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We deduce, in a general background gauge, the counterterm Lagrangian for pure quantum gravity to

one-loop order. As an application, we evaluate the leading quantum correction to the classical gravitational

potential, generated by the vacuum polarization. We find that, in specific background gauges, this yields the

complete result for the one-loop quantum corrections to the Newtonian potential. This approach is also

applied to calculate the In(7T) contributions in quantum gravity at high-temperature.
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I. INTRODUCTION

Einstein’s general relativity, as defined by the Einstein-
Hilbert action, may be regarded as a nonrenormalizable
effective field theory, which is expected to arise in the low-
energy limit of some fundamental quantum theory. This
theory appears to adequately describe the gravitational
interactions that occur at low energies. Much work has
already been done on quantum gravity treated as an
effective field theory [1-4]. Using the Feynman rules
deduced from the Einstein-Hilbert Lagrangian, one can
perform in quantum gravity perturbative calculations of
loop diagrams [5-15]. The corresponding contributions
require an infinite number of counterterms allowed by the
gauge symmetry, to cancel out all the ultraviolet divergen-
ces in this effective field theory.

In this context, the background field method [16-23] has
been much employed in the calculation of radiative effects
in quantum gravity since this procedure preserves the gauge
invariance of the background field. It has been shown first
by ’t Hooft and Veltman [5] that on the mass-shell, pure
gravity is renormalizable to one-loop order. This analysis
has been done in a particular background gauge.

The purpose of the present work is to examine such
calculations in a general background gauge characterized
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by a gauge parameter £ We thus consider the behavior of
the graviton self-energy in any spacetime dimension d [24],
which turns out to explicitly depend on the gauge parameter
£. Because of the Ward identities that hold in the back-
ground gauge, this behavior implies that all higher-point
Green’s functions will depend as well on this gauge
parameter. These Ward identities reflect the gauge invari-
ance of the theory under background gauge transforma-
tions. In this way, we infer that for pure gravity in
d =4 —2¢ spacetime dimensions, the counterterm
Lagrangian in a general background gauge may be written
to one-loop order in the form

) /=7 1 1 _
Ele — 9 - -1 2 RZ
one—loop 871'2 (4 _ d) { |:120 + 6 (5 ) :|

7 EE-1) o
+ [204— 3 ]R Rﬂp}, (1.1)
which reduces to the result obtained by ’t Hooft and
Veltman [5] for £ = 1. Here, R/w denotes the Ricci tensor,
R = R*g,, is the curvature scalar, and g, is the back-
ground metric.

In spite of the lack of predictivity of the theory at high
energy (short distance), it has been shown that the leading
low-energy (long distance) quantum corrections can be
consistently evaluated in quantum gravity [2-4]. Such
contributions, which are due to the interactions of massless
particles at low energy, include nonanalytic terms of the
form In(—k?), which in the low-energy limit yield the
leading quantum corrections to the classical Newtonian
potential (k is the momentum transfer involved in the
process). In this work, we evaluate the corresponding
contribution due to the self-energy of the graviton, which
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turns out to be gauge dependent. However, when one
considers the quantum corrections arising from all dia-
grams that contribute to the physical gravitational potential,
the gauge-dependent terms should cancel out.

The outline of the paper is as follows. In Sec. II we
discuss the quantization of general relativity in a general
background gauge, following the work of ’t Hooft and
Veltman [5]. In Sec. III, we examine in this gauge
the graviton self-energy to one-loop order. As an applica-
tion, we evaluate the corresponding quantum correction
to the classical gravitational potential due to two heavy
masses. We find that this contribution is a gauge-
dependent quantity. We show that in the background
gauges £ = (2++/13)/3, the complete result for such
quantum corrections arises just from the vacuum polari-
zation. In Sec. IV, we present the Ward identities and
deduce the gauge invariant counterterm Lagrangian to one-
loop order. We conclude the paper with a summary of the
results in Sec. V, where we also briefly discuss the In(7')
contributions of the graviton amplitudes at high temper-
ature 7. The Feynman rules are derived in Appendix A and
several details of the calculation of the graviton self-energy
are given in Appendix B. In Appendix C, we consider the
|

2

consequences of employing a Lagrangian multiplier field to
restrict radiative corrections to one-loop order.

II. QUANTIZATION WITH A GENERAL
GAUGE-FIXING LAGRANGIAN

To quantize the theory of general relativity, we start from
the Einstein-Hilbert Lagrangian

2
Cg:\/—ng, (21)
where k2 = 327G and G is Newton’s constant. The metric
tensor g, is written as

g/w = g;u/ + Khﬂl/’ (22)
where g,, is the background field, which is assumed to
approach the classical vacuum at infinity (being arbitrary
elsewhere), and £, is the quantum field.

Expanding the Lagrangian (2.1) in the quantum field,
one obtains the following quadratic Lagrangian:

1. - | o
£ = =5 {— Dby, D1 ~ 2 DD+ DyhDyh — Dby Db

11 _
+R (Z - h,wh/w> + R(2K% hyy — hhy,) |,

where h = h% and D, is the covariant derivative with
respect to the quantum field. To quantize the above
quadratic Lagrangian one has to fix the gauge of the
quantum field in a way that preserves the gauge invariance
under background field transformations. This can be
achieved by introducing the gauge-fixing Lagrangian

L, = é\/_—gKD”hw - %Dﬂh> <D,,h/“’ - %m)] ,

(2.4)

where £ is a generic gauge parameter. When ¢ =1, the
above expression reduces to the background harmonic
gauge used in [5]. After some work, the corresponding
ghost Lagrangian is found to be

(2.3)

