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Motion induced excitation and electromagnetic radiation
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We evaluate the probability of (de)excitation and photon emission from a neutral, moving, nonrelativistic
atom, coupled to the quantum electromagnetic field and in the presence of a thin, perfectly conducting
plane (“mirror”). These results extend, to a more realistic model, the ones we had presented for a scalar
model, where the would-be electron was described by a scalar variable, coupled to an (also scalar) vacuum
field. The latter was subjected to either Dirichlet or Neumann conditions on a plane. In our evaluation of the
spontaneous emission rate produced when the accelerated atom is initially in an excited state, we pay
attention to its comparison with the somewhat opposite situation, namely, an atom at rest facing a moving

mirror.
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I. INTRODUCTION

Several important effects are associated with the quan-
tum vacuum fluctuations of the electromagnetic (EM) field,
ranging from the microscopic realm (spontaneous emission
by excited atoms, the Lamb shift, anomalous magnetic
moments of elementary particles, and van der Waals
interactions) to the Casimir interaction between neutral
macroscopic bodies [1]. The Casimir-Polder force corre-
sponds to a hybrid situation, since it involves an atom and a
macroscopic medium. Different manifestations of the
fluctuations of the EM field in analogous situations
correspond to the effect of a change in boundary conditions
on the probability of spontaneous emission from an atom.
This has been studied for an atom in the presence of a
perfectly conducting plane, or inside a cavity [2].

New effects appear when one introduces time depend-
ence; for instance, when the atom or the macroscopic media
are in motion: photon creation by accelerated mirrors
(dynamical Casimir effect) and quantum friction for an
atom and a surface (or between two surfaces) in relative
motion at constant velocity [3]. In the present work, we are
concerned with a dynamical situation, focusing on the
changes in the decay probability (of an initially excited
atom) as well as on the possibility of excitation of an atom
which is initially in its ground state. Note that, for this kind
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of system, one can even have the production of photon pairs
without any change in the atomic state, which is the
microscopic analog of the dynamical Casimir effect [4].

In Ref. [5], the authors considered an atom at rest near an
accelerating mirror and showed that uniformly accelerated
motion of the mirror yields excitation of a static two-level
atom with simultaneous emission of a real photon. They
also found that the excitation probability oscillates as a
function of the atomic position because of interference
between contributions from the waves incident on and
reflected from the mirror. In Ref. [6], an atom accelerating
near a mirror is considered, and a radiative effect is
reported. From an inertial point of view, the process arises
from a collision of the negative vacuum energy of Rindler
space with the mirror. There is a qualitative symmetry
under interchange of accelerated and inertial subsystems,
but it hinges on the accelerated detector’s being initially in
its own Rindler vacuum.

In a previous work [7], we presented a study on the
excitation and decay probabilities for a moving atom
in front of a planar mirror, in a simplified model: the
“atom” was endowed with a scalar variable describing the
electron, and it was coupled to a real quantum scalar field.
Perfect conductor boundary conditions were replaced with
Neumann and Dirichlet boundary conditions on the mirror’s
plane.

We paid particular attention to two different processes,
both taking place in the lowest order in the coupling
constant: transition of the atom from the ground state to
the first excited state, with simultaneous emission of a

© 2022 American Physical Society
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photon, and spontaneous emission of an initially excited
atom. We considered a small-amplitude motion of the atom
and analyzed the spectral and directional dependence of the
radiation on the motion.

In this paper, we generalize those results to the more
realistic case of an atom coupled to the quantum electromag-
netic field, taking into account the v x B interaction between
the moving atom and the magnetic field, the so-called
Rontgen term, which is a consequence of the vector character
of the electromagnetic field and is crucial to maintain Lorentz
covariance [8] to the relevant order in the velocity.

This paper is organized as follows. In Sec. II, we describe
our model in terms of its classical action. In Sec. III, we
compute the vacuum persistence amplitude from the imagi-
nary part of the effective action. After recovering known
results for an atom oscillating in free space, we also present
the calculation for the case of the atom oscillating in front of
a planar perfect mirror. In Sec. IV, we compute the transition
probabilities for two processes: decay of an excited atom and
excitation of an atom initially in its ground state. We
compare the results for a moving atom in front of a static
mirror with those for an oscillating mirror and a static atom
[9,10], tracing the differences in terms of the Rontgen
current. Section V contains the conclusions of our work.

