
Hidden variables of gravity and geometry and
the cosmological constant problem

Nemanja Kaloper *

QMAP, Department of Physics and Astronomy, University of California Davis, California 95616, USA

(Received 30 March 2022; accepted 31 August 2022; published 12 September 2022)

We extend General Relativity by promoting Planck scale and the cosmological constant into integration
constants, interpreted as fluxes of 4-forms hiding in the theory. When we include the charges of the
4-forms, these “constants” can vary discretely from region to region. We explain how the cosmological
constant problem can be solved in this new framework. When the cosmological constant picks up
contributions from two different 4-forms, with an irrational ratio of charges, the spectrum of its values is a

very fine discretuum. When the charges are mutually irrational, 2κ2effκ
2jQij

3T 2
i

< 1, the discharge processes

populating our discretuum will dynamically relax Λ, ceasing as Λ approaches zero. Thus, the theory
exponentially favors a huge hierarchy Λ=M4

Pl ≪ 1 instead of Λ=M4
Pl ≃ 1.

DOI: 10.1103/PhysRevD.106.065009

In this paper, we discuss the salient features of our recent
generalization [1] of standard General Relativity (GR) [2,3]
where Planck scale, the cosmological term, and the matter
sector couplings are discretely varying quantities through-
out spacetime. We note that Hilbert’s formulation of GR [2]
can be extended using an arbitrary 4-form F ¼ dA as the
covariant integration measure in the action, which remains
locally a constant multiple of the standard measure

ffiffiffi
g

p
d4x

when we add another 4-form G ¼ dB, coupled to F via
the interaction F ϵμνλσffiffi

g
p Gμνλσ. This ensures that the ratio

F=d4x
ffiffiffi
g

p
is constant, being the local value of Planck

scale. The flux of G adds to the cosmological constant. Our
Pancosmic GR generalizes1 the so-called “unimodular”
formulation of GR [13–21]. Finally, we couple matter to
geometry using the conformal 4-form/matter coupling,
which is locally indistinguishable from GR, and is form
invariant in the Quantum Field Theory (QFT) loop expan-
sion [22,23]. The theory is safe from ghosts in this
particular case [1]. This provides at least the first step in
the demonstration that our mechanism may have a unitary
UV completion into some more fundamental approach to
quantizing gravity.
When we include membranes charged under 4-forms F

and G their quantum-mechanical nucleation lead to local

changes of the fluxes of F and G, which jump up or down
in the regions inside the membranes. As a result, in the
interior of these membrane-bound bubbles the effective
strength of gravity and the value of cosmological constant,
and also the values of couplings and scales of local matter
theory, jump relative to the outside.
A sequence of such nested expanding bubbles will scan

both κ2 and Λ over a wide range of parameters, realizing a
toy model of the multiverse of eternal inflation [24]. This
toy multiverse can solve the cosmological constant problem
[25–27]. To this end we include another 4-form which is
degenerate with the cosmological constant, with its corre-
sponding system of charges. When the ratio of charges of
our two 4-forms which add up in the total cosmological
constant is an irrational number, the spectrum of values of

Λ is a very fine discretuum [28]. When 2κ2effκ
2jQij

3T 2
i

< 1,

which is the robust parameter ratio choice, the bounce
action which controls the rates of the transitions that change
Λ has a pole at Λ ¼ 0, driving Λ to 0þ dynamically, and
stopping there.
In this case, the distribution of the terminal values is

effectively described by the semiclassical Euclidean parti-
tion function [29–32], which has an essential singularity2 at
Λ=κ4eff → 0. The theory exponentially favors vacua with
Λtotal
M4

Pl
→ 0 ≪ 1. The Newton constant can be fixed sepa-

rately, by observation, or by using a “weak” anthropic
principle. Cosmological constant, however, is driven to
zero without any need for anthropics. The theory avoids the
empty universe problem of [32], and can admit inflation.
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1Some alternatives to minimal measure in the action were

noted in [4–12].
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[33,34].

