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We evaluate the probability of (de)excitation and photon emission from a neutral, moving, nonrelativistic
atom, coupled to the quantum electromagnetic field and in the presence of a thin, perfectly conducting
plane (“mirror”). These results extend, to a more realistic model, the ones we had presented for a scalar
model, where the would-be electron was described by a scalar variable, coupled to an (also scalar) vacuum
field. The latter was subjected to either Dirichlet or Neumann conditions on a plane. In our evaluation of the
spontaneous emission rate produced when the accelerated atom is initially in an excited state, we pay
attention to its comparison with the somewhat opposite situation, namely, an atom at rest facing a moving
mirror.
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I. INTRODUCTION

Several important effects are associated with the quan-
tum vacuum fluctuations of the electromagnetic (EM) field,
ranging from the microscopic realm (spontaneous emission
by excited atoms, the Lamb shift, anomalous magnetic
moments of elementary particles, and van der Waals
interactions) to the Casimir interaction between neutral
macroscopic bodies [1]. The Casimir-Polder force corre-
sponds to a hybrid situation, since it involves an atom and a
macroscopic medium. Different manifestations of the
fluctuations of the EM field in analogous situations
correspond to the effect of a change in boundary conditions
on the probability of spontaneous emission from an atom.
This has been studied for an atom in the presence of a
perfectly conducting plane, or inside a cavity [2].
New effects appear when one introduces time depend-

ence; for instance, when the atom or the macroscopic media
are in motion: photon creation by accelerated mirrors
(dynamical Casimir effect) and quantum friction for an
atom and a surface (or between two surfaces) in relative
motion at constant velocity [3]. In the present work, we are
concerned with a dynamical situation, focusing on the
changes in the decay probability (of an initially excited
atom) as well as on the possibility of excitation of an atom
which is initially in its ground state. Note that, for this kind

of system, one can even have the production of photon pairs
without any change in the atomic state, which is the
microscopic analog of the dynamical Casimir effect [4].
In Ref. [5], the authors considered an atom at rest near an

accelerating mirror and showed that uniformly accelerated
motion of the mirror yields excitation of a static two-level
atom with simultaneous emission of a real photon. They
also found that the excitation probability oscillates as a
function of the atomic position because of interference
between contributions from the waves incident on and
reflected from the mirror. In Ref. [6], an atom accelerating
near a mirror is considered, and a radiative effect is
reported. From an inertial point of view, the process arises
from a collision of the negative vacuum energy of Rindler
space with the mirror. There is a qualitative symmetry
under interchange of accelerated and inertial subsystems,
but it hinges on the accelerated detector’s being initially in
its own Rindler vacuum.
In a previous work [7], we presented a study on the

excitation and decay probabilities for a moving atom
in front of a planar mirror, in a simplified model: the
“atom” was endowed with a scalar variable describing the
electron, and it was coupled to a real quantum scalar field.
Perfect conductor boundary conditions were replaced with
Neumann and Dirichlet boundary conditions on the mirror’s
plane.
We paid particular attention to two different processes,

both taking place in the lowest order in the coupling
constant: transition of the atom from the ground state to
the first excited state, with simultaneous emission of a
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photon, and spontaneous emission of an initially excited
atom. We considered a small-amplitude motion of the atom
and analyzed the spectral and directional dependence of the
radiation on the motion.
In this paper, we generalize those results to the more

realistic case of an atom coupled to the quantum electromag-
netic field, taking into account the v ×B interaction between
the moving atom and the magnetic field, the so-called
Röntgen term, which is a consequence of the vector character
of the electromagnetic field and is crucial to maintain Lorentz
covariance [8] to the relevant order in the velocity.
This paper is organized as follows. In Sec. II, we describe

our model in terms of its classical action. In Sec. III, we
compute the vacuum persistence amplitude from the imagi-
nary part of the effective action. After recovering known
results for an atom oscillating in free space, we also present
the calculation for the case of the atom oscillating in front of
a planar perfect mirror. In Sec. IV, we compute the transition
probabilities for two processes: decay of an excited atom and
excitation of an atom initially in its ground state. We
compare the results for a moving atom in front of a static
mirror with those for an oscillating mirror and a static atom
[9,10], tracing the differences in terms of the Röntgen
current. Section V contains the conclusions of our work.

II. MODEL AND ITS CLASSICAL ACTION

Our starting point to define the model shall be the action
Sa, for an atom coupled to the EM field, in the electric
dipole approximation. This approximation, to be unam-
biguous, must be formulated on a comoving system.
Indeed, let us assume that in the system where the atom
is at rest there is an electric dipole moment d0 and a
vanishing magnetic dipole:m0 ¼ 0. Then, in the laboratory
system, and to the first order in the velocity of the atom (in
our conventions, the speed of light c≡ 1), we shall have

dðtÞ ¼ d0ðtÞ þ vðtÞ ×m0ðtÞ ¼ d0ðtÞ þ vðtÞ × 0 ¼ d0ðtÞ
mðtÞ ¼ m0ðtÞ − vðtÞ × d0ðtÞ ¼ −vðtÞ × d0ðtÞ

¼ −vðtÞ × dðtÞ: ð1Þ

Therefore, the action Sa (in the laboratory system) must
also include a coupling, to the magnetic field, of the
motion-induced magnetic dipole,

Sa ¼
Z

dt

�
m
2
_x2ðtÞ − VðxðtÞÞ þ dðtÞ · Eðt; rðtÞÞ

þmðtÞ ·Bðt; rðtÞÞ
�

¼
Z

dt

�
m
2
_x2ðtÞ − VðxðtÞÞ

þ exðtÞ · ½Eðt; rðtÞÞ þ _rðtÞ ×Bðt; rðtÞÞ�
�
; ð2Þ

where xðtÞ denotes the position of the electron with respect
to the (center of mass of the) atom, while rðtÞ does so for
the atom with respect to the origin of the laboratory system.
Regarding the potential V binding the electron, for the sake
of simplicity, we shall assume here that it has a harmonic
oscillator form: V ¼ m

2
Ω2x2.