I

where the ghost fields ¢*# and ¢ are fermionic vector
fields. We note here that the actions corresponding to (2.3),
(2.4), and (2.5) are separately invariant under the gauge
transformations

5gﬂl/ = wya;/g,u/ + _@Wayw}/ + g,,yaﬂ(l)y - D”(UD + DD(U”
(2.6a)

and

Shy, = @, h

v

+ hm,dl,aﬂ’ + h,,0,0",

17O (2.6b)
where @’ is an infinitesimal parameter. The total action can
then be used to define the propagator of the quantum field
and extract the corresponding Feynman rules, as shown in

Ly = vV=gc"[D; DG — Ry, (2:5) Appendix A. The graviton propagator is given by
|
i 1 znaﬂnﬂv é -1
Di;a(:ﬁ(p) = m |:§ <’7av’7ﬂ/¢ + NoyMpy — d—2 + 2p2 (p/}pyr]a,u + PpPyullay + Palullpu + p(xpﬂ”ﬁv) . (27)

065010-2



QUANTUM GRAVITY IN A GENERAL BACKGROUND GAUGE

PHYS. REV. D 106, 065010 (2022)

Owing to the complexity of the Feynman rules in a general
background gauge, we do not quote here these rules, which
were derived entirely by computer.

III. THE ONE-LOOP GRAVITON SELF-ENERGY

The Feynman diagrams contributing at one loop to the
graviton self-energy are shown in Fig. 1. The divergent
contributions of these diagrams to the graviton self-
energy are evaluated in any spacetime dimensions d in
Appendix B. As shown in Eq. (B12), for d = 4 — 2¢, the
divergent terms are given by

' 2t
I (0) = 1z ke L + (0

1
X |:Lu1/La[)’ + E (L(zuLﬁy + LabL/}u):| }’ (31)

k,k

where L, =" =1, and c¢(§), c(§) are gauge-

dependent constants given by

7
N

c1(§)= [1—;0+(‘5_61)2]

We note here that Eq. (3.1) is transverse with respect to the
momentum k. As we will show in the next section, this
behavior is a consequence of the Ward identities which
hold in the background gauge.

In Eq. (3.1) an arbitrary scale factor u, with dimensions
of mass, has been inserted on dimensional grounds. Since k
is the only other dimensional quantity, one can see that

1 /"2 (4-d)/2 1 1 —k?
(e N[ ) + O(4-d). (3.
4—d<—k2> 7=g 2 ) toU-a). (33)

This relation allows us to extract directly from Eq. (3.1), the
nonanalytic In(—k?) contribution

In(—k? G
H;w(,(t/} ) = _;ln(_kz)k4{4cl (g)L/u/Laﬁ + CZ(é:)
1
X |:L;41/Laﬁ =+ E (LtlﬂLﬂl/ =+ LauLﬂﬂ):| }7 (34)

where we have used the fact that x> = 32zG. To calculate
the quantum corrections to the gravitational potential, we
employ the following coupling of the external background
field to the energy momentum tensor 7#* of the matter
fields:

ﬁ[ - —gljllelw, (35)

where we have defined g, =, +Kl_1,w. For external
spineless sources described by the Lagrangian

Lu =" (000 -mid). (36)

the tensor is

1
T/w = aﬂal/d) - Ei/lﬂv(a/lqsalﬁb - m2¢2)‘ (37)
Using this result in Eq. (3.5), we obtain in momentum
space a graviton matter coupling of the form

K

. (3.8)

Vi (p) [pupi+ Pups = (p - p' = m?)).
One can verify that this vertex is transverse with respect to k
when the scalar particles are on-shell.

We are now in a position to calculate the correction to the
gravitational potential coming from the Feynman diagram
shown in Fig. 2(a), where the blob denotes the graviton
self-energy. To this end, we will also need to define a
propagator for the background field. The most general
expression for this propagator is similar to that given in
Eq. (2.7), with & replaced by & However, since a momen-
tum k contracted with the self-energy or the vertex function
gives a vanishing result, such a propagator may be
effectively replaced, in four dimensions, by the de
Donder propagator

p
1.
\\ k
rouuTTT of
N pv k k af
b
(b) ©

FIG. 1. One-loop contributions to (k 1_1). The curly, wavy, and dashed lines are associated with the background fields, the quantum
fields, and the ghost fields, respectively. The arrows indicate the direction of momenta and ¢ = k + p. Diagram (c), as well as a similar
diagram with a ghost loop, does not contribute when we employ dimensional regularization.
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FIG. 2. Examples of Feynman diagrams that yield corrections to the gravitational potential.

D/waﬁ k2 +ie €2 (ﬂaunﬁﬂ + ”ayrlﬂu ’70(/1’7/41/)’ (39)
which is independent of the gauge parameter £ We can see
from Fig. 2(a) that we will need to evaluate the quantity
Dreretl,,, ;5D where T1,,,5 can be obtained from
Eq. (3.4). Here, all terms involving k,, k;, etc., can be
dropped because k contracted with the vertex gives a
vanishing result. This yields the expression [see Eq. (B18)]

- Viu(p) ~ = sap Vap(@)
AV k) = Duvpo] Dis.ap aff
(2a) ( ) D) Do po. Ao 26]0

~ GIn(-k?) v o
SRy et

naﬂylﬁl/ _|_ ;/Ia”;/lﬁ/‘
+ @ v (),

(3.10)

where the factors in the denominators account for the
normalization of states. We will evaluate this quantity in the
case involving two heavy particles with mass m by taking
the nonrelativistic static limit p = (m,0) in Eq. (3.10). We
then get

