

tnþ1

tn
dτF

�
τ;x−

Δx
2
;u

�
τ;x−

Δx
2

���
þ…: ð111Þ

Here, the ellipsis denotes the corresponding integrals for
the diffusion and the source term. The solution of Eq. (111)
presents the central challenge for an explicit FV scheme.
A central aspect of each practical FV scheme is an

appropriate and informed choice of the space-time control
volumes which, depending on the scheme and problem at
hand, might change during the time evolution. Given a set
of control volumes and a corresponding set of cell averages
ūðtn; xjÞ≡ ūnj the time evolution to tnþ1 ≡ tn þ Δt requires

the solution of the Riemann problems [78,79,150,157,188]
at each cell interface. Part of these problems are the fluxes
through the cell boundaries. The computation of those
fluxes requires a reconstruction of the values of u on the
cell interfaces located at xjþ1

2
, which we denote as un

jþ1
2

,

from the given set of cell averages ūnj . This is usually done
by means of a polynomial approximation respecting the
given cell averages of the neighboring cells. The order of
the chosen approximation is one of the parameters con-
tributing to the overall spatial order (of the error) of the
scheme at hand.
Given the cell averages ūnj and fluxes through the cell

interfaces at t ¼ tn it remains to solve theRiemann problems
at the cell interfaces. The solution of the Riemann problem

23Oftentimes, such equations are also referred to as “con-
vection-diffusion equations.” The semantically correct term is
nevertheless “advection-diffusion equation” because “convec-
tion” includes also diffusive processes besides the transport by
bulk motion (advection), see also Ref. [78].
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amounts to the exact evaluation of the flux integrals on
the right-hand side of Eq. (111). Depending on the com-
plexity of the underlying conservation equation an exact
solution of the Riemann problems at the cell boundaries
might be either impossible or unfeasible. Most explicit FV
schemes, especially those for general advection-diffusion
equations, either use approximate Riemann solvers (e.g.,
the Roe [189] or the HLLE [190,191] solver) or do not
require Riemann solvers at all (e.g., the KT [192] scheme).
For a pedagogic introduction into the broad field of FV
methods and HRSC schemes in general we refer the
interested reader to Refs. [78,79,150,156,157] and refer-
ences therein.
In the following section we will introduce a particular

FV scheme, which we have chosen for the numerical
solution of the RG flow equations because of its flexibility,
efficiency, and relative simplicity.

C. Kurganov-Tadmor (KT) central scheme

In this section we will summarize the central scheme
presented in Ref. [192] by A. Kurganov and E. Tadmor,
which we will refer to in the following as KT scheme.
The KT scheme can be implemented and applied as a
black-box solver for systems of the type of Eq. (109).
Apart from the PDE with its initial and boundary con-
ditions the only additional information about the PDE
required for its solution using the KT scheme is j ∂F

∂u j or
the spectral radius of the Jacobian of F½u� when con-
sidering systems of conserved quantities, see Eq. (115)
and the related discussion. The scheme does not require a
Riemann solver of any kind and as such does not rely on
a characteristic decomposition of the advection flux.
The KT scheme provides a direct method for evaluating

the flux integrals on the right-hand side of Eq. (111).
The main focus lies on the treatment and implementation
of the flux integrals for the advection flux F½u�, which is
kind of a natural approach, because the advection flux
determines the characteristic velocities in an advection-
diffusion equation. The diffusion and source terms are
treated separately and will be discussed at the end of this
subsection.
The KT scheme admits a meaningful tnþ1 − tn ≡

Δt → 0 limit in the context of Eq. (111) and is thus
an improvement on it predecessor the Nessyahu-Tadmor
(NT) scheme [193] with which it shares its piecewise-
linear MUSCL (monotonic upstream-centered scheme
for conservation laws) reconstruction [194]. We will
focus on the KT scheme in its so called semidiscrete
from—in the limit Δt → 0—which involves only an
explicit spatial discretization. The KT scheme is for-
mally second-order accurate in the spatial direction and
as such an improved version of the first-order accurate
Lax-Friedrichs (LxF) scheme [195,196]. A semidiscrete
form reduces the PDEs (109) or equivalently (111) to a
set of coupled ODEs, which can be solved by a large

class of general-purpose ODE solvers. This is especially
useful when working on stiff problems or PDE systems
coupled to additional ODEs. We will proceed with the
introduction of quantities involved in the semidiscrete
form (126) of the KT scheme. The following quantities
are especially relevant for the numerical advection
flux (122).
Consider a set of volume averages ūnj at tn based on an

equidistant24 grid of volume cells Vj ≡ ½xj−1
2
; xjþ1

2
�, with

Δx ¼ xjþ1
2
− xj−1

2
.

The time evolution of the averages ūnj at tn to averages
at ūnþ1

j at tnþ1 on the same volume grid is a three-step
process:
(1) The piecewise-linear MUSCL reconstruction is

computed from the cell averages:

ũðtn;xÞ¼
X
j

fūnj þð∂xuÞnj ðx−xjÞg1½xj−1
2
;xjþ1

2
�; ð112Þ

where the sum runs over all volume cells. The
reconstruction step is needed to gain access to the
function values ũðtn; xÞ. The reconstruction uses
approximations to the exact derivatives ð∂xuÞnj by
employing a scalar total variation-diminishing
(TVD) reconstruction [78,79,198],

ð∂xuÞnj ¼
ūnjþ1 − ūnj

Δx
ϕ

 
ūnj − ūnj−1
ūnjþ1 − ūnj

!
; ð113Þ

with a TVD limiter ϕðrÞ. An overview of TVD flux
limiters can be found, e.g., on the webpage [199], in
Refs. [78,79], or in Sec. 9.3.1 of Ref. [150]. Here,
we follow Ref. [192] and use the so-called minmod
limiter [200],25

ϕðrÞ ¼ max½0;minð1; rÞ�: ð114Þ

The limiter ϕ is used in Eq. (113) to limit the slopes
during the reconstruction process. This is crucial to

24The generalization of the KT scheme to nonuniform grids is
on a conceptual level straightforward and especially useful
for higher-dimensional extensions and for adaptive or moving
mesh variants, see, e.g., Ref. [197]. Its implementation is of
course much more challenging and not needed in this work.
However, in the context of FRG flow equations this might be
relevant for models with multiple condensate directions, see, e.g.,
Refs. [181–186].

25We also implemented and tested other flux limiters in the
context of FRG flow equations, which however did not influence
our numerical results very much. An optimization of the choice of
flux limiters with regard to the overall runtime could be part of
future work.
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prevent spurious oscillations around discontinuities,
e.g., shocks, in high-resolution schemes like the KT
scheme. The KT scheme can also be used with
higher-order reconstruction schemes26 to increase
the spatial accuracy of the scheme, which is not
needed for this work.
When using a piecewise-constant or -linear

reconstruction the cell averages ūnj coincide with
the midpoint values unj . While we employ a piece-
wise-linear reconstruction, we still maintain the
distinction between averages and midpoint values
for the sake of clarity.

(2) The time step from tn to tnþ1 is performed by
computing the flux integrals on the right-hand side
of Eq. (111) using the reconstruction ũðtn; xÞ from
Eq. (112) and carefully chosen control volumes
discussed below. In the limit tnþ1 − tn ≡ Δt → 0
only the expressions for an

jþ1
2

, un;−
jþ1

2

, and un;−
jþ1

2

from

Eqs. (115), (116), and (117) respectively are relevant
for the semidiscrete KT scheme. The other quantities
discussed for this second step of the KT scheme are
however necessary to understand the underlying
algorithm.
At each cell interface xjþ1

2
the respective local

speed of propagation an
jþ1

2

is estimated using

an
jþ1

2

≡max

����� ∂F
∂u

½un;þ
jþ1

2

�
����;
���� ∂F
∂u

½un;−
jþ1

2

�
����
	
; ð115Þ

with the left and right intermediate values un;∓
jþ1

2

of

ũðtn; xÞ at the cell interface xjþ1
2
:

un;−
jþ1

2

¼ ūnj þ
Δx
2

ð∂xuÞnj ; ð116Þ

un;þ
jþ1

2

¼ ūnjþ1 −
Δx
2

ð∂xuÞnjþ1: ð117Þ

Formultivalued conserved quantities u¼fu1;…;uMg
the KT scheme of Ref. [192] is limited27 to hyperbolic
advection fluxes signaled by a nondegenerate eigen-
value spectrum λ1 < … < λM of the Jacobian ∂F

∂u for
all x, t, and u, since in this case the local speed of
propagation is computed using the spectral radius
ρðMÞ≡maxi jλiðMÞj in Eq. (115).
Using the estimated local speed of propagation, a

space-time control volume ½xn
jþ1

2
;l
;xn

jþ1
2
;r
�×½tn;tnþΔt�

around each cell interface xjþ1
2
is chosen. The

spatial extent corresponds to the domain which
is causally affected by information propagating
with the local velocities away from the cell inter-
face at xjþ1

2
. The flux integrals of Eq. (111) are

performed on these space-time control volumes
separately using the midpoint rule to approximate
the flux integrals and leading to averages ω̄nþ1

j and

ω̄nþ1
jþ1

2

based on the new intermediate spatial grid

spanned by the points

xn
jþ1

2
;l
¼ xjþ1

2
− an

jþ1
2

Δt; ð118Þ

xn
jþ1

2
;r
¼ xjþ1

2
þ an

jþ1
2

Δt: ð119Þ

In the regions ½xn
j−1

2
;r
; xn

jþ1
2
;l
� the solutions under-

lying the computed averages ω̄nþ1
j are smooth

while the solutions underlying the computed aver-
ages ω̄nþ1

jþ1
2

are nonsmooth based on the regions

½xn
jþ1

2
;l
; xn

jþ1
2
;r
�. Details of this step can be found in

Ref. [192].
(3) A MUSCL-type piecewise-linear reconstruction

based on ω̄nþ1
jþ1

2

and ω̄nþ1
j is used to project these

averages back onto the original uniform grid
spanned by xjþ1

2
. This results in a fully discrete

second-order central scheme, see Eq. (3.9) of
Ref. [192], which gives an algebraic expression
for ūnþ1

j in terms of the averages26Examples for such improvements are the use of the third-
order central weighted essentially nonoscillatory (C-WENO)
reconstruction [201,202] outlined in Ref. [203], the fifth-order
WENO scheme (WENO5) [204,205] employed in Ref. [206],
or the fifth-order monotonicity-preserving (MP5) reconstruction
[207] used in Ref. [208]. WENO schemes were first introduced in
Ref. [209] and use polynomial reconstructions based on smooth-
ness indicators. In regions where the solution is estimated to be
smooth high-order polynomials are used, while in regions with
large gradients lower-order polynomials are employed in order to
ensure an essentially nonoscillatory [201] interpolation and a
TVD reconstruction. The MP5 scheme was first introduced in
Ref. [207] and uses a limiting procedure together with a fourth-
order polynomial reconstruction. The MP5 reconstruction does
not require smoothness indicators and performs favorably when
compared to WENO in terms of speed and accuracy according to
Ref. [210].

27The KT scheme of Ref. [192] can be improved using refined
estimates for the local speed of propagation. In Ref. [211] the
KT scheme is refined by employing left- and right-sided local
speeds an;∓

jþ1
2

, which are extracted from the eigenvalue spectrum

of the Jacobian ∂F
∂u. A further improvement in terms of estimates

of local speeds of propagation engineered for nonconvex hyper-
bolic (systems of) conservation laws is presented in Ref. [206]
using further information about the eigensystem of the Jacobian
∂F
∂u. When an explicit evaluation of the Jacobian is impossible
or unfeasible numerical approximations can be employed
[192,212,213]. For the numerical applications in this paper, the
rather simple estimate of Eq. (115) has proven to be sufficient. For
specific computations in part III in this series of publications [31]
we additionally employed the improved scheme of Ref. [211].
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fūnj−2; ūnj−1; ūnj ; ūnjþ1; u
n
jþ2g ð120Þ

and fan
j�1

2

g. A pictographic representation of the

multistep evolution procedure with the involved
quantities and grids can be found in Fig. 3.2 of
Ref. [192]. The numerical viscosity of this second-
order scheme isOðΔx3Þ and does not depend on Δt,
which is an improvement when compared to the Δt
dependent numerical viscosities OðΔx2=ΔtÞ and
OðΔx4=ΔtÞ of the LxF and NT schemes, respec-
tively [192].

The Δt independent numerical viscosity allows for a
controlled limit Δt → 0, resulting in a reduction to a
practical semidiscrete scheme in the conservative form
[192], which can be implemented straightforwardly:

∂tūj ¼ −
Hjþ1

2
−Hj−1

2

Δx
þ…; ð121Þ

where the ellipsis denotes the diffusion and source fluxes.
The numerical advection fluxes Hjþ1

2
are given by

Hjþ1
2
≡

F½t; xjþ1
2
; uþ

jþ1
2

� þ F½t; xjþ1
2
; u−

jþ1
2

�
2

− ajþ1
2

uþ
jþ1

2

− u−
jþ1

2

2
: ð122Þ

This semidiscrete scheme is second-order accurate in Δx
and can be used in conjunction with various ODE time-step
algorithms (in this work, we use Mathematica’s NDSolve
[138]). The KT scheme for a position-independent advec-
tion flux is conservative, meaning detailed balance at the
cell interfaces is maintained. It is also total variation
diminishing/nonincreasing (TVD/TVNI) [78,79,198]28

when used with appropriate flux limiters like the minmod
limiter (114).
So far we only considered the advection term ∂xF½u� in

the discussion of the KT scheme. The explicit treatment of
source and diffusion fluxes in the semidiscrete KT scheme
is as follows:
(1) If the source term is independent of u and of type

Sðt; xÞ ¼ ∂xsðt; xÞ, it can be integrated directly and

contributes ðsjþ1
2
− sj−1

2
Þ=Δx with sjþ1

2
≡ sðt; xjþ1

2
Þ

to the right-hand side of Eq. (121). Otherwise, if
S½u�≡ S½t; x; uðt; xÞ� suitable approximations, like
S½t; xj; ūjðtÞ� may be used. For a detailed discussion
source/sink terms arising in the FRG treatment of
higher-dimensional QFTs we refer the interested
reader to Ref. [32] and especially Appendix E of the
aforementioned publication.

(2) When considering a nonlinear diffusion flux
Q½u; ∂xu� Eq. (109) is a potentially strongly degen-
erate parabolic equation (system) admitting poten-
tially nonsmooth solutions. In the KT scheme the
hyperbolic and parabolic part of the PDE (109) are
treated simultaneously based on the strict splitting
between F and Q. Kurganov and Tadmor [192]
presented a discretization of the diffusion flux based
on a kind of central-difference approximation,

Pjþ1
2
¼ 1

2
Q

�
t; xj; ūj;

ūjþ1 − ūj
Δx

�

þ 1

2
Q

�
t; xjþ1; ūjþ1;

ūjþ1 − ūj
Δx

�
: ð123Þ

An alternative second-order discretization like the
one put forward in Appendix B of Ref. [214] can
also be successfully employed: If the diffusion flux
can be written as

Q½t; x; u; ∂xu� ¼ φ½t; x; u� · Q̃½t; x; ∂xu�: ð124Þ

then

Pjþ1
2
¼ φ

�
t; xjþ1

2
;
1

2



uþ
jþ1

2

þ u−
jþ1

2

��

· Q̃

�
t; xjþ1

2
;
ūjþ1 − ūj

Δx

�
; ð125Þ

which can be applied for the RG flow equation (97)
under considerationwithφ½t;x;u�¼1 and Q̃½t;x;∂xu�¼
Q½t;∂xu�, since Q has no explicit position dependence
when using the formulation in σ, cf. Eq. (101). Both
approaches (using Eq. (123) or (125) for the numerical
diffusion flux Pjþ1

2
) were successfully employed in the

context of this work for the diffusion flux (101) without
visible differences in quality. Still, all numerical results
in Sec. Vare obtained using the formulation (123). For
improved KT-type schemes employing higher-order
reconstructions (like, e.g., C-WENO/WENO5orMP5)
higher-order discretizations for the diffusion flux are
used like the fourth-order one put forward in Eqs. (4.9)
and (4.10) of Ref. [203].

