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The Maxwell field with a general gauge fixing (GF) term is nontrivial: not only the longitudinal and
temporal modes are mixed up in the field equations, but also unwanted consequences might arise from the
GF term. We derive the complete set of solutions in de Sitter space, and implement the covariant canonical
quantization which restricts the residual gauge transformation down to a quantum residual gauge
transformation. Then, in the Gupta-Bleuler (GB) physical state, we calculate the stress tensor which is
amazingly independent of the gauge fixing constant and is also invariant under the quantum residual gauge
transformation. The transverse components are simply the same as those in the Minkowski spacetime, and
the transverse vacuum stress tensor has only one UV divergent term (x k*), which becomes zero by the
zeroth-order adiabatic regularization. The longitudinal-temporal stress tensor in the GB state is zero due to
a cancellation between the longitudinal and temporal parts. More interesting is the stress tensor of the GF
term. Its particle contribution is zero due to the cancellation in the GB state, and its vacuum contribution is
twice that of a minimally coupling massless scalar field, containing k* and k> divergences. After the
second-order adiabatic regularization, the GF vacuum stress tensor becomes zero too, so that there is no
need to introduce a ghost field, and the zero GF vacuum stress tensor cannot be a possible candidate for the
cosmological constant. Thus, all the physics predicted by the Maxwell field with the GF term will be the
same as that without the GF term. We also carry out analogous calculation in the Minkowski spacetime, and

the stress tensor is similar to, but simpler than that in de Sitter space.

DOI: 10.1103/PhysRevD.106.065004

I. INTRODUCTION

The Maxwell field is well studied as a quantum field in
the flat spacetime. The canonical quantization is simple in
radiation gauge in which the temporal and longitudinal
components are set zero; only two transverse polarizations
remain as dynamical variables. However, when a general
gauge fixing (GF) term is introduced for a covariant
canonical quantization, the longitudinal and temporal
modes, A and A, are mixed up in their field equations,
and the solutions are nontrivial except in the Feynman
gauge. In curved spacetimes the mixing-up of A and A
occurs even in the Feynman gauge. More seriously, the
introduced GF term gives rise to a part of a stress tensor,
which would bring about unwanted consequences.
Conventionally, a ghost field is introduced [1,2] to cancel
out the GF stress tensor, so that the net result will be a zero
stress tensor, and no unphysical consequence will occur. In
another treatment [3,4], the GF term was used to play a role
of the cosmological constant. However, the vacuum GF
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stress tensor is UV divergent, and must be regularized
before considering its possible physical implication.
Reference [5] adopted Dirac’s approach to a constrained
system to study the Maxwell field (without the GF term) in
a general RW spacetime, and calculated the Hamiltonian.
But the noncovariant Hamiltonian is not the same as the
stress tensor, and the UV divergences and regularization
were not addressed either.

In this paper, we shall derive the complete set of
solutions of the Maxwell field with a general GF term in
de Sitter space, and reveal the interesting structure of the
solutions. With these, we shall implement the covariant
canonical quantization, and obtain its constraint on the
coefficients of solution modes, as well as its restriction on
the residual gauge transformation. Then we shall calculate
respectively the transverse stress tensor, the longitudinal
and temporal stress tensor in the Gupta-Bleuler (GB) state,
and the stress tensor due to the GF term in the GB physical
state [6—8], and demonstrate the UV divergences of the
vacuum stress tensor. Finally, we shall perform the
adiabatic regularization on the vacuum stress tensor, and
show that the resulting regularized vacuum stress tensor is
zero, so that all the predicted physics of the Maxwell

© 2022 American Physical Society
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field in de Sitter space is the same, with or without the
GF term.

The paper is organized as follows. In Sec. II we derive,
by two methods, the solutions of the Maxwell field with a
general GF term in de Sitter space. In Sec. III we present the
covariant canonical quantization. In Sec. IV, we calculate
all three parts of the stress tensor. In Sec. V, we perform the
adiabatic regularization of the vacuum stress tensor, and
Sec. VI gives the conclusion and discussions. Appendix A
gives the Green’s functions for the Maxwell field in the
Feynman gauge, and demonstrates its relation to the
Green’s function of a minimally coupling massless scalar
field. In Appendix B, we give analogous calculation of the
Maxwell field with a general GF term in the Minkowski
spacetime, which has not been fully reported in literature.
We shall use the units (7 =c = 1).

II. THE SOLUTIONS OF THE MAXWELL
EQUATIONS WITH ¢ IN DE SITTER SPACE

In the free Maxwell field theory, the longitudinal and
temporal components, A| and Ay, are not real radiative
dynamical degrees of freedom. A simple treatment is to
take the Coulomb (radiation) gauge, in which the longi-
tudinal and temporal components are set to be zero,
V-A =0=A,, and the canonical quantization is per-
formed only on the transverse parts. The treatment in the
Coulomb gauge is not explicitly covariant. To achieve the
covariant canonical quantization, one can introduce a GF
term, so that the canonical momenta are not identically
zero, and all four components A, can be regarded as being
dynamical variables without the Lorenz condition.
Nevertheless, the GF term will cause A and A, to mix
up in their field equations, and the solution is nontrivial. In
this section we shall derive the solution of A, and the
corresponding canonical momenta of the Maxwell field
with the GF term in de Sitter space.

The metric of a flat Robertson-Walker (RW) spacetime is
written as

ds* = a*(7)[—d7* + 8;;dx'dx'], (1)

which is conformal to the Minkowski spacetime, with =
being the conformal time. The Lagrangian density of the
Maxwell field with a GF term in RW spacetimes is [1]

1 1
£ = Va3 P - 0P ) Q)
where F,, = A, , — A, ,, and { is the gauge fixing constant.
The field equation of A, is

1
F., + ‘ (Av,))* = 0. (3)

Applying the covariant four-divergence upon Eq. (3) gives
0(A*,) =0, where O =—-1%2(a2) + LV, s0, (4%,)

a* ot

satisfies the equation of a minimally coupling massless
scalar field. In this paper, all four components A, will be
formally regarded as dynamical field variables, and the
Lorenz condition will not be imposed as a condition on the
field operators. The equation (3) is written as

1
n70,0,A, + <E - 1)0,4(11”"0514/,)
1 Y 2 /
+ E [(Sﬂo(—Dl’] GGA/, + D AO -D Ao) - D()”Ao] = 0,

(4)

where #* = diag(—-1,1,1,1), D =2d(z)/a(r). The
i-component A; is decomposed into

A; = B; + 0;A, (5)

where 0;B; = 0 and A is a scalar function and 0;A is the
longitudinal. The canonical momenta are defined by

oL 1
7y = =" (0yA, —0,A¢) ——n* (n°°0,A, — DA,),
A a(aoA”) n ( 0440 4 0) C’? (’7 cilp 0)
(6)
its 0 component is contributed by the GF term,
o_ L 20 1 2
”A:EaA ;DZE(_(00+D)AO+VA>7 (7)
and the i component is
71754 = 5”(00141 - ajAo) = Wi + aiﬂ'A, (8)

where w/ = 0pB; is transverse, and
Ty = 0A — A )

is a scalar function and its gradient 0’74 is the longitudinal.
For convenience, in the rest of this section, we shall work
with the Fourier k£ modes of the fields and the canonical

momenta, for instance, B;(x) = f%Bik(r)e"k'x, etc. To
)2

avoid the cumbersome notation of subindex k, we also use
B;, A, Ay, 7y, 71'2 to represent their £ modes whenever no
confusion arises in the following. Then, with V> = —k?, the
k mode of (7) is written as

2 = —%((00+D)A0+k2A). (10)

Equation (4) is decomposed into the following equations in
the k space:

93B; + k*B; = 0, (11)
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1 1 1
—62A——k2A+<1——>aA ——DA, =0, (12
0 C C 0410 C 0 ( )

1 1
- Ea%;AO — KAy + : (D* = D")A,

1 1
+k2<<1—€>aoA+§DA> =0, (13)

where B;, A, and A stand for their k modes. The transverse
equations (11) are separated from A and A, unaffected by
the gauge fixing parameter, and, each i component of the
k-mode B; has the positive frequency solution of the
following form:

By(r) o £ (1) = ﬁ (14)

where the solution modes f,(f) are the same for two
transverse polarizations ¢ =1, 2 [see (57) (60) for a
precise expression of B;.]