3,4

A (0= G () 1245 6 - D3e- 1),

(3.11)
where we used Eq. (3.8) and the constants ¢ (&) and ¢, (&)
given in Eq. (3.2). This can be transformed to coordinate
space by Fourier transforming, by using that

Fh o 11
LS R In(R) =
(27)? ¢ n(k) 271

(3.12)

We thus obtain for the correction generated by the graviton
self-energy, the result (reinstating factors of 7 and c)

432

2 Gh Gm?
30 3

AV () = =[5+ (€= DBE=1)] s (313

This expression reduces, for £ = 1, to the corresponding
result obtained in Ref. [25]. Thus, we see that in a general
background gauge, individual corrections to the Newtonian
potential may be gauge dependent. There are many other

diagrams that can yield corrections to this potential, as
shown, for example, in Figs. 2(b) and 2(c) [25]. Since the
gravitational potential is a physical quantity, the gauge-
dependent terms should cancel out when adding all con-
tributions. As shown in Refs. [25,26], the total result
obtained in the gauge £ = 1 is given in this case by

41 Gh Gm?

AV =102y

(3.14)

By matching the results given in Egs. (3.13) and (3.14), one
finds that in the gauges & = (24 1/13)/3, the complete
result would arise just from the correction generated by the
graviton self-energy.

IV. THE COUNTERTERM LAGRANGIAN
AT ONE LOOP

In the background field method, the gauge invariance of
the effective action may be expressed as

_ o
—2w,D, =0,

S (4.1)

O ==

" 60
where we have used Eq. (2.6) and wrote the background
field in the form g,, =#,, + «h,,. Taking the functional
derivative of Eq. (4.1) with respect to i_z,l,;, evaluated at

h =0, one gets

o1

Iﬂ/,flﬂ - 0 (42)

This condition requires that the graviton self-energy should
be a transverse function, a property that is explicitly shown
in Eq. (B12). By taking the functional derivative of
Eq. (4.1) with respect to haﬂ and h,,, evaluated at
h = 0, we obtain the equation

po>

oV

K
uv,ap.pe — E [”uaaﬂnﬂﬂ.pa +’7yﬂaﬂnﬂa,pa - avHaﬂ,pa] ’ (43)
which relates the three-point function to the two-point
function. Such Ward identities, which reflect the gauge
invariance of the effective action, may similarly be obtained
for higher point functions [see Eqgs. (A25)].
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This property of the effective action implies that the
effective counterterm Lagrangian must be invariant, so it
may be expressed in terms of invariant functions under
background gauge transformations. The only invariant
terms with four derivatives are \/=gR,z, R,
V=9R,, R*, and \/=gR*. But owing to a special relation
that holds in four dimensions among these terms [see
Eq. (A9)], one may express the effective one-loop counter-
term Lagrangian in terms of just two such invariants, as

L) V=g

one—loop — m [Cl (5)1_?2 + Cz(é)kﬂyk’w],

(4.4)

where ¢ (&) and ¢, (&) are some coefficients. These may be
fixed by comparing the result of the two-point function
obtained from (4.4) with that calculated for the graviton
self-energy in Eqgs. (3.1) and (3.2). In this way, we obtain in
pure gravity the counterterm Lagrangian given in Eq. (1.1).
The fact that the coefficients in Eq. (4.4) are gauge
dependent is not surprising since such structures vanish
on mass-shell and can be absorbed by a field renormaliza-
tion, which is not an observable quantity.

If we add matter fields, as we did in Sec. III, these
structures will no longer vanish on-shell. But the gauge
dependent parts of the Green functions with external
background fields will remain unchanged. The effect of
the matter fields is to add extra gauge-invariant contribu-
tions to the Lagrangian. For example, introducing scalar
fields as done in Sec. III would yield corrections arising
from internal matter loops of the form [5]

i V=0 | R 1 - -
E(dlv) _ g — R4+ _— R Rw|. 4.5
M 872 (4 — d) 240 MRTTRE (4:5)
The above features explain the gauge dependence of the

individual amplitudes computed in this framework.

V. DISCUSSION

We examined some features of quantum gravity, in a
general background gauge to one-loop order. In this
context, we derived an extension of the counterterm
Lagrangian obtained by ’t Hooft and Veltman, which is
characterized by a gauge dependence of the coefficients
that occur in this Lagrangian. We studied the graviton self-
energy and verified, in Appendix B, that the contributions
arising from graviton and ghost loops are separately
transverse. This feature is a consequence of the fact that,
in the background field method, the ghost Lagrangian is by
itself invariant under background gauge transformations.

We applied these results to the calculation of the
quantum correction to the classical gravitational potential
generated by the graviton self-energy, which is a gauge-
dependent function. Since the Newtonian potential is a
physical quantity, the sum of all quantum corrections

[Nz 14

(@ (b)

FIG. 3. Diagrams contributing to the thermal one-point grav-
iton function.

should be gauge independent. The complete result obtained
in the background harmonic gauge £ = 1 emerges from a
summation of many Feynman diagrams [25,26]. We found

that in the background gauges & = (2 4 /13)/3, the full
result arises just from the quantum correction generated by
the vacuum polarization. Such a quantum correction is
exceedingly small, being about 107 at r = 10~'%m.