PHYSICAL REVIEW D 106, 065009 (2022)

2470-0010=2022=106(6)=065009(7) 065009-1 Published by the American Physical Society

https://orcid.org/0000-0002-2945-2233
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.065009&domain=pdf&date_stamp=2022-09-12
https://doi.org/10.1103/PhysRevD.106.065009
https://doi.org/10.1103/PhysRevD.106.065009
https://doi.org/10.1103/PhysRevD.106.065009
https://doi.org/10.1103/PhysRevD.106.065009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


The cosmological constant problem reduces to “Why
now?,” whose answers might involve late-time physics.
We note that our mechanism also avoids naturally the

venerated Weinberg no-go theorem [27] for the adjustment
of the cosmological constant, by exploiting loopholes in the
assumption of the theorem. The adjustment occurs by
quantum Brownian drift, instead of smooth field variation.
Further, the evolution involves a special point in phase
space, Λ ¼ 0þ, which is the quantum attractor where the
bubble nucleation stops. These two features alone invali-
date the theorem of [27].
A simplified example of the action which generalizes

Einstein-Hilbert action [2,3] is [1]

S ¼
Z

F
�
R −

1

4!

ϵμνλσffiffiffi
g

p Gμνλσ

�
−
Z

d4x
ffiffiffi
g

p
LQFT

þ Smembranes: ð1Þ

Here, F ¼ dA, G ¼ dB, and M is a UV scale controlling
the maximal flux the theory can admit. Careful vari-
ation yields field equations, which without membrane
sources are

ϵρζγδ

4!
ffiffiffi
g

p F ρζγδ

�
ϵαβλσGαβλσ

4!
ffiffiffi
g

p δμν − 2Rμ
ν

�
¼ Tμ

ν;

R −
ϵμνλσ

4!
ffiffiffi
g

p Gμνλσ ¼ 2λ;

−
ϵμνλσ

4!
ffiffiffi
g

p F μνλσ ¼
κ2

2
: ð2Þ

The last two equations are integrated variations with respect
to A and B, and include the integration constants κ2 and λ.
A direct substitution of these two into the first gives

κ2ðRμ
ν −

1

2
RδμνÞ ¼ −κ2λδμν þ Tμ

ν; ð3Þ

which are the local equations of GR. Yet, both Planck scale
and the cosmological constant are integration constants.
Our equations (2), (3) describe an infinity of GRs para-
metrized by κ2, λ, which do not mix with each other until
the membranes are turned on.
The membrane action is

Smembranes ¼ −T A

Z
d3ξ

ffiffiffi
γ

p
A −QA

Z
A− T B

Z
d3ξ

ffiffiffi
γ

p
B

−QB

Z
B; ð4Þ

where

Z
A ¼ 1

6

Z
d3ξAμνλ

∂xμ

∂ξα
∂xν

∂ξβ
∂xλ

∂ξγ
ϵαβγ; ð5Þ

and likewise for B. Here, T i, Qi are the membrane tension
and charge, respectively, while ξα are the intrinsic mem-
brane coordinates and embedding maps are xμ ¼ xμðξαÞ.
We take T i > 0 to exclude negative local energy.
Classically, membranes are sources fixed by initial

conditions. However, quantum mechanically they can
nucleate in background fields [35,36]. This changes the
distribution of sources and the evolution of bubble interiors.
As a result any background will evolve by growing
subspaces with different κ2 and λ.
The analysis simplifies when we transition to the

magnetic dual variables of the 4-forms F and G [1]. We
use Lagrange multipliers and rewrite the 4-form sector
of (4) in the first-order formalism. Each pair of variables F ,
A and G, B are treated as independent dynamical variables
and F ¼ dA and G ¼ dB follow as constraints enforced by
Lagrange multipliers, PA, PB. The general first-order path
integral is

Z ¼
Z

…½DA�½DB�½DF �½DG�½DPA�½DPB�

× eiSðA;B;F ;G;…Þþi
R

PAðF−dAÞþi
R

PBðG−dBÞ…: ð6Þ

Different dual pictures ensue from different order of
integration, as in, e.g., the formulations of flux monodromy
models of inflation [37–39]. So, to dualize we integrate out
F and G, and redefine the Lagrange multipliers according
to PA ¼ 2λ, PB ¼ κ2

2
. In terms of the dual variables our

action, with the membrane terms from (4), is [1]

S ¼
Z

d4x

� ffiffiffi
g

p �
κ2

2
R − κ2λ − LQFT

�

−
λ

3
ϵμνλσ∂μAνλσ −

κ2

12
ϵμνλσ∂μBνλσ

�

þ Sboundary − T A

Z
d3ξ

ffiffiffi
γ

p
A −QA

Z
A

− T B

Z
d3ξ

ffiffiffi
γ

p
B −QB

Z
B: ð7Þ

Sboundary is a generalization of the Israel-Gibbons-
Hawking boundary action [40–42],

