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While it is usually stated that dimensional regularization (DR) has no direct physical interpretation,
consensus has recently grown on the idea that it might be endowed with special physical properties that
would provide the mechanism that solves the naturalness and hierarchy problem. Comparing direct
Wilsonian calculations with the corresponding DR ones, we find that DR indeed has a well-defined
physical meaning, and we point out its limitations. In particular, our results show that DR cannot provide
the solution to the naturalness and hierarchy problem. The absence of too large corrections to the Higgs
boson mass is due to a secretly realized fine-tuning, rather than special physical properties of DR. We also
investigate these issues within the Wilsonian RG framework, and by comparison with the usual perturbative
RG analysis, we show that several popular proposals for the resolution of the problem, commonly
considered as physical mechanisms free of fine-tuning, again secretly implement the tuning.
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I. INTRODUCTION

The Standard Model (SM) of particle physics is a very
successful theory, and the discovery of the Higgs boson
[1,2] is one the most important findings of the last years.
However, it is not a complete theory, and the search for
physics beyond the Standard Model (BSM) is one of the
strongest driving force of present experimental and theo-
retical physics. Several fundamental unsolved questions
(dark matter, matter-antimatter asymmetry, neutrino
masses, the flavor and the strong CP problem, the problem
with the unification of the gauge couplings) urge us to find
the way beyond the SM. Among them, the naturalness and
hierarchy problems.
Any quantum field theory (QFT) that contains scalar fields

is confrontedwith the naturalness problem. It is formulated in
different (equivalent) ways, the essential point being that the
quantum corrections to the mass of a scalar field are typically
proportional to the “highest mass scale” of the theory. When

this scale is too large, we have to resort to an “unnatural”
tuning of the mass parameter, a “fine-tuning”.
One way to formulate the problem is as follows (see, for

instance, [3]). If the higher energy model assumed to
embed the SM contains a field of large mass M coupled
to the Higgs field HðxÞ, its mass mH receives corrections
proportional toM (≫ mH). As an example, we can consider
GUT models, that contain scalar fields ϕ with masses
M ≫ mH. These fields are coupled to H through terms of
the kind λϕH2ϕ2, so that mH receives corrections as (μ is
the subtraction or ’t Hooft scale)

Δm2
H ∼ λϕM2 ln

M2

μ2
: ð1Þ

Similarly, in a supersymmetric extension of the SM, where
SUSY is broken by a large stop mass m̃t ≫ mH, the Higgs
mass receives a large correction (yt is the top Yukawa
coupling),

Δm2
H ∼ ytm̃2

t ln
m̃2

t

μ2
: ð2Þ

The same problem can be formulated in a Wilsonian
effective field theory (WEFT) framework [4], where a QFT
is defined with a built-in cutoffΛ, the scale abovewhich the
theory loses its validity and has to be replaced with a (not
better specified) higher energy theory. In this framework,

*cbranchina@lpthe.jussieu.fr
†branchina@ct.infn.it
‡filippo.contino@ct.infn.it
§neda.darvishi@itp.ac.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 106, 065007 (2022)

2470-0010=2022=106(6)=065007(19) 065007-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.065007&domain=pdf&date_stamp=2022-09-09
https://doi.org/10.1103/PhysRevD.106.065007
https://doi.org/10.1103/PhysRevD.106.065007
https://doi.org/10.1103/PhysRevD.106.065007
https://doi.org/10.1103/PhysRevD.106.065007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the “highest mass scale” of the SM is Λ, and Δm2
H takes

the form,

Δm2
H ∼ αΛ2; ð3Þ

where α is a combination of coupling constants.
Despite their apparent difference, Eqs. (1)–(2) on the one

side, and (3) on the other one, have the same physical
content. In fact, the SM is an effective “low-energy” theory
valid up to a certain “new physics” scale,1 irrespective of
being such a scale an ultraviolet (UV) cutoff Λ (that, in
particular, could be the Planck mass MP), or the mass of a
heavy GUT scalar or of a heavy stop.
From the low-energy perspective, i.e., from the perspec-

tive of the SM alone, we do not know its UV completion.
The Higgs mass m2

H receives a “quadratic correction” [in
the form (1) or (2) or (3)], as a generic “leftover” of the
higher energy theory that embeds the SM. The reason is
that in the low-energy theory (the SM in this case), there is
no symmetry that protects m2

H from getting such a large
contribution.
Referring to the above example of a SUSYembedding, it

is often stated that, even though (due to supersymmetry)
there are no “quadratic divergences”, still there is a large
correction to m2

H [see (2)], concluding that the naturalness
problem is not related to the occurrence of quadratic
divergences, but rather to the presence of high mass scales
in the theory [3,5]. However, from the viewpoint of the
lower energy theory (the SM),m2

H does get a “quadratically
divergent” correction, that is m̃2

t , the scale above which the
SM is no longer valid. This is the physical meaning of
“quadratically divergent” correction. Below m̃t the theory
is the SM, not its supersymmetric extension. Therefore, we
should not refer to the absence of quadratic divergences in
the SUSY theory, but rather to the presence of quadratic
divergences in the SM.
If we generically indicate with Λ the scale above which

the SM has to be replaced by a higher energy theory (the
“highest mass scale” of the SM), the radiative corrections to
m2

H are proportional toΛ2. We stress thatΛ is not a cutoff to
be sent to infinity, but rather a physical scale above which
the physics cannot be described in terms of the low-energy
SM degrees of freedom (d.o.f.). The “quadratic correction”
tom2

H is considered as “unnatural” in the sense that it is too
large: Δm2

H ∼ Λ2. Therefore, the relevant question is
whether there exists a “physical mechanism” (a symmetry,
a dynamical mechanism, ...) that could freem2

H from such a
large correction, allowing to get

m2
H ≪ Λ2: ð4Þ

In the absence of such a mechanism, we are lead to resort to
an ad hoc “fine-tuning” of the mass.

A great progress in our understanding of (renormaliza-
tion in) QFTs comes from theWilson’s lesson, that relies on
the deep connection between QFTs and statistical physics.2

In the Wilsonian framework, first the fluctuation modes
are eliminated within a tiny shell, then a tuning of the
parameters towards the critical region is realized. Iterating
this procedure, the renormalized theory is finally obtained.
For an interesting implementation of these ideas in the
Hamiltonian framework, see [6].
This puts the renormalization of a QFT on a totally

different perspective than a mere affair of “cancellation of
divergences”. However, it gives no clue on the physical
mechanism that drives the system toward the “critical
regime” m2

H ≪ Λ2. In this respect, there is a profound
difference between critical phenomena and QFTs. While
the mechanism that drives the statistical system towards the
critical regime is well known (in the case of a ferromagnet,
this is the tuning of the temperature towards Tc), for QFTs,
we do not know what triggers the system towards the
critical regime, i.e., towards the renormalized theory.
The above considerations indicate what the “physical”

way of posing the naturalness problem should be. The mass
m2

H at the scaleΛ is “naturally” expected to bem2
HðΛÞ ∼ Λ2.

Which physical mechanism drives the SM toward the
critical regime m2

HðvÞ ≪ Λ2 (v is the Fermi scale)?
In other words, which physical mechanism introduces

such an unnatural hierarchy among physical scales?
Traditional approaches, as supersymmetry and/or

composite models, have to cope with the unfriendly
constraints that come from the LHC results: the compos-
iteness scale or the SUSY breaking scale should be just
around the corner, in the TeV regime, but no sign of new
physics has been observed so far. This leads several authors
to speculate that the SM could be valid up to some very
high energy scale, the Planck scale MP or so. If this is the
case, alternative approaches to the naturalness problem
have to be envisaged.
In this respect, some authors consider (classical) con-

formal extensions of the SM, where the quantum fluctua-
tions break the conformal symmetry only softly. By taking
models with no intrinsic mass scale, i.e., containing only
operators of dimension four, and calculating the quantum
fluctuations using dimensional regularization (DR), only a
logarithmic breaking of the conformal symmetry is

1Barring the possibility that the SM is the theory of everything.

2From the theory of critical phenomena, we know that the
critical regime is reached when the correlation length ξ among
statistical fluctuations becomes much larger than the interatomic
distance a. For a ferromagnet, this happens when the temperature
T approaches the critical temperature Tc, and for T close to Tc,
we have ξ ∼ jT − Tcj−ν, where νð> 0Þ is the appropriate critical
exponent. QFTs and critical phenomena are connected through
the correspondence mH → 1

ξ, Λ → 1
a, and the requirement (4) in

QFT corresponds to the tuning of the statistical system toward the
critical regime.
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realized, and small masses appear through a Coleman-
Weinberg mechanism [7–28].3
The central assumption of these approaches is that DR

plays a special role in defining the renormalized theory
(see, for instance, [7]), grasping an element of truth that is
missed by the Wilson’s theory. The two methods are
regarded as physically different (see, for instance, [19]):
the Wilsonian one needs a “fine-tuning”, while DR seems
to be dispensed of it. Even more, the Wilsonian paradigm is
downgraded to a “computational technique” that improp-
erly insists in giving a physical meaning to the elimination
of momentum shells in the construction of the effective
action, and the naturalness problem is viewed as a problem
of the “effective theory ideology” [19].
In view of the enormous success that these ideas have

gained in the last years [7–28,31,32], it is of the greatest
importance to investigate on these issues. Is it really
possible that DR encodes physical properties that makes
it the correct tool to calculate the quantum fluctuations in
QFT, while the Wilsonian strategy produces unphysi-
cal terms?
If this would turn out to be the case, such a finding would

represent a breakthrough, and the physical mechanism that
makes m2

H ≪ Λ2 would be uncovered. In this respect, it is
worth to stress that the more common lore is that, although
DR is a powerful technique to calculate radiative correc-
tions, it has no direct physical interpretation.
One of the main goals of the present work is to perform a

thorough analysis of the Wilsonian and DR methods for
calculations in QFT. From this analysis, the physical
meaning and the limits of DR will clearly emerge. In
our opinion, this represents a relevant progress in our
understanding of renormalization, that allows us to make a
correct use of DR. Notable recent examples of physical
effects that cannot be captured by DR calculations are in
[33,34], where it is shown that an effective field theory can
be derived from string theory only if a Wilsonian perspec-
tive is adopted. In this framework, the decoupling of states
above and below the physical cutoff scale can be derived
(contrary to what happens when calculations are performed
in DR), and, despite largely diffused Swampland argu-
ments, this allows for a positive value for the cosmological
constant at cosmological scales, even if a negative value is
found at the string/Kaluza-Klein (KK) scale. An older
example is given by theories with spontaneous symmetry
breaking (SSB), where the RG flow of the coupling
constants deviates significantly from the perturbative one
when the infrared (IR) region is approached [35], and
eventually, the RG equations get totally modified [36].