Another useful application of the present approach
concerns the graviton amplitudes at finite temperature 7.
These are of interest in quantum gravity both in their own
right as well as for their potential cosmological applica-
tions. Such amplitudes have a leading T* behavior at
high temperatures [27,28]. For example, the one-point
thermal graviton function shown in Fig. 3, which is related
to the thermal energy-momentum tensor, is given by the
expression

o 2 T 4 S Sstatic [ g}
D =~ (1 = 4o 0) = ==
thermal 90 (’1 T ) 5§/w Gy =My
(for d = 4), (5.1)

where §521¢ s the static limit of the leading high-temper-
ature thermal effective action given by [29]

gstatic [Q} — z°T*

= | FE . (52)

We note that this action is quite different from that which
occurs at zero temperature. On the other hand, as argued
below, the action associated with the In(7") contributions is
closely related to the one obtained from Eq. (4.4).

It has been shown that the subleading In(7") contributions
of the one-loop Green functions at high temperature, have
the same form as the ultraviolet divergent terms at zero
temperature [28,30]. Consequently, the thermal In(7?/ —
k?) terms combine with the In(—k?/u?) terms that occur at

T =0, to yield a In(T?/u?) contribution. Using an
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expansion such as that shown in Eq. (3.3), one can see that
such a logarithmic contribution arises from the fac-
tor (u/T)*9,

In general, the Ward identities at finite temperature are
different from those at zero temperature due to the fact that
the one-point thermal function is nonvanishing. However,
since Eq. (5.1) has no logarithmic terms, the Ward identities
involving such terms will be the same as those that occur in
the background field method at zero temperature [see, for
example, Egs. (4.2) and (4.3)]. From the above properties,
it follows that the high-temperature In(7) contributions to
the effective action can be directly obtained by multiplying
the effective counterterm Lagrangian (4.4) by the thermal
factor (u/T)*9).

We finally note that there is a proposal for an alternative
method of quantizing general relativity which leads to a
renormalizable and unitary theory [31]. This involves the
introduction of a Lagrangian multiplier (LM) field that
restricts the path integrals used to quantize the theory to
paths satisfying the classical Euler-Lagrange equations of
motion. One finds that such a procedure yields twice the
usual one—loop contributions and that all higher order
radiative corrections vanish. Thus, by using the LM method
in quantum gravity, one obtains an exact counterterm
Lagrangian that is twice that given in Eq. (1.1) (see
Appendix C).

ACKNOWLEDGMENTS
We thank CNPq (Brazil) for financial support.

APPENDIX A: FEYNMAN RULES

1. The action

We start from the background field action expanded up

to second order in the quantum field /,,,, which is given by

2 -
S:/d4x”_g[K_ZR+552>+£gf+ﬁgh+O(h3) ;

K* = 327G, (A1)
where Léz), L, and L, are given by Egs. (2.3), (2.4), and
(2.5), respectively. To derive the Feynman rules associated

with the background field EW, we use the definition

Guw = My + Ky (A2a)
as well as the inverse metric up to first order in x,
g =" — k" + O(k?), (A2b)

which follows from g#*g,, = &,. In the present work, we
will not need the interactions with more than one back-
ground field A,

For completeness, let us also list the usual definitions

R=3"R,,. (A3a)
Ry = R’ s (A3b)
Ry = 0,1 = 0T + T0 0, = TG (A3c)

_ 1_ _ _ _

Do = 5909 + %uGp = 09)

= g-ﬂﬂ(ath + 0,0, — 0,h) + O(2),  (A3d)
as well as

Db = 0,6, (Ada)
Dy, = 0,0y = Ujiybas (A4b)
Doty = 0oy = Uhiothar = Tisyas (Adc)
D,¢,,.. = 0,¢,,.. — oneT for each index. (A4d)

Let us consider the leading order expressions for the
curvature terms in the second line of Eq. (2.3). Under the
change g, — 1, + kh,,, one finds that, in momentum space,

V=GR = kP LPhoy + O(x?), (A5)
where
v a"q" v
L*(q) = 2 (A6)

Additionally, in the second line of Eq. (2.3) we have

K

/=GR" = 5

e -L oo

n Lﬂﬂ(q)Lﬂ(q))} fn(g) 1O, (A7)

We point out that the expressions written in terms of
combinations of the transverse tensor (A6) explicitly exhibit
the invariance under the gauge transformation (A24).

It will also be useful to have the expressions for the
following second order variations:

V=R = R L ()L (Q)hhap + O(3),  (A8a)

=5 pHY 1 a v 1 va
VERR = R LY QL) + L)L a)

1 = =
QL) g + O, (A8
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== =~ 1
V=GR R = K¢ Sl @)L (q)

1 = =
+ ELﬂa(q)LDﬁ(CI)‘| h/wh(xﬁ + O(K3)'

(A8c¢)

Notice that the right-hand sides of Eqs. (A8) can be viewed

as the variations of the corresponding left-hand sides when

Gy = M + K‘}_lm/. As expected, these variations are com-
patible with the identity

S(V/=G(R* — 4R, R" + RyuopR"")) = 0. (A9)

|

which, in the x space, translates into the vanishing integral
of a total derivative (see Appendix B of [5]).

2. Propagators for the quantum graviton field &,
and the ghost field ¢

The propagator for the field 4, can be derived from
Egs. (2.3) and (2.4). Replacing all covariant derivatives by
the corresponding partial derivative, we obtain the follow-
ing quadratic form:

is0 = / d*xhy Q" I, (A10)

where

1/1 1 1 1 1
o =i [E (5 PN =PI 4 S0 — 7 a%“”n””) + I — P =S P+ S 0217“/"7””}

+ symmetrizations y <> v and « < f§ + permutation (u,v) <> (a, )

(we have used integration by parts, as usual).

