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The Maxwell field with a general gauge fixing (GF) term is nontrivial: not only the longitudinal and
temporal modes are mixed up in the field equations, but also unwanted consequences might arise from the
GF term. We derive the complete set of solutions in de Sitter space, and implement the covariant canonical
quantization which restricts the residual gauge transformation down to a quantum residual gauge
transformation. Then, in the Gupta-Bleuler (GB) physical state, we calculate the stress tensor which is
amazingly independent of the gauge fixing constant and is also invariant under the quantum residual gauge
transformation. The transverse components are simply the same as those in the Minkowski spacetime, and
the transverse vacuum stress tensor has only one UV divergent term (∝ k4), which becomes zero by the
zeroth-order adiabatic regularization. The longitudinal-temporal stress tensor in the GB state is zero due to
a cancellation between the longitudinal and temporal parts. More interesting is the stress tensor of the GF
term. Its particle contribution is zero due to the cancellation in the GB state, and its vacuum contribution is
twice that of a minimally coupling massless scalar field, containing k4 and k2 divergences. After the
second-order adiabatic regularization, the GF vacuum stress tensor becomes zero too, so that there is no
need to introduce a ghost field, and the zero GF vacuum stress tensor cannot be a possible candidate for the
cosmological constant. Thus, all the physics predicted by the Maxwell field with the GF term will be the
same as that without the GF term. We also carry out analogous calculation in the Minkowski spacetime, and
the stress tensor is similar to, but simpler than that in de Sitter space.
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I. INTRODUCTION

The Maxwell field is well studied as a quantum field in
the flat spacetime. The canonical quantization is simple in
radiation gauge in which the temporal and longitudinal
components are set zero; only two transverse polarizations
remain as dynamical variables. However, when a general
gauge fixing (GF) term is introduced for a covariant
canonical quantization, the longitudinal and temporal
modes, A and A0, are mixed up in their field equations,
and the solutions are nontrivial except in the Feynman
gauge. In curved spacetimes the mixing-up of A and A0

occurs even in the Feynman gauge. More seriously, the
introduced GF term gives rise to a part of a stress tensor,
which would bring about unwanted consequences.
Conventionally, a ghost field is introduced [1,2] to cancel
out the GF stress tensor, so that the net result will be a zero
stress tensor, and no unphysical consequence will occur. In
another treatment [3,4], the GF term was used to play a role
of the cosmological constant. However, the vacuum GF

stress tensor is UV divergent, and must be regularized
before considering its possible physical implication.
Reference [5] adopted Dirac’s approach to a constrained
system to study the Maxwell field (without the GF term) in
a general RW spacetime, and calculated the Hamiltonian.
But the noncovariant Hamiltonian is not the same as the
stress tensor, and the UV divergences and regularization
were not addressed either.
In this paper, we shall derive the complete set of

solutions of the Maxwell field with a general GF term in
de Sitter space, and reveal the interesting structure of the
solutions. With these, we shall implement the covariant
canonical quantization, and obtain its constraint on the
coefficients of solution modes, as well as its restriction on
the residual gauge transformation. Then we shall calculate
respectively the transverse stress tensor, the longitudinal
and temporal stress tensor in the Gupta-Bleuler (GB) state,
and the stress tensor due to the GF term in the GB physical
state [6–8], and demonstrate the UV divergences of the
vacuum stress tensor. Finally, we shall perform the
adiabatic regularization on the vacuum stress tensor, and
show that the resulting regularized vacuum stress tensor is
zero, so that all the predicted physics of the Maxwell
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field in de Sitter space is the same, with or without the
GF term.
The paper is organized as follows. In Sec. II we derive,

by two methods, the solutions of the Maxwell field with a
general GF term in de Sitter space. In Sec. III we present the
covariant canonical quantization. In Sec. IV, we calculate
all three parts of the stress tensor. In Sec. V, we perform the
adiabatic regularization of the vacuum stress tensor, and
Sec. VI gives the conclusion and discussions. Appendix A
gives the Green’s functions for the Maxwell field in the
Feynman gauge, and demonstrates its relation to the
Green’s function of a minimally coupling massless scalar
field. In Appendix B, we give analogous calculation of the
Maxwell field with a general GF term in the Minkowski
spacetime, which has not been fully reported in literature.
We shall use the units (ℏ ¼ c ¼ 1).