-D

Equation (11) and the solution (14) are independent of
the scale factor a(7), and hold for a general RW spacetime,
including de Sitter space and Minkowski spacetime.

Equations (12) and (13) are the basic second-order
differential equations of A and A, for a general £, in which
A and A, are mixed up. Even in the Feynman gauge
(¢ =1), (12) and (13) become

—03A — kK2A — DAy = 0, (15)
—03Ag — K2Ag + (D* — D')Ay + K*DA = 0,  (16)

where A and A are still mixed up. [When D = 0, Egs. (15)
and (16) reduce to Egs. (B18) and (B19) in the Minkowski
spacetime that is most discussed in literature, and A and A,
are separate. |

We shall solve Eqs. (12) and (13) with a general { in the
following. By differentiations and algebraic combinations
of (12) and (13), we get two fourth-order differential
equations

{(1_9%_1 ](((5—1)63+D6%+k2(z:—1)(2—¢>ao+<2—c>kzD>A)_(a%%kz)A_o (17)

¢

and

€-2)p?= (- 1)D' -

(¢-1)%

{(1 —l> 9 +1D] ([(g 1D -D*— (¢ - 1)2%1&} B {(g —1)B3A — DRA, + (= 1) <D’ -D? —1_—C2Ck2>Ag

¢ ¢

1-2¢

¢

+ (¢ =1)(D" -=2DD")Ay + D(D* — D")A, + TkZDAOD - lagAO - KAy + % (D* = DA, = 0, (18)

which are separate for A and A, and valid for { # 1. [When D = 0, Egs. (17) and (18) reduce to Egs. (B6) and (B7) in

Minkowski spacetime. ]

In this paper we consider de Sitter space; the scale factor is

1
- - 5 - < S 3 19
a(t) = -7, —w<r<n (19)
where H is a constant and 7; is the ending time of de Sitter inflation, D = —2/7. Dropping an overall factor & (1 — ¢)?,

Egs. (17) and (18) become

(£ = 12K = 2(¢ = 3)]P2AW (1) — 4(8 = 3)7AP) (1) + 2[(£ — 1)k * — (£ + 1)(¢ = 3)k* 2 +2(L - 3)]A"(7)
+4(8=2)(C = 3)KPTA (1) + [(C = 1)%k4e* = 28( = 3)Kk*2? — 4(L = 3)]K*A(7) = 0 (20)

and

[(¢ = 1)2K222 = 2(¢ = 3)¢Je*AY) (z) — 4(¢ = 3)CP AL (x) + [2(C = 12K + 2(=38% + 6¢ + 1)K + 4(C — 3)¢]2AY ()
+4[(3¢ = 1)K* 7% = 2(¢ = 3)¢rA)(t) + [(§ — 1)2K57° + 2(=28% + 3¢ + 1)k*e* + 4(—242 + 3¢ + 1)k*7?

+8(¢=3)]4g(z) = 0

(21)
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where AW (7) = d*A/ar*, AB) (1) = 3*A/a, etc. These
are fourth-order differential equations of A, and A, valid for
a general {. Setting { = 1, they reduce to the fourth-order
differential equations in the Feynman gauge

2A® +27A0) £ 2(k222 — 1)A” + 2k2cA/
LR +2)A =0, (22)
|

(3 =) (kt + i) e Ei(=2ike) = 3i +2i{ 1 _,_
e

#AY £ 20340 4 222(k202 — 1)AY + 2(K32 + 2)7A),
+ (K% 4 2k2%22 — 4)Ag = 0. (23)

The positive frequency solutions of Egs. (20) and (21) for a
general { are obtained as

1 i i 1 .
A:b—_ 1__ —lkT_b . 24
a r)k( kr)@e 2 3k Ak (24)
b LLe—ikr L (3i — i0)k*t? ¥ Ei(=2ikt) + {(kr — i) 1 ok, (25)
a(z) 2k 3kz V2k
[
where Ei(z) = - ff? t~le~'dt is the exponential-integral The solutions (24) and (25) in the de Sitter space will

function, and the coefficients b,, b, are dimensionless
complex constants. [References [3,4] gave a solution which
seems to correspond to the special case { = 1 of our (24)
and (25).] We have chosen the same set of coefficients
(b1, b,) for A and A so that they satisfy the basic second-
order equations (12) and (13). At the classical level,
(b1, b,) are arbitrary. The b; part will be referred to as
the homogeneous solution, and the b, part as the inhomo-
geneous solution, and the terminologies ‘“homogeneous”
and “inhomogeneous” will be clear later around (36)—(45).
The complex conjugates of (24) and (25) are the indepen-
dent, negative frequency solutions. Although A and A,
respectively have four solutions (the Wronskians being
nonzero), but A and A in (24) and (25) share the same set
(b1, by). We have checked that the respective homogeneous
and inhomogeneous parts in (24) and (25) satisfy the basic
second-order equations (12) and (13), as well as the fourth-
order equations (20) and (21). When setting { = 1, (24) and
(25) reduce to the solutions of (22) and (23) in the Feynman
gauge. Plugging (24) and (25) into the definitions (9) and
(10) gives the canonical momenta

i1 . iH 1 .
) —ikt _ b —zkr’ 26
= b e T e e (26)
0 _ i—kr 1 ikt _ 1— i L e
A= e e Ha@\ =3 ) e

(27)

which are contributed only by the inhomogeneous part of A
and A, and are independent of {. It should be remarked that
the positive frequency (o< e~*7) modes (24), (25), (26), (27)
will not evolve into the negative frequency modes (c e*7)
during the de Sitter expansion prescribed by (1) and (19).
Note that the dimension [Ag] = k[A] and [74] = k[z].

reduce to the solutions in the Minkowski spacetime. But, if
one naively took @ = 1 and high & in (24) and (25), one
would come up with an incorrect claim that the Minkowski
limit can be obtained at only for { = —3. In fact, a(z) and
its time derivatives are implicit in (24) and (25).
An appropriate procedure of taking the limit of the
Minkowski spacetime is the following: Setting D =0
in Egs. (17) and (18) leads to Egs. (B6) and (B7) in
Minkowski spacetime, and the solutions are listed in
Appendix B.

The solutions (24), (25), (26), (27) can also be derived in
another way as the following. First, by applying d, and
combinations on the basic equations (12) and (13), we
arrive at the equations of 7, and 79,

(6(2) - Dao + kz)ﬂ'A = 0, (28)
(03 — Doy — D' + k*)x} = 0, (29)

which are independent of (. By rescaling z, = an,,
7% = arl, Egs. (28) and (29) become

ﬁ.A” + kzﬁ'A == 0, (30)
=01 2 2 =0
"+ k — )7 =0, (31)

and the normalized solutions are

1

= i —ikt
A = sz%ﬁe k . (32)
1 i :
7 =bH—— (1 ——> e ke, 33
A 2 \/2_k kt ( )
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Multiplying the above by a(z) gives the solutions (26) and
(27). Note that Eq. (30) of 74 is the same as the equation of
a rescaled conformally coupling massless scalar field, and
Eq. (31) of 79 is the same as the equation of a rescaled
minimally coupling massless scalar field [9]. Next, apply-
ing d, on the definitions (9) and (10) and by combinations,
we arrive at