(Al1)

Changing to momentum space (0 — ip) and computing (—Q***(p))~" with the help of the tensor basis in Table I and
computer algebra (throughout this work we have used FeynCalc [32]), we obtain

-1

1
Dﬁf/az\z/ﬂ(p ) (77(11171/3;4 + 77(1/,177[)’1/ - d—2

i
_pz—i-ie{i

In the same way, the propagator for the background field

}_’;w can be found using a gauge fixing term with a gauge
parameter £ This yields a propagator for the IZW field
which is identical to (A12), with another gauge fixing
parameter &.

Similarly, from Eq. (2.5) we obtain the following
expression for the ghost propagator:

iy
D (p) = —i—

. Al3
p2 + ie ( )

1 1
Ty pré — E gaﬁguyguﬁ _ E gaﬁg;wg}/ﬁ + gaygm/gﬂﬁ _ gaégﬂygyﬂ +

= HOauprs l HWauprs _
2

_,_% (H(l)aﬂ/fuyé _ 11L1(1)0ww/ﬂS - %H(l)“"ﬁw‘s + %Hma’”ﬁ”é) +O(x),

2

2’7(1/} ’7;11/) + .
2p

1

(pﬂpunaﬂ + PpPullaw + PaPuMpy + pap/,tr]ﬁb):| . (Alz)

3. The vertex hhh

Let us first consider the terms such as DhD# in the first
line of (2.3) and also the gauge fixing contributions in
Eq. (2.4). For computer algebra convenience, it helps to
first write the general form of such terms as

Lpnpn = /=gT*P° Dy, Dgh,s. (A14)

where the tensor 7% /7% can be extracted from the first line
of Eq. (2.3) and from Eq. (2.4) and is given by

= A P 1—1— e 1—1—1./— 1_1_0_
: <g“"gﬂrd’5 LA A A S R T gr{s)

lH(l)ayyﬂDS 4 H(l)aﬂ/}yuﬁ _ H(l)aﬂv(‘}yﬂ
2

(A15)
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where

H(O)a;wﬂyé = %naﬁnyynu& _ %naﬁnyv;,]yé + ,,Irzyn;wrlﬁﬁ _ naényynv/} + é <,,low;,]uyr][35 _ %n(wr]u/}nyé _ %nay,,lyvnﬁé + ina/inuy”75>
(A16)

and the tensor HW®/r% \which arises from the order x contribution in the product of three inverse metric tensors, is
given by

HDauwprs — K(_gzl(sl/fl n e — naﬂ(sﬂm(s{lnvé — ”aﬂnwgzlggl)flmvl = kG aﬂvﬂﬂsﬁﬂlyl, (A17)

Combining these expressions, we can write part of the contributions from L, to the hhh interaction vertex as follows
(the subscript 0hoh indicates that this part originates from terms that have two derivatives acting on the quantum field 4, )

V/(;;l‘élhl‘z"W% (Pl Do p3) = —ix [l ,Imle(O)aﬂvﬁyﬁ + l GHiviauvPys _ levl aprpus | Grvi auprvd _ Gravy apdyp
e 2 2 2

+ é (sz/l apfrys _ % GHn auyvfs _ %G}lll/] auPyvd + %Guly, a,uy/)’ué>:| 5ﬁ2 5526/;3 6;3p2ap3ﬂ
-+ symmetrizations u; <> v; + permutation (uy, o, ps) <> (43,13, p3), (A18)

where the first term arises from the order x contribution of \/—g. In this form, one can easily input the definition of
GHmefrd in a computer algebra system and obtain the full expression for this part of the 4hh interaction vertex.

There is also another contribution from the first order terms of the covariant derivatives. Using the expression (A4c), the
order x contribution can be written as

1

VI (pr, pas p3) = ik{ {5 (81000 P1yP3ady 0502 + 8128, prpp3ady' 85 — 8’6, P12 p3adly 8y 85')

+7 < 5] + (a,p,v) <> (B,7, 5)}H(0)""‘”ﬂy‘s + symmetrizations y; <> v;
+ permutation (i, 13, py) <> (H3,V3, P3)- (A19)

The third type of contribution arises from the curvature terms in the second line of Eq. (2.3). With the help of Egs. (AS5)
and (A7) we obtain the following result:

VIRt (), pa. ps) = K{ piL ¥ (py) G e — %n”z’”n”m)

1 2
+5 [U“”' (P1)p1¥p1* —%(U"" (PO)L*1(p1) + L (p )L (p1)) | (2028, 80° —'1”2”25Z3553)}
+ symmetrizations u; <> v; + permutation (s, v, p2) <> (43,03, p3)- (A20)

In the previous expressions we have not performed some index contractions, because this can easily be done using Feyncalc
[32]. The total result for the s, , h, , h interactions vertex is

K1V ol T3S

M1V MoV 33

Vlgll[g‘}ﬂzyzﬂsvs (p]’ |23 p3) — Vahdh (pl’ Das p3) + Vll;;_lll;lhﬂzvzﬂsvs (plv 23 p3) + Vll;}l_lglﬁllzl/zﬂsw (p]’ D>, p3). (AZI)

4. The vertex c*hc

It is convenient to write the ghost Lagrangian given in Eq. (2.5) as follows:
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Loy = =5} ("5 DyD; — R*)c,

1- - - 1 - - _
= c;a2cﬂ + K{Zhﬁc;azcﬂ - C; (h/)’i’,];w + hﬂyrlﬁi)a/}’alcy + Enﬂynﬁﬂ[(aﬂc;)nlm(a/lhm/ + auho’/l - aﬁhznl)c/)

- C;’//pa(aﬂljla/l + aﬂ]jlaﬂ - aojllﬂ)apclz - C;npa(aﬂ}_lav + av}_laﬁ - aaljlvﬂ)a/lcp]} - C;Rﬂycv‘

From (A22) we obtain the following momentum space interaction vertex /

Vllll/]/w

(A22)

MYy 14

. 1 1
st (D1 P2, P3) = tK{-zpén””n”” + D5 P+ S (PUpy M — PPy = py - pan i)

H o M1

1
+ - (2p ' = py - panph) —E(P'TPZIWW‘ — PipS' ™ = py - pantint)

2

where in the next to the last line we have used
Eq. (A7).