Sboundary ¼
Z

d3ξ

��
λ

3
ϵαβγAαβγ

�
þ
�
κ2

12
ϵαβγBαβγ

��

−
Z

d3ξ
ffiffiffi
γ

p ½κ2K�: ð8Þ

½…� is the jump across a membrane; λ; κ2 are inside of ½…�
since they jump if a Qi is emitted.
To include the matter sector, we replace the

matter Lagrangian of our Eq. (1) by
ffiffiffi
g

p
LQFTðgμνÞ →ffiffiffî

g
p

LQFTðĝμνÞ, where ĝμν ¼ gμν
ffiffiffiffiffi
κ
M

p
and, as noted, M is
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a UV scale controlling the perturbative expansion of the full
effective action in the powers of F . This ensures the theory
retains a positive-definite gravitational coupling which
keeps ghosts at bay [1]. The matter loop corrections
preserve this form of the action, as long as the regulator
depends on κ=M in the same way as the matter Lagrangian
[22,23]. We can also generalize the gravitational sector,

substituting κ2

2
R →

M2
Plþκ2

2
R:

S ¼
Z � ffiffiffi

g
p �

M2
Pl þ κ2

2
R − κ2λ −

κ2

M2
LQFT

�
M
κ
gμν

��

−
λ

3
ϵμνλσ∂μAνλσ −

κ2

12
ϵμνλσ∂μBνλσ

�

þ Sboundary − T A

Z
d3ξ

ffiffiffi
γ

p
A −QA

Z
A

− T B

Z
d3ξ

ffiffiffi
γ

p
B −QB

Z
B: ð9Þ

The variation of (9) yields [1]

ðM2
Pl þ κ2ÞGμ

ν ¼ −κ2λδμν þ Tμ
ν þ…;

F̂ μνλσ ¼
κ2

2

ffiffiffi
g

p
ϵμνλσ;

Ĝμνλσ ¼
2κ2λ − κ2R − T=4

4κ2
ffiffiffi
g

p
ϵμνλσ;

2nμ∂μλ ¼ QAδðr − r0Þ;
1

2
nμ∂μκ2 ¼ QBδðr − r0Þ: ð10Þ

The Israel-Gibbons-Hawking action changes slightly
by κ2 → κ2eff ¼ M2

Pl þ κ2.
To Wick rotate the action we use t ¼ −ix0E, and turn the

crank [1]. Defining the Euclidean action by iS ¼ −SE and
restricting to locally maximally symmetric backgrounds,
hLE

QFTi ¼ ΛQFT, withΛQFT the matter sector vacuum energy
to an arbitrary loop order,

SE ¼
Z

d4xE

� ffiffiffi
g

p �
−
κ2eff
2

RE þ κ2λþ ΛQFT

�
−
λ

3
ϵμνλσE ∂μAE

νλσ −
κ2

12
ϵμνλσE ∂μBE

νλσ

�

þ Sboundary þ T A

Z
d3ξE

ffiffiffi
γ

p
A −

QA

6

Z
d3ξEAE

μνλ

∂xμ

∂ξα
∂xν

∂ξβ
∂xλ

∂ξγ
ϵαβγE

þ T B

Z
d3ξE

ffiffiffi
γ

p
B −

QB

6

Z
d3ξEBE

μνλ

∂xμ

∂ξα
∂xν

∂ξβ
∂xλ

∂ξγ
ϵαβγE : ð11Þ

With our couplings, ΛQFT ¼ κ2
M4

UV
M2 þ… ¼ κ2H2

QFT, where
M4

UV is the QFT UV cutoff and ellipsis denote subleading
terms [22,23]. Thus, Λ ¼ κ2ðλþH2

QFTÞ ¼ κ2λeff.
The membrane-induced transitions link geometries with

κ2out=in;Λout=in [out/in denote parent and offspring geom-
etries (exterior and interior of the membranes, respec-
tively)]. The configurations with local Oð4Þ symmetry
dominate since they have minimal Euclidean action
[43–45]. Both in and out can be described with the metrics
ds2E ¼ dr2 þ a2ðrÞdΩ3, where dΩ3 is the line element on a
unit S3. Here, a solves ða0aÞ2 − 1

a2 ¼ −Λ=3κ2eff. The prime is
the r derivative [1]. The variations of (11) give also the
membrane-induced contributions. We find [1]

