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A finite volume allows tunneling between degenerate vacua in quantum field theory, and leads to
remarkable energetic features, arising from the competition of different saddle points in the partition
function. We describe this competition for finite temperature at equilibrium, taking into account both static
and (Euclidean) time-dependent saddle points. The effective theory for the homogeneous order parameter
yields a nonextensive vacuum energy at low temperatures, implying a dynamical violation of the null
energy condition.
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I. INTRODUCTION

Spontaneous symmetry breaking (SSB) is an important
and peculiar feature of many body systems. Its importance
stretches from solid state physics to the Standard Model
and its peculiarity is that it is not truly realized. In fact, SSB
is valid in strictly infinite systems, a condition which one
never meets in physics. However the order of magnitude of
Avogadro’s number and the ratio of the macroscopic and
microscopic characteristic scales make SSB an excellent
approximation in most cases. This work shows how fun-
damental energetic features are modified in finite systems,
where SSB is not a good approximation. More specifically,
the null energy condition (NEC [1]) can be violated, as
shown in [2–4], and the present article describes the finite-
temperature equilibrium state obtained from tunneling
between two vacua.
In the thermodynamical limit, involving an infinitevolume,

a first order phase transition is characterized by the Maxwell
cut, signalling the degeneracy of the ground state of a system.
The corresponding flat effective potential is consistent with
convexity, obtained as a consequence of the competition
of different key configurations in the partition function [5],
the saddle points of the model. For finite systems though,
symmetry is restored by tunneling, and the effective potential
obtained from the interplay of different saddle points has a
nontrivial dependence on the volume. This featured was

noticed in [6], where the one-particle-irreducible (1PI)
effective potential is calculated for anOðNÞ-symmetric scalar
field, taking into account homogeneous saddle points. In [6]
fluctuation factors are ignored in the semiclassical approxi-
mation for the partition function, but taking these factors into
account leads to identical conclusions [4]. In theseworks, the
Maxwell cut is recovered in the limit where the spacetime
volume goes to infinity.
We briefly comment here on the Wilsonian running

potential, obtained from exact functional renormalization
group studies [7]. While this potential is not necessarily
convex along the renormalization trajectory, it approaches a
convex effective potential at the infrared end point [8]. But the
Wilsonian effective potential is identical to the 1PI effective
potential at the IR end point only for infinite spacetime
volumes,whereas the present study focuses on finitevolumes.
NEC violation is known in quantum field theory, with

the typical example of the Casimir effect (see [9] for a
review). This effect has been used in the context of
Early Cosmology to induce a spacetime expansion [10],
where NEC violation is obtained from a massless scalar
field in a 3-torus. The Casimir effect is not only suppressed
by some inverse power of the volume though, but it is also
exponentially suppressed by the scalar field mass, and we
neglect it in the present work. In the case we study here—a
massive scalar field in the presence of different vacua—
NEC violation is expected by recalling the variational
method of quantum mechanics, where the ground state
energy is lowered by taking into account the mixing of the
degenerate potential wells [11]. In the present work, the
NEC violation is a consequence of a nontrivial volume
dependence of the effective action Seff , hence of nonex-
tensive thermodynamical potentials. The energy density ρ
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and the pressure p in the vacuum are obtained from the free
energy F ¼ VUeffð0Þ ¼ TSeffð0Þ, and

ρþ p ¼ 1

V

�
F − T

∂F
∂T

�
−
∂F
∂V

¼ −T
∂Ueffð0Þ

∂T
− V

∂Ueffð0Þ
∂V

: ð1Þ

The first term in the second line is the usual one, arising
from temperature-driven quantum fluctuations, and is
positive. The nontrivial second term arises from tunneling
and is a consequence of the nonextensive feature of the
effective action Seffð0Þ. Note that, if the partition function is
based on one saddle point only, then the effective action is
extensive and this second term vanishes. In the situation of
several saddle points though, we show in this article that
this term is negative, and quantum fluctuations dominates
over thermal fluctuations at low enough temperature. In our
work, NEC violation is therefore a finite volume effect.
As shown in [2], the corresponding mechanism could be
relevant for the generation a cosmological bounce [12],
without the need for modified gravity or exotic matter.
We stress here that this work is not related to the Kibble-

Zurek mechanism [13]. The latter necessitated a high
temperature in order to restore symmetry, whereas the
mechanism we present here is valid for any temperature,
including zero-temperature, where SSB would indeed
occur in an infinite volume. This is detailed in Sec. II,
where we also explain that we do not take into account
bubbles of different vacua, because we work at finite
volume. In Sec. III we describe the different saddle points
relevant here, which are the static ones and the time-
dependent instanton/anti-instantons pairs, hence going
further than the work [14], which take into account static
saddle points only. The contribution of these saddle points
to the semiclassical expansion is discussed in Sec. IV. We
study then the intermediate-temperature regime in Sec. V,
where the Euclidean time is not large enough to allow the
formation of instanton/anti-instanton pairs, and only the
static saddle points contribute to the partition function.
Although the effective potential has a nonextensive field
dependence, the vacuum energy is intensive, such that the
NEC is satisfied in the vacuum. Section VI describes the
low temperature regime, dominated by a dilute gas of
instanton/anti-instantons, which allow for a nontrivial
volume-dependence of the vacuum energy. As a result,
for a fixed volume, we show that we can always find a
temperature small enough for the NEC to be violated.