The full semidiscrete KT scheme including advection,
diffusion, and source flux is given by

28This property is important for the resolution of shocks
and discontinuities. A TVD scheme does not produce spur-
ious oscillations around discontinuities. For a TVD schemeP

j jūnþ1
jþ1 − ūnþ1

j j ≤Pj jūnjþ1 − ūnj j holds between all time steps,
which is why the more concise expression is total variation
nonincreasing, cf. Sec. 9.2.2 of Ref. [150]. The total variation
TV½fūjg� ¼

P
j jūjþ1 − ūjj is a discrete measure for the arc-

length of uðt; xÞ. In the subsequent parts II and III in this series of
publications [31,33] we show that the TV can serve as a
(numerical) entropy for the zero-dimensional OðNÞ model with
N ¼ 1 and N → ∞ and might provide a link to the formulation of
the C function in truncated flow equations [147].
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∂tūj ¼ −
Hjþ1

2
−Hj−1

2

Δx
þ
Pjþ1

2
− Pj−1

2

Δx
þ source: ð126Þ

Specific spatial boundary conditions ð∂xÞuðt; xÞjx∈∂V
manifest themselves in the KT scheme in the choice
of volume averages for so-called ghost cells. For the
evaluation of the fluxes for the first two (ū0 and ū1) and
last two (ūn−2 and ūn−1) cell averages ghost cells out-
side the computational domain are required when consid-
ering n volume cells, see, e.g., Refs. [78,79] for a detailed
discussion. The ghost cells are u−2, u−1, un, and unþ1

centered at x−2, x−1, xn, and xnþ1, respectively. Depending
on the problem and computational domain at hand a
multitude of different boundary conditions can be imple-
mented by an appropriate choice or reconstruction of these
averages for the ghost cells. The specific boundary con-
ditions for the RG flow equations in this work are discussed
at length in Sec. IV D below.
At this point we have to remark that the original

KT numerical scheme presented in Ref. [192] was
constructed for position- and time-independent advection
and diffusion fluxes. Since we employ the KT scheme in
its semidiscrete form a resolution of potentially highly
complicated and nonlinear dynamics in t is possible and
ultimately outsourced to the ODE solver. The spatial
discretization of the advection term (100) in the semi-
discrete KT scheme seems to be able to cope with the
explicit position dependence in F½t; x; u� when evaluating
the numerical fluxes at the appropriate cell interfaces,
cf. Eq. (122). In the scope of this paper we could not
trace any practical problems back to the explicit position-
and time-dependence of the advection and diffusion
fluxes. The comparisons in Sec. V between results
obtained from a direct computation of correlation func-
tions using the generating functional (77) and the results
computed using RG flow equations via the KT scheme
(with t and x dependent fluxes) can be seen as hard tests
for both—the FRG methodology as well as the (slightly
modified) KT scheme—depending on the respective
perspective. In total, the precision of our results for
the nontrivial test cases gives us some confidence that our
approach is generically justified and the KT scheme is
suitable for our purpose. As mentioned in the paragraph
concerning entropy and irreversibility of Sec. IVA 2 the
explicit position dependences in both RG flow Eqs. (96)
and (97) prevents a direct usage of the total variation TV
as entropy functional for the zero-dimensional OðNÞ
model at finite N > 1. The internal source terms in
the primitive forms originating in the explicit position
dependences of F and Q before performing the spatial
derivatives lead to an increase in arc length during RG
time evolution, rendering the TV useless as an entropy
functional. For more details see the subsequent parts II
and III in this series of publications [31,33], especially
Appendix E of part III.

D. Boundary conditions and computational domain
in FRG flow equations

In the form of the conservation law (96) or (97), the
RG flow equation (84) is a nonlinear PDE which has
contributions of parabolic (diffusion terms) as well as
hyperbolic type (advection terms). In this subsection,
we specify the boundary conditions for Eq. (96) or (97)
in field space (the effective spatial x direction).
The correct implementation of field space (spatial)

boundary conditions is very important for the correct
numerical solution of PDEs [78,79]. For (nonlinear)
PDEs of elliptic type, the problem of solving them is also
referred to as boundary-value problem. For (nonlinear)
PDEs of hyperbolic and parabolic type, the spatial boun-
dary conditions are needed (in addition to the initial
condition) to make finding a (weak) solution a well-defined
problem. The latter case is also referred to as Cauchy or
initial-boundary-value problem. Thus, without explicitly
specifying the boundary conditions, e.g., of Neumann- or
Dirichlet-type, as well as the initial conditions, the problem
of finding a unique (weak) solution is actually ill-posed and
therefore impossible to solve—a well-known mathematical
fact with particular and severe implications in, e.g.,
classical electrodynamics [215], fluid dynamics [216],
soliton and instanton solutions of classical field equations
[217,218], general relativity [219–221], and other fields of
research. This also holds true for the FRG. However,
explicit boundary conditions and especially their numerical
implementation are rarely discussed the FRG literature,
with, e.g., Refs. [129–131,176] as notable exceptions.
For the derivative of the effective potential uðt; σÞ, we

find that the spatial boundary conditions must be imposed
at σ ¼ �∞, because the field space domain of uðt; σÞ is
given by R. Thus, when considering the flow equation on
the noncompact domain ð−∞;∞Þ the problem represents
a pure initial-value/Cauchy problem [78,79,156] and,
given the asymptotics of the flow equation and the initial
condition, explicit boundary conditions at x → �∞ are
not required. However, spanning a noncompact computa-
tional interval from −∞ to þ∞ is practically impossible
on a finite computational grid. A possible solution is a
compactification [137] of R to the interval ½−1;þ1�, via a
suitable mapping σ ↦ xðσÞ usually supplemented with
a mapping u ↦ vðuÞ rendering v finite on ½−1;þ1�.
Another popular solution is a truncation of the computa-
tion interval at a large value σmax ∼ xmax with a suitable
boundary condition [129,130,137,180]. We will return to
this issue below.
In any case, one of the boundaries at spatial infinity can

already be replaced by a finite value by making use of the
OðNÞ symmetry of the potential Uðt; φ⃗Þ and the flow
equations, which implies a Z2 antisymmetry of uðt; σÞ ¼
∂σUðt; σÞ,

Uðt; σÞ ¼ Uðt;−σÞ ⇔ uðt; σÞ ¼ −uðt;−σÞ: ð127Þ

ADRIAN KOENIGSTEIN et al. PHYS. REV. D 106, 065012 (2022)

065012-30



This reduces the spatial domain to the half-open interval
σ ∈ ½0;þ∞Þ, but now we need an additional artificial
boundary condition at σ ¼ 0, see, e.g., Ref. [130]. In pre-
vious studies, the use of the OðNÞ symmetry was usually
implemented right from the beginning by replacing the
variable φ⃗ by the OðNÞ invariant ϱ ¼ 1

2
φ⃗2, whose domain

is already by definition ½0;∞Þ.29 In this case one has to
define

uðt; ϱÞ≡ ∂ϱUðt; ρÞ ¼ 1

σ
∂σUðt; σÞ ¼ 1

σ
uðt; σÞ; ð128Þ

to obtain a flow equation for uðt; ϱÞ in a manifestly
conservative form, see Eqs. (96) and (97).
Before returning to the remaining boundary condition at

þ∞, we first consider the newly introduced artificial
boundary condition at x ¼ σ ¼ 0 or, correspondingly,
at ϱ ¼ 0.

1. Boundary condition at σ = 0

At first sight it might be appealing to formulate the
whole problem—the conservation equation and the boun-
dary condition at σ ¼ 0—in the variable ϱ. However,
we believe that a formulation in σ is more suitable and
easier to implement in our numerical setup.30 A key feature
of (nonlinear) hyperbolic/parabolic conservation equations
is that their weak solutions may exhibit nonanalyticities
in the form of shock and rarefaction waves etc., which
manifest themselves in the solution in cusps or disconti-
nuities in spatial direction during the time evolution.
These effects can develop during the time evolution
even if the initial condition is smooth/analytic see, e.g.,
Refs. [78,79,137,154,155,192,226]. As demonstrated in
Refs. [26,27,32,118,139,141,142] this also holds for

FRG flow equations, where nonanalyticities are inherent
properties of the effective IR potential UðtIR; σÞ. These
statements are also true for the point σ ¼ 0, where Uðt; σÞ
and uðt; σÞ do not need to be analytic, see Sec. V D. Hence,
there might be a scenario where the potential Uðt; σÞ,
although it is symmetric in σ, has a cusp at σ ¼ 0, which
would correspond to a jump in a weak solution for
uðt; σÞ ¼ ∂σUðt; σÞ at σ ¼ 0. If formulated in ϱ, any
scenario (analytic or nonanalytic at σ ¼ 0) merely corre-
sponds to some arbitrary value for uðt; ϱÞ ¼ ∂ϱUðt; ϱÞ at
ϱ ¼ 0, which seems to be of great advantage, because one
does not have to deal with possible discontinuities in the
conserved quantity u. Furthermore, the problematic factors
of 1

σ in the pion propagator and the advection flux (100),
which are diverging at σ ¼ 0, can be avoided when
formulating the flow equations in ϱ.
Nevertheless, a problem with the variable ϱ becomes

apparent when turning to the discretized form of u within
the FV scheme presented in Secs. IV B and IV C: FV
methods (and also other discretization schemes) usually
require ghost cells at the boundaries of the computational
domain, since the in- and outflows for the ith cell are
calculated from the cell averages ū of its neighboring cells,
cf., Eq. (120). However, initially these values are not
specified for the cells at the boundaries of the computa-
tional domain. Thus, artificial ghost cells must be intro-
duced and the numerical values for ū in these ghost cells
have to be implemented by hand or reconstructed from the
cells within the computational domain in accordance with
the boundary conditions [78,79]. In the second-order
formulation of the one-dimensional KT scheme one needs
two ghost cells at each of the two spatial boundaries,
cf. Eq. (120).
However, implementing ghost cells for uðt; ϱÞ at ϱ ¼ 0 is

conceptually difficult, because these ghost cells must be
centered at negative values for ϱ outside the computational
domain ½0;∞Þ, which by definition do not exist due to the
positivity of ϱ ¼ 1

2
σ2. A priori, it is therefore not clear how

numerical values ūðt; ϱiÞ should be assigned to ghost cells
at negative ϱi, because symmetry arguments cannot be
applied anymore.
Furthermore, it is also not a feasible option to move the

ghost cells to positive values of ϱi, such that the point ϱ ¼ 0
is no longer part of the computational domain. Namely,
having ghost cells centered at small but positive ϱi implies
that one has to extrapolate the numerical values ūðt; ϱiÞ to
these ghost cells and to the point ϱ ¼ 0 from the other
ordinary cells of the computational domain. However, the
functional behavior of uðt; ϱÞ is unknown for small ϱ and is
actually exactly what we want to calculate in the first place
by solving the PDEs. Thus, any extrapolation at small ϱ can
only be considered an educated guess. It is especially
dangerous, because the physical point will be part of the
extrapolated ghost cells if it is located at ϱ ¼ 0, which is
the case for all models in their symmetric phase [32],

29In any case, independent of the implementation of the
boundary condition itself, one should make use of symmetries
of the flow equations in numerical implementations. First of all,
this leads to a reduction of the number of computational grid
points in spatial direction, while keeping the spatial resolution
fixed, which significantly speeds up the calculations (independ-
ently of the specific numerical method for spatial discretization).
An additional consequence is the reduction of numerical errors: It
is highly unlikely that the numerical errors are symmetric in x, if a
symmetric interval around x ¼ σ ¼ 0 is used. This might lead to
an artificial breaking of the Z2 (anti-)symmetry by unbalanced
numerical errors. Although these errors might be tiny and almost
negligible they can be easily circumvented by exploiting the
symmetries. Using the symmetries of a problem is a standard
procedure in practical computations and of particular importance
in, e.g., numerical fluid dynamics and numerical (general)
relativity, see Refs. [222–225].

30We do not claim that it is impossible to formulate well-
defined discrete boundary conditions in ϱ at ϱ ¼ 0, as can be seen
for example in Refs. [26,27,31] for the specific case of the large-
N limit of theOðNÞmodel. However, we were not able to provide
a suitable discretization of the boundary condition at ϱ ¼ 0 in the
implementation of the FV method for flow equations that include
diffusion via the radial σ mode.

NUMERICAL FLUID DYNAMICS FOR ….. THE OðNÞ MODEL PHYS. REV. D 106, 065012 (2022)

065012-31



irrespective of the dimensionality of space-time. Con-
sequently, extrapolation errors at the physical point have
the potential to spoil the numerical values of all n-point
correlation functions, which are calculated at the physical
point via derivatives of u and contain the physics of the
model. Even if the physical point is at finite nonzero ϱ far
away from the ghost cells and the boundary at ϱ ¼ 0, any
kind of extrapolation at small ϱ leads to numerical errors,
because the diffusive contributions of the radial σ modewill
propagate this information from smaller to larger ϱ and
hence to the physical point. Similar problems in formulat-
ing appropriate boundary conditions at ϱ ¼ 0 also exist in
other discretization schemes like finite-difference or finite-
element methods.
There is one exception to this conclusion: In the large-N

limit of the OðNÞ model the flow equation for u reduces to
a pure advection equation. Studying the characteristic
velocities, which are given by ∂F=∂u, respectively, see
Eq. (104), we find that these cannot change their sign,
and information (or the conserved quantity u) is always
propagated via advection in the direction of smaller ϱ
or jσj. In this scenario, ghost cells can be positioned at
negative ϱi and the corresponding cell averages ūi in the
ghost cells can take any numerical value since information
from the ghost cells is never propagated back into the
computational domain and cannot cause any errors,
cf. Ref. [26,27,31]. Shifting the ghost cells into regions
of positive ϱ is still not suitable for the reasons already
discussed above.
In order to avoid all these difficulties when formulating

the problem in the variable ϱ, we suggest a formulation in σ
and an implementation of the boundary condition at σ ¼ 0.
The key argument for using σ instead of ϱ is that position-
ing ghost cells at negative σ poses no problem at all, since
negative σ exist in the first place. Furthermore, it is clear
how the cell averages ūðt; σiÞ in the ghost cells have to be
chosen: Using the antisymmetry (127), one merely has to
mirror the last physical cells of the computational domain at
σ ¼ 0 to the ghost cells (including a flip in sign). The only
issue that requires careful consideration is the choice of the
position of the first physical cell x0 next to σ ¼ 0: The flux
term of our PDE contains factors 1

σ via the pion propagators,
which diverge if evaluated at σ ¼ 0. Therefore, we must
avoid evaluating the fluxes F½t; x; uðt; xÞ� at x ¼ σ ¼ 0.
However, inspecting the KT scheme, we find that the fluxes

as well as the Jacobian ∂F½u�
∂u must only be evaluated at

the cell boundaries xj�1
2
, cf. Eqs. (115) and (122).

Consequently, the natural choice for the position of the
cell center x0 of the first physical cell in the computational
domain is at x ¼ σ ¼ 0, such that the in- and out-fluxes of
this cell are evaluated at x�1

2
, which is not problematic.

Incidentally, this automatically cures the problem of the
possibility of nonanalyticities in uðt; σÞ at σ ¼ 0: Even if
uðt; σÞ is discontinuous at σ ¼ 0 we do not run into

problems, because all numerical calculations are performed
on the level of cell averages ūðt; σiÞ. The cell average of an
antisymmetric function in a cell that is centered at σ ¼ 0
must always vanish identically, independent of all other
properties of the function, see also Ref. [130,131].
In summary, we switch from the open computational

interval ð−∞;þ∞Þ to the half-open computational interval
½0;þ∞Þ by means of the Z2 (anti-)symmetry using
ū−2ðtÞ ¼ −ū2ðtÞ, ū−1ðtÞ ¼ −ū1ðtÞ for the cell averages
in the ghost cells left of x0 ¼ 0 and ū0ðtÞ ¼ 0 for the cell
average in the cell at x0. This effectively corresponds to
reflective boundary conditions frequently imposed in
numerical fluid dynamics [78,79], cf. Fig. 3.

2. Boundary condition at σ → ∞
Now we return to the boundary condition at σ → þ∞.

Without loss of generality we discuss the interval σ ∈
½0;þ∞Þ since the situation in σ ∈ ð−∞; 0� follows from Z2

antisymmetry of uðt; σÞ.
We have already argued that there are no real boundary

conditions at spatial infinity on a noncompact domain. The
behavior of u at σ → ∞ is rather given by the asymptotics
of the FRG equation, which makes the PDE an pure initial-
value problem. The boundary condition at spatial infinity is
actually fixed implicitly: As long as the initial potential
Uðt ¼ 0; σÞ is bounded from below and grows faster than
σ2 for σ → ∞ both pion and sigma propagator tend to zero
for sufficiently large σ, such that the right-hand side of
the PDE (98) vanishes during the entire FRG flow. In the

FIG. 3. Second-order accurate FV implementation of the spatial
boundary condition for uðt; xÞ or ūiðtÞ, respectively, at x ¼ 0. We
use the fact that uðt; xÞ is an odd function in x by positioning the
first computational cell x0 at x ¼ 0, such that the cell average is
exactly zero, ū0 ¼ 0, which is true for uðt; xÞ which are analytic
(blue-dashed) as well as nonanalytic (green-solid) at x ¼ 0. The
ghost-cell averages can thus be fixed by setting ū−2 ¼ −ū2 and
ū−1 ¼ −ū1. Corresponding cell averages ūi are depicted as
horizontal bars (magenta-dashed and yellow-solid). This boun-
dary condition can be generalized to lower- and higher-order
accurate FV schemes as well as finite-difference or finite-element
schemes.
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fluid-dynamical picture this corresponds to vanishing
advection and diffusion fluxes (100) and (101) at σ→∞,
which is a zero-influx boundary condition for uðt; σÞ. The
derivative of the effective potential uðt; σÞ is therefore fixed
to its initial value uðt ¼ 0; σÞ at σ → ∞.
The limiting case, when the asymptotic behavior of the

initial UV potential is quadratic,

lim
σ→∞

Uðt ¼ 0; σÞ ∼ σ2; lim
σ→∞

uðt ¼ 0; σÞ ∼ σ; ð129Þ

is more delicate. In this case, the advection and diffusion
fluxes (100) and (101) do not vanish for σ → ∞ for all RG
times. However, for small RG times t ≈ 0, the fluxes are
actually independent of σ at large σ due to the constant
asymptotic slope of the initial condition uðt ¼ 0; σÞ. This in
turn implies that the in- and out-flux for all volume cells at
large σ only depend on t and must cancel exactly, such that
the net flux of these cells vanishes. Therefore, also in this
scenario uðt; σÞ is fixed to its initial condition at σ → ∞ not
only for small t, but rather for all RG times t. For late RG
times t → ∞, the advection and diffusion fluxes (100) and
(101) vanish anyhow, due to the derivatives of the regulator
shape functions in the numerators, i.e., ∂trðtÞ ¼ −Λe−t. In
the language of fluid dynamics, initial conditions with
quadratic asymptotics can therefore be interpreted as
boundary conditions with time-dependent but spatially
constant in-flux, cf. Examples 7 and 9 in Ref. [192].
However, both cases cannot be implemented directly on

a finite computational domain and we basically have two
options:
(1) We could try to map the interval ½0;∞Þ to a compact

interval [0, 1] via a suitable map σ ↦ xðσÞ. This also
includes a suitable mapping of u ↦ vðuÞ to keep the
values for the conserved quantity finite on [0, 1].
This option has the advantage that the correct
asymptotic behavior uðt; σÞ can be implemented
as boundary conditions for vðt; xÞ at x ¼ 1. How-
ever, the same question then arises as before in the
discussion of an appropriate choice of ghost cells for
negative values of ϱ: It is highly nontrivial how the
cell averages v̄i should be fixed for ghost cells which
no longer belong to the physical values of x within
the interval [0, 1]. Additionally, the two mappings
would introduce at least two new numerical func-
tional-mapping parameters. A suitable choice of
these parameters is not obvious. Still, these map-
pings would have to ensure dense grids and high
resolution around the physical point and low reso-
lution at large field values All this is extremely hard
to achieve. Therefore, we propose and favor another
option.