λout − λin ¼
QA

2
; κ2out − κ2in ¼ 2QB;

κ2eff out
a0out
a

− κ2eff in
a0in
a

¼ −
T A þ T B

2
: ð12Þ

We wrote the discontinuities as if the emission of A and B
membranes were colocated simply to save space. We ignore

the discontinuity in B since the p-form terms in the action
cancel out exactly against the charges and do not affect the
bounce action [1].
In semiclassical approximation, the membrane nuclea-

tion rates are Γ ∼ e−Sbounce [43–45], where SðbounceÞ ¼
SðinstantonÞ − SðparentÞ. Instanton actions are the
Euclidean actions computed on a solution with a number of
membranes, starting with one and counting off. Their
classification was initiated in [35,36] for the theories
with 4-form fluxes screening the cosmological constant
[34–36,46,47]. We find important differences in our case
because the cosmological constant depends on membrane
charges linearly, instead of quadratically [1].
We focus here on the most interesting case of dS → dS

decay when q ¼ 2κ2effκ
2jQAj

3T 2
A

< 1. In this case only the

(−þ) instantons of Fig. 1 are kinematically allowed for
A-membrane transitions [1], and the geometries can be
glued together to form an instanton if3

3Corresponding to ζout ¼ −1, ζin ¼ þ1 in the notation
of [1,35,36].
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λouta2

3κ2eff

s
¼ T A

4κ2eff
ð1 − qÞa;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λina2

3κ2eff

s
¼ T A

4κ2eff
ð1þ qÞa: ð13Þ

Crucially, due to (bi)linear dependence on charges—
instead of quadratic—other dS → dS instantons are for-
biddenwhen q < 1 [1]. This has dramatic consequences: as
a result, the resulting theory has a quantum attractor at
Λ ¼ 0þ.
We now uncover this behavior. First, it turns out to be

useful to solve Eqs. (13) for a2, which is the radius of the
membrane connecting parent and offspring. We find

1

a2
¼ Λout

3κ2eff
þ
�

T A

4κ2eff

�
2

ð1 − qÞ2

¼ Λin

3κ2eff
þ
�

T A

4κ2eff

�
2

ð1þ qÞ2: ð14Þ

Hence, there are two regimes of bubble formation. When a2

is comparable to de Sitter radii, Eq. (14) shows that

∼ð1 − Λja2

3κ2eff
Þ1=2 ≪ 1 and the bounce action is approximated

by the difference of one half of the parent and offspring
horizon areas divided by 4GN,

Sbounce ≃ −
12π2κ4effΔΛ

ΛoutΛin
;

ΔΛ ¼ Λout − Λin ¼
1

2
κ2QA: ð15Þ

Since q < 1, as long as Λout ≫ 3κ2effð T A
4κ2eff

Þ2, in this regime

the discharge of the cosmological constant is fast because
Sbounce < 0. The cosmological constant is repelled down
from the Planckian scales. The reverse processes increasing
Λ (ΔΛ < 0) also occur but their bounce action is the
negative of (15) and they are rarer. The overall trend is the
decrease of Λ.
This stage ends when Λ < 3κ2effð T A

4κ2eff
Þ2, after which

nucleations proceed via production of small bubbles, with
the bounce action [1]

Sbounce ≃
24π2κ4eff

Λout
ð1 − 8

3

κ2effΛout

T 2
A

Þ; ð16Þ

and Sbounce > 0 because Λ < 3κ2effð T A
4κ2eff

Þ2. Therefore,

Sbounce diverges as Λout → 0þ—as we asserted above.
So, the bubbling rate Γ ∼ e−Sbounce has an essential singu-
larity at Λout → 0þ, where the rate goes to zero. Hence,
when q < 1 small Λ is metastable, and the locally
Minkowski space is absolutely stable to discharges.
Once q < 1, the only way it can be disturbed is if κ2eff

increases by the emission ofQB. Another possible problem
is if emissions yield κ2eff < 0, leading to a pandemic of
spin-2 ghosts. Arranging the values of QB and T B we can
prevent both of these dangers. The dangerous processes are
mediated by large bubbles, which are completely blocked