5. Ward identities
When we use g,, = n,, +kh,, in the Einstein-Hilbert

action, we find identities that relate Vil to
|

_(7];410511 _|_,/[V10§”1) V”

where
w1y ] P u wolg s
Wﬂvi(p 7p):§( ;4,'771/,-1—'—514]1#,%) + Y 5 Tpov
(A26)
and p'+ p?>+ .-+ p" =0. Using the results for the

vertex in Eq. (A21) and the quadratic term in Eq. (Al1)
we have verified (A25) for n = 2, 3.

APPENDIX B: THE BACKGROUND FIELD
SELF-ENERGY

The one-loop contributions to the two-point function
(h h) are given by the Feynman diagrams of Fig. 1. Since
we are using dimensional regularization [24], the one-loop
contributions with a single quartic coupling [see Fig. 1(c)]
vanish. All we need are the Feynman rules for the cubic
vertices derived in Appendix A.

1 ..
— =[P\ (P + pip) = Pl pipn — plzn’”‘ln””l]} + symmetrizations u; <> v,

1,2 ,3 ny _ M1V n—1
K1V a3V ﬂnl/n(p PP ""’p) kW 21/2/1( )Vﬂl”lﬂ3y3 ﬂnl/n<
HiV) n—1 1 3 .2 .4 n
Wﬂgugi( )V HiV 1P gy~ l‘nl/n(p +p P ’p""’p)
M1V n—1 1 n 2 n—1
+”'+KW/41/1( )Vﬂlvlyzvz Ui Un— ](p +p",p5,....p )’

(A23)

[
N

vy, LHIS 18 a direct consequence of the invariance
of the classical action under the transformation

x6h,, = D,w, + D,w,. (A24)

A straightforward analysis leads to

1_~_p2’p3"”’pn)

(A25)

After loop integration, the result can only depend (by
covariance) on the five tensors shown in Table I, so that
each diagram in Fig. 1 can be written as

5

I, (k)= ZTLmﬁ(k)Cf(k); I = ghost or graviton loop.
i=1

(B1)

TABLE 1. The five independent tensors built from 7, and k,,

satisfying the symmetry conditions 77, (k) =
T/iw/}a(k) = T:lﬂ/w(k)'

Tiy a/}(k) =

ﬂua/i k) = k”k,,kuk/}

yaﬂ(u k) = NuMap

/w wvap (1K) = el + Muphlya

T, (x/j( k) = nukoks + napk,k,
) =

;u/a[i(u k) = ']}l(lklzkﬁ + nu/}kyk(z + ny(tk;lkﬁ + ']Uﬁkﬂk{l
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The coefficients C! can be obtained solving the following
system of five algebraic equations:

5
Z T, ap (k) Tj/waﬂ(k) C11 (k) = H/Iwaﬂ

v

(k)T (k) = J" (k):;
! j=1,...5. (B2)

Using the Feynman rules for IT, (k) (the vertices and
propagators are given in Appendix A), the integrals on the

right-hand side have the following form:

d
(k) = / (‘217’;0,s”<p,q,k>, (B3)

where ¢ = p + k; p is the loop momentum, k is the
external momentum, and s’ j( P, q, k) are scalar functions.
Using the relations

p-k=(q-p*=k)/2, (B4a)
q-k=(q*+k—p?)/2, (B4b)
p-qg=(p*+q*—k)/2, (B4c)

the scalars s'/(p, ¢, k) can be reduced to combinations of
powers of p? and ¢°. As aresult, the integrals J// (k) can be
expressed in terms of combinations of the following well-
known integrals:

[ob = M4_d/ dip 1 _ (k?)d/2=a=b T(a+b—d/2)T(d/2 —a)[(d/2 - b) (BS)
i2n)? (p*)(q*)"  (=p*)**(4n)?>  T(a)L(b) I'(d—-a-b)
|
(this has also been considered in [33]). The only non- d(d(d - 10) = 10) — 20
vanishing (i.e., nontadpole) integrals are the ones with both et = (a(d( —1F6 dz 1 ) )sz“l 11 (B8b)
a > 0and b > 0. For a general gauge parameter, £ # 1, the (@* = 1)
diagram in Fig. 1(a) involves the following three kinds of (3 =2d)d +6)
integrals (the ghost loop only involves I'!): C§h"s‘ = m;@k“] 1 (B8c)
k2 /2422 (2 =€ — 1)2
I“ = ( {iﬂdZZ ( 2) (2 ) s (B6a) ghost ghost 1
2%z I'd-2) G =-C 2 (B8d)
12 _ 21_(3_d)111 1
I'>" =1 = T y (B6b) Cghost _ —CghOSt P ] (B8e)
11
2 — (3-d)(6-a)l ’ (B6c) In the background field approach, we expect that both

k4

where we have employed the basic property of the I'
function xI'(x) = I'(x + 1). For d = 4 — 2¢ we obtain

]l

. k2
M, . =1 T2 {E—ln <_W> —y—f—Z} +O(e),

(B7)

where y =~ 0.5772 is the Euler-Mascheroni constant.