(2) The second option, which is our preferred choice,
is to split the physical domain ½0;∞Þ into a com-
pact domain ½0; σmax� and a noncompact domain
½σmax;∞Þ. Here, σmax should be chosen much larger

than the physical scales of the problem and
the position of the physical point, see, e.g.,
Refs. [26,32,129,130,141,180]. We will provide
explicit tests for an appropriate choice of σmax later
on in Sec. V. For the compact domain ½0; σmax�, we
keep a direct identification of the field σ and the
computational spatial variable x, thus x ¼ σ. For
higher-dimensional models this might be replaced
by a linear map of σ to a dimensionless spatial
variable x via appropriate rescaling with some
characteristic dimensionful quantity, e.g., the UV
cutoff Λ or a nonvanishing condensate. In any case,
this allows for a direct implementation of the
boundary condition at σ ¼ 0.
In the compact domain ½0; σmax�, we have to

ensure a high spatial resolution via a sufficiently
large number of cells, in order to capture all aspects
of the dynamics around the physical point. Explicit
tests to find an appropriate spatial resolution are also
presented in Sec. V.
For the noncompact domain ½σmax;∞Þ, instead of

using a discretization scheme like the FV method,
we suggest an expansion or approximation of uðt; σÞ
via polynomials or complete sets of functions with t
dependent expansion coefficients, which account
for the asymptotic behavior of the initial condition
uðt ¼ 0; σÞ for large σ. As discussed before, it is
expected that for large σ the deviations of uðt; σÞ
from the initial condition uðt ¼ 0; σÞ are small
during the FRG flow, such that a finite amount of
expansion coefficients should be satisfactory to
capture this minimal dynamics.
At the point σmax, the ghost cells for the FV

method in ½0; σmax� can therefore be fixed via the
values uðt; σÞ from the asymptotic expansion in the
noncompact interval ½σmax;∞Þ.

Interestingly, our numerical tests showed that, as long as
σmax is chosen sufficiently large, the fluxes at σmax are
already negligibly small. As a consequence, the deviation
of uðt; σÞ from the initial condition in the noncompact
interval ½σmax;∞Þ is extremely small and can be ignored. In
this case, the computational boundary conditions for the
ghost cells at σmax can be fixed via an extrapolation using
the asymptotics of the initial condition. For extremely high
spatial resolution, hence rather small Δx, even a simple
linear extrapolation might be sufficient.
On the other hand, choosing σmax rather large while

keeping a high spatial resolution in the compact computa-
tional domain ½0; σmax� requires a large number of cells.
However, this slows down the computations drastically. For
problems where this issue becomes relevant, we suggest to
further divide the compact domain ½0; σmax� into several
smaller subdomains. In each of these subdomains one can
implement the FV method with different spatial resolution
Δx for each domain. This ensures high resolution at small σ
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next to the physical point and also allows to truncate the
spatial interval at large σmax, while keeping a decent and
manageable total number of cells [26,27]. An alternative
approach would be switching from equally sized volume
cells on a uniform grid to a nonuniform (potentially
even moving/time dependent) grid, see, e.g., Ref. [197].
However, in the context of FRG flow equations this might
be relevant for models with multiple condensate directions,
see, e.g., Refs. [181–184]. In our test cases for the zero-
dimensional OðNÞ model the subdivision of the compact
interval ½0; σmax� or a formulation on nonuniform grids was,
however, not necessary.
We close the discussion of spatial boundary conditions

with some final remarks: We have discussed that the correct
implementation of spatial boundary conditions is of utmost
importance. Otherwise there is no guarantee for the
solution of a PDE and especially our FRG flow equations
to converge against the correct result. Additionally, we
remark that our specific choice and implementation might
not be the best option at hand for arbitrary (higher-
dimensional) models and arbitrary initial conditions within
the FRG framework. In the current context of the zero-
dimensional OðNÞ model initial conditions without a
proper large-jϕ⃗j asymptotics, e.g., ½2 − sinðϕ⃗ 2Þ�ϕ⃗ 2 or even
worse ½2 − j sinðϕ⃗ 2Þj�ϕ⃗ 2, and/or periodic potentials could
be a very interesting topics for further research.

V. ZERO-DIMENSIONAL FIELD THEORY
AS TESTING GROUND FOR FRG

After our general discussion of the theoretical basis for
the solution of FRG flow equations, we shall discuss
concrete applications in the following subsections. To this
end, we study the RG flow of various zero-dimensional
field theories which differ by distinct initial conditions.
Our choices for the initial conditions range from smooth
potentials to extreme choices featuring nonanalyticities.
Note that such extreme choices are not only relevant to
demonstrate the numerical performance and stability of
our implementation but also for phenomenological reasons.
In fact, in higher dimensions we expect nonanalytic
behavior to build up, e.g., in the IR limit, as associated
with spontaneous symmetry breaking and the emergence of
convexity of the effective action.

A. Test case I: Nonanalytic initial condition

Consider the following initial UV potential,

Uðφ⃗Þ ¼

8>><
>>:

− 1
2
φ⃗2; if φ ≤ 2;

−2; if 2 < φ ≤ 3;

þ 1
2
ðφ⃗2 − 13Þ; if 3 < φ;

ð130Þ

where φ ¼ jφ⃗j, cf. Fig. 4. The test case is designed this way
for the following reasons:

(1) All parameters of the potential Uðφ⃗Þ are by default
dimensionless and chosen to be approximately of
order one, such that scales can easily be compared
with each other.

(2) The UV potential UðσÞ has nonanalytical points
at σ ¼ 2 and σ ¼ 3, which correspond to dis-
continuities in its derivative uðσÞ. In the fluid-
dynamical context such discontinuities present a
Riemann problem and result in rarefaction waves.
In QFT and thermodynamics such discontinuities
can be associated with phase transitions, see
Appendix B. The nonanalytical behavior of this
potential makes commonly used techniques like the
FRG Taylor expansion inapplicable. Furthermore,
naive discretizations that rely on smoothness are
doomed to fail. One has to choose numerical
schemes that can handle this numerically challeng-
ing dynamics.

(3) The potential is initialized in the symmetry-broken
phase, with infinitely many degenerate minima at
σ ∈ ð2; 3�. Furthermore, the UV potential is neither
convex nor smooth. However, in the IR the OðNÞ
symmetry has to be restored and there must only
be one minimum at σ ¼ 0, due to the Coleman-
Mermin-Wagner-Hohenberg theorem. Furthermore,
for t → ∞ the potential has to be convex and
smooth, see Appendix B. This nontrivial transition
and complicated dynamics from the UV to the IR is a
numerically challenging test.

(4) Furthermore, we choose a potential which is asymp-
totically quadratic in σ. This is to ensure that the
large-σ boundary condition for uðt; σÞ is fully under
control and errors can be excluded, see Sec. IV D.
This allows for a high-precision analysis of all other
sources of numerical errors.

The reference values for the exact IR 1PI vertex functions
Γð2nÞ of the OðNÞ model are calculated numerically from

FIG. 4. The plot shows the UV potential UðσÞ (red-dashed) and
its first derivativeuðσÞ ¼ ∂σUðσÞ (blue, solid) of test caseEq. (130)
evaluated on the constant background field configuration.
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the UV potential (130) via the integral (77) using
Eqs. (73)–(75). They are listed in Table I for selected N.

1. General discussion of the FRG
flow—advection and diffusion

We start our analysis with a general discussion of the
FRG flow with initial condition (130).
To this end, we fix OðN ¼ 3Þ to include both diffusive

and advective contributions via the radial σ mode and
two pions. For N ¼ 3 the number of pions is reasonably
small and the (diffusive) effects of the σ mode remain
visible. Furthermore, we choose ½0; xmax ¼ 10� as the
spatial computational domain with 800 volume cells and
use the KT scheme from Sec. IV C for spatial discretiza-
tion. The initial cell averages ūiðt ¼ 0Þ are computed by
exact averaging31

ūiðt ¼ 0Þ ¼ 1

Δσ

�
U

�
σiþ1

2

�
−U

�
σi−1

2

��
; ð131Þ

using the UV initial condition (130). We use linear
extrapolation as spatial boundary condition at xmax. The
UV cutoff is set to Λ ¼ 106 at t ¼ 0. The integration is
performed with Mathematica’s ODE solver NDSolve [138]
with a PrecisionGoal and AccuracyGoal of 10 and stopped
in the IR at rðtIR ¼ 60Þ ≈ 10−20 using the exponential
regulator shape function (8). We find that these parameters
suffice to produce decent results, as discussed in the
following subsubsections. There, we quantitatively analyze
sources and severity of possible errors.
We first provide qualitative results of our numerical

methods in Figs. 5–7, where we show the FRG flow of the
effective potential Uðt; σÞ and its derivative uðt; σÞ ¼
∂σUðt; σÞ from the UV (blue) to the IR (red).

TABLE I. The table lists the (up to numerical-integration
errors) exact results for the Γð2nÞ of the OðNÞ model with the
initial UV potential (130) for selected N. They are obtained by a
high-precision one-dimensional numerical integration of the
expectation values hðϕ⃗ 2Þni using Mathematica’s numerical
integration routine NIntegrate [138] with a PrecisionGoal and
AccuracyGoal of 10. Here, we present the first ten digits only.

N Γð2Þ Γð4Þ Γð6Þ

1 0.1768130358 0.0520549107 0.0865733100
3 0.3973542395 0.1408641479 0.2249964322
10 0.8451440328 0.1519326337 −0.0691341063

FIG. 5. The FRG flow of the effective potential Uðt; σÞ (upper
panel) and its derivative uðt; σÞ ¼ ∂σUðt; σÞ (lower panel) for the
zero-dimensional Oð3Þ model with initial condition Eq. (130)
evaluated at t ¼ 0; 2; 4;…; 60 (integer values for t were chosen
for convenience and readability). The blue curves correspond to
the UV and the red curves to the IR. We used the exponential
regulator Eq. (8) with UV cutoff Λ ¼ 106. For the sake of
readability, the plot does not show the region x ¼ 5 to x ¼ 10,
because the tiny differences between uðt; σÞ and uð0; σÞ are not
visible in this region and vanish for large x ¼ σ anyhow.

FIG. 6. The RG flow of the derivative of the effective potential
uðt; σÞ ¼ ∂σUðt; σÞ for the zero-dimensional Oð3Þ model with
initial condition Eq. (130). This is a 3-dimensional rendering of
the flow displayed Fig. 5 (lower panel).

31Using the exact averages for ūiðt ¼ 0Þ has proven advanta-
geous in terms of achievable numerical precision in the IR
compared to taking the mid-point values of the exact derivative of
ūiðt ¼ 0Þ ¼ ∂σUðσÞjσ¼σi

when considering nonanalytic initial
conditions like Eqs. (130) or (141).
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In the beginning, i.e., in the UV, the system is in the
broken phase. This changes only marginally until t ≈ 7,
which indicates that the UV cutoff is chosen sufficiently
large. When rðtÞ reaches the scales of the model at t≳ 11
most of the dynamics takes place (symmetry restoration)
and uðt; σÞ changes rapidly and drastically until it freezes
out in the IR. In the IR the system is in the restored phase.
After t ≈ 26 the potential does not change anymore, which
indicates that one has reached a sufficiently small IR scale
to stop the integration. We render this statement more
precise in the following subsubsections. Note that the
evolution in t is logarithmic and corresponds to a change
in scale over 25 orders of magnitude. At first glance this
range sounds excessive, but its necessity is explained in
detail below.
During the FRG evolution one observes that diffusive

processes smear out the discontinuities at the nonanalytic
points at σ ¼ 2 and σ ¼ 3. We also find that the diffusion
acts in both directions—toward larger and smaller values
of σ—as expected from our discussion in Sec. IVA.
Nevertheless, the diffusion effects do not reach the com-
putational boundary, which is outside the plot range at
σmax ¼ 10. This suggests that σmax ¼ 10 is sufficiently
large. Additionally, we observe a propagation of the
conserved quantity u toward smaller values of σ via
advection. Close to the initial discontinuities these advec-
tive processes can be interpreted as rarefaction waves. In a
more pictorial language, the advection and diffusion “fill up
the pit” in uðt; σÞ at small values of σ by moving more and
more of the quantity u from larger values of σ to smaller σ
(via advection and diffusion) as well as from small negative
σ to small positive sigma (via diffusion). Eventually the
symmetry is restored and uðt; σÞ is smoothed toward the IR
by diffusion. Furthermore, the conserved quantity u does
not “pile up” at σ ¼ 0 after symmetry restoration, because

at negative σ exactly the opposite dynamics happens,
due to the Z2 antisymmetry of uðt; σÞ, which is encoded
in the boundary condition at σ ¼ 0, see Sec. IV D. The
differences between advective and diffusive contributions
become apparent when comparing the same system for
different N, see below.
From a numerical perspective, the KT scheme is able to

handle the highly nonlinear dynamics, including the non-
analyticities in uðt; σÞ, without any spurious oscillatory
behavior (under-/overshooting) and allows for a stable t
integration to extremely small IR scales.
For the sake of completeness and illustrative purposes,

we also provide the RG flow of the integral of uðt; σÞ,
i.e., the effective potential Uðt; σÞ, in Figs. 5 and 7. Here,
the integration constant was set to zero32 and the integration
was performed via Riemann summation33 of the discrete
cell averages,

Uðt; xiÞ ¼ Δx
Xi
j¼0

ūðt; xjÞ
ð1þ δj0 þ δjiÞ

: ð132Þ

Figure 7 perfectly illustrates the restoration of the Oð3Þ
symmetry of the potential Uðt; σÞ during the FRG flow via
“vaporization” of the infinitely many minima. Nevertheless,
we find that it is hardly possible to intuitively understand the
contributions of the radial σ mode and the pions to the FRG
flow on the level of Uðt; σÞ only. This complements the
discussion in Sec. IVA and lends support to our claim that
the fluid-dynamical interpretation of the FRG flow in terms
of uðt; σÞ is superior to the canonical formulation in terms of
Uðt; σÞ commonly used in the FRG literature.
Before discussing quantitative results and sources of

(numerical) errors in RG flows, we briefly return to the
interpretation of the radial σ mode as diffusion and the
interpretation of the pions as advection in the FRG flow
along the field space direction. To this end, we discuss FRG
flows for the same initial UV potential (130) as before, but
for different N. This corresponds to a different number of
pions in the flow and different advection velocities (104).
All other parameters remain unchanged. In addition to the
N ¼ 3 case in Fig. 5, we provide the RG flows of uðt; σÞ for
N ¼ 1, 10, 100 in Fig. 8.
The figure again demonstrates on a qualitative level that

the sigma mode enters the FRG as diffusion, while pions
enter as advection: Increasing the number of pions the
problem becomes more advection-driven exhibiting more

FIG. 7. The RG flow of the effective potential Uðt; σÞ for the
zero-dimensional Oð3Þ model with initial condition Eq. (130).
This is a 3-dimensional rendering of the flow displayed Fig. 5
(upper panel).

32Uðt; 0Þ ¼ 0 is dictated by our choice of normalization for the
zero-point function(s), see Eq. (4).

33At this point we should mention that numerical results for
Uðt; σÞ via Riemann summation should be treated with great
caution: Numerical errors in the cell averages ūðt; xjÞ which arise
from the numerical FRG flow can accumulate during integration
(here summation) along σ ¼ x. More precise quadrature methods
should be used if precise, quantitative values for Uðt; σÞ are
needed. This will be discussed elsewhere [153].
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pronounced waves and faster propagation. This can be seen
by comparing the plots at equal RG times. For N ¼ 1, the
problem reduces to the pure diffusion equation (38), where
the dynamics is slowest and the diffusion propagates the
fluid from negative σ to small positive σ close to σ ¼ 0.
Furthermore, one observes stronger smearing of the dis-
continuities at σ ¼ 2 and σ ¼ 3. The N ¼ 100 case is
extremely advection-dominated,34 similar to the situation in

large-N limit of the OðNÞ model, where the σ mode can be
completely ignored. In the fluid-dynamical language,
this corresponds to a complete suppression of diffusion,
which is clearly observed from the fast propagation of the
rarefaction waves and almost negligible smoothing of the
discontinuities at σ ¼ 2 and σ ¼ 3.

