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We give a general description of the evolving quantum state of a Schwarzschild black hole, in the
quantum field theory approximation. Such a time-dependent description is based on introducing a choice
of time slices. We in particular consider slices that smoothly cross the horizon, and introduction of
“stationary” such slices simplifies the analysis. This analysis goes beyond standard derivations of Hawking
radiation that focus on asymptotic excitations, and in particular gives an evolving state that is regular at the
horizon, with no explicit trans-Planckian dependence, and that can in principle be generalized to
incorporate interacting fields. It is also argued to be useful in connecting to information-theoretic
investigation of black hole evolution. The description of the evolving state depends on the choice of slices
as well as coordinates on the slices and mode bases; these choices give different “pictures” analogous to
that of Schrödinger. Evolution does have a simpler appearance in an energy eigenbasis, but such a basis is
also singular at the horizon; evolution of regular modes has a more complicated appearance, whose
properties may be inferred by comparing with the energy eigenbasis. In a regular description, Hawking
quanta are produced in a black hole atmosphere, at scales comparable to the horizon size. This approach is
also argued to extend to more general asymptotics, such as that of anti de Sitter space. In the latter context,
this analysis provides a description of the Hamiltonian and evolution of a black hole that may be compared
to the large-N dynamics of the proposed dual CFT.
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I. INTRODUCTION

Hawking radiation [1] is apparently one of the most
mysterious phenomena in the world of physics. While it
appears to follow straightforwardly from the basic prin-
ciples of local quantum field theory (LQFT) extended to
curved spacetime backgrounds, its ultimate implications
include an apparent internal contradiction among the basic
principles of physics. This “black hole information prob-
lem,” or perhaps more aptly, “unitarity crisis,” seems to
point to the necessity of revising fundamental principles, in
connection with understanding the foundations of quantum
gravity.
While black holes (BHs) thus may play a key role in

understanding these principles, the phenomenon of particle
production in a nontrivial gravitational background is also
important because of its role in the very early Universe,
and in particular during a possible phase of inflationary
expansion, which is believed to have created the fluctuations

that lead to the large-scale structure in the visible matter
distribution in the cosmos. The seed fluctuations can be
derived by methods closely parallel to those used to describe
production of Hawking radiation.
In investigating the unitarity crisis, a lot of recent thought

has focused on the view that a more basic understanding of
quantum information and its evolution in quantum gravity
is important. In particular, an important question is whether
it is possible to think of a black hole and its environment as
quantum subsystems, at least to a good approximation, of a
larger quantum system, which evolve together in time.1

This does appear to be the correct leading order picture,
with possible small modifications that ultimately lead to a
description consistent with unitarity.
The original derivation [1] of Hawking radiation was

based on an asymptotic description, analogous to that of the
S-matrix: it analyzed the asymptotic state of the radiation,
but did not directly describe the time evolution of the
quantum state of the BH and its surroundings. Thus, its
connection to a description of an evolving quantum system
is not direct. Rederivations of the Hawking effect have
largely followed in this vein, though various approaches
have provided some additional information about the
evolving quantum state.
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A goal of this paper is to give a direct and more complete
treatment of the evolving quantum state of a BH and its
surroundings. We will focus on this in the approximation
where it is described within LQFT, and thus will not
attempt to describe the more complete dynamics that is
ultimately believed to be unitary. However, this approxi-
mate evolution plays an important background role in
describing this unitary dynamics, if the latter is a correction
to this evolution that is in certain regimes a small
correction. Another role for the present description is in
treating Hawking radiation for interacting theories; treat-
ment of interactions in Hawking’s original derivation is
problematic due to its reliance on evolution via free mode
propagation.
Specifically, we will describe the time-dependent evo-

lution in a picture analogous to standard Schrödinger
picture, by making a choice of time slices that is regular
across the horizon, and deriving the resulting evolution
of the quantum wave function. This was previously done
for two-dimensional black holes in [3,4]; earlier work on
dynamical evolution on such slices includes [5–8].
Description of this evolution also relies on choosing
coordinates on the time slices, and a basis of modes.
In outline, we begin in the next section by parametrizing

such slicings, and describing the corresponding Arnowitt-
Deser-Misner (ADM) parametrization of the metric. The
following section then derives the Hamiltonian for scalar
matter in such a slicing, and the canonical quantization of
the theory. A choice of modes leads to a Fock construction
of the Hilbert space, and construction of the evolution
operator acting on it. In fact, there are many such
descriptions of the evolving quantum state, which depend
on the specific choice of slices, coordinates, and mode
basis; these are analogous to different “pictures” of the
evolution (and are expected to be equivalent).
In a free theory, this evolution can be simplified by in

particular using energy eigenstates for the mode basis.
Section IV describes such modes (and Appendix A finds an
explicit form of them in D ¼ 4 spacetime dimensions in
terms of Heun functions) and outlines their important
properties. While the evolution is simplified in such a
basis, the basis is singular. This connects to Hawking’s and
related derivations, where modes are traced back to ultra-
Planckian wavelengths near the horizon. The resulting
trans-Planckian behavior has served as a source of concern
and confusion in the literature, but from this viewpoint just
arises from choice of a singular basis to describe the state.
These issues may be avoided, as in the next section, by

instead working with a regular basis. This does lead to a
more complicated description, but one that in principle
exhibits evolution without any explicit reference to trans-
Planckian excitations. This section in particular finds the
form of the resulting Hamiltonian.
Section VI then puts the previous treatments together to

give a description of the evolution of the quantum state,

which we call the Hawking state, resulting from a collaps-
ing BH. Again, this can be done in terms of a regular mode
basis, but at the price of a more complicated evolution law.
We can, however, learn about its structure by comparing it
to the singular and simpler description in terms of energy
eigenmodes. In particular, one can see the familiar behavior
of asymptotic Hawking excitations, as well as of the
internal partner excitations and pairing between inside
and outside excitations. We also discuss the internal
evolution on “nice slices,” and exhibit a “frozen” descrip-
tion of the internal state, in a picture that results from
particular choices of internal coordinates.
The final section outlines the extension of these results to

interacting theories, and to situations with different asymp-
totic metrics besides that of Minkowski. It in particular
discusses the case of anti de Sitter space. Here, the same
quantization procedure is argued to yield a Hamiltonian and
evolution that furnishes, in AdS=CFT language, a leading
order large-N description of quantum evolution of a BH,
as well as 1=N corrections arising from interactions. Here,
again, this is not expected to yield evolution that is
ultimately unitary, connecting to the question of the form
of additional corrections needed to unitarize the dynamics.

II. GEOMETRY AND TIME SLICINGS

We begin by describing the geometry of a BH, and time
slices of that geometry.

A. Schwarzschild parametrizations

The standard form of the Schwarzschild metric is

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2 ð2:1Þ

where for D > 3 dimensions

fðrÞ ¼ 1 −
�
R
r

�
D−3

; ð2:2Þ

here R is the horizon radius. Both for describing field
propagation and for giving a smoother description of the
geometry, it is useful to introduce conformal coordinates
for the t, r plane, by defining r�ðrÞ ¼

R
dr=fðrÞ so that

ds2 ¼ fðrÞð−dt2 þ dr2�Þ þ r2dΩ2: ð2:3Þ

For example in D ¼ 4,

r� ¼
Z

dr
1 − R=r

¼ r − Rþ R ln

�
r
R
− 1

�
; ð2:4Þ

up to an overall additive constant. Then, for the exterior of
the horizon, we can define left/right moving Eddington-
Finkelstein coordinates
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x� ¼ t� r�: ð2:5Þ

While the Schwarzschild coordinates (2.1) and the
definition of r� are clearly singular at the horizon, the
latter definition can be extended to r < R; for example in
D ¼ 4

r� ¼ r − Rþ R ln
�
1 −

r
R

�
� πiR: ð2:6Þ

The sign reversal of f in (2.3) indicates that r� plays the
role of a time coordinate for r < R, and left/right moving
coordinates for the interior are

x̂� ¼ r� � t: ð2:7Þ

The metric (2.1) is of course smooth across the horizon,
and this can for example be exhibited by working in
the incoming Eddington-Finkelstein coordinates, ðxþ; rÞ.
This gives

ds2 ¼ −fðrÞdxþ2 þ 2dxþdrþ r2dΩ2 ð2:8Þ

which smoothly covers the region r > 0. The time trans-
lation invariance is also inherited by this form of the metric,
and becomes invariance under

xþ → xþ þ constant: ð2:9Þ

This invariance plays an important role in the dynamics.