when 16
κ4effjQBj

T 2
B

≪ 1. In this limit the B-bubble radius at

nucleation is

1

a2
¼

�
T B

4κ2eff out

�
2
�
1þO

�
κ4eff outQB

T 2
B

��

¼
�

T B

4κ2eff in

�
2
�
1þO

�
κ4eff inQB

T 2
B

��
: ð17Þ

Since only small bubbles can nucleate when Λ
3κ4eff

< ð T B
4κ3eff

Þ2,
κ2eff stays constant. The condition 16

κ4effjQBj
T 2

B
≪ 1 also

blocks the bubble size from below, ensuring that
a > 1=κeff. This regime is disconnected both from
Planckian physics and from κ2 < 0, at least in the semi-
classical approximation which we pursue [1]. Further, in
this limit kinematics restricts dS → dS discharges to only
be mediated by instantons of Fig. 1. Hence, QB emissions
again completely shut off at Minkowski. Finally, by

arranging
κ4eff inQB

T 2
B

≪ κ4eff inQA

T 2
A

< 1 we can make QB dis-

charges much slower than QA discharges.
So, in our generalization of GR both the cosmological

constant and Newton constant change by membrane
emissions. The discharges are quantum mechanical and
nonperturbative, and cease in the classical limit and flat
space, Λ=κ4 → 0. This limit of the cosmological constant
evolution is attained by quantum Brownian drift, and is the
quantum attractor. This fits with ideas that an eternal, stable
de Sitter space may not exist in a UV complete theory
[48–54], and reminds of the wormhole approach to quan-
tum gravity [55–63].
Let us now show how this discharges the cosmological

constant. First we define the problem in our theory. The

total cosmological constant isΛtotal ¼ κ2ðM4
UV

M2 þ V
M2 þ λÞ,

where we include the QFT vacuum energy ∼M4
UV, any

nonvanishing QFT potential∼V, and our variable λ. Since λ
and κ2 change discretely, by Δλ ¼ QA=2, Δκ2 ¼ 2QB, we

FIG. 1. A q < 1 instanton comprises two sections of S4.
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have λ ¼ λ0 þ N QA
2
, κ2 ¼ κ20 þ 2NQB, with N and N

arbitrary integers. The net cosmological constant term is
Λtotal ¼ ðκ20 þ 2NQBÞð Λ0

M2 þ N QA
2
Þ, where Λ0 ¼ M4

UVþ
V þM2λ0 and ΔΛtotal ¼ ðκ20 þ 2NQBÞQA=2. To get
Λtotal=κ4eff < 10−120, we must either pick a tiny QA or
fine-tune ðκ20 þ 2NQBÞΛ0=M2. Variations of κ2eff cannot
help since we cannot suppress the curvature of the universe
without reducing the gravitational force between two
masses.
There is a simple solution to this obstacle, however. We

add one more 4-form which contributes to λ, but couple it to
a different membrane with parameters T Â;QÂ:

S ¼ S −
Z

d4x
ffiffiffi
g

p �
κ2λ̂þ λ̂

3
ϵμνλσ∂μÂνλσ

�

− T Â

Z
d3ξ

ffiffiffi
γ

p
Â −QÂ

Z
Â: ð18Þ

The membranes Â behave exactly as the A ones. We
demand q̂ < 1 in addition to q < 1, and that QÂ

QA
¼ ω is

an irrational number, as in the irrational axion proposal [28]
(see also Ref. [9]). The cosmological constant “quantiza-
tion” law now becomes

Λtotal ¼ ðκ20 þ 2NQBÞ
�
Λ0

M2
þQA

2
ðN þ N̂ωÞ

�
: ð19Þ

Since ω is irrational, for any real number ρ there exist
integers N; N̂ such that N þ N̂ω is arbitrarily close to ρ
[28,64]. Thus, integers N; N̂ exist such that N þ N̂ω is
arbitrarily close to − 2Λ0

QAM2. The set of Λtotal is dense, with

values arbitrarily close to zero! Further, there is no axion
“gauging” these dense discrete shifts and no emerging
global symmetries [28,65]. For any initial value of Λ, there
exist many sequences of discharging membranes, in any
order, which will yield terminal values N; N̂ for which the
cosmological constant is arbitrarily close to zero, and very
long lived.
Due to the irrational ratio of charges, all previously

separated superselection sectors now mix together, tran-
sitioning between each other by utilizing both A; Â charges.
The slower nucleation processes when Λ is well below
the cutoff also allow up jumps, which raise Λ, and so the
superselection sectors will form a very fine discretuum. The
states with M4