03A + DopA + K*A = (0y + D)my — (AS,  (34)
03Ag + DA, + D'Ag + K2Ag = —(K*my + £0p7%),  (35)
which are the second-order differential equations of A and
Ay with the nonhomogeneous term as the source. [The
homogeneous equations of (34) (35) are just the equations
of A and A, of Maxwell theory without the GF term under

the Lorenz condition A*,, = 0.] By rescaling Ay = 1 A and
A =14, Egs. (35) and (34) become

_ 2\ -
A"+ <k2 - ?>A =TII(7), (36)
AOU + kZAO = Ho(T), (37)
where the nonhomogeneous terms are

(z) = a((dy + D)my — ¢nY), (38)
|

Aw) = ~Ay(e) [ ar T

w

((3 = &) (kt + i)e**Ei(—2ikz) — 3i + 2i{)

Iy(7) = —a(k*my + {0pny ). (39)

which are known from the given 7, and 9. The homo-
geneous solutions of (36) and (37) are simply given by

Ay(e) = éJ%T (1 - é) e-iks (40)
Aun(6) = e, (41)

which correspond to the b; part of the solutions (24) and
(25), and the Wronskians are

_o_, - i
Wt] = AA; —A)/A; = 2 (42)

WO [T] ES AOhAE/h - AOhlASh =1 (43)

Interestingly, the homogeneous equation (36) and the
solution (40) of A, are similar to (31) and (33) of ﬁ'g,
and, the homogeneous equation (37) and the solution (41)
of A, are similar to (30) and (32) of 7, [9]. By the standard
formulas of the inhomogeneous equations, we obtain the
inhomogeneous solution of (36) and (37)

+ (e [T

=b,

i HO(TI)A6h<T/)+A8h(T)/dT’HO(T/‘)}?Oh(T/)
0

(Bi = iQ)RTMEi(2ike) + {(kr=1)) 1y,

Ao(7) = Agu(7) / ) dr' — W,

3Hkt

ek (44)

N - =

After rescaling by 1/a(zr), the sum of (40) and (44)
recovers the solution A in (24), and the sum of (41) and
(45) recovers the solution of A, in (25). As we shall see
later, the complicated, inhomogeneous parts of A and A,
will simply cancel in the expectation value of the stress
tensor.

We analyze the gauge transformations of the Maxwell
field, and examine the consequential changes on the
solutions. The Maxwell field without the GF term is
invariant under the gauge transformation A, — A, = A, +
0, with 6 being an arbitrary scalar function; each compo-
nent transforms as

3Hkr?

VT (45)

B; — B; = B,
A—->A=A+0,
Ay > A=Ay + 0.

When the GF term o« (V¥A,)? is present, the Lagrangian
(2) and the field equation (3) are invariant only under a
residual gauge transformation with @ satisfying the follow-
ing equation:

[0 = V*V,0 = 0. (46)
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This is also the equation of a minimally coupling massless
scalar field [9], and its k-mode equation is

0! + DO + k*0, = 0. (47)

In de Sitter space the k-mode solution is

1 i i 1 .
ek(r):cw)% (“E)ﬁe «, (48)

with C being an arbitrary complex constant. The function
0, in (48) is of the same form as the homogeneous solution
A, of (24), and its time derivative is

1 1 .
0,0 = C———eike, 49
w0 a(z) 2k (49)

whose form is the same as the homogeneous solution A, of

(25). Thus, under the residual gauge transformation, the
longitudinal and temporal & modes transform as

i i 1
Ak—>Ak+C—i(1 l>—e"k’, (50)

a(t)k\©  kr) 2k
1 1 .
AOk d AOk + Cm\/—z_ke_lkf. (51)

Comparing with the solutions (24) and (25) of A and A, the
residual gauge transformation (50) and (51) amounts to a
change of the homogeneous parts of A and A, as the
following:

by = b, =b, +C. (52)

Under the residual gauge transformation the canonical
momenta are invariant,

Ty = 0)(A+0) = (Ag+0) = 74, (53)

1
74— _E(ao(A0+‘9,0)+D(A0+‘9,0) +I(A+0)) =7}

(54)

This invariant property is consistent with the fact that the
solutions 7, and 772 in (26) and (27) are contributed only by
the inhomogeneous parts of A and A,, and, therefore,
unaffected by any change of the homogeneous parts.

As we shall show in the next section, a consistent
covariant canonical quantization requires that the homo-
geneous part of A and A, be nonvanishing, b; # 0, b} # 0.
Therefore, at the quantum level, the parameter C of residual
gauge transformation will be further restricted.

III. THE COVARIANT CANONICAL
QUANTIZATION OF MAXWELL FIELD WITH
GENERAL ¢ IN DE SITTER SPACE

After obtaining all of the k modes (14) and (24)—(27) for
general ¢ in de Sitter space, we shall implement the
covariant canonical quantization. This procedure will con-
strain the coefficients for each mode, and restrict the
residual gauge transformation as well. The field operators
are required to satisfy the equal-time covariant canonical
commutation relations,

[Au (7. %), 74 (7, X')] = g 6(x = x'), (55)

with ¢¥, = 6", and the other commutators vanish. The ij
component of commutation relations can be decomposed into

A ] = [(Bi +A,). (W + )]
= [B;,w/] + [0,A, ¥ my], (56)

where the transverse and longitudinal components are inde-
pendent, and commute with each other.

The transverse components B; in de Sitter space are
simply the same as in Minkowski spacetime. We write the
operators of the transverse fields and canonical momenta as

Phk 3 o) f(6)(r i
Bix.o) = [ G 2 TR 1 (e

277:) o=1
+ aE:)sz({g)* (1)6‘“""], (57)
» RN (0) £(0) (o1
wi(z, X) _/7 e?(k)ay £ (r)e®x
(2ﬂ)3/2 ;
+ a0 £ (R)e ), (8)

where the modes f,({l'z)(r) are given by (14), and the
commutators of the transverse creation and annihilation
operators are

. a)" = sk -K),  (e=1,2), (59)
and the transverse polarizations satisfy
D Kef(k)=0. D et(k)ef (k) =87,

i=1,23
3] k2 .

€7 (k)ej (k) =6

=12

(60)

Calculation yields

[Bi(z.x). w/(z.x)]

. . d*k kzk ik-x ,—ik-x'
—zéij6(3)(x—x’)—z/(2ﬂ)3 ( k2]>elk e~ kX' (61)

The longitudinal A and temporal A, are mixed
up in the basic equations (12) and (13) in de Sitter
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space, so their field operator expansions are written as
follows:

&Pk .
A= /7 [(aQA + aiAy)e™ +Hel, (62)

(27)3/?

&k 0 3 ikx
Ay = )" [(ayAoux + agAox)e™™ +Hel.  (63)
where af) and ag)) are the annihilation operator of the

respective longitudinal and temporal field and satisfy

[a),a)] = n8®) (k — k') = —6%)(k —Kk’), (64)
@}, )] = 36 (k —k') =63 (k —K').  (65)

Equations (59), (64), (65) together constitute the covariant
commutator

@, al)"] = s (k - k'), (66)
which is independent of the gauge parameter {. The

longitudinal and temporal £ modes in (63) and (62) are
chosen to be

1 il i\ _ (3 = &) (kt + i)e**EBi(=2ikr) = 3i + 2i¢) 1 _.
A, = - 1 —— ikt _ lk‘t" 67
) k2R ( kr)e © 3k N (67)
1 i1 i\ _ ((3 =) (kt + i)e* Ei(=2ikr) = 3i +2if) 1 _,
A, — - 1—— ikt _ lkT’ 68
% =M ok ( k1> ¢ Tm 3k %" (68)
| ((3i — i) k>t e* M Ei(=2ikt) + {(kr —i)) 1 _,
A —_ —ikt __ —zkr’ 69
Ol = €1 a(z) 2ke @ 3kt \/2_ke (69)
11 ((3i — iQ)K* 7 e**Ei(=2ikt) + {(kr — i) 1 _.
A — —ikt _ —sz’ 70
02k ny Cl(T) 2ke my 3kt me ( )

where ¢y, ¢, my, m, are dimensionless complex coef-
ficients, and will be subject to some constraints by the
canonical quantization. From the expansions (62) and (63)
together with (67)—(70) follow the expansions of the
canonical momentum operators

&k .
= / (@7 + alza)e® +He),  (71)
(27)}

0 &k 0)_o 3)_o ik-x
Ty = (22)} ((ay 7y + ay 7y )e™™ +He.),  (72)

where the k modes of the longitudinal and temporal
canonical momenta are found to be

—i

IR N o — 73
Alk sz\/ﬁ ( )

—i 1 .
T ok = My E\/—Z_ke_lkr’ (74)

| R S
ﬂ?&lk = 62k<—E+W) \/—Z—ke k s (75)

1 i | .
ﬂgzk = m2k<—g+m> ﬁé’ k . (76)

These canonical momentum k modes are contributed by
only the inhomogeneous part of (67)—(70). There are
relations among the modes

Myt a1k = CoTA2ks (77)
My = Oy (78)

which will be used in Sec. IV to simplify the calculation of
the stress tensor. 74, # 0 and ng # 0 require that ¢, # 0 and
my §é 0.