II. MODEL AND ITS CLASSICAL ACTION

Our starting point to define the model shall be the action
S,, for an atom coupled to the EM field, in the electric
dipole approximation. This approximation, to be unam-
biguous, must be formulated on a comoving system.
Indeed, let us assume that in the system where the atom
is at rest there is an electric dipole moment d, and a
vanishing magnetic dipole: my = 0. Then, in the laboratory
system, and to the first order in the velocity of the atom (in
our conventions, the speed of light ¢ = 1), we shall have

f). (1)

Therefore, the action S, (in the laboratory system) must
also include a coupling, to the magnetic field, of the
motion-induced magnetic dipole,

S= [ |30 = vix(o) + a() - Er()
+m(o)- Blrr(0)
= [ af35ew - visi)
+ex(t)- [B(r(0) + 50 x Br) ). @)

where x(7) denotes the position of the electron with respect
to the (center of mass of the) atom, while r(¢) does so for
the atom with respect to the origin of the laboratory system.
Regarding the potential V binding the electron, for the sake
of simplicity, we shall assume here that it has a harmonic
oscillator form: V = % Q?x%.

On the other hand, the free EM field action S,,(A) is
given by

Sun(A) = / d%[—%FWF””—l-Eg,f.(A) LB

with F,, =d,A, —0d,A,, which includes a gauge-fixing
term L, ;. We want to consider the cases of an atom moving
either in free space or in the presence of a perfect mirror. The
second case shall be dealt with when integrating out the EM
field fluctuations. Not unexpectedly, the outcome will turn
out to be the sum of the free space result plus a “reflected”
contribution (in the method of images sense).

III. EFFECTIVE ACTION AND ITS
IMAGINARY PART

As a first step in the derivation of the effective action
['[r(z)], which will only depend on the atom’s trajectory, we
first integrate out the electron’s degrees of freedom, x(7), to
obtain an intermediate effective action S.(A;r).

Since we are assuming a harmonic oscillator form for V
in (2), the functional integral over x becomes a Gaussian.
The result of such an integral is (modulo an irrelevant
constant) tantamount to replacing in the action the inte-
grated variable in terms of its source, using the classical
equation of motion for x. The latter corresponds to a
harmonic oscillator forced by a time-dependent force,
which is the Lorentz force acting on r(7) (not on Xx).
Solving for x in terms of that force, and recalling that
Feynman conditions are to be imposed on the time
dependence of that solution, we find

Serr(A:x) = Sen(A) + 81" (Air). (4)
with
S0 =15 [ pali-)[ExD)
+E(0) B (1) - [E(7.5(7))
FE) x B ()] 5)

where we have used a shorthand notation for the integration
over time, for example, fm, = fj;" dt fj;" dr..., and

065005-2



MOTION INDUCED EXCITATION AND ELECTROMAGNETIC ...

PHYS. REV. D 106, 065005 (2022)

d N %
Balt=t) = [ §2eH0Eq()

i

bl =T

(6)

We can produce an explicit expression for Ag(fr—17'),
which will turn out to be quite useful:

1
—[0(t=1) e =) 1 9(¢ —

Ag(t—1) =20

NN (7

The final form of the effective action of the system,
I'[r(7)], is obtained by including the EM field fluctuations.
Namely,

f DA eiseff (A;l‘)

(@) = L7277
fDAeiSeff(A;rO) ’

e

(8)

where r is the average position of the atom, which we will
assume to be time independent. Then, up to first order in e,

we obtain

2

(0] = 5o | Balt=){E(x(0) - B(.x(1)
+2(E(1x(0)) (/) x B/, x(7)
+{E(0) x B r(0) - #(7) % B(x(1)
— (E(t.xo) - E(7'.10))], )

where the symbol (...) denotes the functional averaging

JDA.... exp{i[Sem(A)]}
J DA exp{i[Sen(A)]}

()= (10)