II. THE SOLUTIONS OF THE MAXWELL
EQUATIONS WITH ζ IN DE SITTER SPACE

In the free Maxwell field theory, the longitudinal and
temporal components, Ajj and A0, are not real radiative
dynamical degrees of freedom. A simple treatment is to
take the Coulomb (radiation) gauge, in which the longi-
tudinal and temporal components are set to be zero,
∇ ·A ¼ 0 ¼ A0, and the canonical quantization is per-
formed only on the transverse parts. The treatment in the
Coulomb gauge is not explicitly covariant. To achieve the
covariant canonical quantization, one can introduce a GF
term, so that the canonical momenta are not identically
zero, and all four components Aμ can be regarded as being
dynamical variables without the Lorenz condition.
Nevertheless, the GF term will cause A and A0 to mix
up in their field equations, and the solution is nontrivial. In
this section we shall derive the solution of Aμ and the
corresponding canonical momenta of the Maxwell field
with the GF term in de Sitter space.
The metric of a flat Robertson-Walker (RW) spacetime is

written as

ds2 ¼ a2ðτÞ½−dτ2 þ δijdxidxj�; ð1Þ
which is conformal to the Minkowski spacetime, with τ
being the conformal time. The Lagrangian density of the
Maxwell field with a GF term in RW spacetimes is [1]

L ¼ ffiffiffiffiffiffi
−g

p �
−
1

4
gμρgνσFμνFρσ −

1

2ζ
ðAν

;νÞ2
�
; ð2Þ

where Fμν ¼ Aμ;ν − Aν;μ, and ζ is the gauge fixing constant.
The field equation of Aμ is

Fμν
;ν þ

1

ζ
ðAν

;νÞ;μ ¼ 0: ð3Þ

Applying the covariant four-divergence upon Eq. (3) gives
□ðAν

;νÞ ¼ 0, where □≡ − 1
a4

∂

∂τ ða2 ∂

∂τÞ þ 1
a2 ∇2, so, ðAν

;νÞ

satisfies the equation of a minimally coupling massless
scalar field. In this paper, all four components Aμ will be
formally regarded as dynamical field variables, and the
Lorenz condition will not be imposed as a condition on the
field operators. The equation (3) is written as

ησρ∂σ∂ρAμ þ
�
1

ζ
− 1

�
∂μðηρσ∂σAρÞ

þ 1

ζ
½δμ0ð−Dηρσ∂σAρ þD2A0 −D0A0Þ −D∂μA0� ¼ 0;

ð4Þ

where ημν ¼ diagð−1; 1; 1; 1Þ, D≡ 2a0ðτÞ=aðτÞ. The
i-component Ai is decomposed into

Ai ¼ Bi þ ∂iA; ð5Þ

where ∂iBi ¼ 0 and A is a scalar function and ∂iA is the
longitudinal. The canonical momenta are defined by

πμA¼
∂L

∂ð∂0AμÞ
¼ημσð∂0Aσ−∂σA0Þ−

1

ζ
η0μðηρσ∂σAρ−DA0Þ;

ð6Þ

its 0 component is contributed by the GF term,

π0A ¼ 1

ζ
a2Aν

;ν ¼
1

ζ
ð−ð∂0 þDÞA0 þ∇2AÞ; ð7Þ

and the i component is

πiA ¼ δijð∂0Aj − ∂jA0Þ ¼ wi þ ∂
iπA; ð8Þ

where wj ¼ ∂0Bj is transverse, and

πA ¼ ∂0A − A0 ð9Þ

is a scalar function and its gradient ∂iπA is the longitudinal.
For convenience, in the rest of this section, we shall work
with the Fourier k modes of the fields and the canonical
momenta, for instance, BiðxÞ ¼