Substituting the operators (62), (63), (71), (72) into each
component of (55), and using the commutator (66), by
lengthy calculation, we obtain the following constraints
upon the coefficients:

Imi|* =lei[> =0, (from[Ag. Aj]), (79)

(from[Ag. 7)), (80)

Imy|* = |e,* =0,

mym — ¢y¢ = —ik/H,  (from[Ag, z3]); (81)
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other commutators give no new constraint. It is seen that
c1#0, m #0, ¢, #0, my, # 0. This means that both
the homogeneous and inhomogeneous parts of the modes
(67)—(70) must be present in order to achieve the covariant
canonical quantization (55). There are many choices to
satisfy the set of constraints (79), (80), (81). For instance,
we take the following specific values:

k
CHr=1I—,

°H (82)

cp=m =1, my = 12H’
which are consistent with those in Minkowski spacetime.

Another implication of the constraints (79), (80), (81) is
that, in order to ensure the nonvanishing homogeneous part
of A and A, the residual gauge transformation will be
further restricted. Under the residual gauge transformation
(50) and (51), the k modes (A, Agix) and (Ay, Aga)

change as

~ 11
Ay = A=Ay + Cai <1

. ! > 78—1161’ (83)

k) 2k

- 1 1 .
Aot = Agix = Agig + C——— ik, 84
o1k = Aotk o1k + a\/ﬂe (84)

~ 11 I 1 .
A A, =A M=Z(1=—)—_¢ ik 85
2 = Ao u + ak( kr) \/ﬂe . (85)

- 1 1 .
Aok = Aok = Aoor + MZ— e~k (86)

V2k

where C and M are two constants and shift only the
coefficients of the homogeneous parts

cp—> ¢ =c+C, (87)

In analogy to the constraints (79)—(81), the new coefficients
also obey the following constraints:

i 2 = |ef P =0, (89)
[my[? = |e5 > =0, (90)
/ /*_//*:_-5 91
mainy = 66 "B (91)

which leads to the following restriction on the constants
C and M:

IM|? = |C|> + 2Re(m{M — ¢;C) = 0, (92)
sz* - Czc* = L. (93)

For the choice (82), the restriction (92) and (93) becomes

C=-M=ir (94)

where r is an arbitrary real number. As a result, the
homogeneous parts will not be transformed to zero
ch=14ir#0, my =1—ir#0. (95)
We call the residual gauge transformation with the restric-
tion (92) and (93), or (94), the quantum residual gauge
transformation. It is required by the covariant canonical

quantization, and is only a subset of the residual gauge
transformation (50) and (51) at the classical level.

IV. THE STRESS TENSOR OF THE MAXWELL
FIELD WITH GUAGE FIXING TERM IN DE
SITTER SPACE

The stress tensor serves as the source of the Einstein
equation. Given the action S[A¥] = [Ld*x, the stress

tensor is defined by T, = —\/%_g 5‘;;1, which is covariant.

Variation gives the stress tensor of the Maxwell field with
the GF term,

i 1 )
T/uz = F;MFL/ _ZQ/AUFGAF
111 o )2 Apo o o
+E z.g/w(A ;6) +g/u/A A Rz —A ;O'ﬂAI/ —-A ;O'I/A/l 5

(96)

and the trace of the stress tensor is 7%, = Z(A*A”,,).; which

is contributed by the GF term only. The corresponding
energy density and pressure consist of three parts:

p=—T% = p™® 4 pLT 1 )GF (97)
1 j TR LT GF
p=3T;=p"+p+p™. (98)
The transverse stress tensor is
1
pTR — 3pTR = ECZ_4(B;33 + Bi,jBi,j)’ (99)

which has an extra factor a™* to that in Minkowski
spacetime. This part corresponds to the Maxwell field
without the gauge term in the Coulomb gauge. Since B; is
independent of the gauge fixing constant { and invariant
under the residual gauge transformation, so are p'™® and
p™R. The longitudinal-temporal (LT) stress tensor is

1
pLT = 3pLT = 50_4(A/1Afj + AO,jAO,j - 2A0,jA,j0)

= = a_40,»7tAaiﬂA,

5 (100)
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which is written in terms of the longitudinal canonical
momentum 4. Since 7, is independent of { and invariant
under the residual gauge transformation (53), so are pT
and p'T. The GF stress tensor is

1] 1

11 1
PpOF = [Ec(ﬂg)Z _Ao(aozr% —Dn’%) +§A.jﬂ9"j:| . (102)
This part comes from a variant of the GF term
- % /—9(A",)? with respect to the metric g,,, and involves

7%, A, and A,. At the classical level, p©F and pSF in (101)
and (102) apparently depend on £. Besides, since A and A,
vary under the residual gauge transformation, pSF and p©F
seem to vary too. Later we shall see that the expectation
values of the operators pSF and p®F in the GB state are
independent of £, and invariant under the quantum residual
gauge transformation.

In the above the stress tensor of the Maxwell field is still
a quantum operator. To be a source of the Einstein equation,
its expectation value in quantum states is pertinent [10-14].
We now calculate the expectation value of the stress tensor.
In a state |¢) of the transverse field, using the property (60)
of transverse polarizations, we obtain the expectation value
of the transverse stress tensor

(Bl™I) = 3UDIp™I8) = Sa (BB, + B, B Ig)

dk dk
= / /’ZR =4 / TR Z
0 o=1.2
(103)
where the first term is the vacuum part, the second term is

the photon part, and the spectral energy density and
pressure in de Sitter space is

k4
272a*’
(104)

S 1y 1
Pt =3pf" = I @P + R (0] =

where the transverse mode f,((l) is given by (14). If the
photon part during de Sitter inflation is in thermal equi-
librium approximately, the photon number distribution will

be described by (pla\” al”|p) o 1/(eK/T = 1), and the
integration over k yields the photon part of the transverse

energy density
T \4
— . 105
() 009

dk

pIR

/ Z ¢|ak ak |¢>
=12

which is convergent, and diluting as a~* with the cosmic

expansion. We are more interested in the vacuum part.