B. Slicings and ADM description

In order to describe dynamical evolution, we can provide
a foliation of the geometry (2.1), (2.8) by time slices. Such
a foliation can in general be parametrized as

xμ ¼ Xμðt; xiÞ ð2:10Þ

where now t labels slices of the foliation, and xi is a spatial
coordinate. In a Schwarzschild background, the description
is simplest for a foliation respecting the spherical sym-
metry, so that

xþ ¼ Xþðt; xÞ; r ¼ X rðt; xÞ; ð2:11Þ

independent of angles, with general radial coordinate x,
and using the standard angular coordinates. We also can
anticipate some simplifications for slicings that respect the
translation symmetry (2.9), and these take the general form

xþ ¼ tþ sðxÞ; r ¼ rðxÞ; ð2:12Þ

which we refer to as a “stationary slicing” [9,3]. Their
specification particularly simplifies if we use r as the radial
coordinate,

xþ ¼ tþ SðrÞ: ð2:13Þ

This family of slicings unifies various descriptions of
the Schwarzschild spacetime, and the form of the “slice
function” SðrÞ plays a key role. For example, from the
coordinate definition (2.5), we see that SðrÞ ¼ r�ðrÞ gives
the Schwarzschild time slicing, relevant for observers who
stay outside the horizon. Slicings that cross the horizon—
for example describing observations of a family of observ-
ers, some of whom enter the BH—arise from slice
functions that are smooth at the horizon. Freely falling
such observers will reach r ¼ 0, and that is naturally
described by a family of “natural slices” for which SðrÞ
is finite there. A very simple example is SðrÞ ¼ r, corre-
sponding to “straight slices,” which lead to some simpli-
fications. However, such natural slices do not give good
Cauchy slices, since they cease to describe excitations that
have reached r ¼ 0, in the absence of a supplementary
description there. Cauchy slices can, however, be specified
by using an SðrÞ that asymptotes to minus infinity at some
finite r ¼ Rn < R. This gives an example of the construc-
tion of “nice slices,” such as were described by [10,11].
These different kinds of slices are shown in Fig. 1.
Evolution over a general slicing is conveniently

described by using ADM variables [12] for the metric,

ds2 ¼ −N2dt2 þ qijðdxi þ NidtÞðdxj þ NjdtÞ: ð2:14Þ

The lapse N, shift Ni, and spatial metric qij are dependent
on the spatial coordinates, and we also define Ni ¼ qijNj.

FIG. 1. Shown in an Eddington-Finkelstein diagram are differ-
ent kinds of slices. In addition to the familiar Schwarzschild
slices, there are nice slices, asymptoting to a constant r ¼ Rn, and
natural slices which reach r ¼ 0. These slices all asymptote to
constant Schwarzschild time slices at r ¼ ∞. The full family of
slices of the geometry is found by translating one of these slices
vertically in the figure, corresponding to a time translation in
Schwarzschild time.
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For the Schwarzschild metric in a stationary slicing
described by (2.13), these functions become [9]

N2 ¼ 1

S0ð2− fS0Þ ; Nr ¼ 1− fS0; qrr ¼ S0ð2− fS0Þ;

ð2:15Þ

with S0 ¼ dS=dr, and with the remaining components qij
of standard angular form. This is also readily generalized
for a more general stationary radial coordinate, (2.12). It is
also useful to have the unit normal to the time slices, which
takes the general form

nμ ¼ ð1;−NiÞ=N: ð2:16Þ

III. SCHRÖDINGER DESCRIPTION

A. Canonical quantization

Our goal is to describe the evolution of the quantum state
of a BH. Of course, emitted Hawking radiation changes
the mass of the BH, making the geometry nonstationary.
However, the average time to emit a Hawking quantum
of energy ∼1=R is R. This means that the fractional
change in the mass over the characteristic emission
time is RdM=Mdt ∼ 1=RM ∼ 1=SBH, where SBH is the
Bekenstein-Hawking entropy. This small parameter justi-
fies using the stationary approximation over times≪ RSBH
for large BHs. We will focus on this approximation and
describe evolution of quantum fields on the stationary BH
background, leaving treatment of quantum backreaction
for future work. For simplicity, we consider evolution of a
free massless scalar field ϕ in a D ≥ 4 dimensional
Schwarzschild background. Working in ADM variables,
with a general slicing, the action takes the form

S ¼ −
1

2

Z
dDx

ffiffiffiffiffi
jgj

p
ð∇ϕÞ2

¼ 1

2

Z
dtdD−1x

ffiffiffi
q

p
N½ð∂nϕÞ2 − qij∂iϕ∂jϕ�; ð3:1Þ

where we have defined the normal derivative ∂nϕ ¼ nμ∂μϕ.
The canonical momentum is then defined by

π ¼ 1ffiffiffi
q

p δS

δ _ϕ
¼ 1

N
ð∂tϕ − Ni

∂iϕÞ ¼ ∂nϕ: ð3:2Þ

Using this, we can write the canonical form of the action

S ¼
Z

dtdD−1x
ffiffiffi
q

p ðπ _ϕ −HÞ; ð3:3Þ

where the Hamiltonian is

H ¼
Z

dD−1x
ffiffiffi
q

p
H

¼
Z

dD−1x
ffiffiffi
q

p �
N
2
ðπ2 þ qij∂iϕ∂jϕÞ þ πNi

∂iϕ

�
: ð3:4Þ

Quantization proceeds via the equal time canonical com-
mutation relations

½πðxi; tÞ;ϕðxi0; tÞ� ¼ −i
δD−1ðx − x0Þffiffiffi

q
p : ð3:5Þ

Note that the Hamiltonian (3.4) depends on the choices
of both foliation and spatial coordinate in the general
expression (2.10), through the dependence of N and Ni on
these choices. This results in what can effectively be
described as different “pictures” for the evolution, generali-
zing the choice of Heisenberg or Schrödinger picture, as
also discussed in [4]. In a given such Schrödinger picture,
we take the field and momentum operators to be time
independent, and all evolution to be in the state.2

Description of the evolution also depends the choice of a
mode basis, given by specifying a complete set of pairs
of functions γIðxiÞ ¼ ðϕIðxiÞ; πIðxiÞÞ. Such a pair gives
Cauchy data for a solution ϕIðxi; tÞ. For quantization, one
also specifies a choice of complex structure [16,18,19] that
separates these into “positive frequency” modes γAðxiÞ ¼
ðϕAðxiÞ; πAðxiÞÞ and conjugate “negative frequency” modes
γ�AðxiÞ. The inner product of two such sets of Cauchy data is

ðγ1; γ2Þ ¼ i
Z

dD−1x
ffiffiffi
q

p ðϕ�
1π2 − π�1ϕ2Þ; ð3:6Þ

and extends to an inner product between solutions,

ðϕ1;ϕ2Þ ¼ i
Z

dD−1x
ffiffiffi
q

p
nμϕ�

1 ∂μ

⟷
ϕ2; ð3:7Þ

which is conserved by the equations of motion. Different
such choices of modes also lead to different pictures.
The Schrödinger picture field operators, in a given such

picture, can be expanded as

ϕðxiÞ ¼
X
A

½aAϕAðxiÞ þ a†Aϕ
�
AðxiÞ�;

πðxiÞ ¼
X
A

½aAπAðxiÞ þ a†Aπ
�
AðxiÞ�: ð3:8Þ

If the mode basis is orthonormal,

2In a time-dependent background, there are further subtleties
with Schrödinger picture discussed in [13–17]. The present
work avoids these with the time-independent background and
slicing.
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ðγA; γBÞ ¼ δAB; ðγA; γ�BÞ ¼ 0; ð3:9Þ
the canonical commutators imply the commutation relations

½aA; a†B� ¼ δAB; ½aA; aB� ¼ ½a†A; a†B� ¼ 0: ð3:10Þ

A Fock space basis for the Hilbert space then arises by acting
with the creation operators a†A on the vacuum j0i annihilated
by the aA.
Schrödinger picture evolution is then described by the

action of the time evolution operator,

Uðt2; t1Þ ¼ exp

�
−i

Z
t2

t1

Hdt

�
; ð3:11Þ

determined by the Hamiltonian (3.4), on the state. And,
for example, if initially the state is the vacuum state j0i
(in a particular basis), it will not necessarily remain in that
state, since the Hamiltonian in general creates additional
excitations.