2. Tests of the spatial resolution Δx
This subsubsection is dedicated to quantifying numerical

errors in the FRG flow arising from the finite spatial
resolution Δx of the cells in the KT scheme. Any spatial
discretization comes with a discretization error. The KT
scheme, which is used throughout this paper, is of second-
order accuracy Δx. Therefore, the numerical errors arising
from the spatial discretization should scale with Δx2 when
Δx is decreased.
As test values (observables) we use the modulus of the

relative errors of the 1PI n-point vertex functions Γð2nÞ for
n ¼ 1, 2, 3,

����Γ
ð2nÞ
KT

Γð2nÞ − 1

����; ð133Þ

where Γð2nÞ
KT is calculated from the FRG (via the KT

scheme) and Γð2nÞ from the (functional) integral, see
Table I. In order to determine how much of the relative
numerical error (133) is directly related to the spatial
discretization, we have to optimize all other parameters
of the computation in order to reduce other sources of
errors. We basically choose the same parameter set and
UV initial condition (130) which was also used for the
qualitative analysis in the previous subsection and only
vary the number of cells n to change the resolution Δx. We
keep Λ ¼ 106, xmax ¼ 10 and tIR ¼ 60, which turn out to
be decent choices as will become clear in the following.
Without loss of generality we keep N ¼ 3.
Before we embark on our discussion, we remark that the

spatial-discretization error enters the relative errors (133) in
a twofold way:
(1) There is the discretization error which comes from

the KT scheme during the FRG time integration.
This error shows up directly in the IR values
uðtIR; xiÞ and should scale according to Δx2 for
the chosen second-order KT scheme.

(2) There is a discretization error which is related to the
extraction of the 1PI n-point vertex functions from
the discrete ūðtIR; xiÞ. They have to be calculated at
the physical point (the minimum at x ¼ σ ¼ 0) via
numerical differentiation, which also comes with a
discretization error. The latter is also related to the
spatial resolution Δx. In general (especially in
higher-dimensional models) it is not clear whether
these numerical derivatives at the physical point are
always well-defined. We argued before that uðt; σÞ

FIG. 8. The FRG flow of the derivative of the effective potential
uðt; σÞ ¼ ∂σUðt; σÞ for the zero-dimensional OðNÞ model for
N ¼ 1, 10, 100 with initial condition Eq. (130). All parameters
are identical to those in Fig. 5.

34We will discuss the qualitative and quantitative differences
between RG flows at large and infinite N in part III of this series
of publications [31].
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might exhibit nonanalytical behavior also at the
physical point in the IR, cf. Refs. [26,27,32,137],
such that a naive numerical differentiation is not
allowed in general. This will be discussed and
analyzed in detail elsewhere [153]. In the special
case of zero-dimensional QFTs, we prove in
Appendix B that the IR effective action and the
IR potential Uðt → ∞; φ⃗Þ are smooth, which also
translates to uðt → ∞; σÞ, such that numerical differ-
entiation (e.g., via finite-difference approximations)
is well defined.

However, even though finite-difference formulas are
reliable approximations for derivatives of a smooth func-
tion and have a well-defined truncation-error scaling in
powers of Δx, there remains a well-known subtlety: While
decreasing the resolution Δx, one eventually will reach a
point where the error starts increasing again contrary to the
formal truncation-error scaling. This is related to the ill-
conditioned nature of finite-difference formulas and to
explicit rounding errors in floating-point arithmetic, which
increase the error of the numerical derivative below a
certain Δx, see, e.g., Chap. 5.7 of Ref. [43]. Related
spurious cancellations occur if the discrete data of a smooth
function include some sort of noise. In our case this “noise”
is directly related to the spatial-discretization errors from
the KT scheme and the errors from RG time integration
using numerical ODE solvers. These errors might be tiny,
but can easily inflate the errors of the numerical derivatives,
especially for higher-order derivatives.
In conclusion, while decreasing Δx we expect that long

before the relative errors from the KT scheme start
increasing again (because the KT scheme begins operating
close to machine precision or because the error of the time
stepping becomes relevant) the relative errors (133) start
increasing due to the numerical differentiation of slightly
“noisy data.” This phenomenon is expected to set in at
larger Δx for approximations for higher-order derivatives
and long before the formal error scaling of the KT scheme
is no longer valid.
Our explicit results for the scaling of the relative errors

with decreasing spatial resolution are presented in Fig. 9,
where we show the relative errors (133) for the two-, four-,
and six-point functions in a double-logarithmic plot over
Δx. For Γð2Þ and Γð4Þ we find that the corresponding relative
errors scale with Δx2 (or even slightly better) as expected
from the error scaling of the KT scheme as well as the error
scaling of the finite-difference stencils (A1) and (A4). We
observe two groups of points for Γð2Þ (upper panel of
Fig. 9), which are related to discretization errors of the
discontinuous initial condition (130) at x ¼ 2 and x ¼ 3.
The error scaling of 0.02Δx2 for Γð2Þ is a conservative
estimate for the observed errors, which are actually lower
for Δx > 0.005. For Δx < 0.005 we observe deviations
from the conservative estimate for the error scaling of Γð2Þ
related to other error sources. In the middle panel of Fig. 9,

we clearly see that there is an optimal minimal Δx ≈ 0.02
where the correct formal scaling of the numerical derivative
breaks down and the relative error of Γð4Þ increases again
for smaller Δx. We can be sure that this breakdown of the
error scaling is related to the numerical differentiation and
not the KT scheme because we observe scaling with at least
Δx2 for Γð2Þ in the upper panel of Fig. 9 well below
Δx ≈ 0.02. This is expected for lower-order numerical
derivatives. Furthermore, we find that for Γð6Þ (lower panel
of Fig. 9) the order of the numerical derivative is already

FIG. 9. The relative error of the numerical results (blue dots)
from the KT scheme for the 1PI n-point vertex functions Γð2nÞ for
n ¼ 1, 2, 3 as a function of Δx with initial potential (130). The
numerical derivatives at σ ¼ 0 of uðtIR ¼ 60; σÞ were calculated
via the second-order accurate central schemes (A1), (A4), and
(A7). The plot was produced with xmax ¼ 10, but could have been
calculated for any sufficiently large xmax. We used the exponential
regulator (8) with UV cutoff Λ ¼ 106. The yellow straight lines
are for optical guidance.
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too large, such that the theoretical error scaling of the KT
scheme cannot be seen at all and is completely obscured by
the errors from the numerical differentiation of ūðtIR; xiÞ.
We conclude that the KT scheme is perfectly suited for

the spatial discretization of the RG flow equation for uðt; σÞ
and shows correct scaling with decreasing spatial resolution
Δx. This is also confirmed by tests with different initial
conditions, see below.
In addition, we actually found that a more severe

problem is the correct extraction of physical observables
from the IR values ūðtIR; xiÞ, which are usually related to
derivatives of uðtIR; σÞ. We further conclude that this
problem is expected to be worse in higher dimensions,
were the IR potential is no longer guaranteed to be smooth.
We therefore suggest to search for better ways of calculat-
ing those derivatives as well as for careful analysis tools for
numerically calculated 1PI n-point vertex functions in the
vicinity of nonanalyticities in general. However, this is
beyond the scope of the present work.
We remark that our numerical findings indicate that—

independent of the specific numerical discretization scheme—
the number of grid points or expansion coefficients etc.
might have been chosen too small in previous studies
to obtain a decent resolution. However, other works,
cf. Refs. [129–131,137,180,227], which also discuss the
limitations of their numerical schemes in detail, have used
a rather large number of discretization points—in some cases
to compensate the demand for continuity of the specific
scheme.
In the next subsections we will mostly use a spatial

resolution of

Δx ¼ xmax

n − 1
≃ 0.025; ð134Þ

where we can trust the results for the two- and four-point
functions. The relative errors for the six-point function will
only be plotted for the sake of completeness, but cannot be
included in any reasonable quantitative analysis of other
sources of (numerical) errors in RG flow equations
although they are still at an acceptably small level.

3. Tests of the size of the computational domain

In this subsection, we discuss the influence of the size of
the computational domain ½0; σmax� on the relative errors of
the IR observables (133). As discussed in Sec. IV D, we
expect that, if the spatial boundary conditions are not
implemented with great caution and the computational
domain is too small, one cannot trust the results from the
numerical integration of the RG flow. If the computational
domain is too small, we expect large errors, because the
boundary conditions at σmax are no longer valid due to
wrong extrapolation to the ghost cells and consequently
wrongly estimated in-flux.
In the case with UV initial condition (130), the boundary

condition at σmax is implemented as a linear extrapolation

of uðt; σÞ to the two ghost cells of the KT scheme to mimic
the asymptotic behavior of uðt; σÞ. As long as σmax is
sufficiently large, we expect only tiny deviations of uðt; σÞ
from its initial UV value uðtUV ¼ 0; σÞ next to σmax.
However, if σmax is too small and approaches to the model
scales, we expect the diffusion effects to reach the boundary
of the computational domain, such that a linear extrapo-
lation is no longer a good approximation in order to
determine the spatial boundary condition.
To this end, we test the scaling of the relative errors (133)

with decreasing computational domain size xmax ¼ σmax
for N ¼ 1 (purely diffusive) and N ¼ 3. The results and
(numerical) parameters are shown in Figs. 10 and 11. In
both cases we find that the relative errors are independent of

FIG. 10. The relative error for Γð2mÞ for m ¼ 1, 2, 3 for the UV
potential (130) of the Oð1Þ model as a function of xmax, while
keeping the cell size constant, Δx ¼ 0.025. Γð2mÞ are computed
from the discrete values of the derivative of the IR potential
uðtIR ¼ 60; σÞ via the second-order accurate central finite-differ-
ence stencils (A1), (A4), and (A7) at σ ¼ 0. We use the
exponential regulator (8) with UV cutoff Λ ¼ 106. The yellow
straight line is for optical guidance.

FIG. 11. The relative error for Γð2mÞ for m ¼ 1, 2, 3 for the UV
potential (130) of the Oð3Þ model as a function of xmax. All
parameters are identical to Fig. 10.
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σmax for sufficiently large σmax. However, if the spatial
cutoff σmax is approaching the model scales (here the
discontinuity in uðtUV ¼ 0; σÞ at σ ¼ 3, see Fig. 4) the
relative errors for Γð2Þ and Γð4Þ start rising exponentially.
Contrary to our expectations, the results for N ¼ 1 and

N ¼ 3 arevery similar and the exponential rise of the relative
errors sets in at a similar σmax.We expected that for the purely
diffusive scenario with N ¼ 1, the diffusion effects arising
from the large gradients at σ ¼ 3 might have more time to
reach and influence the shape of uðt; σÞ at larger values of σ,
which does not seem to be the case. Our employed monitors
for numerical errors—the 1PI n-point vertex functions in the
IR computed at σ ¼ 0 and t ¼ 0—are rather intensive to
such changes. A possible explanation is the fact that errors
from the boundary at σmax propagate into the computational
domain at a finite speed, which is rather low in the purely
diffusive case and in general small at large σ, and thus do not
influence the physical point at t ¼ 0 and σ ¼ 0.
Nevertheless, we conclude from Figs. 10 and 11 that it is

extremely important to use sufficiently large computational
domains to minimize numerical errors in field-dependent
FRG flows. This implies that σmax should be chosen much
larger than all relevant scales of the model.
From our findings, it is therefore expected that choosing

a large σmax might even gain in importance in higher-
dimensional models, where the physical point may be
located at a nontrivial minimum in the IR (e.g., the quark-
meson model in its broken phase [141]): The 1PI n-point
vertex functions are calculated at this physical point. If the
physical point is closer to the boundary of the computa-
tional domain the relative errors for observables might even
be larger than for our zero-dimensional model where the
physical point moves toward σ ¼ 0 during the FRG flow. In
terms of errors originating from the boundary at σmax, the
physical point at σ ¼ 0 is ideal since it has the largest
spatial and—in a sense causal, due to the finite speed of
propagation—distance to σmax.
Lastly, we have to warn that there is no panacea for the

construction of a sufficiently large computational domain
and the choice of σmax has to be adjusted to the specific
model and specific initial condition under consideration. For
some problems even more involved approaches (like using
several computational grids of different resolution Δx)
might be needed or are at least highly advantageous
[26,27]. In any case one has to check that the IR results
do not depend on the size of the computational domain (even
if exact reference values for observables are unknown),
cf. Refs. [32,129,130]. This can be done by fixing appro-
priate values for the spatial resolution Δx as well as for all
other (numerical) parameters and successively increasing
σmax until the IR observables do not change anymore.

4. Tests of the UV and IR scales

We now turn to a long-standing discussion in the FRG
community, namely the question: How do we have to

choose the initial UV and numerical IR cutoff scale for the
calculation of the RG flow for a specific model?
A common argument is based on the energy scales of a

given model. The UV initial condition is fixed at UV cutoffs
Λ that are close to the largest energy scale of the model.
Higher Λ are excluded by arguing that at higher energy
scales other physical degrees of freedom (e.g., other inter-
action channels or new particles) are relevant and the model
at hand is only valid within a certain energy regime. On the
other hand, the IR cutoff kIR scale is oftentimes fixed by
arguing that if it decreases below the lowest energy scale of
the model, the FRG flow is effectively “frozen in” and the
effective potential no longer changes anyway. A relatively
low UV initial scale and a high IR cutoff lead to rather short
flow times of only tUV − tIR ≈ 3–4.
Another approach, which is sometimes employed in

conjunction with the first strategy, is guided by the
principle of “numerical stability” of the RG flow, where
cutoffs are chosen in a certain way to “improve perfor-
mance and stability” during the numerical RG time
integration. In turn, in Refs. [129–131,137,227] relatively
small IR cutoff scales are reached due to the use of
numerical stable schemes or the control of stability.
Careful extrapolations into the deep IR like the ones
discussed in, e.g., Refs. [26,27,227] are another possibility
to achieve low IR cutoffs. Note that, for theories in d > 0
dimensions, numerical integration into the (deep) IR
becomes very demanding due to multiple reasons, see also
Refs. [26,27,32,227]. This is probably the main reason why
often too large numerical IR cutoffs are used.
In general, however, there is a well-defined strategy for

the choice of the UV cutoff scale, which is known as RG
consistency. It states that the full effective action Γ½Φ� in the
IR must be independent of the UV initial scale [96],

Λ
dΓ½Φ�
dΛ

¼ 0: ð135Þ

In this framework, one should consider effective models as
“stand-alone theories,” which have their own functional
integral and their own well-defined expectation values. This
framework is consistent with our introduction to zero-
dimensional QFTs and FRG in Sec. II and implies that the
UV cutoff scale Λ has to be much larger than all scales in
the model. (In higher-dimensional QFTs the “scales of the
model” are defined via couplings of dimension energy as
well as external parameters like temperature or chemical
potential.) In this sense, a high initial UV scale is necessary
to include all fluctuations. It was already demonstrated in
Ref. [96] that if the initial UV scale Λ is chosen too small
and too close to the model scales or external scales,
physical results are spoiled drastically by slightly varying
Λ and Eq. (135) is not fulfilled anymore, cf. Refs. [97–100]
for related discussions in the context of low-energy
effective theories of QCD.
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A lower limit for Λ arises from the fact that for a given
initial condition Uðt ¼ 0; σÞ and at all σ

Λþ 1

σ
∂σUðt ¼ 0; σÞ > 0; ð136Þ

Λþ ∂
2
σUðt ¼ 0; σÞ > 0; ð137Þ

must hold to have a nonsingular flow equation (97). This is
discussed, e.g., in Refs. [227,228] and represents a minimal
requirement for Λ when considering a given initial con-
dition Uðt ¼ 0; σÞ. However, guaranteeing the inequalities
(136) and (137) does by itself not guarantee RG consis-
tency in the sense of Eq. (135).
For higher-dimensional QFTs it is actually complicated to

quantify the relative error of observables from violations
of Eq. (135), because “exact” reference values, e.g., by
numerical calculation of expectation values from the func-
tional integral, are rarely known, especially for low-energy
effectivemodels. In higher dimensions one can only quantify
the changes of observables while varying Λ and search
for a sufficiently large Λ, where Eq. (135) holds. In zero-
dimensional QFT this is different, because we can directly
calculate the relative errors for observables like 1PI n-point
vertex functions, cf. Eq. (133), for different values of Λ.
Similar arguments apply to the IR cutoff, where the

numerical integration of the RG flow is stopped. Here,
one must clearly state that the full effective average action
Γ½Φ� in the IR is unambiguously defined via the limit t →
∞ ⇔ rðtÞ → 0 of Γ̄t½Φ�, cf. Eq. (27). In practice, a direct
integration to t → ∞ is numerically impossible, which
implies that one has at least to make sure that the numerical
RG time integration is stopped no earlier than when all
observables of interest do not change anymore, or one has to
systematically extrapolate to t → ∞, see, e.g., Refs. [26,27].
It is worth mentioning that, depending on the specific
observable, these “freeze-out scales” can be extremely
different, see Fig. 12.
In the following, we will therefore explicitly explore the

influence of UV and IR cutoff scales on the relative errors
(133) for the Γð2nÞ. We start our discussion by providing
results for the relative errors (133) depending on the RG
time t for different N of OðNÞ and UV initial condition
(130). In Figs. 13–15 we plot the relative errors of Γð2nÞ for
n ¼ 1, 2, 3 for N ¼ 1, 3, 10, which are all extracted via
various finite-difference stencils from uðt; σÞ at the physical
point σ ¼ 0 and different t during the FRG flow. All
(numerical) parameters are mentioned in the figures or the
respective captions.
For all three figures (i.e., for N ¼ 1, 3, 10) and

independent of the choice of discretization of the numerical
derivatives, we observe plateaus for the relative errors for
Γð2nÞ at the beginning and the end of the FRG time
evolution. The plateau at small t corresponds to the UV
regime and indicates that the UV cutoff is chosen suffi-
ciently large because no fluctuations are present at the IR

physical point until rðtÞ reaches the scales of the model. RG
consistency (135), hence UV-cutoff independence should
therefore be fulfilled, as long as we initialize our RG flow at
some RG scale which is at the far left of this plateau. Such a
plateau at small t is a sufficient condition for RG con-
sistency but not a necessary one, because quantum fluc-
tuations could already work at positions in field space away
from the IR physical point and only influence higher-order
correlation functions. We will quantify this within the next
paragraphs. In the plots various finite-difference stencils
with distinct error scaling in Δx are used to demonstrate
that the plateaus are independent of other sources of errors,
like spatial discretization errors.35

For intermediate t, we observe strong dynamics and fast
changes in the relative errors for the Γð2nÞ. The actual values
of the relative errors for intermediate t is irrelevant for the
current discussion on UV and IR scales.
The plateau at late RG times t corresponds to the IR scale

of the theory and indicates that the physical observables are
frozen and do not change anymore, such that the numerical
time integration can be stopped. As expected, we find that
the explicit IR scale strongly depends on the choice of N,
thus the number of pions and the amount of advection.
The smallerN and themore diffusive the system, the longer it

FIG. 12. The RG flow of the minimum σminðtÞ (blue) of the
effective potential Uðt; σÞ as well as the FRG flow of the
curvature mass m2

σðtÞ of the σ mode (red-dashed) evaluated on
the equations of motion (23) (at the flowing minimum) during the
RG flow. The blue curve sets in after a unique minimum at
�σminðtÞ has formed. As UV initial condition we use Eq. (130).
We used the exponential regulator (8) with UV cutoff Λ ¼ 106.
The curvature massm2

σðtÞ was extracted from uðt; σÞ via Eq. (A3)
at the moving σminðtÞ. The horizontal (yellow) line denotes the
exact IR result for Γð2Þ at σ ¼ 0, which must agree with m2

σ in the
IR, where σminðtÞ ¼ 0.