Pl ≫ Λ > 0 will be very long lived, decaying
predominantly to Λ → 0þ. The key ingredient here is the
pole of the bounce action, Eq. (16), specific to the (−þ) of
Fig. 1. Its presence means that Λ → 0þ is the dynamical
attractor. This is captured by the behavior of the semi-
classical Euclidean partition function.
Indeed, consider Z¼R

…DADÂDBDλDλ̂Dκ2Dge−SE,
the Euclidean variant of the magnetic dual-partition func-
tion. In the saddle-point approximation,

Z ¼
X

instantons

X
λ;λ̂;κ2

e−SEðinstantonÞ; ð20Þ

the idea was to sum over classical extrema of the action. In
our case this begins with summing over the Euclidean
instantons with any number of membranes included. The
Oð4Þ invariant solutions should minimize the action, and so
this is a reasonable leading-order approximation [43–45].
Thus, Z will invariably be dominated by our instantons.
This sum is challenging, but we can get a feel for

the individual terms. Inverting the bounce action,
SðinstantonÞ ¼ SðbounceÞ þ SðparentÞ. Without
offspring, the instanton action equals the parent action,
which is just the negative of the horizon area divided

by 4GN, SðparentÞ ¼ −24π2 κ4eff
Λout

. For n generations,
summing over the family tree, Sðinstanton; nÞ ¼P

n Sðoffspring; nÞ þ SðprogenitorÞ. By “off-
spring” we mean nested segments separated from the
parent by membranes. The “progenitor” geometry is
the primordial parent initiating the tree. Hence, by
Eq. (16) SðinstantonÞ ≲ −64π2κ6eff=T 2

i , and so an
extended lineage may yield Sðinstanton; nÞ →
−64π2κ6effðnAT 2

A
þ nÂ

T 2

Â

Þ → −24π2 κ4eff
Λterminal

. The number of

generations will be bounded by −24π2 κ4eff
Λterminal

, since
nucleations can go on until Λterminal → 0þ, at which
point the rate vanishes.
Thus the sum (20), Z ∼

P
e24π

2
κ4
eff
Λ þ…, will be heavily

skewed toward Λ → 0þ, reflecting that discharges cease in
the Minkowski limit. Ergo, in our generalization of GR,
Z heavily prefers Λ

κ4eff
→ 0; de Sitter is unstable and quan-

tum mechanicsþ GR dynamically relax Λ to zero. The
instability stops as Λ → 0þ, and the final (near-)
Minkowski space is extremely long lived. To explain
GN ¼ 1

8πM2
Pl
≃ 10−38 ðGeVÞ−2 we could either just decide

to measure it, or invoke a mild version of the “Weak
Anthropic Principle,” which can fix GN by placing the
Earth in the habitable zone around the Sun.
The “empty universe” problem [32] is averted since the

relaxation of Λ involves large successive jumps, and the
tiny terminal Λ comes from the irrational ratio of charges.
So, the cosmological constant does not always dominate,
but just sometimes [46]. The relaxation process is a random
walk. Finally, we note that in addition to starting form a
high scale, an empty universe could “restart” itself by a rare
quantum jump which increases the cosmological constant
since the up jumps are also possible,4 and then in
subsequent evolution an inflationary stage is found [66].

4Note that this may have implications for the cosmological
arrow of time, as it might yield a cosmic rebirth, rare as it is. As
this issue is irrelevant for the present discussion, we ignore it
here, intending to return to it at a later time.
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In this sense, this channel for inflation may seem a priori
rare, but since the system can continue exploring the phase
space, even a “rare” event can be found eventually [67]. In
any case, our universe would evolve towards Minkowski,
Λ → 0, so that the potential problems with more likely,
smaller-scale fluctuations dubbed “Boltzmann Brains”may
be avoided [67–70]. Hence, the avoidance of the “empty
universe” problem opens the door for embedding “normal”

cosmology in our framework. We will return to the precise
details of how to introduce inflation and postinflatio-
nary cosmology, as well as the questions about the UV
completion of the mechanism in future work.
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