R
d3k

ð2πÞ32
BikðτÞeik·x, etc. To

avoid the cumbersome notation of subindex k, we also use
Bi, A, A0, πA, π0A to represent their k modes whenever no
confusion arises in the following. Then, with∇2 ¼ −k2, the
k mode of (7) is written as

π0A ¼ −
1

ζ
ðð∂0 þDÞA0 þ k2AÞ: ð10Þ

Equation (4) is decomposed into the following equations in
the k space:

∂
2
0Bi þ k2Bi ¼ 0; ð11Þ
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−∂20A −
1

ζ
k2Aþ

�
1 −

1

ζ

�
∂0A0 −

1

ζ
DA0 ¼ 0; ð12Þ

−
1

ζ
∂
2
0A0 − k2A0 þ

1

ζ
ðD2 −D0ÞA0

þ k2
��

1 −
1

ζ

�
∂0Aþ 1

ζ
DA

�
¼ 0; ð13Þ

where Bi, A, and A0 stand for their kmodes. The transverse
equations (11) are separated from A and A0, unaffected by
the gauge fixing parameter, and, each i component of the
k-mode Bi has the positive frequency solution of the
following form:

BiðτÞ ∝ fðσÞk ðτÞ ¼ 1ffiffiffiffiffi
2k

p e−ikτ; ð14Þ

where the solution modes fðσÞk are the same for two
transverse polarizations σ ¼ 1, 2 [see (57) (60) for a
precise expression of Bi.]

Equation (11) and the solution (14) are independent of
the scale factor aðτÞ, and hold for a general RW spacetime,
including de Sitter space and Minkowski spacetime.
Equations (12) and (13) are the basic second-order

differential equations of A and A0 for a general ζ, in which
A and A0 are mixed up. Even in the Feynman gauge
(ζ ¼ 1), (12) and (13) become

−∂20A − k2A −DA0 ¼ 0; ð15Þ

−∂20A0 − k2A0 þ ðD2 −D0ÞA0 þ k2DA ¼ 0; ð16Þ

where A and A0 are still mixed up. [WhenD ¼ 0, Eqs. (15)
and (16) reduce to Eqs. (B18) and (B19) in the Minkowski
spacetime that is most discussed in literature, and A and A0

are separate.]
We shall solve Eqs. (12) and (13) with a general ζ in the

following. By differentiations and algebraic combinations
of (12) and (13), we get two fourth-order differential
equations

��
1 −

1

ζ

�
∂0 −

1

ζ
D

��ððζ − 1Þ∂30 þD∂
2
0 þ k2ðζ − 1Þð2 − ζÞ∂0 þ ð2 − ζÞk2DÞA

ðζ − 2ÞD2 − ðζ − 1ÞD0 − ðζ − 1Þ2k2
�
−
�
∂
2
0 þ

1

ζ
k2
�
A ¼ 0 ð17Þ

and

��
1 −

1

ζ

�
∂0 þ

1

ζ
D

���
ðζ − 1ÞD0 −D2 − ðζ − 1Þ2 1

ζ
k2
�
−1
�
ðζ − 1Þ∂30A0 −D∂

2
0A0 þ ðζ − 1Þ

�
D0 −D2 −

1 − 2ζ

ζ
k2
�
A0
0

þ ðζ − 1ÞðD00 − 2DD0ÞA0 þDðD2 −D0ÞA0 þ
1 − 2ζ

ζ
k2DA0

��
−
1

ζ
∂
2
0A0 − k2A0 þ

1

ζ
ðD2 −D0ÞA0 ¼ 0; ð18Þ

which are separate for A and A0, and valid for ζ ≠ 1. [When D ¼ 0, Eqs. (17) and (18) reduce to Eqs. (B6) and (B7) in
Minkowski spacetime.]
In this paper we consider de Sitter space; the scale factor is

aðτÞ ¼ −
1

Hτ
; −∞ < τ ≤ τ1; ð19Þ

where H is a constant and τ1 is the ending time of de Sitter inflation, D ¼ −2=τ. Dropping an overall factor ∝ ð1 − ζÞ2,
Eqs. (17) and (18) become