The presence of the mirror may be introduced in more than
one way; in the previous definition of the functional
averages, since the action is the one for free space, we
have implicitly assumed that it is dealt with by a proper
definition of the integration measure. Namely, the integral
is over fields satisfying perfect boundary conditions on the
mirror. Our choice of coordinates is such that the mirror
occupies the x3 = 0 plane (for the sake of simplicity, we
shall make no distinction between lower and upper indices,
from now on; thus, x3 = X3 = z). From (9), we see that we
just need to perform functional averages for pairs of fields
(each factor involves derivatives of the gauge field).
Therefore, we shall only need the gauge field propagator
with perfect conductor boundary conditions on the mirror.

Just before inserting the explicit expressions for the EM
field correlators, it is convenient to perform an expansion in
powers of the departures about the average position of the
atom, ry. To that end, we set r(7) = ry + y(7), expand up to
the second order in y(7), and discard terms that, by their

very structure, cannot contribute to the imaginary part of
the effective action.

Thus, with this in mind, we may present the expression
for the effective action, expanded to the second order in

y(1), as
I'=Tgg + Ugp + Ugps (11)

where

ie?
Tpp =— (1)y:()Aq(t -1
e =5 | 300 8ale= 1)

02
— (E(t E(f. Y s 12
< (e )| 2)
i62 . ’ /
I'gp = . yi(0)y;(1)Aq(t = 1')exi
.t
0
X < (E (2, I‘)B[(l/,r/») . (13)
6}"i r=r'=r,
i€2 . . / /
Lpp = m | Vi()y; (1) Ag(t = 1 )erierjm
x (By(1,1)B,, (. 7)) : (14)
r=r'=ry,

The previous formulas, valid in free space, hold true when a
mirror is present, the difference between those two sit-
uations being the form of the EM field correlation func-
tions. Let us first consider the free space case.

A. Free space

We evaluate each one of the three terms into which we
have decomposed I" in (11) in turn. They involve different
correlation functions between components of the EM field in
free space. Note that any time-local term appearing in those
correlation functions [namely, a polynomial in §(¢ — ') and
its derivatives] will not contribute to the imaginary part, and
we shall therefore discard them. We shall use a (0) to denote
the free space version of an object, to distinguish it from the
one when the perfectly conducting plane is present.

For ngog, we have

(E,(1.v(1)E, (¢ x()))® = / (‘;‘)‘3 ik (e=r)
x k2 (5,'; - %) A(t=1),

(15)

where {...)© denotes correlation functions in free space.
Here, A, is defined as in (6), with k = |k| playing the role
of Q: Ay(t—7)=[Aq(t —1)]g_; Therefore, from (15),
we derive
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2
. /1 ))(0)
<6r,-07’j (E(t,r)-E(7, 1)) ) o

A’k
= 2/ 2n) K2kik ;A (1 — 1)

- %/(CI;kak%ijAk(’— ). (16)

Inserting this into Fg)E), we note that the resulting
expression will contain the product AgA,. This product
may be simplified by using the property, valid for any pair
Ql? Qz:

Q)+

Ag (1=1)Ag,(1—1) = D00, Bete
[==2

(r=17). (17)

In our case, this leads to

) 3
() _ le n [ 4k 3 :
.= . , ——(Q+k)k’A —r).
b= | O00) [ G55 @408 Baili=1)
(18)

Writing then Ag ., in terms of its Fourier transform, and
Fourier transforming the departures, we obtain

ie v 3 .
r) = / W s W5.) / %(9 LKA (0).