A straightforward computer algebra code can now be set
up in order to implement the steps described above and to
obtain the structures CE"** and C¥*"*" The results are the
following:

1

h il hi
C;lg ost _ (Cg 0st + 2C§ ost)P’

(B8a)

the ghost loop and the graviton loop satisfy the Ward
identity [see Eq. (A25)]

(5’5](,, + &/)ku)nﬂuaﬂ =0, (B9)
which follows from the diffeomorphism invariance under
(A24). This identity implies that the C l’ in Eq. (B1) are not
independent. Substituting Eq. (B1) into (B9), a simple
algebraic manipulation yields the relations

Ci+2C% C! C!
== Ci=—3 CGi=—13.  (BIO)
which is exactly the relations found in (B8). Therefore, the
ghost loop contribution is transverse.

The result for the graviton loop is also transverse with the
two independent structure constants given by
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graviton __
e |

d(d(d(9d—52)+74)+68)—96 d(d((d—8)d+20)—14)(E—1) (d-2)d((d—2)d—2)(£—1)? 2
64(d—2)(d—1) 8(d—2)(d—1) 32(d-1) ]K ’
(Blla)
rviton _ [d(d(4d +5) = 98) + 112 d((d=5)d+5)((~-1) (d=2)d(E~-1)? 1
e _[ 64 d=2)(d-1) | 8d=2)d=-1) 32(d-1) ]K2k41 (B11b)

[the other three constants can be obtained from (B10)].

A more compact way to write a general tensor that obeys
the gauge invariance constraints in Eq. (B10) is in terms of
the tensor L* defined in Eq. (A6). Using this tensor basis,
we can write the self-energy as follows:

v (k) = (C%hOSt + C%raViton)Lﬂll’l (k)L*2v2 (k)
+ ( C‘%host + Cgraviton)
(L ()L (k) + LA ()L ().
(B12)

Let us now relate these results with the counterterm

Ly = Caiy(Crv/—gR* + Cr kv —gR,,R™) (B13)

(notice that we have consistently obtained the Feynman
rules from iS). From Egs. (A8a) and (A8b), the momentum
space expression corresponding to (B13) can be written in
terms of L (k) as follows:

2 1 1 1 = ~
Ly = Kk Cyiy | Cra L (k) L# (k) + Cp g <Z LA (k)L (k) + 2 L (k)L (k) + gL/‘“(k)L”ﬂ(k)ﬂ By (k) hop (k). (B14)

Taking the functional derivative of Zdiv, we obtain

1 L4y

25hy,,, (k)Sh,,,, (k)

1 1 1
+ CRMR"” (Z L <k)Lﬂ2V2 (k) + ng/Zﬂ] (k)Lﬂle (k) + nglzﬂl <k>Ll/11/1 (k)>:| .

— = K2k4CdiV |:CR2L”1”1 (k)L”Z’/Z (k)

Comparing Eqgs. (B12) with (B15) and using the expressions given in Eqgs. (B8) and (B11), we obtain

d(d(d(d(9d - 55) — 12) +392) — 56) — 384

CyiyCro = 1"
divRe { 128(d—2)(d® - 1)

_ gdiv L 1 —1)2
) <120+6(5 1)>+

and

4d* + & — 65d> + 14d + 64 d(d* —5d +5)

C 1 C_ puy — 111
AVERLR [ 16(d —2)(d* — 1)

(T 8D
= <2o+ 3 >+ ,

(B15)
(d—4)d((d—6)d +6) d((d—4)d> +8)
6d-d-1_ SV au-n ¢ 1)2]
(B16a)
(d—2)d
2(d=2)(d—-1) E-D+ 8(d—1) C 1)2]
(B16b)

where 19V is given by Eq. (B7) and the - - - represent all the finite terms in the limit € — 0. Equations (B16) agree with the

well-known result in the gauge £ =1 [5].
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Finally, using Egs. (B12) and (A12) we obtain the following one-loop correction to the propagator of the background

field:

4d* + d® — 65d> + 14d + 64 d(d* —5d +5)

(d—2)d

@aﬁpan fDléyv — _111
poo {[ 64(d—2)(d2 1)

8(d—2)(d—1) (¢-1)
(d—4)d

m(f - 1)2} (™" + n ")

[d“ —23d3 + 80> + 4d — 64
64(d—2)2(> = 1)

+ terms containing k%, k? | k*, k”},

8(d—2)(d—-1) (-1

(d-2)d 2| apow
m(f—l) ]ﬂ/jﬂ

(B17)

where D% is obtained from Eq. (A12) replacing & by & The above expression reduces, for d = 4 — 2, to the result

_ _ 9% (121
DTy DMy e = = 2 { [ "

+ terms containing k%, k¥, k¥, kv} 4.,

which agrees with the known result in the gauge & =1
[2,25]. In Sec. III we employ this result to compute the
quantum correction to the Newtonian potential.

APPENDIX C: USING A LAGRANGE
MULTIPLIER FIELD TO ELIMINATE
RADIATIVE CORRECTIONS BEYOND

ONE LOOP

It has been established that by supplementing the
classical Lagrangian with a term in which a LM field is
used to ensure that the classical equations of motion are
satisfied, the radiative corrections to the classical action
are restricted to one-loop order. These one-loop corrections
are twice those arising from the classical action alone. (See
Ref. [31] and references therein.) This has made it possible
to absorb all divergences arising from the Einstein-Hilbert
action (both by itself and when interacting with a scalar
field) into the LM field, leaving a finite result that is
consistent with unitarity.