II. TUNNELING VERSUS THERMAL
SYMMETRY RESTORATION

We consider the bare Euclidean action for a scalar field
ϕðt; x⃗Þ at temperature T ¼ 1=β and three dimensional
spatial volume V ¼ L3

Sbare½ϕ� ¼
Z

β

0

dt
Z
V
d3x

�
1

2
∂μϕ∂μϕþm2

b

2
ϕ2 þ λb

4!
ϕ4

�
: ð2Þ

The parametersm2
b; λb of the bare theory are chosen in such

a manner that the vacuum displays the spontaneously
broken symmetry ϕ → −ϕ. Therefore the order parameter,
the space-time average of the field, develops nonvanishing
expectation value in the thermodynamical limit V → ∞,
and for temperatures below the critical temperature which
appears in the Kibble-Zurek mechanism

T < Tc ¼ 2v0; ð3Þ

where v0 is the dressed vacuum expectation value (vev) for
vanishing temperature.
Exact SSB may occur only in a strictly infinite system

which is a formal construct since one always encounters
finite objects in physics. A finite physical system is said to
display broken symmetry if SSB becomes a better and
better approximation as the volume increases without limit.
Hence SSB is a particular asymptotic finite size scaling law.
Let us start with an infinite system in a symmetry broken

vacuum where the SSB is exact and distinguish two sym-
metry restoration mechanisms. The symmetry is restored
thermally if thermal fluctuations have sufficient energy to
spread the density matrix over different degenerate vacua.
Such a symmetry restoration mechanism is active even in
the strictly infinite volume case, and happens for T > Tc.
The alternative symmetry restoration process, tunneling
under the potential barrier separating the degenerate vacua,
operates only in finite volume. As was observed in [2–4],
the nonextensive feature of the thermodynamical potential
due to such a symmetry restoration in finite systems leads
to NEC violation. Extensivity of a quantity is defined for
lengths large compared to the characteristic length of a
system though, such that our main interest in this work is to
find the volume dependence of the thermodynamical
potential for large volume.
The improvement of the SSB approximation with

increasing volume is related to a tunneling time τtðVÞ
which increases exponentially with the volume V. In
addition, the tunneling dynamics depends on the temper-
ature T ¼ 1=β, in such a way that the thermodynamical
properties of the system are controlled by the dimensionless
ratio β=τtðVÞ, cf. Eq. (46) below. Tunneling ceases to be
active for V ≫ Vβ where Vβ is defined by β ¼ τtðVβÞ. As
shown in Sec. VI, the latter identity leads to a temperature
TðVÞ which decreases exponentially with the volume, and
below which extensive properties are recovered.
We are interested in the effective dynamics of the order

parameter because it may have an important role in
violating NEC. This effective dynamics is defined by the
Wilsonian action S½ϕ� for the spatially homogeneous field
component, ϕðtÞ. It is important to distinguish the full
dynamics of the field ϕðt; x⃗Þ and the effective dynamics of
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the order parameter ϕðtÞ: The spontaneous breakdown
or the restoration of the symmetry is driven by the former,
whereas the latter only provides a diagnostic of the status of
symmetry.
To probe the possible nonextensive feature of the

thermodynamical potentials in the symmetry broken phase
we need the partition function of the full theory as the
function of the volume and the temperature. The status of
symmetry impacts the partition function, with an effect
encoded by the effective potential for ϕðtÞ. To obtain the
effective potential in the one-loop saddle point expansion,
we assume the following action to describe the effective
dynamics (see Appendix for details)

S½ϕ� ¼ V
Z

β

0

dt

�
1

2
ð∂0ϕÞ2 þ

λ

24
ðϕ2 − v2Þ2 þ jϕ

�
; ð4Þ

which features a double well structure. It is argued below
that the qualitative aspects of our results remain valid
beyond this particular form of the action.
We end this section with a comment on the choice of a

homogeneous order parameter ϕðtÞ. For a nonvanishing
source j, the vacuum degeneracy is shifted, and one should
in principle consider coexisting domains of true and false
vacuum. Following [15], it is reasonable to assume spheri-
cal domains of radius R, whose actions are of the form

Sbubble ¼ −ajR3 þ bR2; ð5Þ

where a > 0 and b > 0. In the previous expression, the
volume contribution is proportional to the energy differ-
ence between the vacua, and competes with the surface
term arising from surface tension. The resulting critical
bubble radius is

Rcr ¼
2b
3aj

; ð6Þ

which diverges for the ground state of the system, obtained
for j → 0 because of symmetry restoration. As a conse-
quence, finite volumes on which the present study is based
do not allow the formation of bubbles, as long as one
focuses on the vicinity of the true ground state. This
justifies the study of homogeneous and time-dependent
saddle points in this work.