The transverse vacuum spectral stress tensor (104) has only
one UV divergent k* term, which is similar to that in the
Minkowski spacetime [see (B41) in Appendix B]. Since the
solution (14) of B; holds for a general RW spacetime, so
does the transverse stress tensor (104), which also respects
the conservation law in a general RW spacetime

P+ 32 (pTR + piR) =0. (106)

The LT stress tensor should be removed since the
longitudinal and temporal fields are not radiative dynamical
degrees of freedom. This is conventionally implemented by
adopting the GB physical state [6-8]. For the longitudinal
and temporal fields, the GB physical states |y) are defined
as the following. The positive frequency part of the
temporal canonical momentum operator z of (72) anni-
hilates the state |y),

(0)

|1//> =0 - (ca, + mzak )|1p> =0. (107)

This GB condition on the physical state is weaker than the
Lorenz condition (V¥A, = 0) on the field operators. By the
choice (82), ¢ = —m,, (107) can be written as

(0)

@) — ai1jy) = 0. (108)

which also implies

wlay o) = wla) allw),  (109)
i.e., the number of temporal and longitude photons are
equal in the GB physical state. Together with the transverse
state |¢), the complete state of the Maxwell field can be
) =|#) ® |w). Itis known
that the GB condition (107) may not hold for a general RW
spacetime [15], where the positive frequency modes in the
asymptotic in-region may evolve into a combination of
positive and negative frequency modes in the asymptotic
out-region. This generally happens when the cosmic
expansion consists of several stages of power-law expan-
sion [16,17]. However, during the de Sitter expansion (1)
and (19), the positive frequency modes (24)—(27) remain
o e~k for the whole range of z, so that the GB condition
(107) can be imposed consistently.

The expectation of the LT stress tensor in the GB
physical state is

Wl ) = 3(wlp"" ) = s a (w|0msd'msly).  (110)

Substituting the operator 7, of (71) into the above gives

dk

(wlp“w) = 3(w|p“T|w) = /p];T—

AU
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where
K O (0) ) BINE) > > >
LT = 4, 2 4 k 9k ALk kK 9k TA2k|™ — | TAlLk A2k
pir = g CWlac ai w)lmanl” + 2la o ) lmand” = mad® + |7axd*)
K 3t (0 } 07 (3 .
ti28 Qlylay o ) whyman + 2wlay ag) [v)ah wan)
(© 3) (0
) (<W|ak —IZ|W>7Z,2411< + <V/|al(( )a(—l)<|l//>ﬂA2k”A1k
3) 3) (3
+ | Sl s + wlay a5y ey + He.). (112)
[
Applying the GB condition (107) and (109) and the mode e | 0
relation (77) with ¢, = —m,, we find that the longitudinal {wlp™ ) = at il 5 ( 4)” = Ao(dymy — D)
and temporal contributions cancel each other, and (112) |
becomes + gAﬁjﬂg.J ). (115)

=3pT =0, (113)
including the photon and vacuum parts. Thus, the LT stress
tensor is vanishing in the GB state even before regulari-
zation. This result is independent of {. The longitudinal-
temporal cancellation occurs in the GB state as long as the
modes 74, and 7, satisfy the relation (77), regardless the
concrete functions z4; and 74,;. We have also checked
that the LT stress tensor is zero also for the radiation
dominant stage (a « 7). So, it might be expected that the LT
stress tensor will be zero for a general power-law expansion
with a & 7". But this may not hold in a general RW
spacetime consisting of several stages of power-law ex-
pansion.

More interesting is the GF stress tensor which is less
studied in literature. The expressions (101) and (102) in the
GB physical state give

1 1
1o I0) = 25 v (- 2007 = Aofaust — D)

—A,,-ng,,) ly), (114)

It can be shown that the expectation value (y|(z3)?|y) = 0
in the GB physical state, so (114) and (115) reduce to

1
Wl ly) == (wl(=Ao(doy — D) = A 3 )lw),

(116)

1 1
19°70) = 35 1 (~Aa(ovsh = D) + 34,88, ) )
(117)

Substituting the operators (62), (63), (72) into (116), using the
commutators (64) and (65), the mode relation (78), the
coefficient constraint (80), and the GB condition (107), we
obtain

dk

(wlply) = /ng7, (118)
dk

(w|pSFlw) z/p?Fk, (119)

where the GF spectral energy density and pressure are

K (0)t (0) 2
= Agpr — A 17) + k2 22 A, —A
2d |:<l//|ak ag [yr) ) 02k o1k | (0 — )”mk "y 2k 1k ﬂAlk

3+ (3 m
+ <W|a§<) af()|y/> ((C—;Aow _AO2I<> (50 D)”Azk + K ( X Ak —Azk)ﬂAzk)

+ (Agix(9 — D)a%i, — Agar (0o — D)a%sy + K*A sy, — k2A2k”2*2k):| ;

(120)
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k3
Pk

0)f (0 C2 %) .
oF = T {(WWE() a,(()|y/> ((m_2A02k - AOIk) (00 — D)%y, — gkz <m2 Ay _Alk)ﬂgu)
Ht (3 m ;

+ <W|a1(( )Tal<( ) [y) <<C—22A011< - A02k> (00 — D)%y — 3 k2 < c; Ay — A2k) 7[9\2k>

1
+ (A()lk(a() - D)ﬂg*lk — Aozk(a D)”AZk k AlkﬂAlk -+ §k2A2k”g§k>:| s (121)

each consisting of three contributions: the temporal photons, the longitudinal photons, and the vacuum. Substituting the
modes Ay, Ay, Agixs Aok of (67)~(70) and the modes 7Y, 7%, of (75) and (76) into (120) and (121), we do lengthy
calculations. As we notice, the inhomogeneous parts of A cancel in each of the following combinations: (r‘n—: Aoor — Ao1r)s

(':’—22 Aorr — Aoa)» Ao1r (00 — D)%y, — Aok (09 — D) 755, 5 and similarly, the inhomogeneous parts of A cancel in the following:

(;—22 Agr — Ayp)s (’:—;Alk —Aop), (A, — Ayn%y,). So, only the homogeneous parts contribute to (120) and (121), yielding

K G () O () 1 K !
ng = (2ﬂ2)a4 |:(<W|ak ag lw) — (wlay "a [y) | 1+ 21272 + 222d* I+ 222 ) (122)
k4 1 1 k4 1 1
GF _ 2 Gt 3\ _ (0)7_(0) 1 — Bl O O 123
pk (2752)a4 3 |:(<l//|ak ay |W> <W|ak ay |W>>< 2k2T2>:| + (271'2)614 3 ( 2k2T2> : ( )

By (y/|a£0”a§(0>|y/> = <1;/|af”al((3)|y/>, the longitudinal and
temporal photons cancel each other, and only the vacuum

part remains,
k* 1
GF _ 1
Ry < * 2k212>’

Kol | 1
e’ T 2724%3 2k%¢2 )

This GF vacuum part is independent of { too, because the
{-dependent, inhomogeneous parts of the kK modes of A and
Ay have canceled. The GF vacuum stress tensor also
respects the conservation law

(124)

(125)

a/
P 3+ pT) =0 (126)
but contributes a nonzero trace
GF GF K 1
—p +3pYt = — #0. (127)

27%a* (k*7?)
|

|
The form of (124) and (125) is the same as twice the
vacuum stress tensor of the minimally coupling massless
scalar field [9,14]. It contains two UV divergent terms: the
k* term is dominant and corresponds to the UV divergence
in the Minkowski spacetime [see (B46) in Appendix B],
and the k> term reflects the effect of the cosmic expansion
and is absent in Minkowski spacetime.

The transverse stress tensor and the LT stress tensor are
invariant under the residual gauge transformation even at
the classical level. Now we examine the behavior of the GF
vacuum stress tensor (124) and (125) under the quantum
residual gauge transformation. Firstly, according to (95),
¢ # 0 and m) # 0, the homogeneous part of A and A, will
not be transformed to zero under the quantum residual
gauge transformation. As a result, the vacuum GF stress
tensor will not be transformed to zero since it is contributed
by the homogeneous part. More than that, the GF stress
tensor in the GB state is actually invariant under the
quantum residual gauge transformation. This fact can be
shown by a direct calculation of the variation of the GF
spectral stress tensor (120) and (121)

L PR % (0) 1 !
5,0?}: = 2 (;C —m3M)iH |:(<W|ak ak |W> (wlay a ly)) | 1+ 21272 + {1+ 2022 (128)
S GF _ k3 1 C “MiH 3t 3 0 0 1 1 1 1 129
Py = 2a4§(02 - myM)iH | ((wlay aily) — (wlay agly)) ok 2 + o)l (129)
According to the constraint m,M* — ¢,C* = 0 of (93), the above is vanishing
spSt =0, spSt = 0. (130)
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V. THE REGULARIZATION OF STRESS TENSOR
OF MAXWELL FIELD IN DE SITTER SPACE

So far three parts of the vacuum stress tensor have been
derived in de Sitter space. The LT stress tensor (113) is zero
in the GB state, no need for regularization. The transverse
vacuum stress tensor and the GF vacuum stress tensor both
contain UV divergences, which need to be regularized as
the following.