With regard to the naturalness and hierarchy problem,
another largely considered possibility consists in assuming
that the UV completion of the SM provides for m2

HðΛÞ a
value m2

HðΛÞ ≪ Λ2. In this scenario, once the problem of
the “large correction” is fixed in the UV, the RG equation
for the runningm2

HðμÞ provides the “small”measured value
for the physical mass m2

HðvÞ, which turns out to be of the
same order of m2

HðΛÞ; then it seems that the naturalness
and hierarchy problem can be solved this way. From this
standpoint, the “explanation” for the smallness of m2

HðvÞ
is pushed towards the unknown realm of the Standard
Model UV completion (quantum gravity, string theory, ...):
the higher energy theory should operate the “miracle” of
leaving us with a value of m2

HðΛÞ much lower than the
naturally expected one, m2

HðΛÞ ∼ Λ2.
Somehow complementary to the previous one, another

scenario considers that at the scale Λ (as naturally
expected) m2

HðΛÞ ∼ Λ2. A much lower value of m2
H is

obtained at the Fermi scale, through a mechanism presented
as “self-organized criticality”, where the critical regime
m2

HðvÞ ≪ m2
HðΛÞ should be reached without resorting to

any fine-tuning.
In the present work, we carefully investigate both these

scenarios and show that our previous results on the physical
meaning of the renormalization procedures are crucial to
ascertain the viability of these proposed mechanisms.
Although it is not immediately apparent, we will see that
they both hide a fine-tuning that makes them unfit to solve
the naturalness and hierarchy problem.
The rest of the paper is organized as follows. To pave the

way to our analysis, in Sec. II, we briefly review the main
steps that lead to the renormalized one-loop effective poten-
tial of a single component scalar field theory in d ¼ 4
dimensions.We use dimensional regularization, momentum
cutoff, and Wilsonian flow equations, and compare the
results. In Sec. III, we calculate the effective potential of a
scalar theory in d dimensions with the help of a momentum
cutoff, establish the connection betweenWEFT strategy and
DRcalculations, and showhowDRhides the necessary fine-
tuning. In Sec. IV, we consider the Wilsonian RG flows,
showing again how the usual perturbativeRGequations hide
the fine-tuning. In Sec. V, we apply the results of the
previous sections to the SM, and compare our results with
previous literature. Section VI is for the conclusions.

II. DIMENSIONAL REGULARIZATION
AND WEFT

In the last years, there has been growing consensus on
the idea that DR might play a special role in defining QFTs
and that the DR and the WEFT approaches are physically
different, with the latter missing some “truth” that is instead
encoded in DR [7–28,31,32]. From this perspective, WEFT
is viewed as a calculation procedure that improperly insists
in defining the renormalized theory through the successive

3Conformal extensions of the SM have also been advocated
elsewhere [29,30], in a somehow different perspective: the
couplings should not run with the scale (vanishing β functions),
and the model should have enough constraints so that all the
parameters should be fixed (predicted). This very ambitious
program, however, has not yet found realistic implementations.

DIMENSIONAL REGULARIZATION, WILSONIAN RG, AND THE … PHYS. REV. D 106, 065007 (2022)

065007-3



elimination of modes and the naturalness problem as an
artifact of this approach [19].
Clearly, if one would find that DR is really endowed with

special properties that make it the correct physical way
to define QFTs, while the WEFT paradigm has to be
discarded, this would be an earthquake for our under-
standing of QFTs, and the naturalness and hierarchy
problem would simply evaporate.
The present section is devoted to a thorough investiga-

tion of these issues. For our analysis, a great simplification
comes from the observation that, in order to investigate
upon these questions, there is no need to consider the full
SM. As we will see, the essence of the problem is entirely
captured by considering the simpler ϕ4 theory. Moreover, it
will be sufficient to restrict ourselves to the lowest order of
approximation, focusing in particular on the one-loop
effective potential VðϕÞ. We stress that, when calculated
with the help of a momentum cutoff, the one-loop potential
provides an implementation (and an approximation) of the
WEFT strategy (see Sec. II C).
For a single component d-dimensional ϕ4 theory, the

action is

S½ϕ�¼
Z

ddx

�
1

2
∂μϕ∂

μϕþΩ0þ
1

2
m2

0ϕ
2þμ4−dλ0

4!
ϕ4

�
; ð5Þ

where μ is a mass scale introduced to keep λ0 dimension-
less,

Ω0¼ΩþδΩ; m2
0¼m2þδm2; λ0¼λþδλ; ð6Þ

are the bare parameters, δΩ, δm2, and δλ the counterterms,
Ω, m2, and λ the renormalized parameters. The one-loop
effective potential is

V1lðϕÞ ¼ Ω0 þ
m2

0

2
ϕ2 þ μ4−dλ0

4!
ϕ4

þ 1

2

Z
ddk
ð2πÞd ln

�
1þm2 þ 1

2
μ4−dλϕ2

k2

�
: ð7Þ

The integral in (7) converges only for d < 2, that for
integer values of d means only for d ¼ 1, while for d ≥ 2 it
is UV divergent. Integrating over the angular variables and
defining

M2ðϕÞ≡m2 þ 1

2
μ4−dλϕ2; ð8Þ

for the one-loop correction to the potential δVðϕÞ, we have

δV ¼ 1

2

Z
ddk
ð2πÞd ln

�
1þM2ðϕÞ

k2

�

¼ 1

2ð4πÞd2Γðd
2
Þ

Z
∞

0

dk2ðk2Þd2−1 ln
�
1þM2ðϕÞ

k2

�
: ð9Þ

We now briefly review the steps that lead to the
renormalized one-loop potential, using first DR and then
a momentum cutoff Λ to calculate (9) (where the latter, as
stressed above, realizes an approximation of the WEFT
strategy). We reassure the experts, familiar with the few
lines of Secs. II A and II B, that they are reported here only
as functional to our analysis.

A. Effective potential in 4D. Dimensional regularization

The first observation that leads to the DR strategy
consists in noting that the right-hand side of (9) can be
extended to complex d but converges only for ReðdÞ < 2.
We have

Z
∞

0

dk2 ðk2Þd=2−1 ln
�
1þM2ðϕÞ

k2

�

¼ 2

d
μd
�
M2ðϕÞ
μ2

�d
2

B

�
1 −

d
2
;
d
2

�

¼ 2

d
μd
�
M2ðϕÞ
μ2

�d
2

Γ
�
1 −

d
2

�
Γ
�
d
2

�
; ð10Þ

where Bðα; βÞ and ΓðzÞ are the special beta and gamma
functions. Together with some of their properties, they are
given in Appendix A.
The second observation is that, if we replace ΓðzÞwith its

analytic extension Γ̄ðzÞ (see Appendix A), the second line
of (10) can be extended to generic complex values of d. The
function Γ̄ðzÞ is obtained with the help of the Weierstrass
representation for ΓðzÞ−1 [see (A5)], from which we see
that Γ̄ðzÞ has poles for z ¼ 0;−1;−2;…
Inserting the last member of (10) (with ΓðzÞ replaced by

Γ̄ðzÞ) in the right-hand side of (9), and using the relation
Γ̄ðzþ 1Þ ¼ zΓ̄ðzÞ, the DR rules for calculating δV are as
follows. First we replace (for any complex d ≠ 2; 4; 6;…)

1

2

Z
ddk
ð2πÞd ln

�
1þM2ðϕÞ

k2

�
→−

μd

2ð4πÞd2
�
M2ðϕÞ
μ2

�d
2

Γ̄
�
−
d
2

�
:

ð11Þ

Successively, we expand the right hand side of (11) around
d ¼ 4 (ϵ≡ 4 − d),

1

2

Z
ddk
ð2πÞd ln

�
1þM2ðϕÞ

k2

�

≡μ−ϵ½M2ðϕÞ�2
64π2

�
−
2

ϵ
þ γþ ln

M2ðϕÞ
4πμ2

−
3

2

�
þOðϵÞ: ð12Þ
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Then we cancel the pole in ϵ with the help of the
couterterms δΩ, δm2, δλ in (6), that in the MS scheme
are ðϵ̄≡ ϵð1þ ϵ

2
ln eγ

4πÞÞ

δΩ¼ m4

32π2ϵ̄
μ−ϵ; δm2¼ λm2

16π2ϵ̄
; δλ¼ 3λ2

16π2ϵ̄
: ð13Þ

Finally, we take the limit ϵ → 0, and the renormalized one-
loop potential reads (for Ω ¼ 0)

V1lðϕÞ¼
1

2
m2ϕ2þ λ

4!
ϕ4

þ 1

64π2

�
m2þλ

2
ϕ2

�
2
�
ln

�
m2þ λ

2
ϕ2

μ2

�
−
3

2

�
: ð14Þ

B. Effective potential in 4D. Momentum cutoff

If we calculate the loop integral in (7) for d ¼ 4 with a
sharp momentum cutoff, the one-loop correction to the
potential is

δVðϕÞ ¼ 1

64π2

�
Λ4 ln

�
1þM2ðϕÞ

Λ2

�
þ Λ2M2ðϕÞ

− ½M2ðϕÞ�2 ln
�
Λ2 þM2ðϕÞ

M2ðϕÞ
��

: ð15Þ

Taking ϕ2

Λ2, m2

Λ2 ≪ 1, and expanding the right-hand side of
(15) in powers of M2

Λ2 ,

V1lðϕÞ ¼ Ω0 þ
m2

0

2
ϕ2 þ λ0

4!
ϕ4 þ Λ2M2

32π2

−
ðM2Þ2
64π2

�
ln

Λ2

M2
þ 1

2

�
þO

�
ϕ6

Λ2

�
: ð16Þ

Inserting (6) in (16), with

δΩ ¼ −
Λ2m2

32π2
þ m4

64π2

�
ln

�
Λ2

μ2

�
− 1

�
;

δm2 ¼ −
λΛ2

32π2
þ λm2

32π2

�
ln

�
Λ2

μ2

�
− 1

�
;

δλ ¼ 3λ2

32π2

�
ln

�
Λ2

μ2

�
− 1

�
; ð17Þ

and neglecting the cutoff suppressed terms ϕ6

Λ2,
ϕ8

Λ4, ..., for the
renormalized one-loop potential, we find the same result
obtained with DR, i.e., Eq. (14).