III. SADDLE POINTS FOR HOMOGENEOUS
DYNAMICS

We introduce the dimensionless variables

τ ¼ ωt; φ≡
ffiffiffi
λ

6

r
ϕ

ω
; k≡

ffiffiffi
λ

6

r
j
ω3

; ð7Þ

with ω≡ v
ffiffiffiffiffiffiffi
λ=6

p
, we are lead to the bare action

S ¼ B
Z

ωβ=2

−ωβ=2
dτ

�
ðφ0Þ2 þ 1

2
ðφ2 − 1Þ2 þ 2kφ

�
; ð8Þ

where a prime denotes a derivative with respect to τ and

B≡ 3

λ
ðLωÞ3: ð9Þ

The equation of motion obtained from the action (8) is

φ00 þ φ ¼ φ3 þ k: ð10Þ

Below we study the different solutions of this equation,
which are relevant to finite-temperature field theory, where
periodic boundary conditions are imposed on field con-
figurations. We note that there are other solutions of the
equation of motion, which are relevant in the context of
false vacuum decay, as the “shot” [16], which does not
satisfy periodic boundary conditions though, and is not
considered in the present study.
The partition function is an analytic function of k for

finite volume V < ∞ and finite temperature β < ∞. As a
consequence, the formal symmetry ϕ → −ϕ and k → −k
assures that the partition function depends on k2, although
individual saddle points are not necessarily even in the
source.
In what follows we consider an infinitesimal source k,

since we focus on the ground state of the system: Because
of tunneling, this ground state corresponds to a vanishing
classical field, which in finite volume maps to a vanishing
source through the Legendre transform.

A. Static saddle points

Static vacua satisfy

φ3 − φþ k ¼ 0; ð11Þ

and the number of solutions depends on the dimensionless
source k: if we define kc ≡ 2=3

ffiffiffi
3

p
≃ 0.385, we have the

following two regimes:
(i) For jkj > kc, the model has only one (real) static

vacuum, which is

φs0 ¼ −signðkÞ 2ffiffiffi
3

p cosh

�
1

3
cosh−1ðjkj=kcÞ

�
: ð12Þ

(ii) For jkj < kc the model has two static vacua, which
are

φs1ðkÞ ¼ φsðkÞ and φs2ðkÞ ¼ −φsð−kÞ ð13Þ

where

φsðkÞ ¼
2ffiffiffi
3

p cos

�
π

3
−
1

3
cos−1ðk=kcÞ

�
; ð14Þ
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and which corresponds to the regime we focus on in this
article. The actions for these saddle points are

S1 ≡ S½φs1� ¼ ΣðkÞ; S2 ≡ S½φs2� ¼ Σð−kÞ; ð15Þ

where

ΣðkÞ ¼ Bωβ
�
2k −

k2

2
−
k3

4
−
k4

4
−
21

64
k5 −

k6

2
þOðk7Þ

�
;

ð16Þ
where we note that they differ only by the sign of the odd
powers of the source k. This will be important to recover
the appropriate parity of the effective potential.

B. Time-dependent saddle points

The Euclidean time-dependence of a saddle point can
be found from the Minkowski time-dependence after the
sign flip UðϕÞ → −UðϕÞ. There are many periodic sol-
utions of Eq. (10), whose qualitative features can better be
understood by following their period length as the function
of the maximal value, φm ¼ maxτðφðτÞÞ. The solutions
with the shortest period 2π=ω are harmonic oscillations
around φ ¼ 0 with infinitesimal φm. Hence there are no
time-dependent saddle points at high temperature,
β < 2π=ω. The increase of φm leads longer periods, since
the quartic part of the potential weakens the restoring force
to the equilibrium position φ ¼ 0. As φm approaches
maxfφs1;φs2g, the trajectory spends most of the time
around one of these static saddle points and the period
length diverges. The action is a decreasing function of φm
hence our interest lies mainly in low temperature time-
dependent saddle points. The periodic saddle points are
instanton/anti-instanton pairs, and each instanton or anti-
instanton has the approximate width 1=ω. The number of
pairs allowed in the Euclidean total time β is not a
continuous function of β, and their maximum number is

Nβ ∼
ωβ

2π
: ð17Þ

We are thus led to two saddle point regimes, that we will
study separately:

(i) The intermediate-temperature regime βc<β<2π=ω,
where only static saddle point are present. This is a
wide temperature interval if ωβc ≪ 2π;

(ii) The low-temperature regime 2π=ω ≪ β, where in-
stanton/anti-instanton pairs can develop.