(19)

The imaginary part of I'gz is then straightforwardly
obtained from the one of AQH(:

71'@2 12 3
i) = 2o [ 5255 [ @40
x Bo[* — (Q + k)2 (20)

Performing the integration over Kk,

0 av ), \|-
tmiry) = [ om0 50)

2

:24;mg/;l_;9(|”| —Q) (| -Q1[FW)P.  (21)

For the computation of I g, we start from the correlation

function:

. PR e
(Ej(t. OB, ) = ey [ setrr)
X k0,0, (t=1). (22)

Upon insertion of this into the expression for Fg);, the
product Aqd; A, arises. For this object, we use the property

1
Do, (1= 110,80, (1 = 1) = 5-0iBq 0, (1= 1) (23)
1

0) _ i oy [ 4K, :
= (1) (t ——=k"0,A t—t). (24
=gy | O3(0) [ G550 Ba=1). (24)

Integrating by parts and Fourier transforming,

2 3
0 e dv _,, .. &’k -
=305 | 350500 [ 558 Eauw). @9
whence the imaginary part then becomes

0 dv _ 0
tmiry] = [ 52 150)Pmi0)

2

= om0 / Y 50) POl - )] - @)

(26)
Finally, to evaluate Fgg, we need the correlator of two
magnetic fields. It is straightforward to see that

4 &’k ,
8kil£kjm<Bl(t7 l‘)Bm(l‘/,l’/»(O) = §5ij/ (277.’)3 elk.(r_”
X KAy (t=1). (27)
Therefore,
) 3
(0) 2ie N . / / &’k 2 /
Ihp=—- ()y: (V) Ap(t —t k“AL(t—=1).
= | 5i0s08al-1) [ SR8 0-1)

(28)

Proceeding in an analogous fashion as for the previous two
terms, we find

0 dv, _ 0
tm(ry] = [ S50 m0)
62

_m/%y(”)|29(|”|—9)v2(lvl—9)3. (29)

Adding the three contributions to the imaginary part of
the effective action, we get

ImT©] = Im[I"%] + Im[["\%] + Im[['{%)]
e? +oo dy 5
=— — |y o(lv] — Q
s | 5L 5RO -2
x (lv] = Q)3 (1 + Q2). (30)
This coincides with the result obtained in Ref. [4], if one

performs the angular integration of the probability distri-
bution obtained there.
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B. Perfect mirror

We now evaluate the different terms contributing to the
imaginary part of the effective action when a perfect mirror
is present. The difference is in the form of the EM field
correlation functions. They may be obtained from the ones
of the gauge field, which in turn can be constructed, for
example, by using the method of images. To that end,
it is convenient to introduce first a special notation to
distinguish among spacetime coordinates. We shall use
X = (x”, X3), with x| denoting xy, x;, X5, the coordinates for
which there is translation invariance. When using indices,
the ones from the beginning of the Greek alphabet, a, f3, ...,
will be implicitly assumed to run over the values 0, 1, and 2.
Besides, a, b, ... will take the values 1 and 2 (these appear
when dealing with spatial coordinates on the plane).

Then, the correlator in the presence of the mirror,

<Aﬂ(x)Ab(y)> EDW()C” _yH;X3,y3), (31)
may be written as
0
Dﬂy(xu - yH;xg,y3) = D,(,,,)(x” - yH;x3,y3)

+D/(415)(XH —y3x3,y3),  (32)

where D,(,g) is the gauge-field propagator in free space and

Dﬁ,l,f) is the reflected contribution:

W = gD (x) = i x3. =) (33)

D
Because of the fact that the EM field correlators will be the
sum of two terms, the first one identical to the free space
one and the second a reflection (R) term, also the effective
action and its imaginary part will share this property.
Namely,

=10 41®),
TR =18 + i) + T, (34)

We now evaluate each one of the three reflection terms
above, having in mind that they are to be added to the
free space terms; namely, they have no meaning by
themselves, and in particular, their imaginary parts could
be negative.

rg}) is obtained by using the reflection term instead of
the free space correlator in the analogous formula we have
already used for free space. Indeed,

yz() () Ag(r = 1)

Now, because of the presence of the mirror, three-dimen-
sional rotation symmetry is lost. We will, as a consequence,

have different contributions to Fgg (and its imaginary part)
depending on whether the motion is parallel or normal to
the plane. It is rather straightforward to see that FSERE)
becomes the sum of two independent contributions, one

for each kind of motion,

ry0] = T8 v (0] + T8 bs(0). (36)

since
ie?
ey =5 [ {330 0()8a- 1)
x (arjér’a <E(t’ r) . E(t/’ rl>>(R)> r=r'=r,
+y3()y3 (1) At = 1)
62
e R DB .
(i ®em-men®)|
(37)