On the other hand, the free EM field action SemðAÞ is
given by

SemðAÞ ¼
Z

d4x

�
−
1

4
FμνFμν þ Lg:f:ðAÞ

�
; ð3Þ

with Fμν ¼ ∂μAν − ∂νAμ, which includes a gauge-fixing
term Lg:f:. We want to consider the cases of an atom moving
either in free space or in the presence of a perfect mirror. The
second case shall be dealt with when integrating out the EM
field fluctuations. Not unexpectedly, the outcome will turn
out to be the sum of the free space result plus a “reflected”
contribution (in the method of images sense).

III. EFFECTIVE ACTION AND ITS
IMAGINARY PART

As a first step in the derivation of the effective action
Γ½rðtÞ�, which will only depend on the atom’s trajectory, we
first integrate out the electron’s degrees of freedom, xðtÞ, to
obtain an intermediate effective action SeffðA; rÞ.
Since we are assuming a harmonic oscillator form for V

in (2), the functional integral over x becomes a Gaussian.
The result of such an integral is (modulo an irrelevant
constant) tantamount to replacing in the action the inte-
grated variable in terms of its source, using the classical
equation of motion for x. The latter corresponds to a
harmonic oscillator forced by a time-dependent force,
which is the Lorentz force acting on rðtÞ (not on x).
Solving for x in terms of that force, and recalling that
Feynman conditions are to be imposed on the time
dependence of that solution, we find

SeffðA; rÞ ¼ SemðAÞ þ SðaÞ
I ðA; rÞ; ð4Þ

with

SðaÞ
I ðA; rÞ ¼ ie2

2m

Z
t;t0

ΔΩðt − t0Þ½Eðt; rðtÞÞ

þ _rðtÞ ×Bðt; rðtÞÞ� · ½Eðt0; rðt0ÞÞ
þ _rðt0Þ ×Bðt0; rðt0ÞÞ�; ð5Þ

where we have used a shorthand notation for the integration
over time, for example,

R
t;t0 …≡ Rþ∞

−∞ dt
Rþ∞
−∞ dt0…, and
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ΔΩðt − t0Þ ¼
Z

dν
2π

e−iνðt−t0ÞΔ̃ΩðνÞ

Δ̃ΩðνÞ ¼
i

ν2 − Ω2 þ iϵ
: ð6Þ

We can produce an explicit expression for ΔΩðt − t0Þ,
which will turn out to be quite useful:

ΔΩðt− t0Þ ¼ 1

2Ω
½θðt− t0Þe−iΩðt−t0Þ þθðt0− tÞeiΩðt−t0Þ�: ð7Þ

The final form of the effective action of the system,
Γ½rðtÞ�, is obtained by including the EM field fluctuations.
Namely,

eiΓ½rðtÞ� ¼
R
DAeiSeffðA;rÞR
DAeiSeffðA;r0Þ ; ð8Þ

where r0 is the average position of the atom, which we will
assume to be time independent. Then, up to first order in e2,
we obtain

Γ½rðtÞ� ¼ ie2

2m

Z
t;t0

ΔΩðt − t0Þ½hEðt; rðtÞÞ · Eðt0; rðt0ÞÞi

þ 2hEðt; rðtÞÞ · _rðt0Þ × Bðt0; rðt0ÞÞi
þ h_rðtÞ ×Bðt; rðtÞÞ · _rðt0Þ × Bðt0; rðt0ÞÞi
− hEðt; r0Þ ·Eðt0; r0Þi�; ð9Þ

where the symbol h…i denotes the functional averaging

h…i ¼
R
DA… expfi½SemðAÞ�gR
DA expfi½SemðAÞ�g

: ð10Þ

The presence of the mirror may be introduced in more than
one way; in the previous definition of the functional
averages, since the action is the one for free space, we
have implicitly assumed that it is dealt with by a proper
definition of the integration measure. Namely, the integral
is over fields satisfying perfect boundary conditions on the
mirror. Our choice of coordinates is such that the mirror
occupies the x3 ¼ 0 plane (for the sake of simplicity, we
shall make no distinction between lower and upper indices,
from now on; thus, x3 ≡ x3 ≡ z). From (9), we see that we
just need to perform functional averages for pairs of fields
(each factor involves derivatives of the gauge field).
Therefore, we shall only need the gauge field propagator
with perfect conductor boundary conditions on the mirror.
Just before inserting the explicit expressions for the EM

field correlators, it is convenient to perform an expansion in
powers of the departures about the average position of the
atom, r0. To that end, we set rðtÞ ¼ r0 þ yðtÞ, expand up to
the second order in yðtÞ, and discard terms that, by their

very structure, cannot contribute to the imaginary part of
the effective action.
Thus, with this in mind, we may present the expression