C. Wilsonian RG flow and one-loop effective potential

As mentioned above, the one-loop effective potential
calculated with a momentum cutoff provides an approxi-
mation to the potential obtained within the WEFT frame-
work. To elucidate this point, let us consider the Wilsonian

effective action Sk½ϕ�, where k is the running scale. Given
the bare (tree-level) action SΛ½Φ� [where ΦðxÞ ¼ P

0<jpj<Λ
φpeipx], Sk½ϕ� is obtained decomposing ΦðxÞ ¼ ϕðxÞ þ
ϕ0ðxÞ [with ϕðxÞ ¼ P

0<jpj<k φpeipx and ϕ0ðxÞ ¼ P
k<jpj<Λ

φpeipx], and integrating out the modes φp in the range
k < p < Λ,

e−Sk½ϕ� ≡
Z

D½ϕ0�e−SΛ½ϕþϕ0�: ð18Þ

The effective action is Γ½ϕ� ¼ Sk¼0½ϕ�, while the bare action
is SΛ½ϕ� ¼ Sk¼Λ½ϕ�.
At the infinitesimally lower scale k − δk, the Wilsonian

action Sk−δk½ϕ� is obtained through an equation similar to
(18),

e−Sk−δk½ϕ� ¼
Z

D½ϕ0�e−Sk½ϕþϕ0�; ð19Þ

where ϕ0 contains only modes in the infinitesimal
shell k − δk < p < k.
Let us consider the gradient expansion for Sk½ϕ�,

Sk½ϕ�¼
Z

ddx

�
UkðϕÞþ

ZkðϕÞ
2

∂μϕ∂μϕ

þYkðϕÞð∂μϕ∂μϕÞ2þWkðϕÞðϕ∂μ∂μϕÞ2þ���
�
; ð20Þ

and restrict ourselves to the local potential approximation
(LPA), that amounts to

ZkðϕÞ ¼ 1; YkðϕÞ ¼ WkðϕÞ ¼ � � � ¼ 0: ð21Þ

By taking as background field ϕðxÞ, the homogeneous
configuration,

ϕðxÞ ¼ ϕ0; ð22Þ

and performing in (19) the integration over ϕ0 under the
assumption that the saddle point ϕ0

sp is trivial,
4 i.e., ϕ0

sp ¼ 0,

we get (U00
kðΦÞ≡ ∂

2UkðΦÞ
∂Φ2 ),

Uk−δkðϕ0Þ¼Ukðϕ0Þþ
1

2

Z 0 ddp
ð2πÞd ln

�
p2þU00

kðϕ0Þ
p2

�
; ð23Þ

where the prime indicates that the integration is performed
within the shell ½k − δk; k�, and we have subtracted a field
independent term. In the limit δk → 0, we finally have

4The modifications to Eq. (23) that arise when a nontrivial
saddle point ϕ0

sp ≠ 0 is present are discussed in [36].

DIMENSIONAL REGULARIZATION, WILSONIAN RG, AND THE … PHYS. REV. D 106, 065007 (2022)

065007-5



k
∂

∂k
Ukðϕ0Þ ¼ −

kd

ð4πÞd2Γðd
2
Þ ln

�
k2 þ U00

kðϕ0Þ
k2

�
; ð24Þ

that is the RG flow equation for the Wilsonian potential
Ukðϕ0Þ in the LPA.
This is an intrinsically nonperturbative equation for

UkðϕÞ, that implements the WEFT strategy. However, its
nonperturbative nature becomes evident only for suffi-
ciently small values of k, the IR regime (that will be better
specified in Sec. IV). On the contrary, for sufficiently large
values of k (UV regime), it reproduces the perturbative
results.
As mentioned above, for k ¼ 0 the Wilsonian potential

UkðϕÞ is the effective potential VeffðϕÞ, while for k ¼ Λ it
is the bare (tree-level) potential UΛðϕÞ. We now show
under which approximation the perturbative one-loop
effective potential V1lðϕÞ is obtained from (24). Taking
for UΛðϕÞ,

UΛðϕÞ ¼ Ω0 þ
m2

0

2
ϕ2 þ μ4−dλ0

4!
ϕ4; ð25Þ

and approximating UkðϕÞ in the right-hand side of (24)
with UΛðϕÞ (i.e., freezing UkðϕÞ to its boundary value at
k ¼ Λ), we can integrate both sides of (24) in the whole
momentum range ½0;Λ� (indicated by the upper case (Λ) in
the integral below) and get

V1lðϕÞ ¼ Ω0 þ
m2

0

2
ϕ2 þ μ4−dλ0

4!
ϕ4

þ 1

2

Z ðΛÞ ddk
ð2πÞd ln

�
1þm2

0 þ 1
2
μ4−dλ0ϕ

2

k2

�
;

ð26Þ

that is nothing but the one-loop effective potential (7) once
we replace the bare values m2

0 and λ0 in the above integral
with the corresponding renormalized values, which is
coherent with the fact that the one-loop correction is OðℏÞ.
Equation (26) shows that the one-loop potential calcu-

lated with the hard cutoff Λ provides a specific implemen-
tation (and approximation) of the WEFT strategy. A
smoothed equivalent implementation of WEFT is obtained
by means of the proper-time regularization, and in
Appendix B, we give an example of that. From now on,
wewill refer to theWEFT strategy having in mind one-loop
calculations of the kind considered in this section.

D. DR versus WEFT

Let us compare now the DR and WEFT approaches for
the calculation of the one-loop effective potential. Apart
from the elementary observation that the two procedures
give the same result (once the counterterms are appropri-
ately chosen), we would like to make a couple of other
comments, relevant to our subsequent analysis.

From the results briefly reviewed above, it seems that DR
intrinsically avoids

(i) the appearance of quadratic divergences, so that
there is no need to fine-tune the scalar mass (the
same holds true for the cosmological constant);

(ii) the appearance of higher powers ϕ6; ϕ8; …, with
coupling constants of inverse mass power dimen-
sions, that on the contrary are present in WEFT
[see (16)].

Moreover, when m2 vanishes, at the quantum level the
theory (that is clearly scale invariant at the classical level)
shows only a soft (logarithmic) breaking of scale invari-
ance, and the scalar mass is generated through the
Coleman-Weinberg mechanism [7–9,11–15,18–20,22–28].
Accordingly, some authors speculate that DRmight grasp

an element of truth that is missed by the WEFT scheme.
Even more, the physical essence of the WEFT approach is
questioned. The whole idea of including in the theory the
quantum fluctuations via iterative integrations over infini-
tesimal momentum shells is considered as misleading, and
the naturalness/hierarchy problem is regarded as an artifact
of “the effective field theory ideology” [19].
We will show that, contrary to these expectations, DR

does not encode any special physical principle, but is a
specific way of implementing the WEFT paradigm that can
be applied only when the perturbative expansion is valid. In
particular, we will see that DR realizes the fine-tuning of
the mass parameter, although it does it in a hidden way. To
this end, in the next section we turn our attention to the
calculation of the one-loop effective potential in d dimen-
sions by means of a momentum cutoff.

III. EFFECTIVE POTENTIAL IN D DIMENSIONS

As a first step of our analysis, we calculate the loop
integral in (7), that is the one-loop correction δVðϕÞ for the
d-dimensional theory (we should not forget that d is a
positive integer), by introducing a cutoff Λ (u≡ M2

M2þΛ2),

δVðϕÞ ¼ 1

2

Z ðΛÞ ddk
ð2πÞd ln

�
1þM2

k2

�

≡ δV1ðϕÞ þ δV2ðϕÞ; ð27Þ

where we defined

δV1ðϕÞ ¼
μd

dð4πÞd2Γðd
2
Þ

�
M2

μ2

�d
2

Z
1

u
dtð1 − tÞd2−1t−d

2; ð28Þ

δV2ðϕÞ ¼
μd

dð4πÞd2Γðd
2
Þ

�
Λ
μ

�
d
ln

�
1þM2

Λ2

�
: ð29Þ

As Λ is finite, both δV1ðϕÞ and δV2ðϕÞ are finite for any
integer d (more generally, this holds true for any complex
value of d, with Re d > 0).
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For our scopes, we note in particular that the integral in
(28) is finite. Moreover, it is not difficult to show that, for
any value of the dimension d, we can write

Z
1

u
dtð1− tÞd2−1t−d

2 ¼ lim
z→d

�
B̄

�
1−

z
2
;
z
2

�
− B̄i

�
1−

z
2
;
z
2
;u

��
;

ð30Þ

where B̄ðα; βÞ and B̄iðα; β; xÞ are the analytic extensions of
the complete and incomplete beta functions Bðα; βÞ and
Biðα; β; xÞ, and are defined for x ∈ R and for generic
complex values of α and β, excluding α; β ¼ 0;−1;−2;…
(the functions B, Bi, B̄, B̄i, with the corresponding
existence domains and some of their properties, are given
in Appendix A).
From Appendix A, we also know that

B̄

�
1 −

z
2
;
z
2

�
¼ Γ̄

�
1 −

z
2

�
Γ̄
�
z
2

�
; ð31Þ

which shows that B̄ð1 − z
2
; z
2
Þ has poles in z ¼ 2; 4; 6;…

[see (A5)]. Moreover, expanding B̄ið1 − z
2
; z
2
; uÞ in powers

of M2=Λ2 ≪ 1 (remember that u ¼ M2

M2þΛ2), we have

B̄i

�
1 −

z
2
;
z
2
; u

�
¼ 2

2 − z

�
M2

Λ2

�2−z
2

−
2

4 − z

�
M2

Λ2

�4−z
2

þ 2

6 − z

�
M2

Λ2

�6−z
2 þ… ð32Þ

As we noted above, the right-hand side of (30) is finite
for any integer d, so the same must be true for the left-hand
side of this equation. Therefore, as (31) and (32) show that
both B̄ð1 − z