In particular, for parallel motion, we find

ie? 3
Ty (0] = ~m ], N1 O% @) / éTkPCOS(Zkaa)

XkH (kH —|—3k§)AQ(l‘—l‘/)Ak<l—l‘/), (38)
while for motion along the perpendicular, x5 direction,
: 2 3
R ie d’k
M a0] = 50 [ 3ama®) [ S Sseos2beai
x (k|24 3k3)Aq(r = 1) A (t = 7). (39)

By using a procedure entirely analogous to the one for
the free space part, we find the respective imaginary parts.
Note that both can, and will, depend on a, the distance of r,
to the mirror,

iy ) = [ S2H Pk, @0)

where

- QP fi[(jv] - Qal.
(41)

| o e
k() = = 55— 0] Q)

with
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1 1 1 311 .
filx)=3 <F - ﬁ) cos(2x) + 3 <— 5 + ﬁ) sin(2x).

For the perpendicular case, we have

mirl ) = [ S0 Pmge) @)

where

2

k() =—2 / “ (1] - ) (o] - Q) £ (1]~ Qal.

162mQ ) 2x

(44)

with

3 5 1/6 13 6
fz(x) = <—F+ﬁ> COS(2X) +Z (_5—x—3+;) sin(2x).

X

(45)

The term that involves the mixed correlator between the
electric and magnetic fields may be written as follows:

(R) i€2 d3
FEB B ; tt —3

ij( ) ( )(k 5laka

2N (1 —1)0,A (2 = 1)
= 2k;6p3k3). (46)

The imaginary parts for parallel and normal motion become

mirfy ) = [ Sm@Pnke. @)
where
() = =5 S0l = Q)] = )5 (1] - ©)al,
(48)
with
f3(x) = —%cos(Zx) + #sin(h), (49)
and
mirly,) = [P0, (650
where
62
méB(V)=8”m99(|V\—Q)|VI(\V|—Q)4f4[(|v|—9)a]’ (51)

with

X

Filx) = %cos(2x) _ (213 - i) sin(2x).  (52)

Finally, for I“gg, we have

/’/d3k At A (1= 1) Ay(1 = 1)
X{ya()ya( (k> = k3) = 2k333(0)y3(F)} - (53)

and the respective imaginary parts for parallel and normal
motion,

i) ) = [ 5o B s, (54)
where
o2
mpp(v) = g O =2 (1] = QP f5((|v] - @)al,
(55)
with
fs(x) = —icos(Zx) ; (x_13 - %) sin(2x), (56)
and
mirf), ) = [ S0 Pme). (57
where

- QP fs[(lv] - Q)a].
(58)

~0(lu] - (|

mé_B(l/) = 16

with

fe(x) = %cos(Zx) + < 213 + 1> sin(2x).  (59)

In Fig. 1, we plot m; =1+ myEE/mg)g for the parallel

motion and m, = | + mzg/ mg- for the normal one, both
as functions of the dimensionless variable x = a(|v| — Q).

In both cases, the contribution from mk‘EE goes to zero as

a|y| — oo0. In the other limit, i.e., when x — 0, we get

mEE/mEEf —7/10 and mEE/mEE 11/10. This case
appears as qualitatively similar to the Dirichlet contribution
reported in Ref. [7], (see the comment in Ref. [11]).
Figures 2 and 3 show behavior similar to the previous
one. The rates goes to zero in the large limit and
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1.0} /\/\,\_ 1 mi
m2

0.0k . . . . . .
0 2 4 6 8 10 12
X

FIG. 1. Weplotm; =1+ m%E/mgg and m, =1 + méE/mg)E)
as functions of the dimensionless x = a(|v| — Q).

1.5*\
\ m2
1.0 —7 +-m1

0.5F

0.0F

FIG. 2. m; =1+ml,/m®) and my =1+ miy/mY) as a

function of the dimensionless x = a(|v| — Q).