for the effective action, expanded to the second order in
yðtÞ, as

Γ ¼ ΓEE þ ΓEB þ ΓBB; ð11Þ

where

ΓEE ¼ ie2

2m

Z
t;t0

yiðtÞyjðt0ÞΔΩðt − t0Þ

×

�
∂
2

∂ri∂r0j
hEðt; rÞ ·Eðt0; r0Þi

�����
r¼r0¼r0

; ð12Þ

ΓEB ¼ ie2

m

Z
t;t0

yiðtÞ_yjðt0ÞΔΩðt − t0Þεkjl

×

�
∂

∂ri
hEkðt; rÞBlðt0; r0Þi

�����
r¼r0¼r0

; ð13Þ

ΓBB ¼ ie2

2m

Z
t;t0

_yiðtÞ_yjðt0ÞΔΩðt − t0Þεkilεkjm

× hBlðt; rÞBmðt0; r0Þi
���
r¼r0¼r0

: ð14Þ

The previous formulas, valid in free space, hold true when a
mirror is present, the difference between those two sit-
uations being the form of the EM field correlation func-
tions. Let us first consider the free space case.

A. Free space

We evaluate each one of the three terms into which we
have decomposed Γ in (11) in turn. They involve different
correlation functions between components of theEMfield in
free space. Note that any time-local term appearing in those
correlation functions [namely, a polynomial in δðt − t0Þ and
its derivatives] will not contribute to the imaginary part, and
we shall therefore discard them.We shall use a (0) to denote
the free space version of an object, to distinguish it from the
one when the perfectly conducting plane is present.

For Γð0Þ
EE, we have

hEiðt; rðtÞÞEjðt0; rðt0ÞÞið0Þ ¼
Z

d3k
ð2πÞ3 e

ik·ðr−r0Þ

× k2
�
δij −

kikj
k2

�
Δkðt − t0Þ;

ð15Þ

where h…ið0Þ denotes correlation functions in free space.
Here, Δk is defined as in (6), with k≡ jkj playing the role
of Ω: Δkðt − t0Þ≡ ½ΔΩðt − t0Þ�Ω→k. Therefore, from (15),
we derive
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�
∂
2

∂ri∂r0j
hEðt; rÞ ·Eðt0; r0Þið0Þ

�����
r¼r0¼r0

¼ 2

Z
d3k
ð2πÞ3 k

2kikjΔkðt − t0Þ

¼ 2

3

Z
d3k
ð2πÞ3 k

4δijΔkðt − t0Þ: ð16Þ

Inserting this into Γð0Þ
EE, we note that the resulting

expression will contain the product ΔΩΔk. This product
may be simplified by using the property, valid for any pair
Ω1, Ω2:

ΔΩ1
ðt − t0ÞΔΩ2

ðt − t0Þ ¼ Ω1 þ Ω2

2Ω1Ω2

ΔΩ1þΩ2
ðt − t0Þ: ð17Þ

In our case, this leads to

Γð0Þ
EE ¼ ie2

6mΩ

Z
t;t0

yiðtÞyiðt0Þ
Z

d3k
ð2πÞ3 ðΩþ kÞk3ΔΩþkðt− t0Þ:

ð18Þ

Writing then ΔΩþk in terms of its Fourier transform, and
Fourier transforming the departures, we obtain

Γð0Þ
EE ¼ ie2

6mΩ

Z
dν
2π

ỹ�i ðνÞỹiðνÞ
Z

d3k
ð2πÞ3 ðΩþ kÞk3Δ̃ΩþkðνÞ:

ð19Þ

The imaginary part of ΓEE is then straightforwardly
obtained from the one of Δ̃Ωþk:

Im½Γð0Þ
EE� ¼

πe2

6mΩ

Z
dν
2π

ỹ�i ðνÞỹiðνÞ
Z

d3k
ð2πÞ3 ðΩþ kÞ

× k3δ½ν2 − ðΩþ kÞ2�: ð20Þ

Performing the integration over k,

Im½Γð0Þ
EE� ¼

Z
dν
2π

mð0Þ
EEðνÞjỹðνÞj2

¼ e2

24πmΩ

Z
dν
2π

θðjνj−ΩÞðjνj−ΩÞ5jỹðνÞj2: ð21Þ

For the computation of Γð0Þ
EB, we start from the correlation

function:

hEjðt; rÞBlðt0; r0Þið0Þ ¼ iϵjlm

Z
d3k
ð2πÞ3 e

ik·ðr−r0Þ

× km∂tΔkðt − t0Þ: ð22Þ

Upon insertion of this into the expression for Γð0Þ
EB, the

product ΔΩ∂tΔk arises. For this object, we use the property

ΔΩ1
ðt − t0Þ∂tΔΩ2

ðt − t0Þ ¼ 1

2Ω1

∂tΔΩ1þΩ2
ðt − t0Þ ð23Þ

to get

Γð0Þ
EB¼

ie2

3mΩ

Z
t;t0
yiðtÞ_yiðt0Þ

Z
d3k
ð2πÞ3 k

2
∂tΔΩþkðt− t0Þ: ð24Þ

Integrating by parts and Fourier transforming,

Γð0Þ
EB¼−

ie2

3mΩ

Z
dν
2π

ỹ�i ðνÞỹiðνÞν2
Z

d3k
ð2πÞ3 k

2Δ̃ΩþkðνÞ; ð25Þ

whence the imaginary part then becomes

Im½Γð0Þ
EB� ¼

Z
dν
2π

jỹðνÞj2mð0Þ
EBðνÞ

¼ −
e2

12πmΩ

Z
dν
2π

jỹðνÞj2θðjνj −ΩÞjνjðjνj −ΩÞ4:

ð26Þ
Finally, to evaluate Γð0Þ

BB, we need the correlator of two
magnetic fields. It is straightforward to see that

εkilεkjmhBlðt; rÞBmðt0; r0Þið0Þ ¼
4

3
δij

Z
d3k
ð2πÞ3 e

ik·ðr−r0Þ

× k2Δkðt − t0Þ: ð27Þ
Therefore,

Γð0Þ
BB ¼ 2ie2

3m

Z
t;t0

_yiðtÞ_yiðt0ÞΔΩðt − t0Þ
Z

d3k
ð2πÞ3 k

2Δkðt − t0Þ:

ð28Þ

Proceeding in an analogous fashion as for the previous two
terms, we find

Im½Γð0Þ
BB�¼

Z
dν
2π

jỹðνÞj2mð0Þ
BBðνÞ

¼ e2

12πmΩ

Z
dν
2π

jỹðνÞj2θðjνj−ΩÞν2ðjνj−ΩÞ3: ð29Þ

Adding the three contributions to the imaginary part of
the effective action, we get

Im½Γð0Þ� ¼ Im½Γð0Þ
EE� þ Im½Γð0Þ

EB� þ Im½Γð0Þ
BB�

¼ e2

24πmΩ

Z þ∞

−∞

dν
2π

jỹðνÞj2θðjνj −ΩÞ

× ðjνj −ΩÞ3ðν2 þ Ω2Þ: ð30Þ

This coincides with the result obtained in Ref. [4], if one
performs the angular integration of the probability distri-
bution obtained there.
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B. Perfect mirror

We now evaluate the different terms contributing to the
imaginary part of the effective action when a perfect mirror
is present. The difference is in the form of the EM field
correlation functions. They may be obtained from the ones
of the gauge field, which in turn can be constructed, for
example, by using the method of images. To that end,
it is convenient to introduce first a special notation to
distinguish among spacetime coordinates. We shall use
x ¼ ðxk; x3Þ, with xk denoting x0, x1, x2, the coordinates for
which there is translation invariance. When using indices,
the ones from the beginning of the Greek alphabet, α; β;…,
will be implicitly assumed to run over the values 0, 1, and 2.
Besides, a; b;… will take the values 1 and 2 (these appear
when dealing with spatial coordinates on the plane).
Then, the correlator in the presence of the mirror,

hAμðxÞAνðyÞi≡Dμνðxk − yk; x3; y3Þ; ð31Þ

may be written as

Dμνðxk − yk; x3; y3Þ ¼ Dð0Þ
μν ðxk − yk; x3; y3Þ

þDðRÞ
μν ðxk − yk; x3; y3Þ; ð32Þ

where Dð0Þ
μν is the gauge-field propagator in free space and

DðRÞ
μν is the reflected contribution:

DðRÞ
μν ¼ −gαμg

β
νD

ð0Þ
αβ ðxk − yk; x3;−y3Þ: ð33Þ

Because of the fact that the EM field correlators will be the
sum of two terms, the first one identical to the free space
one and the second a reflection (R) term, also the effective
action and its imaginary part will share this property.
Namely,

Γ ¼ Γð0Þ þ ΓðRÞ;

ΓðRÞ ¼ ΓðRÞ
EE þ ΓðRÞ

EB þ ΓðRÞ
BB : ð34Þ

We now evaluate each one of the three reflection terms
above, having in mind that they are to be added to the
free space terms; namely, they have no meaning by
themselves, and in particular, their imaginary parts could
be negative.

ΓðRÞ
EE is obtained by using the reflection term instead of

the free space correlator in the analogous formula we have
already used for free space. Indeed,

ΓðRÞ
EE ¼ ie2

2m

Z
t;t0

yiðtÞyjðt0ÞΔΩðt − t0Þ

×

�
∂
2

∂ri∂r0j
hEðt; rÞ · Eðt0; r0ÞiðRÞ

�����
r¼r0¼r0

ð35Þ

Now, because of the presence of the mirror, three-dimen-
sional rotation symmetry is lost. We will, as a consequence,

have different contributions to ΓðRÞ
EE (and its imaginary part)

depending on whether the motion is parallel or normal to

the plane. It is rather straightforward to see that ΓðRÞ
EE

becomes the sum of two independent contributions, one
for each kind of motion,

ΓðRÞ
EE ½yðtÞ� ¼ ΓðRÞ

EE;k½ykðtÞ� þ ΓðRÞ
EE;⊥½y3ðtÞ�; ð36Þ

since

ΓðRÞ
EE ½yðtÞ� ¼

ie2

2m

Z
t;t0

�
1

2
ykðtÞ · ykðt0ÞΔΩðt − t0Þ

×

�
∂
2

∂ra∂r0a
hEðt; rÞ · Eðt0; r0ÞiðRÞ

�����
r¼r0¼r0

þ y3ðtÞy3ðt0ÞΔΩðt − t0Þ

×

�
∂
2

∂r3∂r03
hEðt; rÞ ·Eðt0; r0ÞiðRÞ

�����
r¼r0¼r0

�
:

ð37Þ

In particular, for parallel motion, we find

ΓðRÞ
EE;k½ykðtÞ� ¼−

ie2

4m

Z
t;t0
ykðtÞykðt0Þ

Z
d3k
ð2πÞ3 cosð2k3aÞ

×kk2ðkk2þ3k23ÞΔΩðt− t0ÞΔkðt− t0Þ; ð38Þ

while for motion along the perpendicular, x3 direction,

ΓðRÞ
EE;⊥½y3ðtÞ� ¼

ie2

2m

Z
t;t0

y3ðtÞy3ðt0Þ
Z

d3k
ð2πÞ3 cosð2k3aÞk

2
3

× ðkk2 þ 3k23ÞΔΩðt − t0ÞΔkðt − t0Þ: ð39Þ

By using a procedure entirely analogous to the one for
the free space part, we find the respective imaginary parts.
Note that both can, and will, depend on a, the distance of r0
to the mirror,

Im½ΓðRÞ
EE;k� ¼

Z
dν
2π

jỹkðνÞj2mk
EEðνÞ; ð40Þ

where

mk
EEðνÞ ¼ −

e2

32πmΩ
θðjνj −ΩÞðjνj −ΩÞ5f1½ðjνj − ΩÞa�;

ð41Þ

with
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f1ðxÞ ¼ 3

�
1

x4
−

1

2x2

�
cosð2xÞ þ 1

2

�
−

3

x5
þ 11

2x3

�
sinð2xÞ:

ð42Þ

For the perpendicular case, we have

Im½ΓðRÞ
EE;⊥� ¼

Z
dν
2π

jỹ3ðνÞj2m⊥
EEðνÞ; ð43Þ

where

m⊥
EEðνÞ¼

e2

16πmΩ

Z
dν
2π

θðjνj−ΩÞðjνj−ΩÞ5f2½ðjνj−ΩÞa�;

ð44Þ

with

f2ðxÞ ¼
�
−
3

x4
þ 5

2x2

�
cosð2xÞ þ 1

4

�
6

x5
−
13

x3
þ 6

x

�
sinð2xÞ:

ð45Þ

The term that involves the mixed correlator between the
electric and magnetic fields may be written as follows:

ΓðRÞ
EB ¼ ie2

m

Z
t;t0

Z
d3k
ð2πÞ3 e

2ik3aΔΩðt − t0Þ∂tΔkðt − t0Þ

× yjðtÞ_ylðt0Þðkjδlaka − 2kjδl3k3Þ: ð46Þ

The imaginary parts for parallel and normal motion become

Im½ΓðRÞ
EB;k� ¼

Z
dν
2π

jỹkðνÞj2mk
EBðνÞ; ð47Þ

where

mk
EBðνÞ ¼ −

e2

8πmΩ
θðjνj − ΩÞjνjðjνj − ΩÞ4f3½ðjνj −ΩÞa�;

ð48Þ

with

f3ðxÞ ¼ −
1

4x2
cosð2xÞ þ 1

8x3
sinð2xÞ; ð49Þ

and

Im½ΓðRÞ
EB;⊥� ¼

Z
dν
2π

jỹ3ðνÞj2m⊥
EBðνÞ; ð50Þ

where

m⊥
EBðνÞ¼

e2

8πmΩ
θðjνj−ΩÞjνjðjνj−ΩÞ4f4½ðjνj−ΩÞa�; ð51Þ

with

f4ðxÞ ¼
1

x2
cosð2xÞ −

�
1

2x3
−
1

x

�
sinð2xÞ: ð52Þ

Finally, for ΓðRÞ
BB , we have

ΓðRÞ
BB ¼ −

ie2

2m

Z
t;t0

Z
d3k
ð2πÞ3 e

2ik3aΔΩðt − t0ÞΔkðt − t0Þ

× f_yaðtÞ_yaðt0Þðkk2 − k23Þ − 2k23 _y3ðtÞ_y3ðt0Þg ð53Þ

and the respective imaginary parts for parallel and normal
motion,

Im½ΓðRÞ
BB;k� ¼

Z
dν
2π

jỹkðνÞj2mk
BBðνÞ; ð54Þ

where

mk
BBðνÞ ¼ −

e2

16πmΩ
θðjνj −ΩÞν2ðjνj −ΩÞ3f5½ðjνj − ΩÞa�;

ð55Þ

with

f5ðxÞ ¼ −
1

x2
cosð2xÞ þ 1

2

�
1

x3
−
1

x

�
sinð2xÞ; ð56Þ

and

Im½ΓðRÞ
BB;⊥� ¼

Z
dν
2π

jỹ3ðνÞj2m⊥
BBðνÞ; ð57Þ

where

m⊥
BBðνÞ ¼

e2

16πmΩ
θðjνj −ΩÞν2ðjνj −ΩÞ3f6½ðjνj − ΩÞa�;

ð58Þ

with

f6ðxÞ ¼
1

x2
cosð2xÞ þ

�
−

1

2x3
þ 1

x

�
sinð2xÞ: ð59Þ

In Fig. 1, we plot m1 ¼ 1þmk
EE=m

ð0Þ
EE for the parallel

motion and m2 ¼ 1þm⊥
EE=m

ð0Þ
EE for the normal one, both

as functions of the dimensionless variable x ¼ aðjνj −ΩÞ.
In both cases, the contribution from mk;⊥

EE goes to zero as
ajνj → ∞. In the other limit, i.e., when x → 0, we get

mk
EE=m

ð0Þ
EE ¼ −7=10 and m⊥

EE=m
ð0Þ
EE ¼ 11=10. This case

appears as qualitatively similar to the Dirichlet contribution
reported in Ref. [7], (see the comment in Ref. [11]).
Figures 2 and 3 show behavior similar to the previous
one. The rates goes to zero in the large limit and
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mk
EB=m

ð0Þ
EB ¼ 1=2,m⊥

EB=m
ð0Þ
EB ¼ −1, andmk

BB=m
ð0Þ
BB ¼ −1=4

and m⊥
BB=m

ð0Þ
BB ¼ 1=2 when x → 0. These limits show

different behavior with respect to the Dirichlet and
Neumann cases reported in Ref. [7].