1. Instanton/anti-instanton pair

For large but finite ωβ, a instanton/anti-instanton pair
spends most of the Euclidean time close to the static saddle
points�vwhen k ¼ 0. Figure 1 shows such a pair, which is
exactly symmetric and spends the same time close to the
two vacua. This pair can be approximated by

φ0 ≃ tanh

�
τ − ωβ

4ffiffiffi
2

p
�
tanh

�
τ þ ωβ

4ffiffiffi
2

p
�
; ð18Þ

since, for both signs of τ, one of the hyperbolic tangent
factors is very close to�1, and the other hyperbolic tangent
factor satisfies the equation of motion. Apart from a time
approximately equal to 2=ω, the saddle point is exponen-
tially close to the vacuum hence the action for the
configuration arises mainly from the jumps only and can
be approximated by

S0 ¼
8

ffiffiffi
2

p

3
B: ð19Þ

If one introduces an infinitesimal source k ≠ 0, the
action for one instanton/anti-instanton pair is still domi-
nated half of the Euclidean time β by the action of the
saddle point ϕs1, and the other half by the action of the
saddle point ϕs2. The subdominant part of the action arises
from the jumps of the instanton and anti-instanton, and the
pair action is

SpðkÞ ≃ S0 þ
1

2
ΣðkÞ þ 1

2
Σð−kÞ; ð20Þ

where S0 and Σ are given by Eqs. (19) and (16) respectively.

2. Anti-ferromagnetic saddle point configurations

The regime ωβ ≫ 1 allows multiple instanton/anti-
instanton pairs exact saddle points, which are regularly
distributed in the Euclidean period β. The corresponding
action is even in k and has the generic form

Smulti
p ðkÞ ¼

X∞
l¼0

s2lk2l: ð21Þ

FIG. 1. An instanton/anti-instanton pair within the period
ωβ ¼ 60, obtained with φ0ð0Þ ≃ −0.999999997. In the absence
of source, the configuration spends the same time close to both
static saddle points.
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If the instantons and anti-instantons are far enough from
each other though, the configuration still spends most of the
time close to one saddle point, and the total contribution
from the n pairs is approximately nS0. The action is thus,
for an infinitesimal source,

SðnÞp ðkÞ ≃ nS0 þ
1

2
ΣðkÞ þ 1

2
Σð−kÞ; ð22Þ

and a discussion on dilute gas of instanton/ant-instanton is
given in the next section.

IV. SEMICLASSICAL APPROXIMATION

In the presence of multiple saddle points ϕn and if
one does not allow SSB, the partition function can be
approximated by the sum of path integrals, each integrating
fluctuations perturbatively around ϕn

Z½j� ≃
X
i

Z
D½ξ� expð−S½ϕi þ ξ�Þ; ð23Þ

where the action S½ϕi þ ξ� involves the source term. This
semiclassical approximation becomes better as the space-
time volume Vβ is large, since fluctuations around each
saddle point are suppressed exponentially and do not
communicate. We have thusZ

D½ξ� expð−S½ϕi þ ξ�Þ ≃ Fie−S½ϕi�; ð24Þ

where the factors Fi take into account fluctuations deter-
minants for time-dependent modes, but also the eventual
zero mode corresponding to the translational invariance of
instantons/anti-instantons, as explained below.

A. Static saddle points

The fluctuation factor arising from time-dependent
fluctuations over a static saddle point is calculated in
Appendix, and we have

F1 ¼ FβðkÞ and F2 ¼ Fβð−kÞ; ð25Þ

where

FβðkÞ ¼ exp
�
−B ln sinh

�
ðωβ=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3φ2

sðkÞ − 1

q ��
; ð26Þ

and φsðkÞ is given in Eq. (14). Note that, for ωβ ≳ 2
we have

FβðkÞ ≃ exp

�
−
Bωβ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3φ2

sðkÞ − 1

q �
; ð27Þ

which will be used further on.

B. Instanton/anti-instanton pair

Following [11], the fluctuation factor for an instanton or
an anti-instanton spending time β1 close to one static saddle
point and the time β2 close to the other static saddle point,
with β1 þ β2 ≃ β is

Finst ≃
ffiffiffiffiffi
S0
2

r
Fβ1ðkÞFβ2ð−kÞωβ; ð28Þ

where the factor
ffiffiffiffiffiffiffiffiffiffi
S0=2

p
ωβ arises from the zero mode

corresponding to the translational invariance of the con-
figuration over the total length ωβ.
For an instanton/anti-instanton pair, with negligible

correlation for βω ≫ 1, the overall saddle point spends
some time β1 close to one static saddle point, then some
time β2 close to the other static saddle point, and back close
to the first one for some time β3, with β1 þ β2 þ β3 ≃ β.
The center of the instanton can be placed freely over a time
interval of length ωβ and the center of the anti-instanton
can be placed in the remaining time, leading to the zero-
mode factor

ffiffiffiffiffi
S0
2

r Z
ωβ=2

−ωβ=2
dτ1

ffiffiffiffiffi
S0
2

r Z
ωβ=2

τ1

dτ2 ¼
1

4
S0ðωβÞ2: ð29Þ

On average β1 þ β3 ¼ β2 ¼ β=2 such that the total fluc-
tuation factor for an instanton/anti-instanton pair is