10} /\\//\\_//\\' 1 m1

0.8}

0.6L, . . . . . .
0 2 4 6 8 10 12
X

FIG. 3. Ratios m; = 1 + ml,/m\% and my = 1 + mpb,/m\)
as a function of the dimensionless x = a(|v| — Q).

0 0 0
il m ) = 12, mby/mS = —1,and mly/m = ~1/4
and mgp/ mg); =1/2 when x — 0. These limits show

different behavior with respect to the Dirichlet and
Neumann cases reported in Ref. [7].

IV. TRANSITION AMPLITUDES

Let us now study the transition amplitudes and proba-
bilities for the EM field model. The first-order transition
matrix will now be given by

Tyi= E/df<f|X(f) -[E(z,x(2)) + (1) x B(z,0(1))]]3),
(60)

where

0) = lia) ® liem)  1f) = |fa) ® [Fem).  (61)
with the “a” and “EM” indices denoting the atom and
electromagnetic field states.

For the electron’s degrees of freedom, we have, in the
interaction picture,

1
V2mQ

Here, a =) ; a6, where & are three orthonormal
vectors, since the Hamiltonian for the electron is essentially
a three-dimensional harmonic oscillator. This implies that,
when considering a transition from the vacuum to an
excited state, that process will introduce a spatial direction,
in other words, a polarization. On the other hand, for the
gauge field in the Coulomb gauge, we use the expansion

x(t) = (ae™¥ 4 afel¥), (62)

A(x):/cﬂk AwdeZ[al(k)ff)(x)+H.c.], (63)

where A sums over the two independent modes for each k,
which are consistent with the perfect conductor condition at
z = 0. In this gauge, that amounts to a vanishing, on that
plane, of the components of the vector potential which are
parallel to that surface.

Including a global factor to normalize the states, we may
write those modes as follows (see, for example, Ref. [12]):

: 2 . .
Bl = e (2n)3k(kll x 2) sin(kz)e’™I™|
£ (x) = e 2 k=t [2]k | cos(k,z)
. (27)3k ¢
— ik k, sin(k,z)]e™Ii (64)

(RH and Z denote unit vectors). The notation

£ (x) = Npemikig (x), —(65)

will be useful in what follows.

A. Decay process

Let us now consider a decay process, in which the initial
state of the atom is an excited state and the EM field is in
vacuum,
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i) = a}‘|()a> liem) = |Ogm), (66) Note t.hat for the electropic -transition we hav§ in principle
three independent polarizations (not necessarily along the
while final states are three coordinate axis), so we have to choose a polarization
for the excited state of the electron and also for the final
) state of the EM field.
Ifa) =100 |fem) = ocﬂI (K)|Ogm)- (67) The matrix elements for the decay process then read
|
dec —i N .

T (k. 1.2) r* “(Opy|at; (k)& - [E(r.x (1)) + (1) x B(2.x(£))]|0gy)
= dte 8, - =088 (x) + 1 (6) x (Vx £ ()], ey 68
m—g/_m O ) 4+ 50 > (V80 (@) (68)

We now expand the results up to the second order in y (1),
which is the departure from r, = (O, 0, a). Note that, as the
matrix elements have a contribution at zeroth order, it is
necessary to expand them up to the second order, to
compute consistently the decay probabilities beyond the
static case. We denote the different orders by

T(dec) (dec 0)

i =T

dec,1 dec,2
+ T i, (69)

Performing the expansion, we obtain

(dec 0) 27Ti€Nkk N (A)*
K,,A) = —— X 5(Q—k)é, - X
T ( )= 2mQ ( &gy ( )X:ro
(dec 1) ()
K,[,A k—Q)o
Ty (kK L4) = 2mQ 1 [(=ik)3;( )08k (X)
—i(k—Q)¥(k—Q) x (Vx g (x)]|
X=T
T (k. 1.2) = Ay (K. 1.2) + Bi(K. 1. 2), (70)
with
ieN k
Api(k,1,2) = \/—" " drem1@ Ry, (1)y (1)
X € - aiajgk (X)‘ B
X=T
—1YieNk [o
Btk 1.) = EUEE [ gremtaiy 30
2m§2 0

(71)

N (A)* T
. (el Xajgk (X”,Z—Z—kz> )

Here, we used the notation A’ = 1 for A = 2 and vice versa.