IV. TRANSITION AMPLITUDES

Let us now study the transition amplitudes and proba-
bilities for the EM field model. The first-order transition
matrix will now be given by

Tfi ≡ e
Z

dthfjxðtÞ · ½Eðt; rðtÞÞ þ _rðtÞ ×Bðt; rðtÞÞ�jii;

ð60Þ

where

jii ¼ jiai ⊗ jiEMi jfi ¼ jfai ⊗ jfEMi; ð61Þ

with the “a” and “EM” indices denoting the atom and
electromagnetic field states.
For the electron’s degrees of freedom, we have, in the

interaction picture,

xðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2mΩ

p ðae−iΩt þ a†eiΩtÞ: ð62Þ

Here, a ¼ P
3
l¼1 alêl, where êl are three orthonormal

vectors, since the Hamiltonian for the electron is essentially
a three-dimensional harmonic oscillator. This implies that,
when considering a transition from the vacuum to an
excited state, that process will introduce a spatial direction,
in other words, a polarization. On the other hand, for the
gauge field in the Coulomb gauge, we use the expansion

AðxÞ ¼
Z

d2kk

Z
∞

0

dkz
X
λ

½αλðkÞfðλÞk ðxÞ þ H:c:�; ð63Þ

where λ sums over the two independent modes for each k,
which are consistent with the perfect conductor condition at
z ¼ 0. In this gauge, that amounts to a vanishing, on that
plane, of the components of the vector potential which are
parallel to that surface.
Including a global factor to normalize the states, we may

write those modes as follows (see, for example, Ref. [12]):

fð1Þk ðxÞ ¼ e−ikt
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ð2πÞ3k

s
ðk̂k × ẑÞ sinðkzzÞeikk·xk

fð2Þk ðxÞ ¼ e−ikt
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ð2πÞ3k

s
k−1½ẑjkkj cosðkzzÞ

− ik̂kkz sinðkzzÞ�eikk·xk ð64Þ

(k̂k and ẑ denote unit vectors). The notation

fðλÞk ðxÞ ¼ Nke−iktg
ðλÞ
k ðxÞ; Nk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð2πÞ3k

s
ð65Þ

will be useful in what follows.

A. Decay process

Let us now consider a decay process, in which the initial
state of the atom is an excited state and the EM field is in
vacuum,

m1

m2

0 2 4 6 8 10 12

0.0

0.5

1.0

1.5

x

FIG. 2. m1 ¼ 1þmk
EB=m

ð0Þ
EB and m2 ¼ 1þm⊥

EB=m
ð0Þ
EB as a

function of the dimensionless x ¼ aðjνj − ΩÞ.

m1

m2

0 2 4 6 8 10 12
0.6

0.8

1.0

1.2

1.4

x

FIG. 3. Ratios m1 ¼ 1þmk
BB=m

ð0Þ
BB and m2 ¼ 1þm⊥

BB=m
ð0Þ
BB

as a function of the dimensionless x ¼ aðjνj −ΩÞ.

m1

m2

0 2 4 6 8 10 12
0.0

0.5

1.0

1.5

2.0

x

FIG. 1. We plot m1 ¼ 1þmk
EE=m

ð0Þ
EE and m2 ¼ 1þm⊥

EE=m
ð0Þ
EE

as functions of the dimensionless x ¼ aðjνj − ΩÞ.
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jiai ¼ a†l j0ai jiEMi ¼ j0EMi; ð66Þ

while final states are

jfai ¼ j0ai jfEMi ¼ α†λðkÞj0EMi: ð67Þ

Note that for the electronic transition we have in principle
three independent polarizations (not necessarily along the
three coordinate axis), so we have to choose a polarization
for the excited state of the electron and also for the final
state of the EM field.
The matrix elements for the decay process then read

TðdecÞ
fi ðk; l; λÞ ¼ effiffiffiffiffiffiffiffiffiffi

2mΩ
p

Z þ∞

−∞
dte−itΩh0EMjαλðkÞêl · ½Eðt; rðtÞÞ þ _rðtÞ ×Bðt; rðtÞÞ�j0EMi

¼ effiffiffiffiffiffiffiffiffiffi
2mΩ

p
Z þ∞

−∞
dte−itΩêl · ½−∂tfðλÞ�k ðxÞ þ _rðtÞ × ð∇ × fðλÞ�k ðxÞÞ�x¼ðt;rðtÞÞ: ð68Þ

We now expand the results up to the second order in yðtÞ,
which is the departure from r0 ¼ ð0; 0; aÞ. Note that, as the
matrix elements have a contribution at zeroth order, it is
necessary to expand them up to the second order, to
compute consistently the decay probabilities beyond the
static case. We denote the different orders by