35Incidentally, Figs. 13–15 also underline our statement that
the spatial discretization errors deriving from the numerical
differentiation of uðt; σÞ are much more severe than the discre-
tization errors of the KT scheme. Otherwise, the curves for the
various finite-difference stencils would coincide in the IR.
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takes to reach the IR36: For N ¼ 10 the freeze-out already
sets in at t ≈ 26, while forN ¼ 1 one has to wait until t ≈ 30
to find that the dynamics ends. This is a difference of two
orders of magnitude in the RG scale. In general, our toy-
model tests indicate that rather small IR scales are needed to
actually reach the regime where the observables are frozen.
Still, for N ¼ 10, rðt ≈ 26Þ ≈ 5 × 10−6, i.e., the IR regime
begins six orders of magnitude below the model scales.

This observation might also partially translate to higher-
dimensional models, meaning that commonly used IR
cutoffs might be systematically chosen too large, such that
predictive power is lost. Nevertheless, we expect this
problem to be the less severe the higher the space-time
dimensionality of a model under consideration, because of
the larger phase-space (momentum suppression).37

FIG. 13. The relative error for Γð2mÞ, for m ¼ 1, 2, 3, calculated
with the KT scheme as a function of the RG time t for the Oð1Þ
model. The initial UV potential is given by Eq. (130). We use the
exponential regulator (8) with UV cutoff Λ ¼ 106. The computa-
tional grid has 400 cells and σmax ¼ xmax ¼ 10. Γð2mÞ are extracted
from uðtIR ¼ 60; σÞ via the finite-difference stencils (A1)–(A8).

FIG. 14. The relative error for Γð2mÞ, for m ¼ 1, 2, 3, calculated
with the KT scheme as a function of the RG time t for the Oð3Þ
model. The initial condition and all other parameters are identical
to those of Fig. 13.

36This is a well-known observation from all kinds of fluid-
dynamical systems. It takes much longer to reach a (thermal)
equilibrium state via diffusion only than by including advective
processes.

37The smaller the space-time dimension of a model, the more
important are long-range interactions—quantum fluctuations at
small RG scales k—for the macroscopic observables, which is of
course most extreme for d ¼ 0. Furthermore, field space inter-
actions tend to become more important for a small number of
space-time dimensions.
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Furthermore, we observe from Fig. 12 as well as
Figs. 13–15 that the freeze-out scale is slightly different
for different observables, because higher 1PI n-point vertex
functions seem to be more sensitive to tiny changes in
uðt; σÞ. In particular, we observe from Fig. 12 that the
minimum σmin is already frozen at t ≈ 14, while the
curvature mass m2

σ still changes drastically after t ≈ 14
over several orders of magnitude in RG scale. This is
especially interesting for higher-dimensional models:
Oftentimes the freeze-out of the minimum is considered
a suitable IR scale to stop the FRG flow, which is definitely
not justified, since the derivatives of the potential at the
physical point are usually still changing. Using the chang-
ing rates of the curvature mass instead of the position of the

minimum as a monitor for the dynamic range—viable
numerical IR cutoffs—has proven crucial in the FRG
study [32] of the Gross-Neveu(-Yukawa) model by several
authors and their collaborators.
Next, we explicitly quantify the relative errors of Γð2nÞ,

which derive from too small UV cutoffs Λ and the violation
of RG consistency (135). To this end, we plot the relative
errors (133) as a function of the UV cutoff Λ, while keeping
the IR cutoff scale fixed at extremely small rðtIRÞ ¼ 10−20.
In Fig. 16 we observe that the IR observables become

independent of Λ at rather large Λ ≈ 106. This is several
orders of magnitude above the model scales, contrary to
what is often used in FRG studies in higher dimensions. If
the UV cutoff is chosen too small, we find that the relative
errors of Γð2nÞ grow proportional to 1

Λ, as estimated in
Eq. (33). Surprisingly, it turns out that the RG-consistency
condition (135) is already violated at rather large UV
cutoff scales Λ ≈ 105 and is only fulfilled for Λ ≳ 105.
We conclude that it requires great care when specifying the
UV scale in a FRG calculation.
Before we close this discussion, we provide a natural

measure to estimate the correct UVand IR scales of a model
or theory, even if there are no exact reference values for
observables that can be used for comparison with the FRG
results. To this end, we plot in Fig. 17 the shifted logarithm
of the changing rates of the Γ̄ð2nÞðtÞ at the IR minimum
σ ¼ 0 over RG time t. These quantities have to vanish in
the UV and the IR, when the relative errors (133) are not
changing.
A similar investigation can be done for any other model

or theory and can be used as an indication to ensure

FIG. 15. The relative error for Γð2mÞ, for m ¼ 1, 2, 3, calculated
with the KT scheme as a function of the RG time t for the Oð10Þ
model. The initial condition and all other parameters are identical
to those of Fig. 13.

FIG. 16. The relative error for Γð2mÞ form ¼ 1, 2, 3 from the KT
scheme as a function of the UV cutoff scale Λ for the initial
potential (130). We use the exponential regulator (8) and keep the
IR cutoff scale constant at rðtIRÞ ¼ 10−20 for all runs. Further-
more, for all data points the computational grid size is fixed at
σmax ¼ xmax ¼ 10 and the number of volume cells is set to
n ¼ 400. Γð2mÞ are calculated from uðtIR ¼ 60; σÞ via the
approximations (A1), (A4), and (A7) for the numerical derivative.
The yellow straight line is for optical guidance.
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sufficiently large UV and sufficiently small IR cutoffs: A
first estimate may be obtained by choosing Λ and tIR in a
way that the plateaus (or scaling regimes) in figures similar
to Fig. 17 are of approximately equal RG time duration than
the time interval in which the actual dynamics takes place.
In the absence of an explicit and accessible error estimate
rates of change are a cheap and simple tool to study the UV
and IR limits of RG time evolution, cf. Ref. [32].

B. Test case II: ϕ4 theory

The second test case is a zero-dimensional version of ϕ4

theory with a “Mexican hat”-type potential well-known
from standard textbook discussions of spontaneous sym-
metry breaking [112,117]. The initial UV potential reads

Uðφ⃗Þ ¼ −
1

2
φ⃗2 þ 1

4!
ðφ⃗2Þ2: ð138Þ

The corresponding initial condition for the FRG flow is
illustrated in Fig. 18. The reference values for the exact IR
1PI vertex functions Γð2nÞ of the OðNÞ model (73)–(75) are
calculated numerically from the UV potential (138) and are
listed for selected values of N in Table II, which also
includes reference values at N ¼ 4 for the analogous
potential with positive mass term þ 1

2
φ⃗2.

In the following subsubsections, we discuss results
obtained with the KT scheme and numerical results
computed using the Taylor (vertex) expansion outlined
in Sec. III C 2.

1. Results obtained using the KT scheme

In this subsubsection we will discuss selected numerical
results of the application of the KT scheme for the analytic
initial condition (138). We have performed the full set
of numerical tests discussed in Sec. VA for this initial
condition and found results supporting the general state-
ments made there. For the sake of brevity, we will therefore
not repeat the complete discussion of that section.

UV and IR scales.—In Fig. 19 we present the RG flow of
the derivative of the effective potential uðt; σÞ from the UV
(blue) to the IR (red). For the smooth initial condition—in
the absence of large gradients—the highly nonlinear
advection and diffusion contribute almost an equal amount
to the dynamics. Between t ≈ 25 and t ≈ 30 we observe
significant changes in the shape of the potential: the
nontrivial minimum moves toward σ ¼ 0 and vanishes at
t ≈ 28 resulting in a convex potential with a trivial mini-
mum at σ ¼ 0 as expected and required. At small and large
t outside the apparent dynamic range between t ≈ 25 and
t ≈ 30 we observe only very marginal changes in Fig. 19.

FIG. 17. The rate of change in t of Γ̄ð2mÞðtÞ at the IR minimum
σ ¼ 0 for n ¼ 1, 2, 3 during the RG flow. This rate of change is
defined as the numerical RG time derivative ∂tΓ̄ð2mÞðtÞ over the
RG time. ∂tΓ̄ð2mÞðtÞ are calculated via a finite-difference approxi-
mation ½Γ̄ð2mÞðtÞ − Γ̄ð2mÞðt − ΔtÞ�=Δt, where Δt ¼ 0.2. Γ̄ð2mÞðtÞ
are obtained via numerical derivatives (A1), (A4), and (A7) of
uðt; σÞ at x ¼ σ ¼ 0. For convenience, we added 1 and took the
logarithm to pronounce the regions of high changing rates of the
observables Γ̄ð2mÞðtÞ and to identify the freeze-out plateau, where
they have to vanish. We used the exponential regulator (8) with
UV cutoff Λ ¼ 106.

FIG. 18. The UV potential UðσÞ (red-dashed) and its first
derivative uðσÞ ¼ ∂σUðσÞ (blue-solid) of our test case (138)
evaluated on the constant background field configuration.

TABLE II. The exact results for Γð2nÞ for the OðNÞ model with
the initial UV potential (138) for N ¼ 1 and N ¼ 4 as well as
N ¼ 4 with a positive mass term. The results are obtained by a
high-precision one-dimensional numerical integration of the

expectation values hðϕ⃗ 2Þni using Mathematica’s numerical in-
tegration routine NIntegrate [138] with a PrecisionGoal and
AccuracyGoal of 10. Here, we present the first ten digits only.

N Γð2Þ Γð4Þ Γð6Þ

1 0.1995098930 0.0622583604 0.1077442107
4 0.5064440744 0.1824153741 0.2802880035
4a 1.5809246562 0.6118483669 0.5686310448

aUsing Uðφ⃗Þ ¼ þ 1
2
φ⃗2 þ 1

4!
ðφ⃗2Þ2, thus Eq. (138) with a

positive mass term.
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A close inspection of the relative errors for the first three
nonvanishing n-point vertex functions in Fig. 20 reveals
that actually the relevant dynamics sets in much earlier at
t ≈ 10 and the values for the n-point vertex functions freeze
out at late times around t ≈ 40, which is due to the diffusion
close to σ ¼ 0. On the level of uðt; σÞ these subtle changes
in the n-point vertex functions cannot be observed by a
simple visual inspection of Fig. 19.
The plateaus in the UV (at small t) and the IR (at large t)

support the choice of Λ ¼ 1012 and tIR ¼ 60 to be valid
initial UV and IR cutoff scales in terms of RG consistency.
The present initial UV scale is larger when compared to
Λ ¼ 106 used for most computations involving the non-
analytic potential considered in the previous section.
(Λ ¼ 106 corresponds to t ≈ 14 in the present case, which
is already in the dynamic region in Fig. 20.) Hence, the
inclusion of a quartic interaction term in Eq. (138) seems to
require higher initial UV scales to ensure RG consistency.
This supports the statements made in Sec. VA 4: RG

consistency and UV and IR scales have to be re-evaluated
when changing the initial condition in the UVor the model
under consideration, since characteristic internal scales
then also change.

Computational grid and domain size.—We conclude this
subsubsection with a brief discussion regarding the compu-
tational grid and domain size. The relative error for the first
three nonvanishing n-point vertex functions is shown as a
function of the cell size Δx in Fig. 21. For the two-point
functionwe recover a perfect error scaling withΔx2 down to
extremely smallΔx. The last data point in Fig. 21 is atΔx ≈
3.3 × 10−3 corresponding to n ¼ 3000 cells. For the two-
point function the rounding errors of the employed finite-
difference extraction (A1) for Γð2Þ and the finite precision of
the ODE integrator (NDSolve fromMathematica [138] with
a PrecisionGoal and AccuracyGoal of 10) seem to be small
for all depicted Δx in this scenario. A comparison with the
present perfect error scaling for Γð2Þ supports the comments
made about discretization errors for the discontinuous initial
condition (130) in Fig. 9. For the higher-order n-point vertex
functions Γð4Þ and Γð6Þ, however, we find that rounding
errors related to the finite-difference extractions (A4) and
(A7) limit the achievable precision. Again, we identifyΔx ≈
0.025 as an optimal cell size for the extraction ofΓð4Þ andΓð6Þ

but note that typical relative errors for Γð6Þ are rather high at
≈4% around Δx ≈ 0.025. In Fig. 22, we study the effect of
the size of the computational domain xmax on the achievable
relative errors for Γð2Þ, Γð4Þ, and Γð6Þ at a constant
Δx ¼ 0.025. One major difference between the ϕ4 potential
(138) studied in this section and the nonanalytic potential
(130) of the previous subsection is their asymptotic behavior
for large σ. For large σ the leading-order term of the ϕ4

FIG. 19. The FRG flow of the effective potential Uðt; σÞ (upper
panel) and its derivative uðt; σÞ ¼ ∂σUðt; σÞ (lower panel) for the
zero-dimensional Oð4Þ model with initial condition Eq. (138),
evaluated at t ¼ 0; 2; 4;…; 60 (integer values for t were chosen
for convenience and readability). The (overlapping) blue and
violet curves correspond to the UV and the red curves to the IR.
We used the exponential regulator (8) with UV cutoff Λ ¼ 1012.
The plot does not show the region x ¼ 5 to x ¼ 10, because the
tiny differences between uðt; σÞ and uðtUV; σÞ are not visible in
this region and vanish for large x ¼ σ anyhow.

FIG. 20. The relative error for Γð2mÞ, for m ¼ 1, 2, 3, calculated
with the KT scheme as a function of the RG time t for the Oð4Þ
model. The initial UV potential is given by Eq. (138). We use the
exponential regulator (8) with UV cutoff Λ ¼ 1012. The compu-
tational grid has 400 cells and σmax ¼ xmax ¼ 10. Γð2mÞ are
extracted from uðtIR ¼ 60; σÞ via the finite-difference stencils
(A1), (A4), and (A7).
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potential is—as the name suggests—quartic while the
nonanalytic potential of the previous section grows only
∼σ2. In terms of the conserved quantity u ¼ ∂σU one might
expect problems when using a linear extrapolation for the
ghost cells at large σ as discussed in Sec. IV D 2 with a
potential where u grows∼σ3 for large σ. For the nonanalytic
initial condition (138) we avoided this possible source of
error by construction. However, considering the results
plotted in Fig. 22 together with the perfect error scaling
displayed in the previous Fig. 21, we conclude that a linear
extrapolation is not problematic even in the case of cubic

asymptotics for u. This might be again in part related to the
large spatial distance between the physical minimum in
the IR and the upper boundary of the grid. For xmax ≳ 5 we
find a complete insensitivity of the relative errors on the
interval size.

2. Results obtained using the FRG
Taylor (vertex) expansion

In this subsubsection we confront the theoretical results
and concerns stated in Sec. III C 2 with respect to the Taylor
expansion around the fixed expansion point φ⃗ ¼ 0 with the
exact results for the zero-dimensional OðNÞ model. The ϕ4

potential of Eq. (138) is the, in terms of initial conditions,
simplest UV potential with a nontrivial minimum. At the
end of this subsection we will briefly discuss the vertex
expansion for the ϕ4 potential with positive mass term and
therefore a scenario without a nontrivial minimum, which
has to be considered the simplest nontrivial UV initial
condition in the context of the vertex expansion for the
zero-dimensional OðNÞ model.

RG flow of the n-point vertex functions.—In the following
we integrate the ODE system (94) truncated at m ¼ 2ntrunc
with the initial condition

Γ̄ð2Þð0Þ ¼ −1; Γ̄ð4Þð0Þ ¼ þ1;

Γ̄ð2nÞð0Þ ¼ 0; ∀ n > 2; ð139Þ

corresponding to the potential (138) numerically up to
tIR ¼ 60 employing the exponential regulator (8) with
Λ ¼ 1012 and using the same ODE solver NDSolve

FIG. 21. The relative error as a function of the cell size Δx for
the numerical results (blue dots) from the KT scheme for the
coefficients Γð2nÞ for n ¼ 1, 2, 3 with initial potential (138). The
numerical derivatives at σ ¼ 0 of uðtIR ¼ 60; σÞ were calculated
via the second-order accurate central schemes (A1), (A4), and
(A7). Here, xmax ¼ 10, but we could have used any sufficiently
large xmax. We used the exponential regulator (8) with UV cutoff
Λ ¼ 1012. The yellow straight lines are for optical guidance.