2
; z
2
Þ and B̄ið1 − z

2
; z
2
; uÞ have poles for

z ¼ 2; 4; 6;…, when we consider in (30) the limit towards
one of these values of z, the pole developed in (31) must
cancel the one coming from (32). It can be easily shown
that this is actually the case. For definiteness, in what
follows, we consider in (30) only the case d ¼ 4, i.e., the
theory defined in d ¼ 4 dimensions, and show explicitly
such a cancellation. However, the calculations and consid-
erations developed below can be easily extended to any of
the values d ¼ 2; 4; 6;…
From (28) and (30), we have

δV1ðϕÞ ¼
μd

dð4πÞd2Γðd
2
Þ

�
M2

μ2

�d
2

Z
1

u
dt t−

d
2ð1 − tÞd2−1

≡ lim
z→d

½A1ðzÞ − A2ðzÞ�; ð33Þ

where we defined

A1ðzÞ≡ FðzÞ · B̄
�
1 −

z
2
;
z
2

�
ð34Þ

A2ðzÞ≡ FðzÞ · B̄i

�
1 −

z
2
;
z
2
; u
�

ð35Þ

with FðzÞ≡ μz

zð4πÞz2Γðz
2
Þ
�
M2

μ2

�z
2

: ð36Þ

With the help of (31) and (32), we can expand F, B̄ and
B̄i around z ¼ 4. More specifically, we write z ¼ 4 − ϵ and
expand these functions around ϵ ¼ 0, thus getting

Fð4 − ϵÞ ¼ μ−ϵ

64π2
½M2ðϕÞ�2

�
1þ

�
−γE þ logð4πÞ

− log
M2ðϕÞ
μ2

þ 3

2

�
ϵ

2

�
þOðϵ2Þ ð37Þ

B̄

�
−1þ ϵ

2
; 2 −

ϵ

2

�
¼ −

2

ϵ
þOðϵÞ ð38Þ

B̄i

�
−1þ ϵ

2
;2−

ϵ

2
;

M2

M2þΛ2

�
¼−

2

ϵ
−
Λ2

M2
þ log

Λ2

M2
þOðϵÞ:

ð39Þ

Then, using (37)–(39), we can write A1ð4 − ϵÞ and A2

ð4 − ϵÞ as

A1ð4−ϵÞ¼μ−ϵ½M2ðϕÞ�2
64π2

�
−
2

ϵ
þγþ ln

M2ðϕÞ
4πμ2

−
3

2

�
þOðϵÞ

ð40Þ

A2ð4 − ϵÞ ¼ −
μ−ϵ

64π2
½M2ðϕÞ�2

�
Λ2

M2ðϕÞ − log
Λ2

M2ðϕÞ
�

þ μ−ϵ½M2ðϕÞ�2
64π2

�
−
2

ϵ
þ γ þ ln

M2ðϕÞ
4πμ2

−
3

2

�

þOðϵÞ þO
�
M2

Λ2

�
: ð41Þ

Let us make now two observations that are crucial to our
analysis. From (40) and (41), we see that in the difference
A1ð4 − ϵÞ − A2ð4 − ϵÞ, that is nothing but Eq. (33) for
z ¼ 4 − ϵ, the polar terms 1

ϵ cancel each other (as expected),
and the limit ϵ → 0 can be safely and easily taken. For
d ¼ 4, we have

δV1ðϕÞjd¼4 ¼ lim
ϵ→0

½A1ð4 − ϵÞ − A2ð4 − ϵÞ�

¼ −
1

64π2
½M2ðϕÞ�2

�
Λ2

M2ðϕÞ − log
Λ2

M2ðϕÞ
�

þO
�

1

Λ2

�
: ð42Þ
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Taking now the surface term δV2ðϕÞ in (29) for the case
d ¼ 4, performing the expansion in M2=Λ2 ≪ 1, and
combining the result with δV1ðϕÞ above, we finally get

δVðϕÞ¼ δV1þδV2

¼Λ2M2ðϕÞ
32π2

−
½M2ðϕÞ�2
64π2

�
ln

Λ2

M2ðϕÞþ
1

2

�
þO

�
ϕ6

Λ2

�
;

ð43Þ

that is nothing but (16), i.e., the result obtained directly for
the four-dimensional theory when the loop integral is
calculated with a cutoff. The quadratic and logarithmic
divergences in (43) are then canceled with the help of the
counterterms (17), and this finally gives the renormalized
potential (14).
Our second observation is that (keeping aside for a

moment the ϵ → 0 limit) if we conveniently write the one-
loop correction to the potential as

δVðϕÞ ¼ δV1ðϕÞ þ δV2ðϕÞ
¼ A1ð4 − ϵÞ þ ½δV2ðϕÞ − A2ð4 − ϵÞ�; ð44Þ

and neglect the term in the square bracket of the last
member (with no justification for the moment; we will
comment on this point below), we have

δVðϕÞ ¼ A1ð4 − ϵÞ

¼ μ−ϵ½M2ðϕÞ�2
64π2

�
−
2

ϵ
þ γ þ ln

M2ðϕÞ
4πμ2

−
3

2

�

þOðϵÞ; ð45Þ

that is nothing but the DR result (12) for δV. Taking the
counterterms (13), for the renormalized potential V1lðϕÞ,
we again obtain (14).
Referring to (27), we proceed with our analysis by noting

that δV in d ¼ 4 dimensions can be calculated in one of the
following three equivalent ways:
(a) taking d ¼ 4, and then calculating the integral;
(b) calculating the integral for generic d, and then replac-

ing d ¼ 4;
(c) calculating separately A1ð4 − ϵÞ and A2ð4 − ϵÞ, ex-

panding each of them around ϵ ¼ 0, considering the
difference A1 − A2, and finally taking the limit ϵ → 0.

The procedure (c) is the one that we used in this section
and is certainly more intricate, and definitely much longer
and cumbersome than (a) and/or (b). However, for the
purposes of our analysis, that is to uncover the physical
meaning of DR, we need to refer to this one.
We have just seen that if we neglectA2 and δV2 in (44), we

are left with the DR result. But what could justify the neglect
of A2 and δV2 in (44)? To answer this question, we begin by
noting that, when we use the procedure (c), we can write

V1lðϕÞ ¼ lim
ϵ→0

�
Ωþ δΩþ 1

2
ðm2 þ δm2Þϕ2 þ μϵ

4!
ðλþ δλÞϕ4

þ A1ð4 − ϵÞ − A2ð4 − ϵÞ þ δV2ðϕÞ
�
; ð46Þ

where δV2ðϕÞ is given by (29) (with d replaced by 4 − ϵ),
while A1ð4 − ϵÞ and A2ð4 − ϵÞ are given by (40) and (41),
respectively. As in the differenceA1ð4 − ϵÞ − A2ð4 − ϵÞ, the
polar terms in ϵ disappear, in (46)we are leftwith the original
WEFT result, and the divergences in Λ are canceled by the
counterterms δΩ, δm2 and δλ given in (17).
However, we now follow a different pattern, that

naturally leads to the DR recipes and allows to find the
physical meaning of DR. As we will see, this represents an
advancement in our understanding of renormalization that
allows us to avoid misinterpretations and misuses of DR.
Going back to the splitting (44) for δV, and defining

ΔV2ðϕÞ as given below,

δVðϕÞ ¼ A1ð4 − ϵÞ þ ½δV2ðϕÞ − A2ð4 − ϵÞ�
≡ A1ð4 − ϵÞ þ ΔV2ðϕÞ; ð47Þ

our objective is to realize the cancellation of the divergen-
ces separately in A1ð4 − ϵÞ and in ΔV2ðϕÞ, starting with
ΔV2ðϕÞ. Note that, while in A1ð4 − ϵÞ only divergences for
ϵ → 0 appear, ΔV2ðϕÞ contains divergences for ϵ → 0 as
well as for Λ → ∞.
In order to realize such a separate cancellation, we begin

by making the splitting

δΩ ¼ δΩ1 þ δΩ2; δm2 ¼ δm2
1 þ δm2

2;

δλ ¼ δλ1 þ δλ2: ð48Þ

Choosing

δΩ2 ¼ −
Λ2m2

32π2
þ m4

64π2

�
ln

�
Λ2

μ2

�
− 1

�
−

m4

32π2ϵ̄
μ−ϵ ð49Þ

δm2
2 ¼ −

λΛ2

32π2
þ λm2

32π2

�
ln

�
Λ2

μ2

�
− 1

�
−

λm2

16π2ϵ̄
ð50Þ

δλ2 ¼
3λ2

32π2

�
ln

�
Λ2

μ2

�
− 1

�
−

3λ2

16π2ϵ̄
; ð51Þ

and inserting (49), (50), and (51) in (46), we have

V1lðϕÞ ¼ lim
ϵ→0

�
Ωþ δΩ1 þ

m2 þ δm2
1

2
ϕ2 þ λþ δλ1

4!
ϕ4

þ A1ð4 − ϵÞ þO
�

1

Λ2

�
þOðϵÞ

�
: ð52Þ

Apart from the harmless Oð 1
Λ2Þ and OðϵÞ terms, (52) is

the one-loop potential that we would have obtained
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following directly the DR “rules”. In fact, the final form
(14) for the renormalized potential is obtained from (52)
once δΩ1, δm2