The transverse vacuum stress tensor (104) has only one
quartic k* divergent term, so the zeroth-order adiabatic
regularization is sufficient to remove the UV divergence
[9,14,16—18]. The equation of two transverse modes is
Eq. (11) and the exact solution is f,(f)(r) in (14). The
adiabatic transverse modes are the same for two polar-

izations (¢ = 1, 2), given by the Wenzel-Kramers-Brillouin
(WKB) solution of (11) as the following [9-11,14,16,17]:

Fu(z) = 2W(2)12 exp [—i / ’ W(r’)dr’}, (131)

where the effective frequency is

w45 e

which will be solved iteratively. The zeroth-order fre-
quency and mode are

WOth =w = k, (133)

1
karh(T):E ek = fk :

In fact, all adiabatic orders for the transverse modes are the
same

(134)

Woi = Wang = Way = ... = k, (135)

kazh(T) :kand(T) :fk4zh(f) = .. :f/(ca)a (136)

like a conformally coupling massless scalar field [9,14].
Substituting the zeroth-order mode f'q,;, of (134) into (104)

to replace f,((l) yields

k3
ngth = 317?5:}1 = By [|f}(0,h(r)|2 + K| from(7)]?]

k4
- 2na*

= % = 3p[¥ (137)
1.e., the zeroth-order adiabatic subtraction term for the
transverse spectral stress tensor is just equal to the exact
spectral stress tensor (104). Hence, by subtraction, the
zeroth-order regularized transverse vacuum spectral stress
tensor is vanishing,

Pirg =PL% = Piom = 0, (138)
Pireg = Pi% = Piom = 0 (139)

The results (137)—(139) hold also for a general RW
spacetime. This is because B; of (14) and its adiabatic
modes (136) hold for a general RW spacetime [9].

The GF vacuum stress tensor (124) and (125) has the k*
and k> divergent terms, so the second-order adiabatic
regularization is sufficient to remove the UV divergences
[9,14,16—18]. To calculate the second-order adiabatic sub-
traction terms of the stress tensor, we need also respectively
the second-order adiabatic modes of ﬂgk, Ay, and Ay.

The equation of rescaled 7, is given by (31) and the
solution is given by (33). The WKB solution of (31) is

B = QW) Pexp| i [Wihar|. (a0
where the effective frequency is
2 1 /W 3 (W22
= |0* -5 —= 141
vo= |-G (w2 (w) )] o
which will be solved iteratively. The zeroth-order is

Wy = @ = k, and the second-order and the higher orders
are found as

(142)

so the second-order and all higher order adiabatic modes
are the same, and given by

(143)

which is equal to the exact mode 7':2 in (33). Multiplying by
a(z), one has 79, , = 79, i.e., the second and higher order
adiabatic modes are equal to the exact modes (75) and (76).
The WKB approximation of A and A° can be derived, in
principle, from their fourth-order differential equations, but
the calculation will be more involved. Actually we can
directly get their second-order adiabatic modes from high k
expansions of the exact modes (67)—(70). Moreover, as
mentioned earlier, the inhomogeneous part of A and A do
not contribute to the GF stress tensor, so we need only the
homogeneous parts of (67)—(70) as the following:

1 i i 1 .
Ap=cp—— (1= L) ik, 144
s (w09
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1 i i 1 )
Ay =m—— 1 —— | —= 77, 145
w3 g 09

which are of the second adiabatic order already, and

I 1 .
Agpp = € ———— e~ike, 146
Olk la(T)m ( )
1 1 .
Agop = My ———— ek, 147
02k la(T)m ( )

which are of the zeroth adiabatic order, and are also equal to
all higher order homogeneous modes. [Similarly, for 74, the
adiabatic modes of all orders are equal to the exact mode
(26). Here we shall not need these for regularization.]
Substituting these adiabatic modes into the expressions
(120) and (121) to replace 7%, 7945 A1x> Azes Aorrs Aoaks
we obtain

K 1
ngnd = 2224 (1 + 2k212> = ng’ (148)

GF1k4< 1

== - = pSF. 149

Pi2nd 3222a% 2](21'2) P ( )
As expected, the second-order adiabatic subtraction term
for the GF spectral stress tensor is equal to the exact GF
spectral stress tensor. By subtraction, the second-order
regularized GF vacuum stress tensor is zero,

Pireg = PR = Pitna = 0. (150)
Pltreg = PR = Pina = 0. (151)

and the regularized trace is also zero,
~Piteg T 3Pikeg = O- (152)

So, there is no need to introduce a ghost field to cancel the
vanishing GF vacuum stress tensor (150) and (151), and
this vanishing vacuum stress tensor cannot be a candidate
for the cosmological constant [3,4]. (Instead, the regular-
ized vacuum stress tensor of a massive scalar field, either
minimally or conformally coupling, does give rise to the
cosmological constant [14,18]). Putting the three parts
together, the total regularized vacuum stress tensor of a
Maxwell field with a general GF term is zero,

Preg = Preg = 0. (153)
and there is no trace anomaly. This result is independent of
£, and also invariant under the quantum residual gauge
transformation. Reference [1] adopted the point-splitting
regularization [18-20], and also arrived at the zero vacuum

stress tensor of the Maxwell field in the Feynman gauge, at
the price of introducing a ghost field to cancel the GF stress
tensor. The trace anomaly has been regarded as a consensus
since the 1970s; nevertheless our calculation shows no
trace anomaly for the Maxwell field. References [21,22]
claimed the trace anomaly under the assumption that the
Green’s function contains a boundary term w(x, x’) which
is unsymmetric in (x,x’). But, as we show, the exact
Green’s functions (A8) and (A9) in de Sitter space do not
contain such an unsymmetric boundary term [9,14,18].

VI. CONCLUSION AND DISCUSSIONS

We have studied the Maxwell field with a general gauge
fixing term in de Sitter space. All four components A, are
formally treated as independent variables, and no Lorenz
condition is imposed. The introduction of the GF term
restricts the gauge invariance of the Maxwell field down to
aresidual gauge invariance given by (48). Furthermore, the
covariant canonical quantization restricts further the
residual gauge invariance down to the quantum residual
gauge invariance specified by Eq. (94).

The transverse components B; are separated from other
components, independent of the gauge fixing constant (,
and represent real dynamical degrees of freedom, and their
equation (11) and solution (14) hold for a general RW
spacetime including de Sitter space. The transverse stress
tensor (103) consists of the particle parts (105) and the
vacuum part (104) with a UV divergent term o k*.

The longitudinal and temporal components A and A, are
mixed up in the {-dependent equations (12) and (13). We
have obtained their solutions (24) and (25) in two different
ways. In particular, in the second way, via the inhomo-
geneous equations (34) and (35), the nontrivial structure of
the solutions A and A is revealed, each being a sum of the
homogeneous and inhomogeneous solutions. The canoni-
cal momenta are contributed only by the inhomogeneous
solutions of A and A, and only the homogeneous parts will
vary under the residual gauge transformation (50) and (51).
For a consistent covariant canonical quantization, both the
homogeneous and inhomogeneous k& modes of A and A,
need to be present in the operator expansions. Moreover,
the homogeneous k modes of A and A, will not go
vanishing under the quantum residual gauge transforma-
tion. The LT stress tensor (110) is independent of £, and
invariant under the quantum residual gauge transformation.
Further, its expectation (113) is zero in the GB physical
state due to the longitudinal and temporal cancellation.