Fð1Þ
p ≃

S0
4
ðωβÞ2Fβ1ðkÞFβ2ð−kÞFβ3ðkÞ; ð30Þ

and, given the asymptotic form (27),

Fð1Þ
p ≃

S0
4
ðωβÞ2Fβ=2ðkÞFβ=2ð−kÞ: ð31Þ

C. Instanton/anti-instanton gas

The exact solutions of the equation of motion (10)
involving several pairs of instanton/anti-instanton form
an “antiferromagnetic crystal,” with a rigid structure and
therefore with a small configuration-space measure in the
partition function. The approximate saddle points made of
weakly coupled instanton/anti-instanton, where the later are
free to be moved around in time, have a huge degeneracy
arising form translational zero modes, without increasing
much the action of the total configuration. Because of this
degeneracy, at low enough temperature they dominate over
the exact crystal-structured saddle points. The zero mode
for n instanton/anti-instanton pairs is then

ffiffiffiffiffi
S0
2

r Z
ωβ=2

−ωβ=2
dτ2n

ffiffiffiffiffi
S0
2

r Z
ωβ=2

τ2n

dτ2n−1 � � �
ffiffiffiffiffi
S0
2

r Z
−ωβ=2

τ2

dτ1

¼ Sn0
2n

ðωβÞ2n
ð2nÞ! : ð32Þ
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On average, the antiferromagnetic saddle point spends the
overall time β=2 close to both static saddle point and, using
the asymptotic form (27), we obtain for the total fluctuation
factor for n pairs

FðnÞ
p ≃

Sn0
2n

ðωβÞ2n
ð2nÞ! Fβ=2ðkÞFβ=2ð−kÞ: ð33Þ

D. Comments on the bounce saddle point

In the present study we focus on an infinintesimal source
k, which is why the relevant time-dependent saddle points
consist in pairs of instanton and anti-instantons. The latter
configurations do not generate negative fluctuation modes,
which is why the above fluctuation factors are all real.
If one considers a larger source though, the time-

dependent saddle point cannot be decomposed as dilute
pairs of instantons and anti-instantons, and the basic
building block of the dominant configurations is a bounce
instead, as shown in Fig. 2. Such a bounce does induce an
imaginary fluctuation determinant, arising from one neg-
ative mode which should be treated appropriately with an
analytical continuation, for the integration over quadratic
fluctuations [11]. This feature is used to determine the
decay rate of a false vacuum in Oð4Þ-symmetric Euclidean
coordinates [15], and does not appear in our study, which
focused on the vicinity of k ¼ 0.
Should we include higher orders in the classical field for

the effective potential, we would need to take a larger
source, and thus consider the bounce imaginary fluctuation
factor. The partition function is real though, and so must be
the effective potential which describes an equilibrium state,
such that no imaginary part should appear in the effective
dynamics. As explained in [16], when integrating quadratic
fluctuation, the analytic continuation to avoid the bounce
negative mode requires a contour of integration which goes

through the other saddle points. The resulting closed
contour necessarily involves additional imaginary parts,
which exactly cancel the imaginary part arising from the
bounce, indeed leading to real effective dynamics.

V. INTERMEDIATE-TEMPERATURE REGIME

We consider here the intermediate temperature regime
βc < β ≲ 2π=ω, dominated by static saddle points.

A. Effective potential

Although in this work we ignore spatial fluctuations, we
rescale the partition function Zβ½k� by a source-independent
term Rβ, in order to reproduce the usual ground state
(3þ 1)-thermal fluctuations contribution, at each static
saddle point. This contribution is

U0 ¼
T4

2π2
Ið

ffiffiffi
2

p
ωβÞ; ð34Þ

where

IðaÞ≡
Z

∞

0

dxx2 ln
�
1 − e−

ffiffiffiffiffiffiffiffiffi
x2þa2

p �
; ð35Þ

and for high temperatures leads to the Stefan-Boltzmann
law

U0 ∼ −
π2T4

90
for ωβ ≪ 1: ð36Þ

In order to achieve this, we need to take

Rβ ¼
1

Fβð0Þ
exp

�
−
VIð ffiffiffi

2
p

ωβÞ
2π2β3

�
; ð37Þ

such that the partition function is

ZβðkÞ ≃ Rβ½F1ðkÞ expð−S1ðkÞÞ þ F2ðkÞ expð−S2ðkÞÞ�
¼ Rβ½FβðkÞ expð−ΣðkÞÞ þ Fβð−kÞ expð−Σð−kÞÞ�

¼ exp

�
−
VIð ffiffiffi

2
p

ωβÞ
2π2β3

��
2þ BωβAβ

32
k2
�
þOðk4Þ;