1, and δλ1 are chosen according to the MS
counterterms in (13).
This is the result that allows to uncover the physical

content of DR and will enable us to answer one of the
questions that motivated this work, namely whether or not
DR is endowed with special properties that make it the
correct physical way to define QFTs [19], thus, helping in
solving the naturalness problem.
We have just shown that (52), which in a DR setting is

obtained from the well-known recipes, actually comes from
the introduction of an intermediate step in the process of
obtaining the renormalized potential, that in the Wilsonian
language (theory of critical phenomena) corresponds to the
tuning toward the critical regime (critical surface). As
already stressed (see Sec. II C), the calculation of the
one-loop effective potential with a momentum cutoff Λ
is a specific implementation of the Wilson’s strategy in the
perturbative regime.
The rules of DR are nothing but a “short cut” that allows

to derive for V1lðϕÞ directly the right-hand side of (52). We
stress that, following the alternative (and longer) path (c),
we have learnt that we are never dispensed from the
necessity of subtracting the quadratically divergent con-
tribution to the mass of the scalar particle. Such a
subtraction is realized through the counterterm δm2

2 in
(51). When we adopt the short cut that takes (52) as the
starting point for the calculation of the one-loop effective
potential, this cancellation is hidden, and it seems we are
dispensed of it.
The above remarks are illustrated in Fig. 1. Let us start

by considering the “bare potential”, represented by bubble

①, and defined by VðϕÞ ¼ Ω0 þ 1
2
m2

0ϕ
2 þ λ0μ

4−d

4!
ϕ4. To

obtain the one-loop correction δV ¼ δV1 þ δV2, we have
to sum (integration in ddk) over the momenta of the
intermediate virtual states, see (27), (28), and (29). The
explicit calculation of this sum, arrested to the maximal
value jkj ¼ Λ, allows us to determine the counterterms δΩ,
δm2, and δλ, so that the one-loop “renormalized potential”
V1lðϕÞ ¼ VðϕÞ þ δVðϕÞ of bubble ③ is obtained. In Fig. 1,
this calculation is represented by the line that connects ①
with ③.
The same result is obtained by following a different, but

totally equivalent, pattern. We can go to bubble ③, the
“renormalized potential”, passing first from bubble ②.
The divergences in Λ are canceled in step ① → ② [see

(49)–(51)]. This is the hidden fine-tuning that leads to the
“DR bare potential”. The DR counterterms δΩ1, δm2

1, and
δλ1 are determined in step ② → ③. The important lesson is
that the cancellation of the quadratic divergences is secretly
realized when, through the DR recipes, we directly access
the “DR bare potential” of bubble ②.
The above results show that DR is a smart calculation

technique that, when the conditions for the perturbative

expansion are satisfied, implements both steps of the
physical Wilsonian EFT calculation (the integration over
the momentum modes, and the tuning towards the critical
surface) at once.5 In other words, DR is an efficient
technique that takes us directly to renormalized quantities,
and, as such, is a very welcome tool. At the same time, our
results show that DR is not endowed with any special
physical property, despite claims to the contrary [7,19] that
received a large follow-up [8–18,20–28,31,32].
The above results can also be obtained by means of a

formal short cut that again shows how the unwanted terms
are secretly canceled.
Let us start with (27) for δV ¼ δV1 þ δV2, where δV1

and δV2 are given in (28) and (29), respectively. Focusing
on (28), and relaxing the physical requirement that d is an
integer, we consider the integral in this equation for
complex values of d, with 0 < Re d < 2. Under this
hypothesis, we can operate the (mathematically legitimate)
splitting

Z
1

u
dtð1 − tÞd2−1t−d

2 ¼
Z

1

0

dtð1 − tÞd2−1t−d
2

−
Z

u

0

dtð1 − tÞd2−1t−d
2; ð53Þ

and note that (remember that u ¼ M2

M2þΛ2) in (53) we can
safely take the limit Λ → ∞. Under this limit, the second
term in the right-hand side of (53) vanishes, and we are left
with the first term only, that is nothing but the beta function

FIG. 1. Bubble “1” represents the bare potential (25), bubble
“3” the renormalized potential (14). The line connecting “1” with
“3” represents the calculation of the one-loop potential in d ¼ 4
dimensions with a UV cutoff, and the determination of the
counterterms (17). Bubble “2” represents the bare potential (52)
in DR language. The line connecting “1” with “2” represents the
calculation of the one-loop potential performed in d-dimensions
with a UV cutoff, and the determination of the counterterms (49)–
(51). The line connecting “2” with “3” represents the determi-
nation of the MS counterterms (13).

5In Appendix B, we consider a different but equivalent
implementation of the WEFT strategy, using a proper-time
regularization, and apply it to the two-point vertex function
rather than to the full effective potential.
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Bðα; βÞ (see Appendix A) of arguments α ¼ 1 − d
2
and

β ¼ d
2
. Moreover, going to (29) for δV2, we see that for

0 < Re d < 2, we have limΛ→∞ δV2 ¼ 0. Therefore, under
these conditions, δV ¼ δV1. Replacing Bð1 − d

2
; d
2
Þ with its

analytic extension B̄ and pretending that we can extend the
above results (obtained after sending Λ → ∞!) to generic
values of d, from (28), we immediately get the DR result.
The bottom line of the above derivation is that, operating

with 0 < Re d < 2, we can safely send the cutoff Λ to
infinity. Therefore, when we extend to higher dimensions
the results obtained this way, we may get the wrong
impression that there is no need for a physical cut in the
sum over the loop momenta.
Finally, to better understand the physical meaning of DR,

and the reason why it gives the correct result for the
perturbatively renormalized quantities, let us further com-
pare the detailed calculations for the one-loop potential
within the Wilsonian and DR frameworks.
Let us begin by considering A2ð4 − ϵÞ in (41), and note

that the terms logΛ2=M2 (first line) and 2=ϵ (second line)
both come from the expansion around ϵ ¼ 0 of the same
term in (32), namely the one with the pole in d ¼ 4. This is
why they are multiplied by the same factor. On the other
hand, A1ð4 − ϵÞ in (40) is given by the product of Fð4 − ϵÞ
times B̄ð−1þ ϵ

2
; 2 − ϵ

2
Þ [see (34)]. A simple inspection of

(37) and (38) shows that the terms 2=ϵ and log M2=μ2 in
A1ð4 − ϵÞ have the same coefficient. Moreover, we already
noted that the 2=ϵ polar terms in A1ð4 − ϵÞ and A2ð4 − ϵÞ
must have the same coefficient, otherwise there would be
no cancellation of these “spurious singularities”. Therefore,
log M2=μ2 in A1, and log M2=Λ2 in A2 must have the same
coefficient.
This latter observation proves that the renormalized

potential obtained from the DR rules must be the same
as the renormalized potential derived from the physical
Wilsonian calculation in the perturbative regime. In fact,
the relevant part of the one-loop correction to the potential
calculated with DR is the logM2=μ2 mentioned above, and
contained in A1. At the same time, the coefficient of the
divergent term log Λ2=M2, obtained when performing the
Wilsonian calculation, is the same as the coefficient of the
similar term in A2 [see (16) and (43)]. Therefore, the WEFT
calculation needs counterterms [see (17)] that add up to a
log Λ2=μ2 with exactly the same coefficient.
This simple chain of observations shows why, under the

condition of the perturbative regime, the DR formal rules
provide for the effective potential (and more generally, for
any physical quantity) exactly the same result that is
obtained when the direct WEFT physical calculation is
performed. We have actually shown that the DR rules are
obtained in the WEFT framework and are far from being in
contrast with it. DR is a technique able to give the physically
correct perturbative results, although the deep physical
reason for that is very much hidden in the procedure.

In this respect, it is worth to compare our results with the
analysis presented in [37] (see also [38]), whose main point
is that the results obtained within the DR framework are
“generic” (as opposed to specific) and then “physical”. As
already stressed several times, our results show that DR is a
realization of the Wilsonian calculation, that implements
the cancellation of the quadratic contributions in a smart
way, thus successfully providing the physical results at the
Fermi scale. In [37], the same results are obtained through a
technically different approach, namely through the intro-
duction of higher derivative terms, thus showing the
generality of the DR results.
Before ending this section, we would like to note that the

results of our analysis are of particular interest when
studying BSM models with classical scale invariance,
where the use of dimensional regularization seems to
suggest that scale invariance (apart from a welcome
logarithmic violation) can be preserved also at the quantum
level [7–28]. To better illustrate our point, let us refer in
particular to [7,19]. By considering the possibility that the
fundamental theory of nature does not possess any mass or
length scale, in [19], only dimension four operators are
kept, more precisely SM operators with dimensionless
couplings, with the Higgs field nonminimally coupled to
gravity. Similarly, in [7], a conformally extended version of
the Standard Model is considered, with right-chiral neu-
trinos and a minimally enlarged scalar sector. In both cases,
it seems that with these almost scale invariant models the
naturalness and hierarchy problem is absent.
However, the reason why we only see a logarithmic

violation of scale invariance is entirely due to the fact that
the quantum corrections are calculated with DR. This is
why the particle masses, generated through the Coleman-
Weinberg mechanism, seem to not exhibit strong UV
sensitivity. It is obvious that, if we consider a theory that
contains only dimension four operators and at the same
time, compute the radiative corrections with DR, operators
of dimension two can never be generated, so that we get the
impression that no fine-tuning is needed. However, as we
have shown in the present section, DR contains a “hidden
fine-tuning”, and the fact that dimension two operators do
not appear when calculating radiative corrections is simply
due to that. In this respect, we note that in the original
Coleman and Weinberg calculation the effective potential
is obtained introducing a momentum cutoff for the loop
integrals, and the renormalized m2 ¼ 0 mass is obtained
only after performing the fine-tuning [39].