More interesting is the GF stress tensor, which is less
studied in literature. At the classical level the GF stress
tensor (101) and (102) depends upon {; nevertheless, its
expectation value (122) and (123) in the GB physical state
is independent of ¢, and also is invariant under the quantum
residual gauge transformation. Moreover, its particle part is
zero due to the longitudinal and temporal cancellation; only
the vacuum part (124) and (125) remains, which contains
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two UV divergent terms,  k*, k%, and is equal to twice the
vacuum stress tensor of the minimally coupling massless
scalar field.

To remove the UV divergences of the vacuum stress
tensor, we have carried out the adiabatic regularization.
The transverse vacuum stress tensor becomes zero under
the zeroth-order adiabatic regularization, and, respectively,
the GF vacuum stress tensor becomes zero under the
second-order adiabatic regularization. Thus, there is no
need to introduce a ghost field to cancel the GF stress
tensor, and the vanishing vacuum GF stress tensor of the
Maxwell field cannot be a possible candidate for the
cosmological constant. Instead, the regularized vacuum
stress tensor of a (minimally or conformally coupling)
massive scalar field corresponds to the cosmological
constant that drives the de Sitter inflation [14,18].

In summary, for the Maxwell field with a general GF
term in de Sitter space described by (1) and (19), the total
regularized vacuum stress tensor in the GB state is zero, and
only the photon part of the transverse stress tensor (105)
remains, and all the predicted physics will be the same as
that of the Maxwell field without the GF term.

We have also carried out analogous calculations in the
Minkowski spacetime, attached in the Appendix B. The
outcome is similar to de Sitter space, except that the GF
vacuum stress tensor has only one k* term, which can be
made zero by the normal ordering.
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APPENDIX A: GREEN’S FUNCTIONS FOR
MAXWELL FIELD IN THE FEYNMAN GAUGE

Reference [19] proposed the following relations (see also
Ref. [1] for the application)

GV = _Gs,, (A1)
G = _Gs,, (A2)
where
G (x.x') = (0](A4, (1) Ay (x') + Ay (x)A,(x))[0)  (A3)

is the Hadamard type Green’s function for the Maxwell
field in the Feynman gauge ({ = 1), and
Gs(x,x') = (0lp(x)p(x') + ¢(x')p(x)[0)  (A4)

is the Green’s function for a minimally coupling massless
scalar field where ¢(x) is the scalar field operator. Note that

Gfﬂlj), (x,x’) is not an ordinary tensor, but a bivector at x and
at x’ respectively. Similarly, Gg(x, x’) is a biscalar at x and
at x" respectively. In the following we check the relation
(A1) in de Sitter space.

Write the operator ¢ as

&k

P(x) = | ——(ade(n)e™™ + algy(z) ™), (AS)
(2n)>
where the £ mode of ¢ in de Sitter space is [9,14]
IR Y SR g
Pr(7) = BT (1 kf)e . (A06)

Simple calculation yields the Green’s function of the scalar
field

3 12
Gs = /%%((—i—l—kr)(i—l—kr’)

x e K=7) | ¢ ¢ )k (xX). (A7)

After the k integration, (A7) becomes [18]

il F—i—ln <— 27;/ aﬂ (A8)

Osxx)=-2315 .
0

with ¢ = ﬁ [(z=7)%*—=|x =x'|?] and 7, being a con-
stant. For the conformally coupling massless scalar field the
Green’s function is

, H?>1
G(x,x') = ry (A9)
which is relevant to the case in Refs. [1,21,22]. Both (A8)
and (A9) are symmetric in (x, x"). For an extension of (A8)
to vacuum states other than the Bunch-Davies vacuum
state, see Ref. [23].

The time and spatial derivatives of (A7) are

Ca) 2
X ((z + —) e~ kr=7) 4 C.C.) ek (x=x) (A10)
&k HY ,
Gus = = [ ooy i) 3 (=i k)4 &)

x e~ KT=T) 4 ¢.c) ek X)), (Al1)
From the solutions (14), (24), (25), of A,(x) in de Sitter
space, we obtain each component of the Green’s functions
of the Maxwell field as the following:
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(1) Pk emM) 2 2ik ” ikt I 2ik / 2ikt 20 N 2ikt 2 2ik
Gy = [—il(r=e™" + 72" ) + k(rt! (ze”'F" + 7™ ) — {7 (i + k') e " — (% (i + kr)e™™

(2rn)? 6k3t7

— ik (=3 + {)2T2(Ei(2ike) + Ei(2ikt’) + M) (Ei(=2ikt) 4 Ei(=2ikt’)))]e~® =),

(2r)3 6kt

d3]_€' k kl'/ . / . . ’
G;,I/) — /2]((27[)3 <61i’ _ ]ZCZ >(e—lk(’[—’[) 4 e—tk(ﬂ—f))ezk(x—x)

(27)3 6k

— ik2e** (i + kt') (=3 + 2¢ + ie*** (=3 + &) (i + kr)Ei(=2ikz))
+ ik (=i + k') (2K (=3 4+ 28) — i(=3 + ) (—i + kr)Ei(2ikz))

Each contains the exponential-integration function Ei. In a
homogeneous and isotropic RW spacetime, there is a
symmetry

(A12)
3k .k" . / .
Gl = / d’k_ik; [(e"* ) (1 + ike) (K272 (=3 + ) Ei(2ikz) 4 ¢***¢(1 — ikr))
+ M) g2kt g 202(3 - 2 4 72k (=3 + {) (1 4 ikt )Ei(2ik7’)))
— (") (=1 + ikt ) (k22 (=3 + §)Ei(=2ikt) + e72*¢(1 + ikr))
+ ek 2k 202 (=3 4 2 4 €K (=3 + () (—1 + ikt ) Ei(—2ik7)))] e ), (A13)
d3k k[kl/ —ik / ) . 2ik / . . / . . /
+ | e e[k (=i + k) (¥R (=3 4+ 28) — i(=3 + {)(=i + k7 )Ei(2ik7))
— ik2e**7 (i 4 kr) (=3 + 2¢ + ie** (=3 4 &) (i + kt')Ei(=2ikt’))]e™ =¥, (A14)
[
(w1 0 _,40 ) -0
G\ = -G\ =2 G, +G)) ). Al7
vi (1(1’)2 ( 07,0 a(T) 0i + 1l ( )
Calculation shows that
GS’);D ==Gsy, (A18)

so that
1 1
G,(’(]) ()C/, x>|x<—>x’ = G((),’) (X, x/)|x<—>x"

Since G! ,(x, x') is a vector at the point x, the 0’ component
of the four divergence is calculated as

1)w v~ 1 a 1
Gf,o2 =g GIEO?;;! =g (GI(JUE./J - Fqufxo)’)

_ 1 1 a
—a? (—Gé&o +GY - 2EG§)02) (A15)
with Ty =%, T =6,;% T{, =%5; Substituting
(A12)—(A14) with { = 1 into the above yields,
Gy = ~Gyy. (A16)

where Gg is given by (A10), and the Ei function has
been canceled. Similarly, the i/ component of the four
divergence is

where Gy ; is given by (A11). So, the relation (A1) in the
Feynman gauge is verified. Similarly, (A2) can be also
checked. Note that (Al) and (A2) are not valid for a
general .