ð38Þ
where

Aβ ¼
1

sinh2ðωβ= ffiffiffi
2

p Þ ð−32þ 18ωβ − 119Bωβ

þ ð32þ 137BωβÞ coshð
ffiffiffi
2

p
ωβÞ

þ 3
ffiffiffi
2

p
ð7 − 16BωβÞ sinhð

ffiffiffi
2

p
ωβÞÞ: ð39Þ

As expected the partition function is even in k, and one
can check that Aβ > 0 for all β. The classical field, the
homogeneous source generated saddle point, is

FIG. 2. A single-bounce configuration within the period
ωβ ¼ 30, obtained with the source k ¼ 0.01 and φBð0Þ ≃
−0.853183042684. A finite source breaks the symmetry between
the vacua, and the bounce cannot be decomposed as a dilute
instanton/anti-instanton pair.
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ϕc ≡ −
δ lnðZβÞ

δj
→ −

1

Vβ

∂ lnðZβÞ
∂j

¼ −v
2Bωβ

∂ lnðZβÞ
∂k

; ð40Þ

which, in terms of the original source j is

ϕc ¼ −
Aβj

64ω2
þOðj3Þ: ð41Þ

Because we have a finite volume, there is a one-to-one
mapping between the source j and the classical field ϕc, as
in the situation where quantization is based on one saddle
point. This feature is essential to determine the Legendre
transform leading to the 1PI effective potential. Also, one
can see from Eq. (41) that the classical field vanishes when
j → 0, which shows that the true vacuum of the model is
at ϕc ¼ 0.
The effective potential is finally obtained by integrating

U0
effðϕcÞ ¼ −j, hence

UeffðϕcÞ ¼ U0 þ
32ω2

Aβ
ϕ2
c þOðϕ4

cÞ; ð42Þ

where U0 is given in Eq. (34). Hence the effective potential
is indeed convex, with its minimum at ϕ0 ¼ 0, and with
volume-dependent coupling constants.

B. Null energy condition

For a perfect fluid with energy density ρ and pressure p,
the NEC ρþ p ≥ 0 is considered a universal feature for
known matter [1], and is one of the key ingredients for
singularity theorems in cosmology [17]. Few quantum
effects are known for violating the NEC though [18],
and among these the Casimir effect has been shown to
provide a cosmological expansion [10], arising from a
dynamical NEC violation.
The competition between two vacua and the resulting

tunneling effect have proven to violate the NEC dynami-
cally at zero temperature and for an Oð4Þ-symmetric
Euclidean spacetime [2–4]. For the present intermediate-
temperature regime though, we have Ueffð0Þ ¼ U0, which
is independent of the volume, such that

ρþ p ¼ −T
∂U0

∂T

¼ T4

2π2

�
a
dIðaÞ
da

− 4IðaÞ
�

> 0; ð43Þ

where a ¼ ffiffiffi
2

p
ωβ: the vacuum satisfies the NEC.

C. Exact SSB limit

The results derived in this section are based on expan-
sions which assume Bωβk ≪ 1, such that in principle one
cannot consider a large volume (B ≫ 1). But it is interest-
ing to note that Eq. (42) remains useful for B ≫ 1 to

indicate that the flatness of the effective potential, the
Maxwell cut, is realized for B ¼ ∞ when the SSB
approximation is exact.
One can predict a flat effective potential in the thermo-

dynamical limit though, without any expansion of the
partition function. Indeed, for ðBωβÞ−1 ≪ k ≪ 1 we have

Zβ → RβFβð−ϵkÞ expð−Σð−ϵkÞÞ
where ϵ ¼ signðkÞ ¼ signðjÞ: ð44Þ

such that, when j → 0,

ϕc → ϵv

�
1 −

3

8
ffiffiffi
2

p
�
; ð45Þ

leading to the discontinuity Δϕc ≃ 2v. Hence the one-to-
one mapping between j and ϕc is lost for an infinite
volume: j ¼ 0 for all jϕcj ≲ v, leading to a constant
effective potential and thus to the Maxwell cut.

VI. LOW TEMPERATURE REGIME

For large Bωβ but a source small enough to satisfy
Bωβjkj ≪ 1, the two static saddle points play a similar role,
and the instanton/anti-instanton pairs are most of the
time asymptotically close to one static saddle point or the
other—see Fig. 1. In the corresponding approximate saddle
point, these instantons and anti-instantons can be translated
individually: they form a dilute gas whenωβ is large enough
for instanton and anti-instantons to be far enough from each
other, and the action for an n-pairs configuration can be
approximated by the expression (22). The probability per
unit time for an instanton or anti-instanton to form is
ω

ffiffiffiffiffiffiffiffiffiffi
S0=2

p
e−S0=2, so that the average number N̄ of these

configurations during the Euclidean time β is

N̄ ≃ ωβ

ffiffiffiffiffi
S0
2

r
e−S0=2: ð46Þ

We note that N̄ is just β=τt introduced in Sec. II. The average
distance Δβ between instantons and anti-instantons can be
expressed in terms of N̄

Δβ≡ β

N̄
≃

ffiffiffiffiffi
2

S0

s
eS0=2

ω
; ð47Þ

and is large compared to the width 1=ω of an instanton or
anti-instanton in the dilute gas assumption.