FIG. 22. The relative error for Γð2mÞ for m ¼ 1, 2, 3 for the UV
potential (138) of the Oð4Þ model as a function of xmax, keeping
the cell size Δx ¼ 0.025 constant. Γð2mÞ are computed from the
discrete values of the derivative of the IR potential uðtIR ¼ 60; σÞ
via the second-order accurate central finite-difference stencils
(A1), (A4), and (A7) at σ ¼ 0. We used the exponential regulator
(8) with UV cutoff Λ ¼ 1012. The yellow straight line is for
optical guidance.
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from Mathematica [138] with a PrecisionGoal and
AccuracyGoal of 10 as before. Using the n-point vertex
functions at the physical minimum as the flow variables
makes an additional extraction procedure (like finite
differences) obviously obsolete. The n-point correlation
functions in the IR can be directly obtained from the
values Γ̄ð2nÞðtIRÞ ¼ Γð2nÞ.
In Fig. 23 we show the flow of the relative deviations for

the first six nonvanishing n-point vertex functions toward
the IR using m ¼ 2ntrunc ¼ 20 vertices in the expansion for
the Oð4Þ model. We can identify a dynamic range between
t ≈ 24 and t ≈ 38 in which the vertices vary significantly
and change their signs before they reach their respective IR
values. This range is substantially smaller than the dynamic
range observed when solving the full PDE (97) using the
KT scheme, see Fig. 20. In the IR, the errors range from
2.3 × 10−3 for Γð2Þ to 1.1 × 101 for Γð12Þ. However, the
strict hierarchy observed in Fig. 23 for n ¼ 1;…; 6 is not a
general feature of the vertex expansion for this model.
Using different ntrunc or including higher-order vertices
changes this hierarchy.

Truncation error.—The truncation error for theOð4Þmodel
is discussed at hand of Fig. 24, where we show the relative
error for Γð2Þ, Γð4Þ, and Γð6Þ for the vertex expansion using
different truncation orders m ¼ 2ntrunc between ntrunc ¼ 3
and ntrunc ¼ 14. Beyond ntrunc ¼ 10 the relative error for
the n-point vertex function no longer decreases and we
observe in general rather strong oscillations using different
ntrunc. The errors for the two and four-point function are
with 2.3 × 10−3 and 9.8 × 10−3 larger than the errors
(4.2 × 10−5 and 1.8 × 10−4 respectively) obtained in the
KT scheme, see, e.g., Fig. 22. The relative error for the six-
point function is with 4.7 × 10−2 comparable to the 3.7 ×

10−2 error obtained in the KT scheme. While the extraction
of higher-order n-point functions beyond n ¼ 6 is in
general possible in the vertex expansion, their relative
errors grow overall rapidly with increasing n.
For the initial condition (138) we do not observe any

meaningful error scaling in orders of ntrunc. Furthermore
a numerical solution at and beyond ntrunc ¼ 15 has
proven impossible with the current setup. At ntrunc ¼
15 an ODE integration to the IR at rðtIR ¼ 60Þ ≈ 10−14 is
impossible due to an instability of the ODE system
occurring at t ≈ 30 where all coefficients Γð2nÞðtÞ with
n > 1 start diverging. This divergence seems to be driven
by Γð30ÞðtÞ. The ODE system is in general poorly
conditioned since Γð2nÞðtÞ for different n vary vastly
over multiple orders of magnitude. The instability at t ≈
30 cannot be overcome by increasing the numerical
precision of the employed ODE integrator (NDSolve
from Mathematica [138]) and seems to be an inherent
problem of the ODE systems with ntrunc ≥ 15.
The vertex expansion for Γð2nÞðtÞ, with a fixed expan-

sion point at φ⃗ ¼ 0, for the zero-dimensional Oð4Þ model
and the simple initial condition (138) with its nontrivial
global minimum in the UV is severely limited in its
performance. The absence of a proper error scaling in
orders of ntrunc and the instability of the ODE system
beyond ntrunc ¼ 14 support the conceptual reservations
presented in Sec. III C 2. It seems that the expansion
around φ⃗ ¼ 0 is either incapable of capturing the dynam-
ics driven by the nontrivial minima located at jφ⃗j ¼ ffiffiffi

6
p

in the UV or the desired solution might be nonanalytic in
φ⃗ ¼ 0. The situation does not improve when considering
the same initial condition in the purely diffusive Oð1Þ
model. In Fig. 25 we display relative errors for the first

FIG. 23. The relative errors for Γð2nÞ as a function of the RG
time t for n ∈ f1;…; 6g for the Oð4Þ model. Γð2nÞ were
calculated via the FRG flow of the FRG Taylor (vertex)
expansion with truncation order m ¼ 2ntrunc ¼ 20 using the
exponential regulator (8). As initial condition we use the UV
potential (138).

FIG. 24. The relative errors for Γð2nÞ in the IR for n ¼ 1, 2, 3 for
the Oð4Þ model, calculated via the FRG flow of the FRG Taylor
(vertex) expansion to order m ¼ 2ntrunc with ntrunc ∈ f3;…; 14g
using the exponential regulator (8). As initial condition we use
the UV potential (138). The discrete results for integer ntrunc are
connected by straight lines to improve readability and for a better
trend analysis.
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three nonvanishing Γð2nÞ as a function of ntrunc for the
initial condition (138) in the Oð1Þ model. The overall
errors are even worse when compared to the Oð4Þ results
discussed previously. The ODE integration becomes
impossible at ntrunc ¼ 16 where we encounter an insta-
bility at t ≈ 31.

ϕ4 potential with positive mass term.—We continue our
discussion of the FRG Taylor (vertex) expansion by
considering the modified initial condition þ 1

2
φ⃗2 þ

1
4!
ðφ⃗2Þ2 with a positive mass term and therefore without

a nontrivial minimum. In the context of zero-dimensional
OðNÞ models this initial condition is in the family of
UV potentials discussed qualitatively at length and to
some extent even quantitatively in Refs. [44,52,58]. In
Fig. 26 we show relative errors for the first three
nonvanishing Γð2nÞ as a function of ntrunc for this initial
condition for the Oð4Þ model. These results where
obtained using Mathematica’s NDSolve [138] with an
increased PrecisionGoal and AccuracyGoal of 12, which
became necessary for a proper truncation-error scaling
beyond ntrunc ¼ 15 for the two-point function. In Fig. 26
we observe a truncation-error scaling following power
laws in ntrunc with approximately n−8.2trunc, n

−7.6
trunc, and n−7.3trunc

for the two-point, four-point, and six-point function,
respectively. For this initial condition the expansion point
φ⃗ ¼ 0 is located at the global minimum of the potential
and the potential is also convex for all t. The dynamics of
the FRG flow is rather unspectacular for this potential,
see Fig. 13 of Ref. [44] or Fig. 4 of Ref. [33] for a
visualization. For the two- and four-point functions,
the numerical results at ntrunc ¼ 3 (⇔ m ¼ 6) have
already acceptable relative errors of ≈2.2 × 10−3 and

≈2.8 × 10−2, respectively, which was observed and dis-
cussed in Ref. [44], where results for the vertex expan-
sions were presented only up to ntrunc ¼ 3.
The vertex expansion outperforms the KT scheme in this

setting in terms of relative errors. The performance and
practical applicability of the vertex expansion seem to
depend strongly on the initial condition under consider-
ation. We will discuss another analytic initial condition for
the vertex expansion briefly in the next Sec. V C.

Numerical irreversibility.—Before we conclude this sub-
subsection we will briefly comment on the irreversibility of
RG flows when employing the FRG Taylor (vertex)
expansion. We discussed in subsection IVA 2 that the
projection onto a finite set of couplings underlying the FRG
Taylor (vertex) expansion theoretically allows for an
unphysical reversibility of the RG flow. The ODE systems
for the running couplings of the FRG Taylor (vertex)
expansion in principle allow for an integration both in
positive and negative RG time direction. Thus an unphys-
ical resolution of micro physics from macro physics—an
inversion of the underlying RG transformations connecting
them—is possible when considering a finite set of cou-
plings fΓ̄ð2nÞðtÞg.
We performed practical test with the ϕ4 theory dis-

cussed in this subsubsection. For the ϕ4 theory with
positive mass term discussed in the previous paragraph a
complete inversion of the RG flow (from t ¼ 60 back to
t ¼ 0 using Λ¼1012) is numerically possible for systems
with ntrunc<7 for N ¼ 1. For larger systems the strong
oscillations of the higher-order couplings prevent a numeri-
cal integration back to the UV. The ODE system becomes
numerically unstable when approaching t ≈ 24 from above.

FIG. 25. The relative errors for Γð2nÞ in the IR for n ¼ 1, 2, 3 for
the Oð1Þ model, calculated via the FRG flow of the FRG Taylor
(vertex) expansion to order m ¼ 2ntrunc with ntrunc ∈ f3;…; 15g
using the exponential regulator (8). As initial condition we use
the UV potential (138). The discrete results for integer ntrunc are
connected by straight lines to improve readability and for a better
trend analysis.

FIG. 26. The relative errors for Γð2nÞ in the IR for n ¼ 1, 2, 3
and for the Oð4Þ model, calculated via the FRG flow of the FRG
Taylor (vertex) expansion to order m ¼ 2ntrunc with ntrunc ∈
f3;…; 20g using the exponential regulator (8). As initial con-
dition we use the UV potential (138) with positive instead of
negative mass term. The discrete results for integer ntrunc are
connected by straight lines to improve readability and for a better
trend analysis.
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The recovery of the exact UV initial condition is very
good for small ntrunc but deteriorates when approaching
ntrunc ¼ 7. For the ϕ4 theory with positive mass term
this situations remains qualitatively unchanged for higher
N > 1.
For the ϕ4 theory with negative mass term an inversion

of the RG flow from the IR to the UV is numerically
impossible. We were not able to find a ntrunc and N in
heuristic tests which allowed for a numerical inversion of
the RG flow from t ¼ 60 back to t ¼ 0 using Λ ¼ 1012.
The dynamics related to the vaporization of the nontrivial
minimum seems to prevent a numerical inversion. In our
heuristic tests it has proven impossible to form back the
nontrivial minimumwhen approaching the UV from the IR.
This is a rather interesting observation which might warrant
a detailed investigation of the ODE systems involved in the
FRG Taylor (vertex) expansion. Further investigations in
higher-dimensional models might be interesting.

Concluding remarks.—In this subsubsection we have
discussed numerical results for the vertex expansion in
Γ̄ð2nÞðtÞ around φ⃗ ¼ 0 with the quartic potential (138) with
positive and negative mass terms � 1

2
φ⃗2. The numerical

performance in terms of achievable relative errors for the
n-point vertex functions in the IR is rather poor for the
potential with the negative mass term and very good for
the potential with the positive mass term. In both situations
the initial conditions are analytic but for a negative
mass term the corresponding nontrivial minimum has
significant implications on the dynamics of the FRG flow.
The vertex expansion with a fixed expansion point at φ⃗ ¼ 0
is not able to capture the relevant dynamics. The zero-
dimensional OðNÞ model has proven very challenging
for the vertex expansion. It should be noted that in this
paper we discussed the simplest possible vertex-expansion
scheme. Other versions of the FRG Taylor (vertex) expan-
sion including a moving expansion point or a rescaling
of the expansion coefficients might improve the perfor-
mance of the expansion scheme in certain cases,
cf. Refs. [106,228,229]. Implementing and testing different
approaches to the vertex expansion for zero-dimensional
OðNÞ models would certainly be an interesting topic for
further studies.
The conceptual reservations about the application of a

Taylor (vertex) expansion to the advection-diffusion equa-
tions considered in this work still stand. In scenarios with
RG flows driven by an interplay of advection and diffusion
around nontrivial minima and/or large gradients of the
conserved quantity u the vertex expansion is inevitably
doomed to fail. It is not possible to capture the dynamics of
such equations reliably with the simple vertex expansion
discussed here. A numerical inversion of the RG flow is
also impossible in those scenarios.
It should also be noted that the absence of momenta and

therefore phase-space suppression in zero dimensions leads

to a strong coupling in field space for the potential. This
might be a possible explanation for our observations in
d ¼ 0. For “real” QFTs in d > 0 dimensions the vertex
expansion is and was applied very successfully in various
contexts, see, e.g., Refs. [230,231] for scalar field theories
and Refs. [24,232,233] for gauge theories. In d > 0, there is
indeed a significant difference between an expansion in
vertices carrying and capturing the nontrivial momentum
dependences and Taylor expansions of interaction poten-
tials. Capturing and tracking the momentum dependence
with a suitable ansatz is very important in the study of FRG
flows in d > 0 and in certain models a proper resolution of
the dynamics in momentum space may be even more
important than a full-fledged treatment in field space.

C. Test case III: ϕ6 potential

For the third test case we consider the potential

Uðφ⃗Þ ¼ 1

2
φ⃗2 −

1

20
ðφ⃗2Þ2 þ 1

6!
ðφ⃗2Þ3: ð140Þ

This potential includes terms up to ðφ⃗2Þ3 and has two local
minima and one local maximum and is therefore not
convex. The global minimum is located at φ⃗ ¼ 0 and
the potential and its derivative (evaluated on the constant
field configuration σ) are depicted in Fig. 27. For the sake
of completeness we included reference values for the first
three nonvanishing n-point vertex functions in Table III for
the Oð4Þ model.
We have again performed the full set of numerical tests

of Sec. VA and found results supporting the general
statements made in that subsection. For the sake of brevity
we will not repeat the complete discussion of Sec. VA but
instead focus again on selected results.
Figure 28 shows the RG flow with the initial condi-

tion (140) for the Oð4Þ model computed with the KT
scheme again using Mathematica’s NDSolve [138] with

FIG. 27. The UV potential UðσÞ (red-dashed) and its first
derivative uðσÞ ¼ ∂σUðσÞ (blue-solid) of our test case Eq. (140)
evaluated on the constant background field configuration.
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PrecisionGoal and AccuracyGoal of 10 for the RG time
evolution. Both nontrivial local extrema fade away during
RG time evolution toward the IR. At t ≈ 28 the potential
Uðt; σÞ becomes convex as uðt; σÞ turns strictly positive for
σ > 0. We again observe that the linear extrapolation used
at the right boundary xmax of the computational domain
seems surprisingly efficient even for an initial condition
with quintic asymptotics. Studying Fig. 29 we observe that
the relative errors in the IR become independent of the size
of the computational domain for xmax ≳ 6.
We were not able to evolve the ODE system of the vertex

expansion with the current initial condition to the IR for any
setup at all.38 Independent of ntrunc and ODE integrator
(Mathematica’s NDSolve [138]) settings we encounter a
numerical instability of the ODE systems at around t ≈ 28
preventing a complete integration to the IR. The expansion
coefficients Γ̄ð2nÞðtÞ simply diverge at t ≈ 28. From Fig. 28
we deduce that this is approximately the RG-time point at
which the nontrivial extrema vanish and the potential turns
convex. The precise underlying dynamics generated by the
full PDE and resolved by the KT scheme cannot be captured
by the vertex expansion (at least not in our setup). However,
also switching to a set-upwith a t dependent expansion point
will not cure this problem, because the expansion point (the
global minimum) does not move for this initial potential.
This again supports the claims made in Sec. V B 2 about the
very limited practical applicability of thevertex expansion to
the OðNÞ model in zero dimensions.
The instability of the solution of the coupled system of

ODEs can be understood a posteriori considering that at
that time the potential may generate a nonanalyticity.
Inevitably, due to the nonanalyticity of the potential,
Wilbraham-Gibbs oscillations [234–236] arise in the
Taylor expansion, making the expansion scheme unstable

]237[.39 The appearance of a nonanalytic behavior is also
understood via a rise of entropy [31,33].
However, a vertex expansion for a convex sextic poten-

tial including only positive coefficients in the UV is

TABLE III. The exact results for Γð2nÞ for the Oð4Þ model with
the initial UV potential (140), obtained by a high-precision one-
dimensional numerical integration of the expectation values
hðϕ⃗ 2Þni using Mathematica’s numerical integration routine
NIntegrate [138] with a PrecisionGoal and AccuracyGoal of
10. Here, we present the first ten digits only.

N Γð2Þ Γð4Þ Γð6Þ

4 0.2503331837 0.0481313248 0.0432822719

FIG. 28. The FRG flow of the effective potential Uðt; σÞ (upper
panel) and its derivative uðt; σÞ ¼ ∂σUðt; σÞ (lower panel) for
the zero-dimensional Oð4Þ model with initial condition (140),
evaluated at t ¼ 0; 2; 4;…; 60 (integer values of twere chosen for
convenience and readability). The (overlapping) blue and violet
curves correspond to the UVand the red curves to the IR. We used
the exponential regulator (8)withUVcutoffΛ ¼ 1012. For the sake
of readability, the plot does not show the region x ¼ 5 to x ¼ 10,
because the tiny differences between uðt; σÞ and uðtUV; σÞ are not
visible in this region and vanish for large x ¼ σ anyhow.

FIG. 29. The relative error for Γð2mÞ for m ¼ 1, 2, 3, for the
Oð4Þmodel using the UV potential (140), as a function of the size
of the computational interval xmax. The cell size is Δx ¼ 0.025.
Γð2mÞ are computed from the discrete values of the derivative of
the IR potential uðtIR ¼ 60; σÞ via the second-order accurate
central finite-difference stencils (A1), (A4), and (A7) at σ ¼ 0.
We used the exponential regulator (8) with UV cutoff Λ ¼ 1012.

38We thank J. Eser for discussions on this issue and a cross
check using his FRG Taylor expansion code [14,18–20], which
reproduced our findings.