B. Hamiltonian and pictures

The Hamiltonian (3.4) can bewritten in other forms which
are useful in describing evolution. We begin by using the
explicit definition of the momentum to obtain from (3.4)

H ¼
Z

dD−1x
ffiffiffi
q

p �
1

2N
ð∂tϕÞ2 þ

N
2
gij∂iϕ∂jϕ

�
: ð3:12Þ

We can rewrite this in terms of a vector ξ ¼ ∂t, which
connects points on neighboring slices with equal spatial
coordinates. In component form, this becomes from (2.10)

ξμ ¼ ∂Xμ

∂t

����
xi
; ð3:13Þ

at fixed spatial coordinate xi. Then, using the stress tensor for
the minimally coupled scalar field, the Hamiltonian becomes

Hξ ¼
Z

dD−1x
ffiffiffi
q

p
nμξνTμν; ð3:14Þ

where nμ is the unit normal (2.16).
This form of the Hamiltonian also exhibits the depend-

ence both on the slicing and on the choice of spatial
coordinate xi along the slices; for example a redefinition
xi0ðxj; tÞ changes ξμ and thus Hξ. The different choices of ξ
define different Hamiltonians and Schrödinger pictures,
which lead to distinct descriptions of the evolution. In
particular, the Hamiltonian Hξ is conserved when ξ is a
Killing vector, since the stress tensor is also conserved.
Such a Killing vector is present after the matter has
collapsed to form a BH. The expression (3.14) can
alternately be derived in the covariant canonical formalism;
see e.g. Appendix B of [20] for a review.

Another useful expression can be found by putting the
Hamiltonian (3.12) in a form which resembles the con-
served inner product (3.7). We will connect to the inner
product by introducing the canonical momentum π ¼ ∂nϕ
into (3.12). Replacing one of the time derivatives
using (3.2), the Hamiltonian becomes

H¼
Z

dD−1x
ffiffiffi
q

p �
1

2
∂tϕ∂nϕþ

1

2
∂tϕ

Ni

N
∂iϕþ

N
2
gij∂iϕ∂jϕ

�
:

ð3:15Þ

Integrating the last two terms by parts with respect to xi,
and neglecting the boundary term, the expression becomes

H ¼
Z

dD−1x
ffiffiffi
q

p �
1

2
∂tϕ∂nϕ −

ϕ

2
ffiffiffi
q

p ∂ið
ffiffiffi
q

p
Ngiμ∂μϕÞ

�
:

ð3:16Þ

Finally, using the equation of motion to rewrite the
second term,3 the Hamiltonian takes the simplified form

H ¼ 1

2

Z
dD−1x

ffiffiffi
q

p �
∂tϕ∂nϕ − ϕ∂t∂nϕ − ∂nϕϕ

∂tq
2q

�
:

ð3:17Þ

Comparing the above equation to (3.7), we see that
for time-independent metric coefficients it reduces to the
inner product iðϕ�; ξμ∂μϕÞ=2. This will be useful in the
following analysis, particularly when considering special
choices of modes.

IV. ENERGY EIGENMODES AND
THEIR EVOLUTION

The time-translation symmetry (2.9) suggests expanding
in a basis of modes that correspond to eigenstates of
the time translation generator, which is ∂xþ , or ∂t in the
slice coordinates. We begin by separating off the angular
coordinates using4

ϕðxÞ ∼ ulðxþ; rÞ
YlmðΩÞ
rD=2−1 : ð4:1Þ

Then ulðxþ; rÞ obeys the equation

∂rð2∂þuþ f∂ruÞ − VlðrÞu ¼ 0 ð4:2Þ

3At the quantum level this is allowed since the field operators
are expected to satisfy the equation of motion.

4For spacetime dimension D > 4, the spherical harmonics
involve multiple angular quantum numbers mi; for notational
simplicity, we use the four-dimensional notation Ylm in the
following discussion.
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with potential

VlðrÞ¼
�
D
2
−1

�
2RD−3

rD−1 þ
lðlþD−3ÞþðD−2ÞðD−4Þ=4

r2
;

ð4:3Þ

e.g. in the case D ¼ 4,

VlðrÞ ¼
R
r3

þ lðlþ 1Þ
r2

: ð4:4Þ

Eigenfunctions of the time translation symmetry then take
the form

e−iωx
þ
uωlðrÞ

Ylm

rD=2−1 ; ð4:5Þ

or in the t, r coordinates arising from a stationary
slicing (2.13)

e−iωtUωlðrÞ
Ylm

rD=2−1 ; UωlðrÞ ¼ e−iωSðrÞuωlðrÞ: ð4:6Þ

Again, the special case of a Schwarzschild slicing
corresponds to SðrÞ ¼ r�ðrÞ, and the equation (4.2) can
be simplified by defining

gωlðrÞ ¼ e−iωr�uωlðrÞ ð4:7Þ

and becomes

d2gωl
dr2�

þ ½ω2 − fðrÞVlðrÞ�gωl ¼ 0: ð4:8Þ

At large r, or near the horizon, the effective potential fVl
vanishes, and we have

gωl ∼ expf�iωr�g: ð4:9Þ

Solving for gωl becomes a well-known barrier penetration
problem. Inside the horizon, we also find the behavior (4.9)
near the horizon, r� → −∞. The general internal solutions
are difficult to find, but one indicator of their behavior is
their WKB approximation, which has the form

gωl ∼ e�i
R

dr�
ffiffiffiffiffiffiffiffiffiffiffiffi
ω2−fVl

p
: ð4:10Þ

This approximation in particular fails as r approaches zero
(r� → −R), but does illustrate the rapidly varying nature of
the solutions.
The behavior of energy eigenmodes can be further

understood by examining the differential equation (4.2).
The equation has regular singular points at 0 and

Re2πin=ðD−3Þ for integers n ¼ 0; 1;…; D − 4, and an irregu-
lar singular point at infinity (see Appendix A). The
solutions are not known in general; however, in D ¼ 4
(4.2) can be transformed into the confluent Heun equation.
In this case of D ¼ 4 Schwarzschild BHs the solutions to
the Heun equation are well known and have been widely
studied in the literature, and incoming and outgoing modes
are classified by their behavior near the singular points. We
will not need the detailed behavior of the solutions to (4.2)
in order to see that they define a basis, but their asymptotic
behaviors will be important.
One can describe quantization using a basis of such

solutions. One way to characterize solutions is in terms of
their behavior at t → −∞. There are incoming solutions
from r ¼ ∞, but also can be (singular) solutions that
asymptote to r ¼ R (or r� ¼ −∞) in the far past.
Specifically, we can introduce the following basis:

(i) ũωl: these “in” modes are modes such that the
coefficient of eiωr� vanishes near the horizon, i.e.
g̃ωl ∼ e−iωr� . Equation (4.7) then shows that these
modes are nonsingular at the horizon; they have
purely ingoing behavior there, ϕ ∼ e−iωx

þ
. At

r� ¼ r ¼ ∞ they have both an ingoing piece, which
may be normalized to unity, and a reflected outgoing
piece. The internal part of the solution also is purely
ingoing at the horizon, but takes a more general form
for finite r�.

(ii) uωl: these “up” modes are modes that in gωl have
nonvanishing coefficient of eiωr� , taken to be unity,
as r → Rþ, but vanishing coefficient as r → R−, and
with purely outgoing wave eiωr� at r� → ∞. These
both give behavior ϕ ∼ e−iωx

−
. These also have a

reflected e−iωr� piece at the horizon, which continues
to the interior similarly to the previous case.

(iii) û�ωl: these “inside” modes are modes that in ĝωl have
nonvanishing coefficient of eiωr� , taken to be unity,
as r → R−, and which vanish outside the horizon.
Thus near the horizon ϕ ∼ eiωx̂

−
; for finite internal

r�, they have general behavior.
In the exterior region r > R, the “in” and “up” modes
correspond to those of [21], also discussed in [22], but we
have also described the interior continuations of these
solutions, which have an ingoing part. We have also
introduced the “inside” modes. Of course, the “up” and
“inside” modes are singular at the horizon, due to the
singularity at r ¼ R in the definition of r�. The correspond-
ing full solutions are denoted

ϕωlmðxi; tÞ ¼ e−iωx
þ
uωlðrÞ

Ylm

rD=2−1 ; ð4:11Þ

and likewise for ϕ̃ωlm, ϕ̂
�
ωlm.