APPENDIX B: MAXWELL FIELD WITH
A GAUGE FIXING TERM IN MIKOWSKI
SPACETIME

Although the Maxwell field in the Minkowski spacetime
is well known, the Maxwell field with a general GF term is
nontrivial, and has not been adequately reported in liter-
ature [8]. The procedure of calculation is analogous to that
in de Sitter space. In the following we shall report briefly
the results. Setting D = 0 in (4) gives the field equation

1
n°r0,0,A, + (Z - 1> d,(n°0,A,) = 0. (B1)

Setting D = 0 in (12) and (13) gives the following basic
second-order equations:
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1 1
—RA —~IkPA + (1 - Z) dAy = 0, (B2)

¢
1 2 2 2 1

where A, and A are mixed up, and B; has the same equation
and solution as (11) and (14) in de Sitter space. The
decomposition is similar to (5)—-(10), but the temporal
canonical momentum is

% = —%(avo + K*A). (B4)

Equations (28) and (29) reduce to (d3 + k*)z4 = 0, and
(03 + k*)z% =0 in Minkowski spacetime; the positive
frequency solutions are

1 N
a1y =dy——e ™, Jr%:dQ(zk)—me ke (B5)

V2k

where d; and d, are arbitrary coefficients. By differ-
entiation and combination of Egs. (B2) and (B3), we
obtain the fourth-order differential equations

(03 + K*)?A =0, (B6)

(0% + k*)*Ap = 0, (B7)
which are separate, and independent of ¢, unlike (20) and
(21) in the de Sitter space. The positive frequency solutions
of (B6) and (B7) are

i1 . i (14 2ikz) _
At) =br—=e" 4 co—=—e"" (B8

where b, by, c, ¢, are arbitrary constants. Substituting (B8)
and (B9) into the basic equations (B2) and (B3) to
constraint (c, ¢g, b, by), we obtain, for { # —1,

i1 1 £—1i(1+2ike)
At =b———e" %+ _(b—b Z ike
@ =t TR e A
(B10)
1 —ikt
Ao(T) = b\/iz_ke + (b - bo)
1¢-1 1
—1+=-——"—(1+2i — ikt B11
X( +2c+1(+”"))me - (Bl
2b—by) 1,
2070 ik BI12
IR Uk (B12)

(B13)

where the canonical momenta are contributed only by the
(b — by) part of (B10) and (B11). Similarly, for { # 1, we
obtain

i

1 . i1 .

A(T) = b———=e" % 4 ¢(1 + 2ikz) ———= e~ 7, B14
(r) = by o ( )% T (B14)

1 . 1 1 )
Ao(T) = bﬁe—lk‘[ —l— C((l +2lkT) —2%> \/—2_ke_lk7."
(B15)

4 1 .
Ty =c————e ik B16
T (B16)
4 1 )

D~ =c —ik) —— e k7, B17

In the Feynman gauge Eqs. (B2) and (B3) with { =1
reduce to

(0(2) + k%A =0, (B18)
(& + ) =0, (B19)

which are already separated for A and A, and the solutions
(B10)—(B13) reduce to

i1 . 1 .
Alt) = b——=e"iF, A = by——=e"*", B20
(T) k\/2_k O(T) 0\/2_k ( )
1 —ikt 0 : 1 —ikt
ﬂA:(b_bO)\/—z_ke s ﬂA:(b—bo)(—lk)\/ﬁe .
(B21)

The Feynman gauge is commonly used in text books,
whereas a general gauge is less addressed.

The solutions of A and A, can be rederived by another
way. Setting D = 0 in (34) and (35) leads to the following
inhomogeneous equations:

03A + k*A = dymy — {7, (B22)

RAg + KAy = —(K2ry + L0yrY). (B23)

Since 7z, and zr% are known in (BS5), we get the solutions
of (B22) and (B23),

i(1+2ikt) .

i1 . 1
A=b-——e " —_(d| +dy0)—~——"rLe ik, B24
( 1 ZC)k \/Z_k ( )

k~/2k 4
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.1 (1 +2ikr)
An=Db —ikt _ d + d —ikt
0 0 \/2—](6 4( 1 22:) \/2—k e

Substituting (B24) and (B25) into (B2) and (B3) leads to
the constraints on the coefficients

(B25)

(=
(@ -+ = 26-b) S @21, (829
(b=b) =1 @ ca) @41, (B2

This gives (B10) and (B11) for { # —1 and (B14) and
(B15) for ¢ # 1, respectively.

Given these solutions, we perform the canonical quan-
tization for a general . The quantization of the transverse
fields B; is the same as (57)—(61) in de Sitter space. The
longitudinal and temporal operators A, Ay, 7, and 71'% for a
general ¢ are the same as (62), (63), (71), (72), but with the
k modes (for £ # 1)

i

1
Ap(r) = bl%\/ﬁ ek 4o~ (1 + 2ikt) —— \/_ e~ikt,
(B28)
i
AZ]((T) — b2 %—\/ﬂ _lkT + Cz—(l + 2lkT) \/_ —lk‘t’
(B29)
- CH1N 1
AOlk(T) :b]ﬁe_lkr—FC] <(1+21k7) 2(: 1> \/_ke_lkr,
(B30)
ik : ¢+l
A02k(T) = bz\/—z_ke k =+ Cy <(1 + ZlkT) - 2?)
1 )
X ——e T, B31
VT (B31)
4 1 )
e N BT e, (B32)
4 1
Taok = C2 = 1\/—2—](@_'1" (B33)
4 1 .
—ik) —— ek B34
ALk é«_ 1( l )me ( )
4 . 1 —ikt
T a2k czﬁ(—zk)ﬁe ¢ (B35)

where (b1, c¢;), (by, ¢,) are two sets of coefficients. [In the
Feynman gauge, the conventional one-operator expansion
of A and A, will be used since their equations are separated
as (B18) and (B19).] We impose the covariant canonical
commutation relations

[A#(z.x), 74 (7. Y)] (B36)
Substituting the operators (63), (62), (72), (71) into each
(uv) component of (B36), using the commutation relations

(66), we obtain the following constraints upon the coef-
ficients (for ¢ # 1):

=in"s(x —y).

1
(c2uby = c1uby) = Z(C— 1), (B37)
o = [er|* =0, (B38)
b2 = by ? = 1. (B39)
There are infinite many choices to satisfy the above
constraints. For instance, a simple choice is ¢c; = —c, = 1,
b 2 1 b —2 _ &L
1= =1 1~ g 2= =1 ]

The stress tensor is not actually used in the Minkowski
spacetime since gravity is not considered. Here, in analogy
to that in de Sitter space, we calculate the stress tensor in
Minkowski spacetime. The transverse, LT, and GF stress
tensors are defined similar to the expressions (99)—(102)
with a =1 and D = 0. We list the main results. The
transverse stress tensor is

T
# [ S @l 0
where the transverse spectral stress tensor is
o = 1A @F + I @) = 5 = 3
(B41)

The first term of (B40) is the UV divergent vacuum energy
density in Minkowski spacetime, which is routinely
removed by normal ordering of the creation and annihila-
tion operators. The LT stress tensor in the GB state |y) is

) dk
wlomomly) = [ AT

(B42)

wlp"y) =3(wlp""lw) =

N[ =
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where
P = 3pT — 0. (B43)
The GF stress tensor in the GB state is
(wlpCFly) = /p?Fik, (w|pFlw) = /pfFik,
(B44)

where

oF _ .68 _ K @) () ) (0)

P =3p; :2—”2[<V/|ak ay’lw) = (wlay ay’ly) + k.
(B45)

[It is remarked that the trace of the GF part is zero in
Minkowski spacetime, unlike the nonzero trace (127) in

de Sitter space.] By the GB condition (109), the photon part
cancels, and only the vacuum part remains,

4

k
GF _ 3 GF _
Pk Pk 2’

(B46)
which has only one divergent k* term, corresponding to the
dominant UV divergent terms of (124) and (125) in de Sitter
space. The UV divergence of (B46) in Minkowski spacetime
can be removed by normal ordering also, yielding a zero
GF stress tensor. The expectation values of all three parts of
the stress tensor are independent of ¢, and the regularized
vacuum stress tensor is zero. Thus, the properties of the
stress tensor of the Maxwell field with the GF term in
Minkowski spacetime are similar to those in de Sitter space.

The above calculations are based on the modes
(B28)-(B35) for { # 1. We may as well use the modes
(B10)~(B13) for ¢ # —1, implement the covariant canoni-
cal quantization, and get the same stress tensor.
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