TðdecÞ
fi ¼ Tðdec;0Þ

fi þ Tðdec;1Þ
fi þ Tðdec;2Þ

fi : ð69Þ

Performing the expansion, we obtain

Tðdec;0Þ
fi ðk; l;λÞ ¼ −2πieNkkffiffiffiffiffiffiffiffiffiffi

2mΩ
p δðΩ− kÞêl · gðλÞ�

k ðxÞ
���
x¼r0

Tðdec;1Þ
fi ðk; l;λÞ ¼ eNkffiffiffiffiffiffiffiffiffiffi

2mΩ
p êl · ½ð−ikÞỹjðk−ΩÞ∂jgðλÞ�

k ðxÞ

− iðk−ΩÞỹðk−ΩÞ× ð∇× gðλÞ�
k ðxÞÞ�

���
x¼r0

Tðdec;2Þ
fi ðk; l;λÞ ¼ Afiðk; l;λÞ þBfiðk; l;λÞ; ð70Þ

with

Afiðk; l; λÞ ¼
−ieNkk

2
ffiffiffiffiffiffiffiffiffiffi
2mΩ

p
Z

∞

∞
dte−itðΩ−kÞyiðtÞyjðtÞ

× êl · ∂i∂jg
ðλÞ�
k ðxÞ

���
x¼r0

Bfiðk; l; λÞ ¼
ð−1ÞλieNkkffiffiffiffiffiffiffiffiffiffi

2mΩ
p

Z
∞

∞
dte−itðΩ−kÞyjðtÞ_yðtÞ

· ðêl × ∂jg
ðλ0Þ�
k

�
xk; z −

π

2kz

�����
x¼r0

: ð71Þ

Here, we used the notation λ0 ¼ 1 for λ ¼ 2 and vice versa.
In practice, we expect the experiments not to detect the

polarization state of the excited state of the atom; therefore,
it makes sense to consider the sum over the three possible
values of l when evaluating the probabilities. Namely, we
obtain results for the probabilities which depend only the
polarization of the photon. Therefore, for an unpolarized
initial state, the total decay probability reads

dPdec
fi ðkÞ ¼ dPdec

fi ðk; 1Þ þ dPdec
fi ðk; 2Þ ð72Þ

with

dPdec
fi ðk; λÞ ¼

1

3
d3k

X3
l¼1

jTdec
fi ðk; l; λÞj2: ð73Þ

Note that, when computing jTdec
fi ðk; l; λÞj2, there will be

a contribution of zeroth order that gives the emission
probability for a static atom. By energy conservation, this
probability is proportional to δðΩ − kÞ. It is corrected by
the second-order contribution to the matrix element. On the
other hand, the first-order contribution to the transition
amplitude produces an emission probability that, for a
center-of-mass oscillation with frequency Ωcm, has lateral
peaks at k ¼ Ω� Ωcm. This is the main qualitative change
induced by the center-of-mass motion on the spectrum of
emitted photons.
We now assume a normal motion for the center-of-mass

of the atom, with ỹj ¼ ỹ⊥δj3. The zeroth-order contribution
Tðdec;0Þ
fi in Eq. (70) generates the spontaneous emission

probability for a static atom. It reads

dPðdec;0Þ
fi ðkÞ¼Te2N2

k

2mΩ
2πδðΩ−kÞk2

X
λ

jgðλÞ
k ðr0Þj2d3k: ð74Þ

The second-order contribution in Eq. (70), when multi-
plied by the zeroth order, produces a correction to the static
probability in Eq. (74) that is given by

dPðsta;2Þ
fi ðkÞ ¼ −

e2N2
k

2mΩ
2πδðΩ − kÞk2k2z

X
λ

jgðλÞ
k ðr0Þj2

×

�Z
∞

−∞
dty2⊥ðtÞ

�
d3k: ð75Þ

Note that the position of the peak is independent of the
center-of-mass motion of the atom.
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We now consider the novel contribution to the emission
probability coming from Tðdec;1Þ

fi in Eq. (70). It is given by

dPðdyn;2Þ
fi ðk;1Þ ¼ e2

12π2mΩ
jỹ⊥ðk−ΩÞj2Ω2k3cos2ðkacosθÞÞ

×cos2θ sinθdθdk

≡ e2

12π2mΩ
jỹ⊥ðk−ΩÞj2k3p1ðka;Ωa;θÞ

×sinθdθdk ð76Þ

and

dPðdyn;2Þ
fi ðk; 2Þ ¼ e2

12π2mΩ
jỹ⊥ðk−ΩÞj2

× k3½k2sin2θcos2θsin2ðka cos θÞ
þ ðΩ− ksin2θÞ2cos2ðka cos θÞ� sin θdθdk

≡ e2

12π2mΩ
jỹ⊥ðk−ΩÞj2

× k3p2ðka;Ωa; θÞ sin θdθdk: ð77Þ

In both equations, we have used spherical coordinates in
k space and integrated over the angle φ (by symmetry, the
results do not depend on this angle). As with the correction
in Eq. (75), these are of course contributions quadratic in
the amplitude of the center-of-mass motion. In Fig. 4, we
plot the total contribution to the emission probability
p1ðka;Ωa; θÞ þ p2ðka;Ωa; θÞ per unit of solid angle for
two different values of ka at a fixed value of Ωa ¼ 10.
The total decay probability can be obtained by summing