In practice, we expect the experiments not to detect the
polarization state of the excited state of the atom; therefore,
it makes sense to consider the sum over the three possible
values of / when evaluating the probabilities. Namely, we
obtain results for the probabilities which depend only the
polarization of the photon. Therefore, for an unpolarized
initial state, the total decay probability reads

=T

dPYe(k) = dPEe(k. 1) + dPUe(k.2)  (72)

with

dP%e(k, 1) —d3kz |9 (K, 1,2) (73)

Note that, when computing |79 (k, /, 4)|*, there will be
a contribution of zeroth order that gives the emission
probability for a static atom. By energy conservation, this
probability is proportional to §(Q — k). It is corrected by
the second-order contribution to the matrix element. On the
other hand, the first-order contribution to the transition
amplitude produces an emission probability that, for a
center-of-mass oscillation with frequency €, has lateral
peaks at k = Q £ Q. This is the main qualitative change
induced by the center-of-mass motion on the spectrum of
emitted photons.

We now assume a normal motion for the center-of-mass

of the atom, with y; = ¥, 6;3. The zeroth-order contribution
T ;gilec,()) in Eq. (70) generates the spontaneous emission

probability for a static atom. It reads

Te*N;
2mQ

dP\" (k) = 218(Q-0K> g (o) PPk, (74)
A

The second-order contribution in Eq. (70), when multi-
plied by the zeroth order, produces a correction to the static
probability in Eq. (74) that is given by

ezN 2

212
- Qz 5(Q - kka|gk (ro))?

« < /_ ) dtyi(t)) Pk (75)

Note that the position of the peak is independent of the
center-of-mass motion of the atom.

sta,2
dP™ (k) =
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We now consider the novel contribution to the emission
probability coming from T}‘f“’l) in Eq. (70). It is given by

62

dyn,2 ~
dP" (k1) = T2 V1 (k= Q) @2k cos’ (kacosd))
x c0s*0sin@dOdk

62

= 1222mQ
x sin 0d0dk

9. (k—Q)|*k* p; (ka,Qa.0)
(76)
and

62

dP YDk 2) =—" |5, (k—Q)]2

x k3 [k*sin?0cos>Osin® (ka cos 6)

+ (Q — ksin?0)?cos? (ka cos 0)] sin 0dOdk
2

e 3
= mUL(k -Q)

x k3 p,(ka,Qa,8) sin 0dOdk. (77)
In both equations, we have used spherical coordinates in
k space and integrated over the angle ¢ (by symmetry, the
results do not depend on this angle). As with the correction
in Eq. (75), these are of course contributions quadratic in
the amplitude of the center-of-mass motion. In Fig. 4, we
plot the total contribution to the emission probability
pi(ka,Qa, 8) + p,(ka,Qa, ) per unit of solid angle for
two different values of ka at a fixed value of Qa = 10.
The total decay probability can be obtained by summing
Egs. (76) and(77) and integrating the 8 angle. The result is

dpj(gynl) B o2 5 )
a " aaemas k=)
x {8a°Kk3 (K? — 2kQ + 2Q?)
+ 6ak(a®(k + Q)% — 6) cos(2ak)
+ 3(4a* k2 Q* — a?(9k* + 2kQ + Q?) + 6)

x sin(2ak)}.

(78)

If we assume that the normal displacement y, (¢) is an
oscillatory function y, (1) = y9 sin(Qpt), where Q. is
the frequency of the center of mass, the spectrum of the
emitted photons has peaks at Q,Q + Q. In Fig. 4, we
choose two different values of ka [ka = 9 in Fig. 4(a) and
ka = 11 in Fig. 4(b)] in order to show that just beyond
adiabatic approximation (ka =~ Qa) the emission probabil-
ity is nonsymmetric with respect to the central emission
peak.