IV. PERTUBATIVE, WILSONIAN, AND
SUBTRACTED RG

Let us consider the Callan-Symanzik equation for the
renormalized potential of Eq. (14), obtained by requiring
independence of V1lðϕÞ from μ,
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μ
d
dμ

V1lðϕÞ¼
�
μ
∂

∂μ
þβΩ

∂

∂Ω
þm2γm

∂

∂m2
þβλ

∂

∂λ

�
V1lðϕÞ¼0:

ð54Þ

Inserting (14) in (54), the one-loop RG functions read

βΩ ¼ μ
dΩ
dμ

¼ m4

32π2
ð55Þ

γm ¼ 1

m2

�
μ
dm2

dμ

�
¼ λ

16π2
ð56Þ

βλ ¼ μ
dλ
dμ

¼ 3λ2

16π2
: ð57Þ

Below we will see that, once the subtraction that leads
to the tuning towards the critical surface is performed,
these RG functions coincide with the corresponding
Wilsonian ones in the UV region (perturbative regime).
We note that they are obtained in the perturbative regime
and can be derived either using DR or the momentum cutoff
calculation.
The flow of the bare parameters is obtained in a similar

way, requiring independence of the bare effective potential
in (16) from Λ. From an equation analogous to (54), we
obtain

Λ
d
dΛ

Ω0 ¼ −
m2

0Λ2

16π2
þ m4

0

32π2
ð58Þ

Λ
d
dΛ

m2
0 ¼ −

λ0Λ2

16π2
þ λ0m2

0

16π2
ð59Þ

Λ
d
dΛ

λ0 ¼
3λ20
16π2

; ð60Þ

that, as we show below, are nothing but the Wilsonian RG
equations for the running parameters in the UV regime.
To ascertain this point, let us go back to Eq. (24) for the

Wilsonian potential UkðϕÞ, that for the reader’s conven-
ience, we write here for d ¼ 4,

k
∂

∂k
UkðϕÞ ¼ −

k4

16π2
ln

�
k2 þ U00

kðϕÞ
k2

�
: ð61Þ

Inserting in (61), the expansion,

UkðϕÞ ¼ Ωk þ
1

2
m2

kϕ
2 þ 1

4!
λkϕ

4

þ 1

6!
λð6Þk ϕ6 þ 1

8!
λð8Þk ϕ8 þ…; ð62Þ

where the Wilsonian RG parameters are [the upper label (i)
denotes the ith derivative with respect to ϕ],

Ωk ¼ Ukð0Þ; m2
k ¼ Uð2Þ

k ð0Þ; λk ¼ Uð4Þ
k ð0Þ;

λð6Þk ¼ Uð6Þ
k ð0Þ; λð8Þk ¼ Uð8Þ

k ð0Þ; … ð63Þ

for Ωk, m2
k, λk, ... we easily get

k
∂Ωk

∂k
¼ −

k4

16π2
log

�
k2 þm2

k

k2

�
ð64Þ

k
∂m2

k

∂k
¼ −

k4

16π2
λk

k2 þm2
k

ð65Þ

k
∂λk
∂k

¼ −
k4

16π2

�
λð6Þk

k2 þm2
k

−
3λ2k

ðk2 þm2
kÞ2

�
ð66Þ

k
∂λð6Þk

∂k
¼ −

k4

16π2
×

�
λð8Þk

k2 þm2
k

−
15λkλ

ð6Þ
k

ðk2 þm2
kÞ2

þ 30λ3k
ðk2 þm2

kÞ3
�

… ð67Þ

These are the Wilsonian renormalization group equa-
tions in the framework of the local potential approximation.
They form a set of infinitely many coupled differential
equations and govern the nonperturbative flow of the
theory parameters. If k2 þm2

k > 0 in the whole range
½0;Λ�, this flow essentially coincides with the perturbative
one (see below). Similar results can be obtained for theories
with scalars and fermions [40,41].
If, on the contrary, there exists a critical value kcr where

k2cr þm2
kcr

¼ 0, that is the case when the theory manifests
SSB, the nonperturbative nature of these equations becomes
manifest when the region k2cr þm2

kcr
≳ 0 is approached. In

this regime, the flow of the coupling constants deviates
significantly from the perturbative one [35]. For values of
k < kcr, that is within the spinodal instability region, the
flow equation (61) no longer holds, and has to be replaced
with a new RG equation, that realizes the Maxwell con-
struction for the SSB potential [36].
Limiting ourselves to the case when k2 þm2

k > 0 and
retaining for the potential UkðϕÞ in (62) only terms up to
the quartic coupling λk, this set of equations is truncated to
Eqs. (64)–(66) only, where in the latter the term with λð6Þk is
missing.
Under the condition k2 ≫ m2

k, i.e., in the UV regime,
expanding these three equations in m2

k=k
2, we easily get

k
∂

∂k
Ωk ¼ −

k2m2
k

16π2
þ m4

k

32π2
ð68Þ

k
∂

∂k
m2

k ¼ −
k2λk
16π2

þ λkm2
k

16π2
ð69Þ

k
∂

∂k
λk ¼

3λ2k
16π2

; ð70Þ
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that coincide with (58), (59), and (60) (once we replace k
with Λ), that is what we wanted to show.
To understand the relation between the renormalized

flow [Eqs. (55)–(57)] and theWilsonian one [Eqs. (58)–(60),
or equivalently (68)–(70)], we have to introduce first two
“critical” parameters. Let us start with the mass. From the
finite difference version of (59) [or equivalently (69)],
we have

m2
0ðΛ − δΛÞ ¼ m2

0ðΛÞ þ
δΛ
Λ

λ0ðΛÞ
16π2

Λ2

−
δΛ
Λ

λ0ðΛÞm2
0ðΛÞ

16π2
þO

�
δΛ2

Λ2

�
: ð71Þ

We now define the subtracted mass parameter m̃2

ðΛ − δΛÞ at the scale Λ − δΛ through the equation,

m̃2ðΛ − δΛÞ≡m2
0ðΛ − δΛÞ −m2

crðΛÞ; ð72Þ

where

m2
crðΛÞ≡ λ0ðΛÞ

16π2
ΛδΛ; ð73Þ

is the critical mass that comes from the integration in the
momentum shell ½Λ − δΛ;Λ� and vanishes in the δΛ → 0
limit, so that we have the boundary,

m̃2ðΛÞ ¼ m2
0ðΛÞ: ð74Þ

With the help of (72) and (74), Eq. (71) can be written (in
differential form) as

1

m̃2

�
Λ

d
dΛ

m̃2

�
¼ λ0

16π2
: ð75Þ

Comparing (75) with (56), we see that the perturbative
flow of the renormalized massm2 is nothing but the flow of
m̃2. The right-hand side of (75) is precisely the perturbative
γm that appears in (56).
Similarly, by considering the finite difference version of

(58) [or equivalently (68)], and defining the subtracted
vacuum energy Ω̃ through the equation,

Ω̃ðΛ − δΛÞ≡Ω0ðΛ − δΛÞ −ΩcrðΛÞ; ð76Þ

where

ΩcrðΛÞ≡ m̃2ðΛÞ
16π2

ΛδΛ; ð77Þ

is the critical vacuum energy, for Ω̃ we obtain the flow
equation,

Λ
d
dΛ

Ω̃ ¼ m̃4

32π2
: ð78Þ

As before, comparing (78) with (55), we see that the
perturbative flow of the renormalized vacuum energy Ω
coincides with the flow of Ω̃, and the right-hand side of (78)
is nothing but the perturbative βΩ of (55).
For the dimensionless coupling λ there is obviously no

subtraction to operate and in fact, comparing (60) with (57),
we immediately see that the perturbative flow equation
for the renormalized coupling λ coincides with the UV
flow of λ0.
For the purposes of our analysis, it is important to stress

that the perturbative flow equations of the positive mass
dimension parameters m2 and Ω, that can be obtained by
using either DR or a momentum cutoff, are nothing but the
RG equations of the fine-tuned parameters Ω̃ and m̃2 in the
UV regime, i.e., the (UV) flow of the Wilsonian parameters
subtracted of their critical values.6 This corresponds to the
tuning towards the critical surface. We have then shown
that the renormalized RG equations (55)–(57) contain the
fine-tuning.
In the next section, we apply to the Standard Model the

results and considerations developed here.

V. STANDARD MODEL. PERTURBATIVE AND
WILSONIAN RG

The fact that at LHC no new particles have been observed
allows to speculate that the SM could be valid all theway up
to the Planck scaleMP, or to another high energy scale as for
instance ΛGUT, or even a trans-Planckian scale. From now
on, we indicate this ultimate UV scale with Λ. For energies
above this scale, we can imagine different scenarios: the SM
could be replaced by a different theory, outside the QFT
paradigm (string theory, loop quantum gravity, …), or it
might even be that, merging with quantum gravity, it could
be extrapolated up to infinitely large energies [44].
Starting with the appropriate boundary conditions at Λ,

the RG flows that connect Λ to the Fermi scale μF should
provide the measured values of the coupling constants and
of the particle masses as RG outputs at the scale μF. Let us
concentrate on the running of the Higgs boson massm2

HðμÞ.
As mentioned in the Introduction, a boundary condition
typically regarded as a possible solution to the naturalness
and hierarchy problem [3,45] is the so-called “miracle,”

m2
HðΛÞ ≪ Λ2; ð79Þ

that could come as a left-over of the Standard Model UV
completion.
One specific implementation of (79) is obtained impos-

ing the Veltman condition, i.e., the vanishing of the

6Other attempts toward a comparison between DR and
Wilsonian flows are in [42,43].
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quadratic divergences [46]. In the pure SM, such a
condition is verified at Λ ∼ 1023 GeV (when the couplings
are run with two-loop RG functions) [47,48]. If we would
like to implement the Veltman condition at the Planck scale,
Λ ¼ MP, we should consider extensions of the SM, as, for
instance, in [49]. For the purposes of our analysis, however,
it is totally irrelevant whether we consider the SM or a
modified version of it. For this reason, in the following we
concentrate on the SM.
Let us consider the perturbative RG flows, and restrict

ourselves to the two-loop approximation for the RG
functions [see, for instance, [50,51] ]

μ
d
dμ

λi ¼ βλi ; ð80Þ

μ
d
dμ

m2
H ¼ m2

Hγm; ð81Þ

where λi (i ¼ 1;…; 5) stands for the SM quartic coupling λ,
the top Yukawa coupling yt and the three gauge cou-
plings gi.
When γm takes on perturbative values, i.e., γm ≪ 1

(which is the case in the SM), and the RG equa-
tion for m2

HðμÞ is given by (81), we certainly have
m2

HðΛÞ ∼m2
HðμFÞ. For instance, choosing μF ¼ mt and

taking for mHðmtÞ the value mH ¼ 125.7 GeV, if we take
for Λ the scale where the Veltman condition is satisfied,
Eq. (81) imposes the boundary mHðΛÞ ¼ 129.87 GeV.
More generally, similar results are obtained whenever
the UV condition (79) is satisfied. Therefore, when the
(79) miracle is realized, and the RG mass flow is governed
by (81), it seems that the naturalness and hierarchy problem
is solved.
However, we note that the miracle (79) can effectively

protect m2
H from large quantum corrections only if the SM

really provides the multiplicative renormalization encoded
in (81). This latter condition is necessary to obtain
m2