These solutions, written in terms of gωl via (4.7), are of
course orthogonal under the conserved inner product (3.7)
unless l, m match, in which case the product becomes
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ðϕ1;ϕ2Þ ¼
Z

dr
f
½ðω1 þ ω2Þg�ω1l

gω2l

− ifð1 − fS0Þg�ω1l
∂

↔

rgω2l�eiðω1−ω2Þ½tþSðrÞ−r��:

ð4:12Þ

One can see that the sets of modes ϕωlm, ϕ̂ωlm, ϕ̃ωlm are
mutually orthogonal by considering a general localized
wave packet of such modes. In the far past, t → −∞, this
wave packet will localize near the horizon for ϕωlm, ϕ̂ωlm,
and near infinity for ϕ̃ωlm, and so the inner product
vanishes. The modes in a given set are orthogonal for
ω1 ≠ ω2, since otherwise (4.12) would contradict the
time independence of ðϕ1;ϕ2Þ. One also finds by
examining their near-horizon behavior that the modes
ϕ̂�
ωlm are negative norm, and so their conjugates ϕ̂ωlm are

positive norm solutions.5 Our normalization convention
is ðϕωlm;ϕω0l0m0 Þ ¼ 4πωδðω − ω0Þδll0δmm0 , and similarly
for ϕ̂, ϕ̃.
The expansion of the field in terms of the modes inside

and outside of the horizon takes the form

ϕðxi; tÞ ¼
X
lm

Z
∞

0

dω
4πω

ðbωlmϕωlm þ b̃ωlmϕ̃ωlm

þ b̂ωlmϕ̂ωlm þ H:c:Þ ð4:13Þ
and may be, for example, evaluated at t ¼ 0, in a given
slicing, to give the Schrödinger picture operator (3.8). This
expansion also may be expressed compactly as

ϕ ¼
X
A

bAϕA þ H:c: ð4:14Þ

where the integral over frequencies has been included in
the general sum over modes labeled by A. Note that for the
purely internal ϕ̂ωlmðrÞ modes, the frequencies have the
opposite sign, in accord with the above definitions.
As anticipated, the Hamiltonian greatly simplifies in this

basis. From (3.17) we found for a stationary slicing

H ¼ 1

2

Z
dD−1x

ffiffiffi
q

p
nμ½∂tϕ∂μϕ − ϕ∂t∂μϕ� ¼

1

2
ðϕ�; i∂tϕÞ:

ð4:15Þ
Then using

∂tϕðxÞ ¼ −i
X
A

ωAbAϕA þ H:c: ð4:16Þ

and the orthogonality between modes, we find

H ¼
X
A

ωAb
†
AbAðϕA;ϕAÞ þH0 ð4:17Þ

where H0 is the normal ordering constant

H0 ¼
X
A

ωA

2
½bA; b†A�ðϕA;ϕAÞ: ð4:18Þ

Returning to a more explicit labeling of the mode sum, the
Hamiltonian becomes

H¼
X
lm

Z
dω
4πω

ωðb†ωlmbωlm− b̂†ωlmb̂ωlmþ b̃†ωlmb̃ωlmÞþH0:

ð4:19Þ

This has the same form as the D ¼ 2 case discussed in
[3,4], including both chiralities of the modes, as a result
of the spherical symmetry of the spacetime. One clearly
sees that the “inside” modes have negative energies for this
Hamiltonian.
Of course the simplicity of the Hamiltonian (4.19) is

somewhat illusory, since the specification of a good initial
state, e.g. with a regularity condition at the horizon, is
rather more complicated in this basis, as was clearly
illustrated in the 2d case in [3,4]. An alternate way to
describe such a regular state is to work directly in terms of
modes that are regular at the horizon, to which we now turn.

V. REGULAR MODES AND THEIR EVOLUTION

To give a treatment of evolution respecting regularity at
the horizon, it is most natural to consider a mode basis that
is regular there. If we consider a general stationary slicing
(2.12), a mode basis may be specified by giving pairs of
functions ðϕAðxiÞ; πAðxiÞÞ, with A a basis label, on those
slices. These also provide Cauchy data for a corresponding
solution that evolves forward from a given slice.

A. Properties of modes

We have found that the “in” energy eigenmodes are
regular at the horizon, and so can be used to provide a
regular basis, but the “up” and “inside” modes are singular
there. However, as two-dimensional examples illustrate
[3,4], we should be able to also find a mode basis that is
regular at the horizon by combining these latter two.
Specifically, working with initial data on a slice

which may be chosen to be at t ¼ 0, the space Hin ¼
Spanfðϕ̃ωlmðxi; 0Þ; π̃ωlmðxi; 0ÞÞg describes “in” modes.
This is orthogonal to the spaces Hup¼Spanfðϕωlmðxi;0Þ;
πωlmðxi;0ÞÞg andHinside¼Spanfðϕ̂ωlmðxi;0Þ; π̂ωlmðxi;0ÞÞg,
corresponding to the “up” and “inside” modes, where here
the π’s are derived from the corresponding solutions
described in the previous section using (3.2). The ortho-
gonality of the Cauchy data extends to orthogonality of the
solutions. We combine elements of Hup and Hinside to give
regular modes at the horizon.5We also take m → −m in our definition, so that ϕ̂ωlm ∝ Ylm.
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Explicitly, we expect to be able to find regular modes which are determined by Cauchy data

ϕklmðxi; 0Þ ¼
Z

dωðβþkωlϕωlm þ β−kωlð−1Þmϕ�
ωl;−m þ β̂þkωlϕ̂ωlm þ β̂−kωlð−1Þmϕ̂�

ωl;−mÞ;

πklmðxi; 0Þ ¼
Z

dωðβþkωlπωlm þ β−kωlð−1Þmπ�ωl;−m þ β̂þkωlπ̂ωlm þ β̂−kωlð−1Þmπ̂�ωl;−mÞ; ð5:1Þ

where k is a continuous quantum number, and where it is
understood that the up and inside mode functions contain
factors of θðr − RÞ and θðR − rÞ, respectively. The regu-
larity condition at the horizon enforces conditions on the
Bogolubov coefficients βþ; β−; β̂þ; β̂−.
We can then think of the modes ðϕklm; πklmÞ as spanning

a space HR
up ⊂ Hup ⊕ Hinside, which inherits its orthogon-

ality to Hin from Hup and Hinside. The corresponding set
uklðrÞ and their complex conjugates should form a com-
plete basis of functions of r, and the functions (5.1) and
their conjugates likewise a basis for Cauchy data of
regular solutions. Of course, the corresponding solutions
ϕklmðxi; tÞ will then have nontrivial time dependence, as in
theD ¼ 2 case in [3]. InD > 2 dimensions the equation of
motion also includes an effective potential, which leads to
mixing between right and left moving modes and more
complicated solutions.
It appears difficult to give explicit expressions for such

regular up bases, and that they are most easily treated
approximately. They can also be thought of as being
specified by different characteristics. One is that a localized
wave packet superposition of such solutions increasingly
localizes in the vicinity of r ¼ R in the far past, becoming
singular in the infinite past, as is seen in the simpler 2d
example [4]. We may alternately imagine defining the

modes by specifying regular functions ϕklmðxiÞ, and then
choosing corresponding πklmðxiÞ so that the modes are
orthogonal to those in Hin and satisfy an appropriate
condition corresponding to a choice of “positive frequency”
(in the nomenclature of Sec. III B), but this appears not to
give conditions that are simple to solve. Finally, these
modes can be specified by requiring that they be regular at
the horizon and that their evolution uklðxþ; rÞ [compare
(4.1)] be purely outgoing at r ¼ ∞ for all xþ or time.
Using a general such regular basis, the field and

momentum operators can be expanded as

ϕðxiÞ ¼
X
lm

Z
∞

0

dk
4πk

ðaklmϕklm þ ãklmϕ̃klm þ H:c:Þ;

πðxiÞ ¼
X
lm

Z
∞

0

dk
4πk

ðaklmπklm þ ãklmπ̃klm þ H:c:Þ

ð5:2Þ

where both ϕklm and ϕ̃klm are regular at the horizon.

B. Evolution of regular modes

Using (4.15) and (5.2), the Hamiltonian for regular
modes takes the block diagonal form

H¼
X
lm

Z
dk
4π

dk0

4π
½Almðk;k0Þa†klmak0lmþBlmðk;k0Þa†klma†k0l;−mþ Ãlmðk;k0Þã†klmãk0lmþ B̃lmðk;k0Þã†klmã†k0l;−mþc:c:�: ð5:3Þ

Here for a stationary slicing

Almðk; k0Þ ¼
1

2kk0
ðϕklm; i∂tϕk0lmÞ ð5:4Þ

and

Blmðk; k0Þ ¼
1

2kk0
ðϕklm; i∂tϕ�

k0l;−mÞ; ð5:5Þ

Ãlmðk; k0Þ and B̃lmðk; k0Þ are defined similarly for the in-
modes, and c:c: denotes conjugation that does not change

operator ordering.6 Note that the Hamiltonian does not
contain mixing terms between Hin and HR

up due to the
orthogonality of the basis modes. This is particularly clear
when writing the Hamiltonian in terms of the Bogolubov
coefficients. Using the expansion (5.1) and relation (4.16),
the mixing terms reduce to inner products between
orthogonal energy eigenmodes. The remaining nonzero
terms of the regular Hamiltonian (5.3) are then charac-
terized by the functions

6Reordering then yields a normal ordering constant.
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Almðk; k0Þ ¼
1

2kk0

Z
dω4πω2ðβþ�

kωlβ
þ
k0ωl þ β−�kωlβ

−
k0ωl − β̂þ�

kωlβ̂
þ
k0ωl − β̂−�kωlβ̂

−
k0ωlÞ; ð5:6Þ

and

Blmðk; k0Þ ¼
ð−1Þ−m
2kk0

Z
dω4πω2ðβþ�

kωlβ
−�
k0ωl þ β−�kωlβ

þ�
k0ωl − β̂þ�

kωlβ̂
−�
k0ωl − β̂−�kωlβ̂

þ�
k0ωlÞ ð5:7Þ

where Ãlmðk; k0Þ and B̃lmðk; k0Þ are defined similarly, but
with only one set of coefficients β̃þ and β̃−. With specific
choices of the mode functions the Bogolubov coefficients
as well as the coefficients A and B can in principle be
calculated.
Given the Hamiltonian (5.3), the evolution is in principle

well defined. In practice, evolution in such a regular
description is more complicated than in the singular
description in terms of energy eigenmodes. It has of course
been of interest to establish that there is a regular descrip-
tion, as well as to understand aspects of its behavior. We
will also explore its relation to the description using energy
eigenmodes, and how properties of the evolving wave
function can consequently be inferred.