39This phenomenon is also observed and discussed in detail in
the context of Fourier expansions of periodic potentials in the
FRG in Sec. 2.2.2 of Ref. [131].
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possible, similar to ϕ4 theory with a positive mass term
discussed at the end of the previous Sec. V B 2. A
numerical inversion of the RG flow is again possible for
systems with a small number of couplings. It seems that
only convex, analytic UV initial conditions and the result-
ing rather simple FRG flows can be treated with a vertex
expansion in Γ̄ð2nÞðtÞ around φ⃗ ¼ 0 in the zero-dimensional
OðNÞ model.

D. Test case IV: the σ = 0 boundary

The last test case is again a nonanalytic and discontinu-
ous potential,

Uðφ⃗Þ ¼
(
−ðφ⃗2Þ13; if φ ≤

ffiffiffi
8

p
;

1
2
φ⃗2 − 6; if φ >

ffiffiffi
8

p
;

ð141Þ

where φ ¼ jφ⃗j. The numerically challenging features are
the cusp at φ ¼ 0 as well as a nontrivial minimum at the
kink at φ ¼ ffiffiffi

8
p

. As displayed in Fig. 30 (evaluated on the
constant field configuration), the cusp at σ ¼ 0 in U
translates to a pole in u ¼ ∂σU. This scenario was engi-
neered as an extreme test case for the boundary condition at
σ ¼ 0 discussed at length in Sec. IV D 1.
We have again performed the full set of numerical tests

of Sec. VA and found results supporting the general
statements made in Sec. VA. For the sake of brevity we
will not repeat the complete discussion of Sec. VA but
instead focus again on selected results.
Figure 31 depicts the RG flow for the Oð3Þ model

computed with the KT scheme for the UV initial condition
(141). Figure 32 displays the flow of the first three
nonvanishing n-point vertex functions. With our imple-
mentation of the KT scheme usingMathematica’s NDSolve
[138] with a PrecisionGoal and AccuracyGoal of 10
we are able to compute precise solutions, where the
achievable precision for Γð4Þ and Γð6Þ is, as discussed in

FIG. 30. The UV potential UðσÞ (red-dashed) and its first
derivative uðσÞ ¼ ∂σUðσÞ (blue-solid) of the test case (141)
evaluated on the constant background field configuration.

FIG. 31. The FRG flow of the effective potential Uðt; σÞ (upper
panel) and its derivative uðt; σÞ ¼ ∂σUðt; σÞ (lower panel) for the
zero-dimensional Oð3Þ model with initial condition (141) evalu-
ated at t ¼ 0; 2; 4;…; 60 (integer values for t were chosen for
convenience and readability). The blue curves correspond to the
UV and the red curves to the IR. We used the exponential
regulator (8) with UV cutoff Λ ¼ 108. For the sake of readability,
the plot does not show the region x ¼ 5 to x ¼ 10, because the
tiny differences between uðt; σÞ and uðtUV; σÞ are not visible in
this region and vanish for large x ¼ σ anyhow.

FIG. 32. The relative error for Γð2mÞ, for m ¼ 1, 2, calculated
with the KT scheme as a function of the RG time t for the Oð3Þ
model. The initial UV potential is given by Eq. (141). We use the
exponential regulator (8) with UV cutoff Λ ¼ 108. The computa-
tional grid has 400 cells and σmax ¼ xmax ¼ 10. Γð2mÞ are
extracted from uðtIR ¼ 60; σÞ via the finite-difference stencils
(A1), (A4), and (A7).
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the previous sections, limited by the finite-difference
rounding errors. The discretization-error scaling shows
the same peculiarities as the case of Sec. VA due to the
discontinuities in the initial conditions. The corresponding
reference values for the Oð3Þ model are listed in Table IV.
The dynamics during the FRG flow is dominated by the
pole at σ ¼ 0 and the discontinuity at σ ¼ ffiffiffi

8
p

in u. The
diffusion smears out the discontinuity and advection trans-
ports it toward σ ¼ 0 “filling up the well” at σ ¼ 0.
Considering the corresponding values for u for σ < 0
using the antisymmetry of u the boundary at σ ¼ 0 can
be seen as a point where waves of opposite amplitude
annihilate.
Only the carefully engineered boundary condition at

σ ¼ 0 together with corresponding ghost cells allows for
practical computations with the present initial condition.
The pole at σ ¼ 0 presents no problem in practical
computations because the boundary condition at σ ¼ 0
makes use of the antisymmetry of uðt; σÞ. The first cell
containing the pole is centered at σ ¼ 0 and due to the
antisymmetry, the corresponding cell average ū0ðtÞ van-
ishes by construction. Enforcing ū0ðtÞ ¼ 0 and for the two
ghost cells ū−2ðtÞ ¼ −ū2ðtÞ and ū−1ðtÞ ¼ −ū1ðtÞ at each
time step allows for a stable and accurate RG time evolution
even for such extreme initial conditions like the one
of Eq. (141).
Treating this initial condition using a formulation in the

invariant ϱ ¼ 1
2
σ2 with some naive boundary conditions

without strict mathematical justification is hazardous,
because uðt; ϱÞ ¼ ∂ϱUðt; ϱÞ diverges as ϱ−2=3 as ϱ → 0.
As mentioned in Sec. IV D 1, it is unclear to us how to deal
with the ϱ ¼ 0 boundary especially in a case like the one
discussed in this subsection.
We conclude this subsection with a short discussion of

RG consistency. The plateaus in Fig. 32 in the UV (at small
t) and the IR (at large t) are again a strong indication for
appropriately chosen UV and IR scales. From Fig. 33,
showing the initial UV-scale dependence of Γð2Þ, Γð4Þ, and
Γð6Þ, one observes that, even in the presence of the pole at
σ ¼ 0 in uðt ¼ 0; σÞ, an initial UV scale of Λ ¼ 108 is
sufficient to realize RG consistency. Arguably even
Λ ¼ 106—the scale used in Sec. VA—would suffice,
suggesting that in the current case the scale is primarily
set by the discontinuity and linear asymptotics at and

beyond σ ¼ ffiffiffi
8

p
, which both are also present (with very

similar values) in the initial condition (130) of Sec. VA.
However, decreasing Δx would lead to larger numerical

gradients for the initial condition at σ ¼ 0 due to the
discretization of the pole in u, which in turn implies that Λ
has to be simultaneously increased in order to keep the
propagators (100) and (101) dominated by Λ in the UV.
Also, if the cusp at σ ¼ 0 in the initial UV potential

Uðt ¼ 0; σÞ in Fig. 30 pointed downwards and uð0; xÞ had
negative gradients on both sides of the corresponding pole,
it would formally be extremely hard to guarantee the
inequalities (136) and (137) and to have a nonsingular
flow equation in the UV, because the giant negative
gradients would not be restricted to the cell at σ ¼ 0. In
a discretized version with nonzero Δx a calculation is still
possible, as long as Λ is chosen extremely large, much
larger than the huge, but finite negative gradient of u.40

Hence, RG consistency is not only a physical requirement,
but also sets strict limits on the choice of numerical
parameters, respectively.

VI. CONCLUSIONS AND OUTLOOK

In the present work we have discussed the connection
between (F)RG flow equations and conservation laws of
fluid dynamics and studied implications of this connection.

TABLE IV. The exact results for Γð2nÞ for the Oð3Þ model with
the initial UV potential (141), obtained by a high-precision one-
dimensional numerical integration of the expectation values
hðϕ⃗ 2Þni using Mathematica’s numerical integration routine
NIntegrate [138] with a PrecisionGoal and AccuracyGoal of
10. Here, we present the first ten digits only.

N Γð2Þ Γð4Þ Γð6Þ

3 0.4216739793 0.1535593029 0.2492523147

FIG. 33. The relative error for Γð2mÞ form ¼ 1, 2, 3 from the KT
scheme as a function of the UV cutoff scale Λ, calculated for the
initial potential (141). We use the exponential regulator (8) and
keep the IR cutoff scale constant at rðtIRÞ ¼ 10−15 for all runs.
Furthermore, for all data points the computational grid size is
σmax ¼ xmax ¼ 10 and the number of cells is n ¼ 400. Γð2mÞ are
calculated from uðtIR ¼ 60; σÞ via the approximations (A1),
(A4), and (A7) for the numerical derivative. The straight yellow
line is for optical guidance.

40Similar effects are expected in FRG flows of higher-dimen-
sional models with nonzero chemical potential at zero temper-
ature. The chemical potential enters field space as a shock wave in
field space with infinite negative slope in u at positive σ. This will
be discussed elsewhere [32,153].
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In Sec. II we have provided an introduction to the FRG
in zero space-time dimensions. In this admittedly rather
academic limit QFTs are exactly solvable in terms of
ordinary one-dimensional integrals. However, their treat-
ment in the framework of the FRG is not principally
different from that of their higher-dimensional counter-
parts, which allows to understand many features of this
approach in a simpler quantum field-theoretical setting, as
well as check its validity against exact results. In particular,
in d ¼ 0 space-time dimensions the solution of the FRG
flow equation (Wetterich equation) (40) directly as a PDE
requires no additional truncation, such as the gradient or
vertex expansion. In Sec. III we have then discussed the
application of the FRG method to the zero-dimensional
OðNÞ model. The corresponding RG flow equation (84) is
a highly nonlinear PDE and thus provides an interesting
and challenging application for algorithms that solve such
equations. We are currently working on an extension of the
OðN) model including fermions (Grassmann numbers) as
well as related truncation strategies in the context of local
approximations [34].
In Sec. IV we have discussed the formulation of

particular RG flow equations—among them the flow
equation (97) of the OðNÞmodel—in terms of conservation
laws well known in the context of fluid dynamics. This
allows us to employ existing, highly developed techniques
to solve these kind of PDEs. The flow equations in
conservative form discussed in this paper have the form
of nonlinear advection-diffusion equations. The identifica-
tion of advective and diffusive contributions, related to the
contributions from the pions and the radial σ mode,
respectively, allows for a simple, appealing, and physically
intuitive understanding of RG flows, i.e., the RG time
evolution from the UV to the IR, in terms of classical,
time-honored fluid-dynamical concepts. Using the con-
servative formulation, it is possible to make a connection
between FRG solutions in the IR to steady-state and/or
thermal-equilibrium solutions. In this context, the diffusive
character as well as the possibility of shock and rarefaction
wave formation and interaction during the RG time
evolution are direct manifestations of the irreversibility
of RG flows and the corresponding RG transformations,
which can be quantified using the concept of numerical
entropy. We have also briefly discussed possible con-
nections between irreversibility, numerical entropy, and
the so-called C theorem. A more detailed analysis of this
aspect will be presented in part II of this series of
publications [33].
We have discussed proper boundary conditions for the

RG flow equation of theOðNÞmodel on compact intervals.
We have then used a finite-volume method, the so-called
Kurganov–Tadmor (KT) scheme, for the explicit numerical
solution of RG flow equations in conservative form. A
formulation in terms of the constant background field σ
instead of the corresponding OðNÞ invariant ϱ ¼ 1

2
σ2 has

proven advantageous with respect to implementing the
boundary conditions for the flow equation of the OðNÞ
model in conservative form when considering a compact
computational domain.
In Sec. V we have studied a set of test cases realizing

various UVinitial conditions for the zero-dimensionalOðNÞ
model. We have demonstrated the applicability of the KT
scheme for RG flow equations by comparing the results
against exact solutions for the n-point vertex functions of the
OðNÞ model as obtained from a direct integration of the
partition function.We have performed several precision tests
by quantifying discretization and boundary effects. We have
alsodiscussed the advective anddiffusive contributions to the
RG flow on a qualitative level by varying the number of
scalars N in the OðNÞ model. For large N, the system
becomes advection-dominated [26,27,31] since the pionic
modes dominate the flow equation, whereas for small N the
diffusive contribution of the radial σ mode becomes the
dominant (in the case N ¼ 1 even the only) driving force.
The study of discontinuous initial conditions in this context
highlights the capability of the KT scheme for the study of
highly nonperturbative phenomena and phase transitions in
the FRG framework. In all test cases, we do not observe a
violation of the Coleman-Mermin-Wagner-Hohenberg theo-
rem, i.e., we find that there is no spontaneous symmetry
breaking ind ¼ 0 in the IR limit. In a parallel publication, we
continue this discussion and analyze systematic differences
between the large-N and infinite-N within the zero-dimen-
sional OðNÞ model [31].
Discussing the FRG Taylor (vertex) expansion as a

possible truncation scheme for the Wetterich equation in
the context of zero-dimensional models, we have observed
that the absence of momentum suppression in d ¼ 0 leads
to an extremely strong coupling in field space. In turn, this
greatly limits the applicability of the FRG Taylor (vertex)
expansion for the zero-dimensional models discussed in
this paper. These findings are supported by and directly
related to our novel findings regarding the irreversibility of
the RG flow, if strictly analyzed as a dissipative system.
This partially generalizes to higher-dimensional systems.
We have also performed quantitative studies of the

dependence on the value of the IR cutoff rIR which has
to be chosen in explicit (numerical) solutions of the flow
equation. Moreover, we have discussed RG consistency,
which is related to the initial UV scale Λ for a given initial
action S. We find that computations in the FRG framework
require sufficiently low IR cutoffs and sufficiently large
initial UV scales in order to recover the exact n-point vertex
functions. As demonstrated by our results, the explicit
values for kIR and Λ depend on the initial action under
consideration.
Apart from further studies [31,33,34] in d ¼ 0 space-

time dimensions, it will be very interesting to see the
implications of our present work for studies of higher-
dimensional QFTs. In the context of FRG studies of
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theories in d > 0 space-time dimensions, the current
discussions and results for d ¼ 0 are highly relevant and
in large parts directly applicable in the context of the LPA
of the Wetterich equation. Studies of theOðNÞmodel using
a conservative formulation of the LPA flow equation in
d ¼ 3 have been performed in the large-N limit by two of
us in Ref. [26]. In a recent publication [27] (coauthored by
two of us), the possibility of conservative formulations
beyond the LPA truncation has been discussed and
further studies using this novel framework for selected
theories in d ¼ 2 and d ¼ 4 are in preparation [32,153]. We
strongly believe that leveraging the vast existing knowledge
for conservation laws in studies using the FRG and its
(truncated) flow equations is very promising and the
research in this direction should be continued and extended.
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APPENDIX A: NUMERICAL DERIVATIVES

In Sec. V we need to extract the 1PI vertex functions

Γð2nÞ
φi1

���φi2n
at the physical point σ ¼ 0 from the IR results

of the RG flows (or respectively the coefficients Γð2nÞ,
which contain the same information). To this end, we
compute numerical derivatives of the discrete values of the
derivative of the effective potential uðtIR; σÞ ¼ ∂σUðtIR; σÞ,
which were calculated via the FV method. In this work,
the following finite-difference approximations [242,243]
are used,

fð1Þi;central ¼
−fi−1 þ fiþ1

2Δx
þOðΔx2Þ; ðA1Þ

fð1Þi;central ¼
fi−2 − 8fi−1 þ 8fiþ1 − fiþ2

12Δx
þOðΔx4Þ; ðA2Þ

fð1Þi;forward ¼
−3fi þ 4fiþ1 − fiþ2

2Δx
þOðΔx2Þ; ðA3Þ

fð3Þi;central ¼
−fi−2þ2fi−1−2fiþ1þfiþ2

2Δx3
þOðΔx2Þ; ðA4Þ

fð3Þi;central ¼
fi−3 − 8fi−2 þ 13fi−1 − 13fiþ1 þ 8fiþ2 − fiþ3

8Δx3
þOðΔx4Þ; ðA5Þ

fð3Þi;forward ¼
−5fi þ 18fiþ1 − 24fiþ2 þ 14fiþ3 − 3fiþ4

2Δx3
þOðΔx2Þ; ðA6Þ

fð5Þi;central ¼
−fi−3 þ 4fi−2 − 5fi−1 þ 5fiþ1 − 4fiþ2 þ fiþ3

2Δx5
þOðΔx2Þ; ðA7Þ

fð5Þi;central ¼
fi−4 − 9fi−3 þ 26fi−2 − 29fi−1 þ 29fiþ1 − 26fiþ2 þ 9fiþ3 − fiþ4

6Δx5
þOðΔx4Þ; ðA8Þ
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where fi ¼ fðxiÞ, fðnÞ denotes the nth derivative and
“central” and “forward” stand for central/forward stencil
approximations. The scaling order m of the error is
indicated by OðΔxmÞ. In our numerical implementation,
the central-scheme approximations are further simplified
by exploiting the antisymmetry property uðt;−σÞ ¼
−uðt; σÞ of the derivative of the effective potential. In
consequence, the central stencils are effectively forward
stencils. Furthermore, at the same order of accuracy,
the “antisymmetrized” central stencils need one point
less than the actual forward stencils of same error order
of accuracy. In Figs. 13–15 we find that this property
singles out the central stencils as the most favorable choice,
because the accumulation of errors in the derivative
stencil, which originally derive from the numerical solution
of the flow equation, can be reduced this way, by including
as few points as possible in the numerical derivative
approximations.
We stress that the use of low-order finite-difference

approximations to the derivative is only justified because
the effective IR potential UðtIR; σÞ has to be smooth, which
is discussed at length in Appendix B. For higher-dimen-
sional models, the use of finite-difference approximations
to extract information from the IR effective potential
UðtIR; σÞ might not always be justified due to the possibil-
ity of nonanalyticities in the vicinity of the physical point,
where the 1PI n-point vertex functions have to be calcu-
lated. Further investigation is needed.