HðmtÞ ∼m2
HðΛÞ, i.e., the absence of hierarchy. From

the previous section, we know that what runs in (81) is not
the original Wilsonian mass m2

HðμÞ but rather the sub-
tracted (i.e., renormalized) Higgs mass m̃2

HðμÞ, where the
fine-tuning of the quadratic divergence is already per-
formed [see (75)]. Therefore, we cannot couple Eqs. (79)
and (81) and pretend that the result m2

HðmtÞ ∼m2
HðΛÞ

provides a solution to the naturalness and hierarchy
problem. In fact, whatever boundary m2

HðΛÞ we use
[including the boundary (79)], if we do not subtract the
critical value of the mass, nothing can protect m2

H from
getting a “quadratically divergent” (∼Λ2) contribution. As
stressed in the previous section, such a subtraction is
nothing but the fine-tuning and is necessary to switch
from bare to renormalized mass.
It is worth to stress again that the SM is an EFT, where

the physical UV cutoff Λ plays the role of a distinguished

scale, above which its UV completion has to be considered.
But physics below Λ is governed by the SM, so the only
consistent way of getting physical quantities is through
effective quantum field theory calculations. Therefore, the
appearance of quadratically divergent (i.e., proportional to
Λ2) contributions to the mass cannot be avoided: to reach
the Fermi scale value mH ∼ 125.7 GeV, a fine-tuning must
be operated.
Moreover we note that, as correctly pointed out in

[33,34], to derive from string theory (or from any other
UV completion) an effective field theory, it is necessary to
take a Wilsonian perspective. In these recent papers, it was
shown that the decoupling of states above and below the
KK scale (i.e., the cutoff scale for the “low energy”
effective theory) in a type IIB string theory can be
demonstrated only by means of a bona fide Wilsonian
calculation. Applying that to the well-known problem
concerning the sign of the cosmological constant (CC),
the author shows that at cosmological scales a positive
value for CC can be obtained even if a negative value is
found at the KK scale.
Other attempts to solve the naturalness and hierarchy

problem, either within the SM, or in the framework of some
SM extension, are based on the RG equations for the
coupling constants of interest (the quartic Higgs coupling
and/or additional couplings when SM extension are con-
sidered), with boundary conditions again fixed in the UV
[49,51–57]. Running the quartic coupling λ down to the
Fermi scale, the Higgs mass mH is determined through the
usual relation between λ and the vacuum expectation value
(vev) of the Higgs field.7 It might seem that in this manner
the problem of quadratic divergences is avoided. However,
we should not forget that the vev gets a radiative correction
from tadpole diagrams that, if not canceled, bring ∼Λ2

contributions to the mass, and we have the same fine-tuning
problem considered above. Moreover, although in some of
these works [49,51,52,55,57] a sort of (softly broken)
conformal invariance is apparently implemented, all these
approaches still contain a hidden fine-tuning. The physical
quantities are either obtained within a DR calculation or by
means of subtracted RG equations.
Differently from the hidden fine-tuning of the previously

discussed approaches, in [44,59–66] the presence of
quadratic divergences is properly acknowledged, and it
is correctly pointed out that they locate the critical surface
in the couplings space. Moreover, the authors stress that the
quantities we are interested in are the deviations of the
physical parameters from their critical values (not the bare
ones), that are nothing but the renormalized parameters.
While this observation is correct, it does not give any
indication on the physical mechanism that triggers the

7According to the chosen renormalization conditions, this
relation is either the tree level or the radiatively corrected one
[58].
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approach to the critical surface. Although the authors refer
to their approach as to a “self-organized criticality”
phenomenon, they explicitly perform the subtraction of
the quadratically divergent term in the mass parameter.8

Without such a subtraction, the system would never be
driven towards the critical surface. In other words, they
perform the usual fine-tuning of the theory. In a true self-
organized critical phenomenon, a dynamical mechanism
drives the physical system towards the critical surface, and
no subtraction has ever to be performed.
The observation that the bare couplings and the critical

surface are not universal quantities, and that “usually in
quantum field theories they are not of much interest,” is
certainly not a justification for performing the subtraction
by hand. The essence of the naturalness problem consists in
searching for the physical mechanism responsible for the
suppression of the large radiative corrections to the mass. In
[44,59–66], it is simply shown that, once the subtraction is
performed by hand, with a large γm (∼2), the theory can
accommodate a large hierarchy between the Fermi and the
Planck scale. Moreover, the circumstance that different
choices of the cutoff scheme can give different values for
the coefficient of the quadratic divergences [66] is not a
problem in itself. If we think, for instance, of a super-
symmetric theory, the cancellation of the quadratic diver-
gences is related to the simultaneous presence of bosonic
and fermionic superpartners, and occurs whatever specific
cutoff scheme is chosen.
Finally, in a couple of recent papers [68,69], it is

suggested that there might exist formulations of QFT that
ab initio do not exhibit divergences. The authors claim that
BPHZ is the most famous of these approaches. However, it
is well known that the “R operation” in the BPHZ method
corresponds to the renormalization operated via a specific
choice of counterterms. In the original work of Bogoliubov
and Parasiuk [70], this is implemented by employing a
variation of the Hadamard regularization of singular inte-
grals [71–74] for the subtraction of divergent contributions:
it is precisely this operation that is abbreviated as R
operation.
The authors also claim that another notable example of

finite formulation of QFT, based on the Callan-Symanzik
equations [75,76], is presented in [77,78]. However, as
clearly explained in Callan’s lectures [78], the renormalized
finite results are obtained in two steps. First, a modification
of the functions in the loop integrals is obtained through a
subtraction “à la Pauli-Villars”, thus, getting finite results.
Successively, the renormalized quantities are obtained with
the help of the Callan-Symanzik equations. Therefore, both
BPHZ and the method explained in [78] are nothing else

than implementations of the subtraction of divergences,
totally equivalent to the usual renormalization procedure,
and as such cannot provide any ab initio finite formulation
of QFT.

VI. SUMMARY, CONCLUSIONS, AND OUTLOOK

This work is focused on the evergreen subject of
renormalization, with particular reference to the SM and
BSM theories, and more generally, of theories containing
scalar fields. We begin with a thorough analysis of dimen-
sional regularization, usually considered as a useful cal-
culation technique deprived of any direct physical
interpretation. The analysis is done comparing the deriva-
tion of the one-loop effective potential in DR with a direct
calculation performed in the framework of the Wilsonian
effective field theory approach.
We have shown that DR implements at once both steps of

the physical Wilsonian EFT calculation (the integration
over the quantum fluctuation modes and the tuning towards
the critical surface), provided that the conditions for the
validity of the perturbative expansion are fulfilled. As such,
it is a practical and welcome tool. In Sec. III, we have
shown in detail that the DR results are nothing but an
intermediate step in the Wilsonian derivation of renormal-
ized physical quantities, where a hidden fine-tuning, that
secretly realizes the tuning towards the critical region, is
automatically encoded.
These findings enabled us to answer one of the physical

questions that motivated the present study, a subject that
has driven lot of recent research work [7–28,31,32], namely
whether or not DR is endowed with special physical
properties that make it the correct way to define QFTs.
Our results definitely show that this is not the case. The
physical mechanism that realizes the tuning toward the
renormalized theory is not encoded in unknown physical
properties of DR. As a consequence, DR cannot be of help
in solving the naturalness and hierarchy problem.
In particular, we have shown that BSM models based

on (classically) scale-invariant extensions of the Standard
Model, where (apart from weak violations) the scale
invariance is kept also at the quantum level through the
use of dimensional regularization, do not provide a solution
to the naturalness and hierarchy problem, as hoped by their
proponents. In fact, when the classical lagrangian contains
only operators of dimension four, and dimensional regu-
larization is used, no terms with dimension different than
four can ever be generated. In particular, this is the case for
operators of dimension two, and we could get the impres-
sion that no fine-tuning is needed, and that the naturalness
and hierarchy problem could be solved this way. As we
have shown, however, DR contains a “hidden fine-tuning”,
that invalidates such a conclusion.
We also analyzed the naturalness and hierarchy problem

in the renormalization group framework. According to
recent literature, if the UV completion of the SM provides

8Similar observations are also done elsewhere; see, for
instance, [67]. However, as already noted, forcing the system
close to the critical surface is tantamount to subtract the quadratic
terms and certainly does not explain what drives the system
towards that regime.
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the boundary m2
HðΛÞ ≪ Λ2, the problem would disappear,

as the perturbative anomalous dimension γm (≪ 1) allows
to get m2

HðμFÞ ∼m2
HðΛÞ [3,45]. In another scenario, where

the same RG equation (81) for m2
HðμÞ is used, it seems that

the hierarchy m2
HðμFÞ ≪ m2

HðΛÞ ∼ Λ2 can be accommo-
dated, as the physical value m2

HðμFÞ is obtained assuming
that the UV completion of the SM provides for γm a
nonperturbative value γm ≳ 2 [44,59–66]. However, as
shown in detail in Sec. V, the RG equation used for
m2

HðμÞ already contains the fine-tuning, and in both these
scenarios, the suggested solution to the naturalness and
hierarchy problem comes from this tuning. Therefore, they
cannot solve the problem.
Again in the RG framework, the same question has

been attacked in a different way, that might seem to
circumvent the fine-tuning problem. Within the SM, or
in one of its extensions, the RG equations for the couplings
are considered with boundary conditions fixed in the UV
[49,51–57]. Running the Higgs quartic coupling λ down to
the Fermi scale, mH is determined through the usual
relation between λ and the vev of the Higgs field.
However, we have shown that this does not solve the
naturalness and hierarchy problem, as the vev gets radiative
corrections from tadpole diagrams. If not canceled (fine-
tuning), they bring quadratic divergent contributions tom2

H,
again leaving the problem unsolved.
All these shortcomings are related in a way or another to

the use of DR, of which we have shown the range of
validity and limitations, providing examples where the
direct physical Wilsonian calculations are needed, while
DR gives incorrect results [33–36].
We also analyzed other recent attempts to solve the

naturalness and hierarchy problem, that aim at a finite
formulation of quantum field theories [68,69]. We showed
that these calculations actually implement the usual sub-
traction of divergences and therefore, do not shade any light
on the problem.
Before ending this section, we would like to discuss

some possible continuations of our work. The methods
employed in the present paper can be extended to imple-
ment the Wilsonian approach to gauge theories and
quantum gravity, where some interesting attempts have
already been made [79–81]. The same holds true for
implementing conformal and/or scale invariance at the
quantum level, where the present state of art is too poor.
We plan to come to these issues in further studies.
At the same time, extending the methods of the present

work, we plan to pursue our investigation on the physical
mechanism that provides the tuning of the Higgs boson
mass towards its experimental value.