A. Effective potential

Taking into account the fluctuation factor (33), the
rescaled partition function including the static saddle points
and the gas of instanton/anti-instanton pairs is
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ZβðkÞ ¼ Rβ

�
FβðkÞe−ΣðkÞ þ Fβð−kÞe−Σð−kÞ

þ Fβ=2ðkÞFβ=2ð−kÞ
�X∞

n¼1

ðωβÞ2n
ð2nÞ!

�
S0
2

�
n
e−nS0

�

× e−ΣðkÞ=2−Σð−kÞ=2
�

¼ Rβ½FβðkÞe−ΣðkÞ þ Fβð−kÞe−Σð−kÞ
þ Fβ=2ðkÞFβ=2ð−kÞðcoshðN̄Þ − 1Þe−ΣðkÞ=2−Σð−kÞ=2�:

ð48Þ

This leads to the classical field

ϕc ¼ −
Âβj

64ω2
þOðj3Þ; ð49Þ

where, if we assume expð−ωβ= ffiffiffi
2

p Þ ≪ 1,

Âβ ¼ 32þ 21
ffiffiffi
2

p
þ 2Bωβ

137 − 48
ffiffiffi
2

p

1þ coshðN̄Þ ; ð50Þ

and N̄ is given by Eq. (46). Finally, the convex effective
potential is

UeffðϕcÞ ¼ U1 þ
32ω2

Âβ

ϕ2
c þOðϕ4

cÞ; ð51Þ

where

U1 ¼ U0 −
1

Vβ
lnðcoshðN̄Þ þ 1Þ; ð52Þ

and U0 is given by Eq. (34).

B. Violation of the null energy condition

From the expression (52) for the vacuum energy, one can
consider two asymptotic cases:
N̄ ≪ 1 This situation corresponds to the suppression

of instanton/anti-instanton pairs, such that we expect to
recover the same results as in the intermediate temperature
regime. Indeed, we have

U1 ≃U0 −
ln 2
Vβ

; ð53Þ

and ðT∂=∂T þ V∂=∂VÞðVβÞ ¼ 0. The sum ρþ p is thus
identical to the expression (43), and the NEC is satisfied.
Note that

lim
T→0

ðρþ pÞ ¼ 0; ð54Þ

which is the expected result for a zero-temperature theory
in infinite volume, as long as the limits T → 0 and V → ∞
are taken in such a way that N̄ ≪ 1.

1 ≪ N̄ In this case we have

U1 ≃U0 −
N̄
Vβ

þ ln 2
Vβ

; ð55Þ

such that

ρþ p ¼ T4

2π2

�
a
dIðaÞ
da

− 4IðaÞ
�
−
1þ S0

2

ω

V

ffiffiffiffiffi
S0
2

r
e−S0=2;

ð56Þ

where a ¼ ffiffiffi
2

p
ωβ. One can clearly see here the competition

between:
(i) temperature-driven quantum corrections (first term),

which depend on T only and vanish for T → 0;
(ii) tunneling (second term)which depends onV only and

vanishes forV → ∞. The regime 1 ≪ N̄ allows to fix
V and take T → 0, such that it is always possible to
find a temperature small enough forwhichρþ p < 0,
and the NEC is violated in a given volume.

VII. CONCLUSION

This article describes finite-temperature and finite-
volume tunneling between degenerate vacua of a scalar
theory. Taking care of the appropriate order of the different
limits to consider (large volume or/and large inverse
temperature), we showed that the NEC can be violated
dynamically by a nonextensive vacuum energy, generated
by competing vacua at any finite temperature and finite
volume.
One motivation for this work is the generation of a

cosmological bounce in early Universe cosmology [2].
In the vicinity of a bounce, spacetime is effectively flat,
allowing the tunneling process described here. Which finite
volume should then be considered is still an open question:
one might naively think of the Hubble volume, but the latter
becomes infinite at the bounce, such that one needs to
define another causal volume to describe tunneling.
Furthermore, in order to apply the mechanism described
here to curved spacetimes, one needs to find the energy-
momentum tensor which takes into account the nonexten-
sive nature of the matter effective action. The first step in
this direction is detailed in [3], but it needs to be further
developed in future work.
The extension of this mechanism to curved spacetime,

specifically to cosmology, should involve a comparison
between timescales for spacetime expansion and for tun-
neling. Hence a study of real-time tunneling would be
complementary, in order to allow a real-time-dependent
process (see [19] for a review), unlike the present study
which is done at equilibrium.
Finally, the energetic effects derived here could have

analogue condensed matter systems, as those used to study
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false vacuum decay [20], which is an avenue to explore in
the longer term.
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APPENDIX: ONE-LOOP DYNAMICS

1. Effective theory for the order parameter

The Wilsonian action for the order parameter is a highly
involved nonlocal functional, to be approximated here in
four steps. First the functional form (4) of the local potential
approximation is assumed, yielding