VI. EVOLUTION FOR DYNAMIC BLACK HOLES
AND THE “HAWKING STATE”

In this section, we will extend the preceding discussion
to consider evolution of quantum matter on a general time-
dependent, spherically-symmetric BH background, corre-
sponding for example to a BH that forms from collapse of a
massive body, and will discuss some properties of the
corresponding quantum state.

A. Geometry

Specifically, consider the general metric

ds2 ¼ −fðxþ; rÞdxþ2 þ gðxþ; rÞdxþdrþ r2dΩ2; ð6:1Þ

where the null ingoing coordinate xþ can be chosen so that
gðxþ; rÞ → 2 at r → ∞. This could represent the metric of a
general collapsing matter distribution, as shown in Fig. 2; a
specific case is the ingoing Vaidya solution with

fðxþ; rÞ ¼ 1 −
2MðxþÞ

r
; gðxþ; rÞ ¼ 2; ð6:2Þ

with an ingoing mass function MðxþÞ.
If we wish to provide a slicing of a collapsing BH

spacetime such as shown in Fig. 2 by Cauchy slices, those
slices need to avoid the singularity at r ¼ 0. We assume that
slices in the far past, when matter is dilute, are increasingly
close to Minkowski time slices. Later slices can remain
Cauchy if they have “nice” behavior, with a minimal radius
Rn. These slices may then be closed in the region prior to

the singularity, as illustrated in the figure. If we suppose
that these slices asymptote to Minkowski time slices, the
portion in the vacuum region needs to advance into the
future with advancing time.
There are different ways to accomplish this, correspond-

ing to different choices of coordinates or gauge, which arise
from different choices of the functions Xþðt; xÞ and
X rðt; xÞ in (2.11). For example, these could be chosen
so that the spatial metric qxx on the slices of constant time t
is time dependent in the post-formation vacuum region,
and might specifically undergo “stretching” as described
in [23]. However, the description of the state in the post-
formation region of interest is simpler if we instead use
stationary slices, as in (2.12), in this region. Since the
distance along the slices back to r ¼ 0 must increase with
time, these slices must undergo “stretching” in the early
region, for example within or near the infalling matter
region. In this section we will not focus on the latter
behavior since it appears most relevant to the description of
the “early” part of the BH state, and our interest will be in

FIG. 2. The geometry of a black hole formed from collapse, in
an Eddington-Finkelstein diagram. Also shown is a slice that
behaves like a nice slice in the vacuum region, which is then
extended through the collapsing region to complete it to a
Cauchy slice.
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the part of the state corresponding to Hawking radiation
and internal excitations at later times.

B. States

Given a slicing, we will define the “Hawking state” as
the time-dependent state jψðtÞiH that arises from evolving
the matter vacuum j0i at t ¼ −∞ to a future time t. Here,
we focus on “spectator” matter that is different from the
matter forming the BH. The Hawking state is then given by
the expression

jψðtÞiH ¼ Te−i
R

t

−∞
dtHξ j0i; ð6:3Þ

with a Hamiltonian as discussed in Sec. III B. This
expression will implicitly depend on the choices of coor-
dinates and mode bases, described in Sec. III, used to define
the picture.
The full time-dependent Hawking state (6.3) can be

rather complicated, in part due to excitations created during
the time-dependent BH formation phase. A simpler state
that is sometimes considered is the Unruh state [24], which
can be defined by working with the extended vacuum
Schwarzschild solution, and evolving the vacuum defined
with respect to the Kruskal coordinate X− at the past
horizon forward in time, via a similar procedure.
Indeed, if we compare the Hawking and Unruh states on

a time slice that meets the horizon just after the transition to
vacuum, such as shown in Fig. 2, they differ in some of the
excitations escaping to infinity or falling into the BH. But,
if we consider a much later slice, these excitations will have
reached the asymptotic region, or reached the deep interior,
either near r ¼ 0, or with the kind of slicing we have
described, the part of the slice at r ¼ Rn. In contrast, the
excitations being emitted from or falling into the BH near
that later time are expected to be determined by the local
short-distance structure of the state, which is the same for
the Hawking and Unruh states.
In fact, these statements should extend to a more general

state that behaves like vacuum near the horizon at short
distances—the subsequent long time behavior is governed
by this vacuum-like structure near the horizon. Specifically,
we expect that any regular state has the same long-time
behavior, once excitations that correspond to initial
differences between states have escaped to near infinity
or to the BH deep interior. The evolution of such a state can
be examined at a more explicit level.

C. Evolution

To describe the evolution, first one makes a choice of
slicing and coordinates along those slices, given by (2.11),
or equivalently by specifying tðxþ; rÞ and spatial coordi-
nate xðxþ; rÞ, which we assume to be regular across the
horizon. Next, choose a time t0 which is taken so that the
corresponding slice meets the horizon to the future of

the collapsing matter as in Fig. 2. To begin, we wish to
characterize what it means to be vacuum-like at this time
near the horizon.
The vacuum-like structure can be characterized by using

the local relation to flat Minkowski geometry. In the vacuum
region, the metric (6.1), (6.2) can be written in terms of
Kruskal coordinates, defined for example in D ¼ 4 by

X� ¼ �2Re�x�=2R; ð6:4Þ

with corresponding extension across the horizon.7 The
vacuum metric then becomes

ds2 ¼ −
R
r
e1−

r
RdXþdX− þ r2dΩ2: ð6:5Þ

The near-horizon limit jr − Rj ≪ R gives a “Rindler region”
[25] in which the metric is locally M2 × S2,

ds2 ≈ −dXþdX− þ R2dΩ2; ð6:6Þ

with corresponding 2d spacetime coordinates defined by
X� ¼ T � X. In this near-horizon limit and in these coor-
dinates, a slice whose slice function SðrÞ only varies on
scales∼Rwill meet the horizon as a straight line. The regular
basis ðϕklm; πklmÞ, ðϕ̃klm; π̃klmÞ can then be chosen so that at
high k, the corresponding solutions behave as

ukl ≈ eikX−iωkT ; ũkl ≈ e−ikX−iωkT ð6:7Þ

in the Rindler region,8 with ω2
k − k2 ¼ ½lðlþ 1Þ þ 1�=R2.

Then, with the field expansion (5.2), a state which is locally
Minkowski is one satisfying aklmjψi ¼ ãklmjψi ¼ 0 for the
operators associated to k ≫ 1=R, l ≫ 1 modes in this
region. Of course, modes with k≲ 1=R can be excited in
such a state.
The evolution of such a state is in general governed by

the regular expression (5.3) for the Hamiltonian. In the
Rindler region this simplifies to give Minkowskian evolu-
tion, but this receives nontrivial corrections as excitations
reach jr − Rj ∼ R. This nontrivial behavior causes excita-
tions of the local vacuum. The details of this evolution
depend on the detailed structure of the Hamiltonian (5.3)
and its corresponding evolution operator, which can be
somewhat complicated. However, one thing that we do
immediately learn in this description is that the transition to
excited states takes place on scales with jr − Rj ∼ R, as was
also found in 2d [3,4]. This supports previous arguments
[27] (see also the earlier related arguments [28–30]) that

7For more discussion of these coordinates and the Rindler
limit, see Appendix B.