APPENDIX B: COLEMAN-MERMIN-WAGNER-
HOHENBERG THEOREM IN ZERO

DIMENSIONS: ABSENCE OF SPONTANEOUS
SYMMETRY BREAKING AND
OF PHASE TRANSITIONS

In this appendix we comment on spontaneous sym-
metry breaking, phase transitions, and the Coleman-
Mermin-Wagner-Hohenberg theorem for the special case
of zero space-time dimensions. The discussion follows
partially Refs. [52,83] and is presented here for the sake of
completeness.

1. Ehrenfest classification of phase transitions

Although often designated as outdated, the Ehrenfest
classification of phase transitions [143] is an illustrative
start for our discussion. In thermodynamics, the Ehrenfest
classification of phase transitions is based on the Helmholtz
or Gibbs free energy, F or G, which both are thermody-
namic potentials. All phase transitions are defined as
discontinuities in the derivatives of such thermodynamic
potentials with respect to an intensive thermodynamic
variable like the temperature [244]. A phase transition of
order n is a discontinuity in the nth derivative, while
all derivatives of lower order must stay continuous.
Meanwhile, in statistical mechanics the Helmholtz free

energy F is given by (or proportional to) the logarithm of
the partition function or, if generalized to thermal QFT, the
logarithm of the functional integral. If we apply this to the
zero-dimensional QFT of the scalar field from our intro-
ductory Sec. II, we find

FðJÞ ¼ GðJÞ≡ lnZðJÞ ¼ WðJÞ; ðB1Þ

where we have used Eqs. (2) and (14). Because quantities
like temperature, pressure, etc. do not exist in zero
dimensions, the external source J is the only “thermody-
namical state variable” in the Helmholtz free energy FðJÞ,
which is consequently also identical to the Gibbs free
energyGðJÞ.41 According to Ehrenfest a phase transition of
nth order would therefore be associated with a disconti-
nuity in the nth derivative of WðJÞ or equivalently in the
nth derivative of ZðJÞ with respect to J ∈ R. In order to
illustrate how phase transitions are realized in ZðJÞ and
WðJÞ while changing J, we construct two completely
artificial examples for WðJÞ, which correspond to a first
and second-order phase transition, see Figs. 34 and 35,
respectively, using

WðJÞ ¼
ffiffiffiffiffi
J2

p
þ 1

2
J2; ðB2Þ

WðJÞ ¼

8>><
>>:

3
2
J2 þ 2J þ 1; if J ≤ −1;

1
2
J2; if − 1 < J < þ1

3
2
J2 − 2J þ 1; if þ 1 ≤ J;

: ðB3Þ

However, it can be shown (see below) thatZðJÞ ∈ C∞ in
zero dimensions, which also implies that the other func-
tions in Eq. (B1) are infinitely often continuously differ-
entiable, thus smooth functions of J ∈ R. This holds as
long as SðϕÞ is bounded from below and grows faster than
jϕj for jϕj → ∞, which are the conditions that were already
discussed in Sec. II A in order to have well-defined
expectation values (1). The proof is as follows [52]:
The function ZðJÞ, defined via Eq. (2), is called smooth

(or ∈ C∞) if for all n ∈ N the left- and right-derivatives
with respect to J coincide at any J ∈ R,

lim
ϵ→0

�
dnZðJÞ
dJn

����
Jþϵ

−
dnZðJÞ
dJn

����
J−ϵ

�
¼ 0: ðB4Þ

Using Eq. (2) this can be checked explicitly

41Although the notion of intensive and extensive quantities
seems to be pointless in zero dimensions, the external source field
J can be associated with the zero-dimensional analogue of an
intensive thermodynamic state variable, because it plays a similar
role as an external magnetic field in higher-dimensional OðNÞ
models.
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lim
ϵ→0

�
dnZðJÞ
dJn

����
Jþϵ

−
dnZðJÞ
dJn

����
J−ϵ

�

¼ lim
ϵ→0

N
Z

∞

−∞
dϕϕne−SðϕÞþJϕðeϵϕ − e−ϵϕÞ

¼ lim
ϵ→0

�
2ϵN

Z
∞

−∞
dϕϕnþ1e−SðϕÞþJϕ þOðϵ2Þ

�
¼ 0: ðB5Þ

Here we expanded the exponentials e�ϵϕ for small ϵ and
used that the remaining ϕ integral is finite due to the
constraints for SðϕÞ.
The assumption that SðϕÞ is bounded from below and

grows faster than jϕj for jϕj → ∞ implying well defined
and finite expectation values might in fact be strong enough
to guarantee not only ZðJÞ ∈ C∞ but also analyticity of
ZðJÞ. A formal proof of the latter should be possible along
the lines of the proof sketch for smoothness (B5). Proving
complex differentiability, thus holomorphicity and thus
ultimately analyticity of ZðJÞ should be possible using
the bounded/dominated convergence theorem which for-
malizes the requirements on SðϕÞ [245]. The analyticity of
ZðJÞ has no direct relevance (apart from the implication
of ZðJÞ ∈ C∞ of course) for the discussion of phase

transitions but it is relevant for the FRG Taylor (vertex)
expansion discussed in Secs. III C 2 and V B 2.
We have shown explicitly that ZðJÞ ∈ C∞, which

implies that there cannot be any phase transition according
to the Ehrenfest classification in our zero-dimensional one-
boson system, and Figs. 34 and 35 cannot be realized in
actual zero-dimensional scenarios in the IR. This also
generalizes to zero-dimensional QFTs with more elaborate
field content, but not to higher-dimensional systems. Of
course,ZðJÞ ∈ C∞ holds for any choice of S½ϕ� that fulfills
the minimal requirements mentioned above, which also
includes nonanalytic actions like Eqs. (10), (130), and
(141). This seems at first sight surprising. Because we are
working in zero dimensions, we can however even visualize
this counter-intuitive result of the proof and simply plot
ZðJÞ and WðJÞ by numerical evaluation of the ϕ integral
for arbitrary J. This is done in Fig. 36, which shows ZðJÞ
and WðJÞ for the nonanalytic action (10).
However, the FRG formalism is based on the effective

action Γ½φ�, which is defined via the Legendre trans-
formation (15) of the Schwinger functional WðJÞ.
From a thermodynamic point of view, this Legendre

FIG. 34. A hypothetical realization of a first-order phase
transition as a discontinuity in the first derivative of the
thermodynamic potential WðJÞ. The functional form of WðJÞ,
which leads to a discontinuity in the first derivative of ∂JWðJÞ,
was chosen as (B2), which cannot correspond to a real scenario
for zero-dimensional models.

FIG. 35. A hypothetical realization of a second-order phase
transition as a discontinuity in the second derivative of the
thermodynamic potential WðJÞ. The functional form of WðJÞ,
which leads to cusps in the first derivative of ∂JWðJÞ and hence
to discontinuities in the second derivative ∂2JWðJÞ, was chosen as
(B3), which cannot correspond to a real scenario for zero-
dimensional models.
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transformation corresponds to a change from one thermo-
dynamic potential to another one, by switching from one
intensive thermodynamic state variable to its corresponding
extensive counterpart or vice versa. The transformation of
WðJÞ to ΓðφÞ is usually associated with the transformation
from the free energy F to the grand canonical potential Ω
in statistical mechanics and thermal QFT [39], which is
directly related to the pressure of the system. Here,
however, we are merely interested in how the absence of
phase transitions manifests itself in ΓðφÞ (and Γ̄tðφÞ during
the FRG flow) after the Legendre transformation.
From thermodynamics and our discussion after Eq. (16)

we know that all functions in Eq. (B1) have to be convex.
Furthermore, we also discussed that the convexity trans-
lates from WðJÞ to ΓðφÞ via the Legendre transformation
(15), or, on the level of the thermodynamic potentials, from
F to Ω, respectively. Consequently, a first-order phase
transition according to Ehrenfest, which would corres-
pond to a cusp in the functions (B1), would translate to a
plateau and nonanalytic behavior in Γ½φ�, see Fig. 37 and
Refs. [82,83]. A second-order phase transition translates to
cusps in the first derivative of ΓðφÞ and discontinuities in its
second derivative, see Fig. 38.
However, from our above discussion we know thatWðJÞ

is smooth in zero dimensions and that this property also
translates toΓðφÞ via theLegendre transformation (15). Thus
ΓðφÞ must also be smooth and convex, which again implies
the absence of phase transitions according to the Ehrenfest
classification of phase transitions in zero dimensions, but this
time on the level of ΓðφÞ in the IR. Thus, the full quantum
effective action ΓðφÞ in the IR for real zero-dimensional
systems cannot behave like the functions in Figs. 37 and 38.
For the sake of completeness, in Fig. 39 we also provide

a plot of ΓðφÞ for the action (10), which was obtained via a

Legendre transformation ofWðJÞ from Fig. 36. Solving the
Wetterich equation (38) with initial condition (10) yields
the same result for ΓðφÞ. For the effective average action
Γ̄t½φ�, things are, however, more involved. We will return to
this issue at the end of this appendix.

2. Landau’s theory of phase transitions

Landau’s theory of phase transitions [246] is based on
the symmetries of a system.42 A Landau phase transition is
associated with the spontaneous breaking or restoration of a
symmetry. This is usually associated with the (dis)appear-
ance of an order parameter while an intensive external
thermodynamic state variable is changed.
In usual Landau theory in higher-dimensional systems,

the order parameter is a quantity which characterizes the
state of the system. A common example for an order
parameter is a condensate. Usually, a nonvanishing con-
densate signals symmetry breaking, because it is associated
with a nontrivial ground state (vacuum) of a thermodynamic
potential, which, in turn, breaks the full symmetry of the
system.

FIG. 36. The functions ZðJÞ and WðJÞ for the nonanalytic
action (10), obtained by numerical integration of Eq. (2). The plot
can be extended to arbitrary J, where ZðJÞ andWðJÞ stay convex
and differentiable. It can be seen by visual inspection that ZðJÞ
does not contain any kinks or discontinuities, which to some
extent “visualizes” the proof (B5) for nonanalytic actions S½ϕ�.

FIG. 37. The figure shows how a hypothetical first-order phase
transition is realized on the level of ΓðφÞ. The upper panel shows
the Legendre transform of WðJÞ from Fig. 34. The lower panel
illustrates the first derivative of ΓðφÞ.

42Additionally, Landau theory assumes expandability of the
free energy in field space.
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Sometimes also the canonically conjugate extensive
thermodynamic state variable of an intensive external
thermodynamic state variable is used as an order para-
meter [244]. A typical example is the magnetization of a
ferro-magnet. Here, however, one would not vary the
magnetic field and look for spontaneous symmetry breaking,

because considering nonzero magnetic field already corre-
sponds to an explicit breaking of the symmetry. Taking
a thermodynamic state variable as an order parameter to
study spontaneous symmetry breaking implies that one
should vary an unrelated intensive state variable, e.g., the
temperature.
Zero-dimensional systems are special, because the

usual thermodynamic state variables like temperature,
pressure, etc. do not exist. The only external “thermody-
namic state variable” is the source field J. Thus, in our
zero-dimensional toy model from Sec. II A, the order
parameter can only be associated with the mean field
φðJÞ, which is the canonically conjugate of the external
source J and is furthermore identical to the expectation
value hϕiJ in the presence of the source,

φðJÞ ¼ hϕiJ ¼ ∂JWðJÞ: ðB6Þ

This corresponds to the second scenario, where the order
parameter is a thermodynamic variable itself.
If we assume the classical action S½φ� and the integral

measure of the partition function (2) to be symmetric
under Z2 transformations ϕ ↦ −ϕ, we clearly see that
the presence of a fixed nonzero source J ≠ 0 breaks the
symmetry of the system and the mean field φðJÞ ¼ hϕiJ
will not vanish for finite J.
For J ¼ 0, however, the expectation value φðJÞ ¼ hϕiJ

must vanish. This seems to signal a phase transition
according to the Landau theory of phase transitions, if
φðJÞ is considered to be the order parameter. On the other
hand, according to the Ehrenfest classification, there are no
phase transitions in zero dimensions, which sounds like a
contradiction. The solution is the following:
It is the precise definition of the order parameter and the

distinction between spontaneous and explicit symmetry
breaking in zero dimensions. Taking nonzero values for the
external source field J actually corresponds to explicit
symmetry breaking and not spontaneous symmetry break-
ing within the Landau classification.
On the other hand, we have just seen that ZðJÞ ∈ C∞

and WðJÞ ∈ C∞, which implies that the transition from
φðJÞ ¼ 0 to φðJÞ ≠ 0 by increasing J is smooth, which
corresponds to a “crossover transition” in the Ehrenfest
classification via explicit symmetry breaking.
However, the main issue is that we should rather con-

sider the condensate, which is defined as the minimum
of ΓðφÞ, as the order parameter of Landau phase transi-
tions to really compare with the Ehrenfest classification. In
zero dimensions, due to the convexity and smoothness
of ΓðφÞ, this order parameter must always vanish, because
the minimum of the IR effective potential is always at
φ ¼ 0. In turn, the Ehrenfest and the Landau classification
of phase transitions coincide and both predict the absence
of phase transitions and spontaneous symmetry breaking in
the zero-dimensional model under consideration.

FIG. 38. The figure shoes how a hypothetical second-order
phase transition is realized on the level of ΓðφÞ. The upper panel
shows the Legendre transform of WðJÞ from Fig. 35. The lower
panel illustrates the first derivative of ΓðφÞ.

FIG. 39. The full quantum effective action ΓðφÞ in the IR
corresponding to the ultraviolet classical action (10). The plot
was obtained via a numerical Legendre transformation of WðJÞ
from from Fig. 36.
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3. The Coleman-Mermin-Wagner-Hohenberg theorem

The above findings can also be interpreted as a special
case of the Coleman-Mermin-Wagner-Hohenberg theorem
[67–69], which states that for systems of dimension d ≤ 2
and sufficiently short-range interactions there cannot be
spontaneous breaking of continuous symmetries at non-
vanishing temperature. Of course, zero-dimensional mod-
els do not include temperature. Still, all interactions are
“short-range,” because the whole system is only defined in
a single point.
Furthermore,we can thinkof a zero-dimensional system in

terms of the high-temperature limit of a one-dimensional
system that only includes a compact temperature direction
and no spatial directions [52]—thus a model on a circle with
“circumference” β ¼ 2π

T . SendingT → ∞, the circle “shrinks
to a point,” hence to zero dimensions. In discrete momentum
space, only the bosonicMatsubara zeromodes survive [247].
All remaining quantities can formally be rescaled with the
inverse temperature β≡ 1=T and one ends up with a zero-
dimensional bosonic system, via this high-temperature
dimensional reduction. In this sense the Coleman-
Mermin-Wagner-Hohenberg theorem applies and is con-
firmed for the special case of zero dimensions by our
previous discussion, see also the discussion in Ref. [248].

4. Phase transitions during the RG flow

In this work, we make use of the absence of spontaneous
symmetry breaking in zero dimensions to test our numeri-
cal methods. These methods have to deliver results which
are in agreement with the discussion of this appendix to be
trustworthy.
Interestingly, also the scale-dependent generating func-

tionals Zðt; JÞ, Wðt; JÞ, and Γðt;φÞ are smooth functions
for any t: Introducing the artificial mass term 1

2
rðtÞϕ2 in

Eq. (6) does not violate any of the requirements of the proof
(B5) in this appendix. Wt½J� is still simply defined via the
logarithm of Zt½J�, see Eq. (17), which translates the proof
from Zt½J� toWt½J�. Furthermore, also the scale-dependent
Legendre-transformation (20) is well defined and the
relations among the n-point correlation functions in
Sec. II E hold for any t, such that Γt½φ� is smooth.

In actual FRGcalculations, however, we areworkingwith
the scale-dependent effective average action Γ̄t½φ�, defined
via Eq. (27). In general, this should not affect the smoothness
property, becauseΔSt½φ� is alsoC∞with respect toφ. Still, a
consequence is that Γ̄t½φ� does—in contrast to Γt½φ�—not
need to be convex for all t and only turns convex for t → ∞,
whenΓ½φ�, Γt½φ�, and Γ̄t½φ� coincide. This can easily be seen
from Eq. (27), whereΔSt½φ� enters with a negative sign as a
huge negative mass term for small t. Hence, on the level of
the effective average action Γ̄t½φ�, we can easily find
Landau-type phase transitions during the FRG flow, by
initializing Γ̄t½φ� with a classical action S½φ� that includes a
nontrivial minimum. During the FRG flow, this condensate
must be vaporized by the bosonic fluctuations, such that
convexity is restored in the IR.
Additionally, we can initialize the FRG flow with

nonanalytic classical actions S½φ� in the UV due to
Eq. (32). This, however, might contradict previous state-
ments and violates the smoothness of Γ̄t½φ� at t ¼ 0. This
subtle issue is resolved as follows. It is the “approximate”
sign in Eq. (32) that tells us to initialize the FRG flow with
nonanalytic initial conditions in the UV, if S½ϕ� is non-
analytic. Such discontinuities in the UV can be interpreted
as Ehrenfest type phase transitions when varying J. The
initialization with a nonanalytic initial condition is valid as
long as the UV cutoff Λ is chosen sufficiently large such
that the regulator insertion still approximates a delta
distribution in the UV. Nevertheless, it is still an approxi-
mation that violates smoothness, but it is necessary for
practical calculations. Interestingly, the FRG equation (38)
seems to immediately cure this tiny “inconsistency” at
small t, due to its diffusive character which smears out the
nonanalyticities (at least in zero-dimensions). Anyhow, the
FRG flow must drive Γ̄t½φ� to be smooth and convex in
the IR in zero dimensions. The in this context pathological
infinite N limit is an exception [28–30], which we will
discuss in detail in part III of this series of publications [31].
All in all, this provides us with perfectly suited test cases,

where we can explicitly check this challenging dynamics
(the restoration of symmetry and smoothness on the level of
Γ̄t>0½φ�) during the FRG flow numerically.
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