In a recent work [10], the decay probability of an atom in
front of an oscillating mirror has been computed using the
adiabatic approximation € > Q.. In this limit, our results

-100

T

——

(b) ka =11,Qa = 10

(a) ka =9,0a =10

FIG. 4. Total contribution to the emission probability
pi(ka,Qa,0) + p,(ka,Qa,0) per unit of solid angle as a
function of spherical angle 6. We show two different values of
ka at a fixed value of Qa = 10.

for the moving atom have the same structure: the spectrum
of the emitted photons has the above-mentioned peaks, the
decay probability decreases with the distance to the plane,
and it shows oscillations with a frequency 2ka ~2Qa.
There is a disagreement, however, between the coefficients
of the terms appearing in our result and the ones of
Ref. [10]. We have verified that this difference comes
from the Rontgen term. Indeed, omitting this contribution,
both results coincide. For the case of a moving atom, it is
well known that this interaction term is crucial for Lorentz
covariance. It would be interesting to check if it also
appears for the case of a moving mirror and static atom, in
the next to leading order of the adiabatic approximation.
Note that the boundary conditions for the electromagnetic
field on a moving perfect mirror have a velocity-dependent
term [13].

The adiabatic approximation is justified when Q > Q.
It is noteworthy that, for some physical systems, this
inequality may be violated: for Rydberg or artificial atoms
may have Q of the order of GHz, and mechanical resonators
may attain such frequencies. In this situation, the decay
probabilities may be qualitatively different from those
obtained when the adiabatic approximation is used.

B. Excitation process

We now consider the probability of excitation of an
atom that is initially in its ground state. This excitation
is accompanied by the emission of a photon. The initial
states read

065005-9
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|ia> = |Oa>

while final states are

|iEM> = \OEM>’ (79)

fa) = ajl0a)  |fem) = &} (K)[Ogw).- (80)

It is not necessary to repeat all calculations. Indeed, the
matrix elements for the excitation process can be obtained
from those of the decay process just changing the sign of
the frequency €, which takes into account the changes in
the initial and final states of the atom. This change of the
sign produces the expected threshold for the center-of-mass
frequency, and the excitation occurs only above it.
Therefore, the zeroth order in the transition amplitudes
is absent for this process.

From Egs. (76) and (77), we obtain

2
e
dPFe(k, 1) = ———[§, (k+ Q)|2Q%k3 cos? (ka cos 0))

122°mQ
x cos” 6 sin 0dOdk (81)
and
e? 5
dPF¢(k,2)=—F——|7 (k+Q
kD)= G5 (k)

x k3 [k?sin>Ocos?Osin® (kacos )
+ (Q+ksin?0)>cos? (kacos )| sinfdOdk (82)
As before, in both equations, we have used spherical
coordinates in k space and integrated over the angle ¢.

V. CONCLUSIONS

In this paper, we considered the interaction between an
accelerated atom near a perfect mirror and the vacuum
fluctuations of the electromagnetic field. We have computed
the vacuum persistence probability, and then the probabilities

for excitation and decay, for an atom that is initially in its
ground or first excited state, respectively. The results general-
ize our previous work in which we studied, as a toy model, a
quantum scalar field instead of the full electromagnetic field.

We have compared our results for an atom in
perpendicular motion with respect to the mirror, with those
in which the atom is at rest and the mirror is oscillating. Up
to the lowest-order adiabatic approximation, the Rontgen
current does not appear for a moving mirror [10], and this is
a source of discrepancy between the results for both
situations. It would be interesting to check whether the
next-to-leading-order adiabatic correction for the case of a
moving mirror restores the equivalence between these two
different physical situations or not.

Our results for the moving atom are valid beyond the
adiabatic approximation, and we have pointed out that, for
artificial or Rydberg atoms, this approximation may be
violated. Therefore, one could observe signs of nonadia-
baticity in the spectrum of emitted particles.

If the atom has a center-of-mass motion parallel to the
mirror, the excitation and deexcitation will depend both on
the acceleration and the distance to the mirror. Although
in this paper we have not presented an analysis of the
transition amplitudes for the parallel motion, the presence
of dissipative effects is clear from the computation of the
imaginary part of the effective action. These effects have no
analogs for a static atom in front of a moving (perfect)
mirror.
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