8A more careful treatment requires localization of the modes of
the basis. This can be done by constructing wave packets, for
example as described in [1], [26], [4].
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Hawking radiation “is produced” in a black hole atmos-
phere at these scales, as opposed to at ultrashort distances.
We have argued that the Hamiltonian (5.3) gives a

regular description of evolution on slices avoiding the
singularity, but one with complicating features. To learn
more about the state one would like a simpler description of
this evolution. This is achieved by going to the energy
eigenbasis of Sec. IV. While this description is inherently
singular, as we have seen, it does furnish an effectiveway to
more simply describe the evolution, due to the simplicity of
the Hamiltonian (4.19) in this basis. To describe the latter
evolution, we must first rewrite a regular state jψi in this
basis. This in principle follows from the Bogolubov
transformation (5.1), which is however also complicated.
But, as discussed, the long-time behavior is expected to
follow from the local Minkowski structure near the horizon.
In particular, in the high-k Rindler region limit,

the regular modes can be chosen to simplify to the
form expf−ikX�g. The locally right-moving modes
expf−ikX−g there are related to the local (approximate)
energy eigenmodes expf−iωx−g, expf−iωx̂−g by the same
relation that relates Minkowski to Rindler modes, as seen
from the coordinate transformation (6.4). Specifically, from
this we find that the combinations

e−iωx
− þ e−2πRωeiωx̂

−
; e−iωx̂

− þ e−2πRωeiωx
− ð6:8Þ

are analytic in the lower half complex X− plane, and thus
correspond to positive frequency modes in X−. Then the
corresponding operators

bω − e−2πRωb̂†ω; b̂ω − e−2πRωb†ω ð6:9Þ

correspond to Minkowski annihilation operators, which
should annihilate the state for large ω. Thus, for these high-
wavenumber modes, the regular state has local description

jψi ∼
X
fnωg

e−2πR
R

dωωnω jfn̂ωgijfnωgi ð6:10Þ

in terms of occupation number eigenstates for the b̂ω and
bω, and analogously for higher D. Just as with Minkowski
space, this description is inherently singular. However, it is
useful, and may for example be regulated with an appro-
priate short distance cutoff.
This description of the state is useful because it provides

an effective intermediary to relate evolution of modes near
the horizon to corresponding asymptotic modes.9 Consider
excited modes in the expression (6.10).10 These are evolved

by the simple Hamiltonian (4.19), which vanishes for
paired excitations, and a near-horizon wave packet of such
modes will evolve into a future wave packet of the same
modes. In the case of the “up” modes, associated to the
bωlm, the wave packets will have an outgoing piece at
infinity, with magnitude given in terms of the transmission
coefficient for the effective potential fV of (4.8), and a
reflected part that enters the BH.
Once we have used these modes as intermediaries to

simplify the description of the state, we can alternately
convert back into a regular mode basis. In fact, in the
asymptotic region, the energy eigenmodes uωl should
equate to corresponding regular modes, up to the factor
of the transmission coefficients, since they are both
governed by free Minkowski evolution. Specifically,
asymptotically these modes take the form of flat space
modes, with wave packets that are linear superpositions of

ϕωlm ∼ TωljlðkrÞe−iωt
Ylm

rD=2−1 ; ð6:11Þ

where Tωl is the relevant transmission coefficient. These
can be regarded either as energy eigenmodes or as regular
modes, in this region. In short, we convert to the energy
eigenmode basis to simplify the evolution out to the
asymptotic region, and then convert back to a regular basis
using this relation between modes. In this fashion, the
intermediaries provide a simple way to characterize the
result of evolution of the regular expression for the state
with the regular Hamiltonian (5.3). It has a thermal
spectrum at the expected temperature, e.g. T ¼ 1=4πR
forD ¼ 4, following from the form of (6.10). It also has the
expected pairing and entanglement between quanta of
Hawking radiation, and corresponding internal excitations
of the BH, implied by the pairing in (6.10), along with the
transmission factors. Again, this will be the generic long-
time behavior, after transitory excitations, of states that are
regular at the horizon.
We emphasize that in this discussion, the singular energy

eigenmodes are only used as an intermediary tool, and are
not taken as part of a literal fundamental description of the
state. This differs from a significant part of the literature,
in which the singular energy eigenmodes are sometimes
viewed as playing a more fundamental role; here, we stress,
they are merely a convenient basis for some purposes. In
practice, one way to work with a description of the state in
terms of them is to introduce cutoffs in the description.
But not regarding these modes as fundamental avoids the
potential pathologies that arise if these modes are regarded
as true physical excitations.

D. Internal evolution: Nice slices and freezing

Evolution via a local quantum field theory Hamiltonian,
such as (3.12) or (3.14), has been argued to plausibly give a
good approximate description of the complete physical

9This can be seen even more explicitly in the two-dimensional
example [4], which avoids complications such as reflection/
transmission near the horizon.

10Again, a more precise version of this argument would use
wave packets to localize modes in both position and frequency.
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evolution of excitations outside but near a BH, although
one expects the need for important, but possibly small,
corrections to ultimately restore unitarity [9,31–34]. On the
other hand, one expects that the evolution of excitations
inside the BH is likely to ultimately receive large correc-
tions. Nonetheless, it seems of interest to better understand
the leading field theory description of the internal evolu-
tion, as background and preparation for understanding its
possible modifications.
Such evolution can be described on a family of Cauchy

slices. As was noted in Sec. II, slices that reach r ¼ 0 are
not Cauchy, and so a description on such slices must be
supplemented by additional dynamics “at r ¼ 0.” But,
evolution may be considered on a family of slices that
avoid r ¼ 0, and in particular on a family of nice slices that
asymptote to a minimal radius r ¼ Rn. We will describe
some features of evolution on these slices. Our focus will be
on the vacuum region of the BH, and we will consider
stationary slices, as specified in (2.12) or (2.13), with a slice
function chosen to asymptote to Rn.
As we have noted, one also needs choices of spatial

coordinate and modes to describe evolution of the state.
The use of r as a spatial coordinate on the constant-t slices
leads to a coordinate system ðt; rÞ that degenerates at
r ¼ Rn. This means it is preferable to use a more general
spatial coordinate, xðt; rÞ.
The choice of a “stationary” coordinate xðrÞ (say, with

x → −∞ as r → Rn) results in a nonzero shift Nx at large t,
as the slices accumulate at r ¼ Rn, although the lapse N
vanishes in this limit. This implies a nontrivial contribution
to the Hamiltonian in this region, as seen for example
from (3.4). This may be alternately understood by consid-
ering the form of the wave function solutions. For example,
in such coordinates, the solutions (4.5) take the form

e−iωtUωlmðx;ΩÞ; ð6:12Þ

and thus continue to have nontrivial time evolution
as t → ∞.
On the other hand, it is clear from the accumulation

of slices at r ¼ Rn that the evolution of a state can be
described as freezing [32,35] at this radius, as t → ∞. This
is best described with a choice of nonstationary coordinate
along the slices. This choice can be specified through a
more general relation rðt; xÞ, as in (2.11). Then, from the
ADM form (2.14) of the metric, we find N to be unchanged
from (2.15), and

qxx ¼ r02qrr; Nx ¼ _rþ Nr

r0
; ð6:13Þ

with r0 ¼ ð∂r=∂xÞt, _r ¼ ð∂r=∂tÞx. With such coordinates,
the lapse, shift, and spatial metric are now explicitly time
dependent, also resulting in an explicitly time-dependent
expression for the Hamiltonian (3.4) or (3.12).

One way to exhibit the freezing behavior is if x → xþ as
r → Rn, which leads to both a vanishing lapse and shift
as r → Rn, and so vanishing Hamiltonian density there.
An example [4] is the coordinate x ¼ xþ þ gðrÞ, with g
vanishing as r → Rn, although more generally we might
instead like to use a time-dependent function gðt; rÞ so that
the coordinate xmatches r asymptotically as r → ∞, which
is achieved if gðr; tÞ ≈ −t in this limit.
The freezing simplifies the description of the internal

part of the state, since it no longer evolves, and thus gives
one way of simply describing BH internal states in terms of
this static appearance, in this approximation.
In these coordinates and this picture, the slices exhibit

stretching behavior, rather than translating under a shift in t.
For example, the distance along a slice from a given fixed x
corresponding to a point near r ¼ Rn increases linearly in t.
This arises from the time dependence of qxx from (6.13),
and may for example be concentrated in the vicinity of the
horizon depending on the specific choice of rðt; xÞ. The
explicit time dependence of the metric and Hamiltonian
in this gauge and picture introduces additional subtleties
which we defer to future work, but which we expect may be
resolved by connecting back to the underlying stationary
description, also in analogy to [17].

VII. EXTENSIONS: INTERACTIONS,
GENERALIZING ASYMPTOTICS,
ADS AND CONNECTION TO 1=N

The discussion of the bulk of this paper has been of a
noninteracting theory such as (3.1), with flat asymptotic
geometry, but it is expected that the quantum description
extends both to interacting theories, and to more general,
e.g. AdS, asymptotics, where there is also a connection
with the large N limit of the AdS=CFT correspondence.