We now will summarize the consequence of including
such a LM field when we do not specify the gauge fixing
parameter £. Starting from the Einstein-Hilbert Lagrangian
of Eq. (2.1), we find that since

2 1
5/ d4xﬁg = _P/ d4x\/ _g5g/w <le - Egle> ’ (Cl)

we introduce a LM field #* so that the Einstein-Hilbert
Lagrangian is supplemented by

e (-2)v (b))

The LM field #** is now split into a background part 7#* and
a quantum fluctuation ¢**,

-1 1 - 1)
2 5(56 ):| (nayﬂ/iﬂ +}7(mnﬁu) 4 |:+(§):| ’7(1/)’;7/41/

120 6

(B18)

MV = J o,

(C3)

and now [d*x(L,+ L;) is invariant under two gauge
transformations [31],

1, - _ _ - -
oh,, = - (D,6,+D,0,)+ H’ID,lhﬂ,, + hﬂ,lDUH’1 + hMDIﬂ‘,

(C4a)
55/41/ = (’_1/4/1 + 6/4/1)D1/0]L + (/_le + O-yl)Dﬂgl + ngﬂ (/_1/411 + 5/41/)7
(C4b)

and

50;41/ = (Dy)(u + Du)(/t +)(/1D/10;w) + G;MI_)L/)(}L + GMDMA’
(C4c)

with g, and J# held constant. Breaking the gauge

invariances of Eqs. (C4) while preserving the gauge

invariance of the background fields g,, and J* involves
replacing Eqgs. (2.4) and (2.5) by [31]

1 _ 1. _ 1.
— o 4 a fo3 /}
Ly EM—g[(D hMD—EDﬂha) <D,,hﬂ —EDﬂhﬂ>

_ 1_ _ 1.
14 lo} ﬂ
+2 <D Oy — §Dﬂ6g> (Dah” - ED”h/,>:| ,
(C5a)
‘Cghﬂ =V _Q[C*”(lellg/w - R/w)dy
+ d*(D,D*6,, — R,,)c"]. (C5b)

where d*# and d" are additional Grassmann ghost fields.

065010-12



QUANTUM GRAVITY IN A GENERAL BACKGROUND GAUGE PHYS. REV. D 106, 065010 (2022)

In the path integral for the one-particle irreducible Feynman diagrams, one can do explicitly the path integral over the
fields h,, and ¢**, leaving one with [31]

- ) i — _ i
[[g,., 2] = =i 1n{Zexp i / e (@ kh D) (L G + kb)) + 2 < LG+ h)
i (27
_ i 8 _ » _ i _ i
Ly (G -+ ) et [(Sh 5 V7 KON L G 1)+ Ly G+ Kh,%))}
uv c

% de?(D'D; 5 — ie,w)}. (C6)

In Eq. (C6), the summation over i is over all configurations of A, that satisfy the classical equation of motion

0 2 1 _ 1 _ 1.
5h, = —(g + xh)R(g,, + «h,,) + : —(g+ «h) <D”h,w - EDDhg) (D,lh” - ED”hﬁﬂ =0. (C7)

If we were to set h,(fp) in Eq. (C6) equal to zero, we would have the contributions of all diagrams to I'[g,, ]; these consist of
all tree level diagrams [the exponential in Eq. (C6)], twice the usual one-loop diagrams involving the graviton [the
contribution of the factor det™! in Eq. (C6)], and twice the usual ghost-loop diagrams [the factor det® in Eq. (C6)]. No
diagrams beyond one-loop order contribute to I". This expression for I' is consistent with unitarity [31].

The functional determinants in Eq. (C6) result in divergences [5]; these are twice what appears in Eq. (1.1). This
divergent contribution to I’

= 4-d
dv _ VTIH 11 5] - 7 EE-1]- ) -
=—F—"——9 |—==+-(-1)"|Rg" — 4222 J|RMW LR
=z { [120+6(§ ) } 9o [20+ 3 o (C8)
(u is a renormalization mass scale parameter) can be absorbed into
ji 0 A/ q q 2 /_=7 1 o o —afi - D
A ShHv _(g + Kh)ﬁg(g;w + Kh,uu)|h _ = ; _glﬂy |:2 (5”5/1/} + 51/8111 - g(/}g;w):| Raﬁ (Cg)
by setting
- _ K'2//l4_d 1 1 _ 7 5(5 _ 1) _ 1 )
g = —_— — —_ 1 2 R_aﬂ — - 7 Raﬂ _ %5U 51/5/” _ 1114 . 1
e =4 4;;2(4—61){[120+6<r§ >] g +LO+ 3 ] }{2< p + 0adp = 7 Gapd )} (C10)

All divergences are absorbed by the renormalized LM field /_1’;;. Neither x* or Gy are renormalized, and consequently they
do not vary as the renormalization mass scale is changed.
If there is a scalar field ¢ in addition to the metric field g,,, then the classical Lagrangian of Eq. (2.1) is supplemented by

_(1 m’ » G
£¢(¢) =Vv-g 59” aﬂ¢5u¢—7¢ —Eﬁb . (C11)
Quantizing ¢ in the same manner as g,, results in

g 3.3 = i ln{z [ Pwexpi [ dtaty/ =g+ khOL, B .G+ b5L) + LG+ x1D)

cw O _ i _ i _ _ i _ i _ i
Jrllwiﬁg(g;w + Khl(w)) + ‘Cgf(g;w + Khl(ﬂ/))det : |: -9+ Kh( )(Eg(g;w + Kh#(l))‘cgf(gm/ + Khl(w)))

ohy, 0h,,0)5
< del(D'D;5p — Ry } (C12)
where ¢ has a background component ¢. The integration over y leads to divergences that can be removed by renormalizing

m?, G, and ¢, as well as further divergences proportional to R,,, which can also be removed by being absorbed into A#*. All
divergences in Eq. (C12) are consequently eliminated.

s
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