Eqs. (76) and(77) and integrating the θ angle. The result is

dPðdyn;2Þ
fi

dk
¼ e2

144π2mΩa5
jỹ⊥ðk −ΩÞj2

× f8a5k3ðk2 − 2kΩþ 2Ω2Þ
þ 6akða2ðkþ ΩÞ2 − 6Þ cosð2akÞ
þ 3ð4a4k2Ω2 − a2ð9k2 þ 2kΩþ Ω2Þ þ 6Þ
× sinð2akÞg: ð78Þ

If we assume that the normal displacement y⊥ðtÞ is an
oscillatory function y⊥ðtÞ ¼ y0⊥ sinðΩcmtÞ, where Ωcm is
the frequency of the center of mass, the spectrum of the
emitted photons has peaks at Ω;Ω� Ωcm. In Fig. 4, we
choose two different values of ka [ka ¼ 9 in Fig. 4(a) and
ka ¼ 11 in Fig. 4(b)] in order to show that just beyond
adiabatic approximation (ka ≈Ωa) the emission probabil-
ity is nonsymmetric with respect to the central emission
peak.
In a recent work [10], the decay probability of an atom in

front of an oscillating mirror has been computed using the
adiabatic approximation Ω ≫ Ωcm. In this limit, our results

for the moving atom have the same structure: the spectrum
of the emitted photons has the above-mentioned peaks, the
decay probability decreases with the distance to the plane,
and it shows oscillations with a frequency 2ka ≃ 2Ωa.
There is a disagreement, however, between the coefficients
of the terms appearing in our result and the ones of
Ref. [10]. We have verified that this difference comes
from the Röntgen term. Indeed, omitting this contribution,
both results coincide. For the case of a moving atom, it is
well known that this interaction term is crucial for Lorentz
covariance. It would be interesting to check if it also
appears for the case of a moving mirror and static atom, in
the next to leading order of the adiabatic approximation.
Note that the boundary conditions for the electromagnetic
field on a moving perfect mirror have a velocity-dependent
term [13].
The adiabatic approximation is justified whenΩ ≫ Ωcm.

It is noteworthy that, for some physical systems, this
inequality may be violated: for Rydberg or artificial atoms
may haveΩ of the order of GHz, and mechanical resonators
may attain such frequencies. In this situation, the decay
probabilities may be qualitatively different from those
obtained when the adiabatic approximation is used.

B. Excitation process

We now consider the probability of excitation of an
atom that is initially in its ground state. This excitation
is accompanied by the emission of a photon. The initial
states read

FIG. 4. Total contribution to the emission probability
p1ðka;Ωa; θÞ þ p2ðka;Ωa; θÞ per unit of solid angle as a
function of spherical angle θ. We show two different values of
ka at a fixed value of Ωa ¼ 10.
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jiai ¼ j0ai jiEMi ¼ j0EMi; ð79Þ

while final states are

jfai ¼ a†l j0ai jfEMi ¼ α†λðkÞj0EMi: ð80Þ

It is not necessary to repeat all calculations. Indeed, the
matrix elements for the excitation process can be obtained
from those of the decay process just changing the sign of
the frequency Ω, which takes into account the changes in
the initial and final states of the atom. This change of the
sign produces the expected threshold for the center-of-mass
frequency, and the excitation occurs only above it.
Therefore, the zeroth order in the transition amplitudes
is absent for this process.
From Eqs. (76) and (77), we obtain

dPexc
fi ðk; 1Þ ¼

e2

12π2mΩ
jỹ⊥ðkþΩÞj2Ω2k3 cos2 ðka cos θÞÞ

× cos2 θ sin θdθdk ð81Þ

and

dPexc
fi ðk;2Þ¼

e2

12π2mΩ
jỹ⊥ðkþΩÞj2

×k3½k2sin2θcos2θsin2ðkacosθÞ
þðΩþksin2θÞ2cos2ðkacosθÞ�sinθdθdk ð82Þ

As before, in both equations, we have used spherical
coordinates in k space and integrated over the angle φ.

V. CONCLUSIONS

In this paper, we considered the interaction between an
accelerated atom near a perfect mirror and the vacuum
fluctuations of the electromagnetic field. We have computed
thevacuumpersistence probability, and then the probabilities

for excitation and decay, for an atom that is initially in its
ground or first excited state, respectively. The results general-
ize our previous work in which we studied, as a toy model, a
quantum scalar field instead of the full electromagnetic field.
We have compared our results for an atom in

perpendicular motion with respect to the mirror, with those
in which the atom is at rest and the mirror is oscillating. Up
to the lowest-order adiabatic approximation, the Röntgen
current does not appear for a moving mirror [10], and this is
a source of discrepancy between the results for both
situations. It would be interesting to check whether the
next-to-leading-order adiabatic correction for the case of a
moving mirror restores the equivalence between these two
different physical situations or not.
Our results for the moving atom are valid beyond the

adiabatic approximation, and we have pointed out that, for
artificial or Rydberg atoms, this approximation may be
violated. Therefore, one could observe signs of nonadia-
baticity in the spectrum of emitted particles.
If the atom has a center-of-mass motion parallel to the

mirror, the excitation and deexcitation will depend both on
the acceleration and the distance to the mirror. Although
in this paper we have not presented an analysis of the
transition amplitudes for the parallel motion, the presence
of dissipative effects is clear from the computation of the
imaginary part of the effective action. These effects have no
analogs for a static atom in front of a moving (perfect)
mirror.
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