A. Evolution in interacting theories

The extension to interacting theories, and theories with
higher-spin matter, is evident; beginning with a generali-
zation of the action (3.1) to incorporate interactions and/or
higher spin, the canonical approach yields a Hamiltonian
of the quadratic form (3.4), together with additional
interaction terms. Canonical quantization proceeds from
there via the canonical commutators, (3.5), or their higher-
spin generalization. With a choice of basis of regular mode
functions, and expansion in ladder operators analogous
to (5.2), this results in a Hamiltonian of the form (5.3),
together with higher-order terms describing the inter-
actions. While this can result in more complicated dynam-
ics, the evolution of the state, e.g. as in (6.3), is, in principle,
concretely defined, modulo usual issues of renormaliza-
tion, etc.
This observation illustrates two points. The first is that

the present methods extend beyond Hawking’s original
derivation [1], which relied on use of the free propagating
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mode functions and so did not easily incorporate inter-
actions. In evolution such as (6.3), the state continuously
evolves in t according to the structure of the Hamiltonian,
without direct dependence on having solutions. It is
important to have such a generalization, to treat Hawking
radiation in interacting theories. The second point is that the
specific choice of the mode functions is less important with
this additional context. That is because a particular choice
of modes may be motivated so to simplify evolution in the
noninteracting case; a specific example is that of energy
eigenstates, where the Hamiltonian is greatly simplified,
to (4.19). However, once interactions are included, such
simplifications are lost. In the interacting theory, it appears
that different choices of regular mode bases will not make a
significant difference in the practical difficulty of describ-
ing the evolution of the state, and so fairly general choices
can be considered.
This discussion also extends to include gravitational

perturbations, and their couplings to perturbations of
other fields. The full fluctuating metric may be expanded
g̃μν ¼ gμν þ κDhμν, with gμν the metric of the BH back-
ground and κ2D¼32πGD. Then, the action and Hamiltonian
for the metric fluctuation hμν have a leading quadratic term
similar to that for scalars (but also requiring gauge fixing),
and interaction terms between hμν and the other fields,
as well as self-interactions of hμν at higher orders in the
expansion in κD. By the steps just outlined, these inter-
actions lead to an interacting Hamiltonian generalizing
(3.4), (5.3), which may be treated by similar methods, to
determine the evolution of the state on a chosen set
of slices.

B. Generalizing asymptotics, and AdS/Schwarzschild

Our main discussion has focused on asymptotically flat
spacetime. However, we can extend it to BHs with other
asymptotics, using a slicing analogous to that described in
Sec. II B that is taken to similarly extend to the BH interior.
Of course with general asymptotics, we may need to
confront further subtleties associated with lack of a
Killing vector corresponding to time translations. A promi-
nent case with such a Killing vector is that of BHs in AdS.
For example, the D-dimensional AdS/Schwarzschild sol-
ution for mass M takes the form (2.1), with

fðrÞ ¼ 1þ r2

R2
Λ
−
�
R0

r

�
D−3

; ð7:1Þ

here RΛ is the AdS radius, and

RD−3
0 ¼ 16πGDM

ðD − 2ÞAD−2
ð7:2Þ

with AD−2 the area of the unit sphere. One may alternately
use an ingoing null coordinate xþ to rewrite the metric
in the form (2.8), with f given by (7.1), and exhibit both

exterior and interior of the BH. A trans-horizon slicing
analogous to those of (2.10)–(2.13) may then be used to
describe interior and exterior, and quantization may be
performed analogous to the discussion of Sec. III, resulting
in Hamiltonian evolution analogous to that of (6.3). In
particular, we anticipate that the methods of this paper yield
long-time thermal behavior for a large class of regular
initial states. These would evolve similarly to the descrip-
tion of Sec. VI, with the additional feature that the AdS
asymptotics behave like a reflecting cavity, and so Hawking
excitations are reflected back towards the BH.
Specifically, we may describe the interacting Hamiltonian

and evolution perturbatively in Newton’s constant GD.
The leading order evolution (also expanding in other
couplings, if present) is Hamiltonian evolution of free fields,
including the graviton perturbations, by a Hamiltonian
analogous to (3.4), (5.3), on the AdS/Schwarzschild back-
ground. Couplings to gravitational perturbations, backreac-
tion, dressing, etc. then arise at higher order in κD.

C. AdS=CFT and large-N description

Gravitational dynamics in AdS is conjectured to be
equivalent to that of a “boundary” CFT [36]. In this
context, it is interesting to explore the possible relation
between the perturbative dynamics we have outlined, and
the dynamics of the CFT. We focus on the “classic”
example of AdS=CFT, with AdS5 × S5 dynamics conjec-
tured to be dual to N ¼ 4 SU(N) super Yang-Mills on
S3 × R. The parameters are related by ðRΛ=l10Þ4 ∼ N,
where l810 ∼G10 gives the ten-dimensional Planck length,
and formulas here correctly include parameters but neglect
numerical Oð1Þ factors. Black holes with horizon radii
R ≪ RΛ are expected to be ten-dimensional localized
objects in AdS5 × S5; those with R≳ RΛ are expected to
behave as five-dimensional BHs (2.1), (7.1) that are uni-
form on S5, and these two cases are expected to be
connected by a Gregory-Laflamme transition [37]. The
transition radius R ∼ RΛ corresponds to a mass threshold
M ∼ N2=RΛ.
Thus, the case of AdS BHs, here with D ¼ 5, is strictly

speaking only valid above this threshold. But in this case,
the leading order dynamics, in a QFT description of the
bulk, can be given by a free Hamiltonian like (3.4), (5.3).
And, this will receive perturbative corrections, order-by-
order in the gravitational coupling. Given the relationship
between parameters, and the relation G10 ∼ R5

ΛG5, this

corresponds to an expansion in κ5 ∼ R3=2
Λ =N.

As is known, this connects gravitational perturbation
theory with the large N limit and 1=N expansion. A first
question is what is held fixed as N is taken to be large. We
will focus on the large N limit with AdS radius RΛ held
fixed, which then corresponds to the limit of G10 or G5

becoming small. If we wish to consider BH states, then the
preceding scaling tells us that we need to consider states
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whose energy scales up as N2. However, if we consider for
example fixing the temperature, e.g. as in [38], that is
equivalent to holding the radius of the BH fixed and so the
geometry (2.1), (7.1) is unchanged as N increases.
The Hamiltonian that describes BH excitations in

the large N limit is then of the form described in the
preceding subsections. Specifically, a candidate infinite-N
Hamiltonian H∞ can be found by choosing a slicing for
AdS-Schwarzschild like those described in Sec. II B, and
specifically avoiding the singularity, and then deriving
the corresponding Hamiltonian (3.4) [or (5.3)] which is
quadratic in each of the field perturbations that propogate
on AdS.
Moreover, 1=N corrections toH∞ correspond to the bulk

interaction terms between these perturbations that arise in
the perturbative expansion in κ5.
Questions have recently been raised about the existence

of a large N description of BHs in AdS=CFT in [38–40].
The present construction appears to begin to provide
answers, and specifically to address the statement [38]
that the literature does not contain a proposal for the
Hamiltonian for a BH in the large N limit.
Of course, what is expected to be true is the statement

that the perturbative Hamiltonian that is found this way
does not give a complete description of the BH dynamics:
specifically, there are good reasons to believe that this
perturbative Hamiltonian does not ultimately lead to
unitary evolution, and one piece of that evidence is the
fact that H∞ can describe an infinite number of BH states.
For this reason, we expect the complete gravitational

Hamiltonian will be a corrected version of the perturbative
Hamiltonian Hpert we have just described:

H ¼ Hpert þ ΔH: ð7:3Þ

Wewould obviously like to understand the structure ofΔH,
and what phenomena it encodes; another pertinent question
is its dependence on N.
It has previously been argued [9,33,34,41] in the case of

flat asymptotics that ΔH has two important pieces: a piece
ΔHI containing interactions between the BH states and
the BH’s surroundings, necessary to transfer information
or entanglement from the BH, and a piece ΔHBH modi-
fying the internal dynamics of the BH states. Simple forms
of ΔHI have been parametrized [9], and it is plausible that
these corrections are small, even nonperturbatively so,
in N. On the other hand, we might expect Hpert to receive
large internal corrections in ΔHBH corresponding to
corrections to dynamics in the strong-curvature regime
at the core of the BH. This is expected to be necessary, for

example, to ensure a finite number of internal BH states.
It is plausible that these corrections also yield chaotic
internal behavior. Their dependence on N is less clear, but
it is quite plausible that there are also important non-
perturbative contributions here. A possible role for
ensemble averages, like those discussed in [38], is also
less clear, unless the corrections to Hpert for example arise
from baby universe emission [42–47].
In such a plausible picture forΔH, new chaotic dynamics

is only associated with the deep interior dynamics of the
BH; evolution in the near-horizon regime, both inside and
outside the BH, may be close to that of LQFT, with only
relatively small corrections that, for example, an infalling
observer would perceive as innocuous. Further discussion
of this picture, which may also lead to observational effects
for BH observations [34,48–50], is given in the works cited
above. Needless to say, it would be very interesting if such
effects could be understood from, or even derived from,
the AdS=CFT correspondence. Or, perhaps, they have a
different explanation.
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APPENDIX A: RADIAL EQUATION AND HEUN
FUNCTION FOR D= 4