APPENDIX A: SPECIAL FUNCTIONS

The special functions Bðα; βÞ and ΓðzÞ of complex
arguments α, β, and z are defined by

Bðα;βÞ¼
Z

1

0

dxxα−1ð1−xÞβ−1 Reα;Reβ> 0 ðA1Þ

ΓðzÞ ¼
Z

∞

0

dτ τz−1e−τ Re z > 0; ðA2Þ

where the conditions Re α > 0, Re β > 0 and Re z > 0
guarantee the convergence of the integrals in (A1) and
(A2). The functions B and Γ satisfy the relations,

Γðzþ 1Þ ¼ zΓðzÞ ðA3Þ

Bðα; βÞ ¼ ΓðαÞΓðβÞ
Γðαþ βÞ ; ðA4Þ

and the inverse of ΓðzÞ can be given with the help of the
Weierstrass representation (γE is the Euler-Mascheroni
constant),

ΓðzÞ−1 ¼ zeγEz
Y∞
n¼1

�
1þ z

n

�
e−

z
n Re z > 0: ðA5Þ

The right-hand side of (A5) has zeros for z ¼
0;−1;−2;… (but these values are excluded by the con-
dition Re z > 0) and is convergent for any z. The analytic
extension Γ̄ðzÞ of ΓðzÞ is given by the inverse of the right-
hand side of (A5), and then it is defined for generic values
of z, with the exception of the zeros of (A5). The property
(A3) holds also for Γ̄ðzÞ.
The analytic extension B̄ðα; βÞ of Bðα; βÞ is obtained

with the help of (A4), once the replacement Γ → Γ̄ is made.
Due to the properties of the function Γ̄ðzÞ defined above,
the function B̄ðα; βÞ is defined for generic complex values
of α and β, excluding α; β ¼ 0;−1;−2;…
Another special function used in the text is the incom-

plete beta function Biðα; β; xÞ defined as

Biðα;β;xÞ≡
Z

x

0

dyyα−1ð1−yÞβ−1 Reα;Reβ> 0; x∈R:

ðA6Þ

It is not difficult to show that, when jxj < 1, Re α > 0,
and Re β > 0, the function Biðα; β; xÞ satisfies the relation,

Biðα; β; xÞ ¼
xα

α 2F1ðα; 1 − β;αþ 1; xÞ; ðA7Þ

where 2F1ða; b; c; xÞ is the hypergeometric function,

2F1ða; b; c; xÞ ¼
X∞
n¼0

ðaÞnðbÞn
ðcÞn

xn

n!
; ðA8Þ

and ðyÞn are the Pochammer symbols,
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ðyÞn ≡ Γðyþ nÞ
ΓðyÞ ¼ yðyþ 1Þ � � � ðyþ n − 1Þ: ðA9Þ

From (A8) and (A9), we see that the right-hand side of
(A7) is defined for any value of β and for generic values of
α, [not only for Re α > 0, and Re β > 0 as in (A6)], with the
exception of the values α ¼ 0;−1;−2;… With the help of
(A7), the analytic extension B̄iðα; β; xÞ of Biðα; β; xÞ is then
defined in this larger domain.

APPENDIX B: PROPAGATOR IN
D-DIMENSIONS. PROPER TIME

In this appendix, we show that results similar to those
obtained in Sec. III, where a hard momentum cutoff is
used, can be obtained when we consider a proper-time
regularization for the loop integrals. To this end, rather than
resorting to the example of the full effective potential as
in Sec. III, we consider only the one-loop two-point
vertex function Γð2Þð0Þ in d dimensions for zero external
momenta,

Γð2Þð0Þ ¼ m2 þ δm2 þ λ

2
μ4−d

Z
ddk
ð2πÞd

1

k2 þm2
: ðB1Þ

Within the proper-time regularization, the loop integral
in (B1) is

1

m2

Z
ddk
ð2πÞd

Z
∞

m2=Λ2

dτ e−τðk2=m2þ1Þ

¼ ðm2Þd=2−1
ð4πÞd=2

Z
∞

m2=Λ2

dτ τ−d=2e−τ: ðB2Þ

Although d in (B2) is a positive integer, the integral in
the right-hand side of this equation is convergent for any
complex value of d. From the definition of the lower
incomplete Gamma function Γiðz; uÞ (with z ∈ C and
u ∈ R),

Γiðz; uÞ≡
Z

∞

u
dτ τz−1e−τ; ðB3Þ

we have

Z
∞

m2=Λ2

dτ τ−d=2e−τ ¼ Γi

�
1 −

d
2
;
m2

Λ2

�
: ðB4Þ

Moreover, for Re d < 2, we have

Γi

�
1 −

d
2
;
m2

Λ2

�
¼ Γ

�
1 −

d
2

�
− γ

�
1 −

d
2
;
m2

Λ2

�
; ðB5Þ

where γðz; uÞ is the upper incomplete Gamma function
(with Re z > 0 and u ∈ R),

γðz; uÞ≡
Z

u

0

dτ τz−1e−τ: ðB6Þ

This latter function satisfies the relation,

γðz; uÞ ¼ uz

z 1F1ðz; zþ 1;−uÞ; ðB7Þ

where 1F1ða; b; uÞ is the hypergeometric function,

1F1ða; b;uÞ ¼
X∞
n¼0

ðaÞn
ðbÞn

un

n!
; ðB8Þ

and ðxÞn are the Pochammer symbols defined in (A9).
The hypergeometric function 1F1ða; b; uÞ is defined for

any complex value of u (infinite convergence radius), for
any complex value of a, and for generic complex values of
b, excluding b ¼ 0;−1;−2;…. The analytic extension
γ̄ðz; uÞ of γðz; uÞ is defined through the right-hand side
of (B7),

γ̄ðz; uÞ ¼ uz

z 1F1ðz; zþ 1;−uÞ for z ≠ 0;−1;−2;…;

ðB9Þ
and it is not difficult to see that, for any integer positive
value of d,
Z

∞

m2=Λ2

dτ τ−d=2e−τ ¼ Γi

�
1 −

d
2
;
m2

Λ2

�

¼ lim
z→d

�
Γ̄
�
1 −

z
2

�
− γ̄

�
1 −

z
2
;
m2

Λ2

��
:

ðB10Þ
The reader might find convenient at this point to compare

the above equation with the analogous Eq. (30) of Sec. III.
We already know that Γ̄ð1 − z

2
Þ in (B10) has simple poles in

z ¼ 2; 4; 6;…. Moreover, expanding γ̄ in powers of m
2

Λ2 ≪ 1
with the help of (B8) and (B9), we have

γ̄

�
1 −

z
2
;
m2

Λ2

�
¼ 2

2 − z

�
m2

Λ2

�2−z
2

−
2

4 − z

�
m2

Λ2

�4−z
2

þ 1

6 − z

�
m2

Λ2

�6−z
2 þ… ðB11Þ

that shows that γ̄ð1 − z
2
; m

2

Λ2Þ has simple poles in z ¼
2; 4; 6;… as Γ̄ð1 − z

2
Þ.

By considering for the two-point function Γð2Þð0Þ in (B1)
a proper-time regularization, we have found a result in all
similar to the one obtained in Sec. III for the effective
potential, where we used a hard momentum cutoff.
Following the same approach of Sec. III, from the

proper-time regularization (that is a way of implementing
the Wilsonian strategy with a smooth cutoff), we can again
derive the DR rules.
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Specifically, writing z ¼ 4 − ϵ and expanding around
ϵ ¼ 0, from (B2) and (B10), we have

�
λ

2
μ4−d

ðm2Þd=2−1
ð4πÞd=2

Z
∞

m2=Λ2

dτ τ−d=2e−τ
�
d¼4

¼ lim
ϵ→0

½C1ð4 − ϵÞ − C2ð4 − ϵÞ�; ðB12Þ

where

C1ðϵÞ ¼
λm2

32π2

�
−
2

ϵ
þ γE − lnð4πÞ

�

þ λm2

32π2

�
ln
m2

μ2
− 1

�
þOðϵÞ; ðB13Þ

C2ðϵÞ¼
λm2

32π2

�
−
2

ϵ
− lnð4πÞ

�
−
λm2

32π2
ln
m2

μ2

−
λΛ2

32π2
þ λm2

32π2
ln
Λ2

m2
þOðϵÞþOðm2=Λ2Þ: ðB14Þ

The similarity of Eqs. (B13) and (B14) with Eqs. (40)
and (41) of Sec. III is evident, and the way to obtain the DR
rules following the same path illustrated in Fig. 1 is
immediately clear. The fine-tuning for the mass parameter,
as explained in detail in Sec. III, is hidden in the step
① → ②, and again we see that DR is a way of implementing
the Wilsonian calculation, incorporating the fine-tuning of
the mass parameter. Naturally, again with reference to
Fig. 1, if we follow the path ① → ③, we obtain

�
λ

2
μ4−d

ðm2Þd=2−1
ð4πÞd=2

Z
∞

m2=Λ2

dτ τ−d=2e−τ
�
d¼4

¼ λΛ2

32π2
−

λm2

32π2
ln
Λ2

m2
þ λm2

32π2
ðγE − 1Þ; ðB15Þ

and the fine-tuning has to be implemented in the usual
manner.
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