Uð1ÞðϕÞ ¼ m2
B

2
ϕ2 þ λB

4!
ϕ4 þ 1

2Vβ
Tr lnðð2πnβ−1Þ2

þ k2 þ U00
bareðϕÞÞ ðA1Þ

in the one-loop approximation where the trace represents
the sum over Mastsubara frequency 2πnβ−1 and non-
vanishing three-momentum. Next the zero temperature
local potential is truncated into a quartic form (without
the source term)

Uð1Þ
0 ðϕÞ ¼ λ0

24
ðϕ2 − v20Þ2; ðA2Þ

where the index 0 denotes T ¼ 0, involving the cutoff
independent zero temperature renormalized parameters.
According to the strategy of the saddle point expansion
the saddle point gives the tree-level contribution and
v ¼ Oðλ0Þ. The third approximation is to restrict the finite
temperature corrections to OðλÞ, m2 ¼ m2

0 − λT2=24 and
λ ¼ λ0. This leads to action (4) with the known temper-
ature-dependent vev

v2 ¼ v20 −
1

4β2
; ðA3Þ

from which one can see that symmetry is restored above the
temperature 2v0, where v ¼ 0. In this article we assume
that the temperature is lower than 2v0 (or equivalently
β > βc ¼ 1=2v0), and thermal fluctuations do not restore
the symmetry.
The low energy modes are not always perturbative in the

symmetry boken phase. In fact, the modes with momentum
jk⃗j < ω ¼ v

ffiffiffiffiffiffiffi
λ=6

p
develop nonvanishing saddle point,

e.g., domains of the false vacuum, when the order param-
eter is brought in between the degenerate minimas of
one-loop potential by the help of an external source.
It is instructive to consider these approximations from

the point of view of the Landua-Ginzburg double expansion
in the amplitude and the derivative of the order parameter.

In fact, our scheme corresponds to the Oðϕ4Þ and ∂
2
t order

where the wave function renormalization constant is frozen
to one. Higher order terms in the effective action should
be taken into account when the order parameter assumes
larger and faster changing value, at smaller volume, higher
temperature and strong external source.

2. Fluctuation determinant for a static saddle point

Starting from the action

S ¼ B
Z

ωβ=2

−ωβ=2
dτ
�
ðφ0Þ2 þ 1

2
ðφ2 − 1Þ2 þ 2kφ

�
; ðA4Þ

expressed in terms of dimensionless quantities only, one
can see that B plays the role of a dimensionless volume.
Also, ωβ plays the role of a dimensionless finite total
Euclidean time, imposing a discrete set of dimensionless
frequencies νn ¼ 2πn=ðωβÞ. The integration over frequen-
cies should be replaced by summationZ

dν fðνÞ → 1

ωβ

X
n

fðνnÞ; ðA5Þ

and the Dirac distribution for frequencies becomes
δðν − ν0Þ → ωβδn;n0 . The trace of a time-dependent oper-
ator O is

TrfOg ¼
Z

d4x
Z

d4x0δð4Þðx − x0ÞOτ;τ0

¼ B
Z

dτ
Z

dτ0δðτ − τ0ÞOτ;τ0 ; ðA6Þ

which, in terms of the Fourier components Õn;n0 , gives

TrfOg ¼ B
ωβ

X
n

X
n0

δn;n0Õn;n0 : ðA7Þ

The second derivative of the action (8) evaluated at a
static saddle point φs is, in terms of the discrete Fourier
components,

∂
2S

∂φ̃ðνnÞ∂φ̃ðνn0 Þ
¼ 2Bðν2n þ 3φ2

s − 1Þωβδn;n0 ; ðA8Þ

and is diagonal in n, n0, such that its logarithm is also
diagonal

ln

�
∂
2S

∂φ̃ðνnÞ∂φ̃ðνn0 Þ
�
¼ ln½2Bðν2nþ3φ2

s−1Þ�ωβδn;n0 : ðA9Þ

The fluctuation determinant is

FðkÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðδ2SÞ

p ¼ C exp

�
−
B
2

X∞
n¼−∞

lnðn2 þΦ2ðkÞÞ
�
;

ðA10Þ
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where C is a (source-independent) constant which can be
set to 1, and

ΦðkÞ ¼ ωβ

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3φ2

sðkÞ − 1

q
: ðA11Þ

For the sum over the modes n, we note that

d
dΦ

X∞
n¼−∞

lnðn2 þΦ2Þ ¼ 2Φ
X∞
n¼−∞

1

n2 þΦ2
¼ 2π cothðπΦÞ;

ðA12Þ

such that

X∞
n¼−∞

lnðn2 þΦ2Þ ¼ 2 ln j sinhðπΦÞj þ constant; ðA13Þ

where the constant does not depend on any parameter
appearing in Φ, and is therefore disregarded. The fluc-
tuation determinant is finally

FðkÞ ¼ expð−B ln j sinhðπΦðkÞÞjÞ: ðA14Þ
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