A more detailed picture of energy eigenmodes can be
gained by further examining the equation of motion either
in the form of (4.2) or (4.8). We will focus our discussion
on the case of Eddington-Finkelstein coordinates, Eq. (4.2),
to connect to the analysis in Sec. IV. The Schwarzschild
coordinate solutions of (4.8) will be related by the trans-
formation (4.7) to the solutions described in this appendix.
The ansatz uðxþ; rÞ ¼ re−iωx

þ
yðrÞ can be used to rewrite

the differential equation (4.2) as

y00 þ p0ðrÞy0 þ p1ðrÞy ¼ 0; ðA1Þ

where the prime denotes derivatives with respect to r,

p0ðrÞ ¼
−2iωrD−2 þ 2rD−3 þ ðD − 5ÞRD−3

rðrD−3 − RD−3Þ ; ðA2Þ

and

p1ðrÞ ¼
−2iωrD−2 − ½lðlþD − 3Þ þ ðD − 2ÞðD − 4Þ=4�rD−3 þ ½ðD − 3Þ − ðD=2 − 1Þ2�RD−3

r2ðrD−3 − RD−3Þ : ðA3Þ
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It can be seen that in arbitrary dimension the differential
equation has regular singular points at 0 and Re2πin=ðD−3Þ
for integers n ¼ 0; 1;…; D − 4, and an irregular singular
point at infinity. The solutions of (A1) are unknown in
arbitrary dimension, but by defining a rescaled spatial
variable x ¼ r=R, the D ¼ 4 equation can be rewritten as

y00 þ
�
1

x
þ 1 − 2iωR

x − 1
− 2iωR

�
y0

þ
�
−2iωRx − lðlþ 1Þ

xðx − 1Þ
�
y ¼ 0; ðA4Þ

which is the confluent Heun equation11; the case of general
D thus represents a generalization of the confluent
Heun equation. A standard form for the confluent Heun
equation is

y00 þ
�
γ

z
þ δ

z − 1
þ ϵ

�
y0 þ

�
αz − q
zðz − 1Þ

�
y ¼ 0; ðA5Þ

and we denote the solutions to (A5) that satisfy the
regularity condition y ¼ 1 at the singular point z ¼ 0 as
HC½q; α; γ; δ; ϵ; z�. This confluent Heun function is imple-
mented in Mathematica as HeunC, with parameters as
in (A5).
The incoming and outgoing modes of interest can be

specified by their behavior in the vicinity of the horizon.
The three solutions used to define the basis outlined in
Sec. IVare found as follows. First, we let x ¼ 1 − z in (A4),
and compare the resulting equation to (A5); this gives the
solution ũωl regular at the horizon. For the up modes, we
then substitute y → ð−zÞ2iωRy into the resulting equation,
which gives the confluent Heun equation with different
coefficients. The inside mode is found in the same fashion.
This results in the following explicit solutions.

(i) ũωl ¼ rHC½lðl þ 1Þ þ 2iωR; 2iωR; −2iωR þ 1; 1;
2iωR; 1 − r=R� is the incoming mode, which is
regular at the horizon. From (4.7), one sees that the
corresponding function gωl is not regular.

(ii) uωl ¼ rðr=R − 1Þ2iωRHC½lðl þ 1Þ − 4ω2R2; 2iωR−
4ω2R2; 2iωR þ 1; 1; 2iωR; 1 − r=R� is the up mode
solution, which is not regular at the horizon, and
gives the outgoing Hawking mode.

(iii) û�ωl ¼ rð1 − r=RÞ2iωRHC½lðlþ 1Þ − 4ω2R2; 2iωR−
4ω2R2; 2iωRþ 1; 1; 2iωR; 1 − r=R� is the inside
mode solution. It is also not regular at the horizon,
and corresponds to the internally trapped Hawking
partner mode. It is defined inside the horizon,
for 0 < r=R < 1.

The analysis in Sec. IVuses the asymptotic behavior e−iωx
þ

in the far past of the incoming solution near infinity, and

e−iωx
−
of the outgoing solution near the horizon, as well as

e−iωx̂
−
of the corresponding partner inside the horizon.

APPENDIX B: KRUSKAL COORDINATES
AND RINDLER REGION

While the coordinates ðxþ; rÞ are useful for exhibiting
the time translation symmetry, Kruskal coordinates X� are
useful for exhibiting the Minkowski-like structure of the
near-horizon Rindler region. Since the time translation
symmetry becomes a scaling (boost) symmetry in these
coordinates, this symmetry becomes less transparent in the
equations of motion in these coordinates. In this appendix,
we collect some basic results on this Kruskal description,
in the example of D ¼ 4.
As was described in the main text, the Kruskal

coordinates are related to the Eddington-Finkelstein coor-
dinates by

X� ¼ �2Re�x�=2R; ðB1Þ

with a continuation across the horizon in terms of x̂− such
that the vacuum metric, given in (6.5), is regular at the
horizon. In the Rindler region jr−Rj≪R, or jXþX−j≪R2,
the metric is well approximated as that of M2 × S2, as
seen in (6.6), with local Minkowski spacetime coordinates
defined by X� ¼ T � X. The radial coordinate is related to
Kruskal coordinates by

XþX− ¼ 4R2

�
1 −

r
R

�
er=R−1; ðB2Þ

or

r
R
¼ 1þW0

�
−
XþX−

4R2

�
; ðB3Þ

with W0 the Lambert W function, showing that the
boundary of the Rindler region is time dependent in the
local Minkowski coordinates.
The equation of motion may also be studied in

these coordinates, and for a mode with definite angular
momentum

ϕlm ¼ ul
YlmðΩÞ
rD=2−1 ðB4Þ

becomes

∂Xþ∂X−ul ¼ −
1

4

R
r
e−r=Rþ1VlðrÞul ðB5Þ

with VlðrÞ given by (4.4) together with (B3). Notice that as
a result of the latter equation, the effective potential is time
dependent in the locally Minkowski coordinates. While the
general form of solutions appears less transparent in these

11Some references discussing this equation and its relevance to
BHs are [51–54].
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coordinates, the solutions do simplify when restricted to the
Rindler region. In this region, (B5) becomes the 2d massive
wave equation,

4∂Xþ∂X−ul ¼ −m2
l ul; ðB6Þ

with effective mass term

m2
l ¼

lðlþ 1Þ þ 1

R2
: ðB7Þ

This has a basis of solutions [see (6.7)]

ukl ¼ eikX−iωkT ; ũkl ¼ e−ikX−iωkT ðB8Þ

with ω2
k ¼ k2 þm2

l . These are neither purely outgoing or
ingoing, but do become purely outgoing or ingoing,
respectively, in the large k limit. One may also compare
the equations and solutions in the Eddington-Finkelstein
coordinates; from (B1), Eq. (B5) becomes

∂xþ∂x−ul ¼ −
1

4

�
1 −

R
r

�
VlðrÞul; ðB9Þ

and likewise inside the horizon, in terms of x̂−. In the
Rindler region, the effective potential in these coordinates
vanishes, resulting in solutions of the form e−iωx

�
.

Comparing these descriptions provides another way
to compute the Bogolubov coefficients, in this high

momentum, near-horizon limit. The approximate solutions
(B8) are related to the energy eigenmodes (4.11) by

uω ¼
Z

dkðαþωkuk þ α−ωku
�
kÞ; ðB10Þ

where the spherical indices have been suppressed to
simplify the notation. The Bogolubov coefficients can be
calculated by performing the Fourier transform in the
usual way

αþωk ¼
1

4πk
ðuk; uωÞ ¼

i
4πk

Z
dX−ðu�k∂X−uω − ∂X−u�kuωÞ;

ðB11Þ

where it is useful to take the inner product on a null surface
with coordinate X−. Similarly, the other coefficient is
α−ωk ¼ −ðu�k; uωÞ=ð4πkÞ. The resulting integrals are

αþωk ¼
1

2πik

�
1

2ikR

�
2iωR

Γð1þ 2iωRÞ;

α−ωk ¼ −
1

2πik

�
1

−2ikR

�
2iωR

Γð1þ 2iωRÞ: ðB12Þ

This is of the same form as Hawking’s result from [1],
modulo conventions.
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