½ðζ − 1Þ2k2τ2 − 2ðζ − 3Þ�τ2Að4ÞðτÞ − 4ðζ − 3ÞτAð3ÞðτÞ þ 2½ðζ − 1Þ2k4τ4 − ðζ þ 1Þðζ − 3Þk2τ2 þ 2ðζ − 3Þ�A00ðτÞ
þ 4ðζ − 2Þðζ − 3Þk2τA0ðτÞ þ ½ðζ − 1Þ2k4τ4 − 2ζðζ − 3Þk2τ2 − 4ðζ − 3Þ�k2AðτÞ ¼ 0 ð20Þ

and

½ðζ − 1Þ2k2τ2 − 2ðζ − 3Þζ�τ4Að4Þ
0 ðτÞ − 4ðζ − 3Þζτ3Að3Þ

0 ðτÞ þ ½2ðζ − 1Þ2k4τ4 þ 2ð−3ζ2 þ 6ζ þ 1Þk2τ2 þ 4ðζ − 3Þζ�τ2A00
0ðτÞ

þ 4½ð3ζ − 1Þk2τ2 − 2ðζ − 3Þζ�τA0
0ðτÞ þ ½ðζ − 1Þ2k6τ6 þ 2ð−2ζ2 þ 3ζ þ 1Þk4τ4 þ 4ð−2ζ2 þ 3ζ þ 1Þk2τ2

þ 8ζðζ − 3Þ�A0ðτÞ ¼ 0 ð21Þ
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where Að4ÞðτÞ≡ ∂
4A=∂τ4, Að3ÞðτÞ≡ ∂

3A=∂τ3, etc. These
are fourth-order differential equations of A0 and A, valid for
a general ζ. Setting ζ ¼ 1, they reduce to the fourth-order
differential equations in the Feynman gauge

τ2Að4Þ þ 2τAð3Þ þ 2ðk2τ2 − 1ÞA00 þ 2k2τA0

þ k2ðk2τ2 þ 2ÞA ¼ 0; ð22Þ

τ4Að4Þ
0 þ 2τ3Að3Þ

0 þ 2τ2ðk2τ2 − 1ÞA00
0 þ 2ðk2τ2 þ 2ÞτA0

0

þ ðk4τ4 þ 2k2τ2 − 4ÞA0 ¼ 0: ð23Þ

The positive frequency solutions of Eqs. (20) and (21) for a
general ζ are obtained as

A ¼ b1
1

aðτÞ
i
k

�
1 −

i
kτ

�
1ffiffiffiffiffi
2k

p e−ikτ − b2
ð3 − ζÞðkτ þ iÞe2ikτEið−2ikτÞ − 3iþ 2iζ

3k
1ffiffiffiffiffi
2k

p e−ikτ; ð24Þ

A0 ¼ b1
1

aðτÞ
1ffiffiffiffiffi
2k

p e−ikτ − b2
ð3i − iζÞk2τ2e2ikτEið−2ikτÞ þ ζðkτ − iÞ

3kτ
1ffiffiffiffiffi
2k

p e−ikτ; ð25Þ

where EiðzÞ≡ −
R∞
−z t

−1e−tdt is the exponential-integral
function, and the coefficients b1, b2 are dimensionless
complex constants. [References [3,4] gave a solution which
seems to correspond to the special case ζ ¼ 1 of our (24)
and (25).] We have chosen the same set of coefficients
ðb1; b2Þ for A and A0 so that they satisfy the basic second-
order equations (12) and (13). At the classical level,
ðb1; b2Þ are arbitrary. The b1 part will be referred to as
the homogeneous solution, and the b2 part as the inhomo-
geneous solution, and the terminologies “homogeneous”
and “inhomogeneous” will be clear later around (36)–(45).
The complex conjugates of (24) and (25) are the indepen-
dent, negative frequency solutions. Although A and A0

respectively have four solutions (the Wronskians being
nonzero), but A and A0 in (24) and (25) share the same set
ðb1; b2Þ. We have checked that the respective homogeneous
and inhomogeneous parts in (24) and (25) satisfy the basic
second-order equations (12) and (13), as well as the fourth-
order equations (20) and (21). When setting ζ ¼ 1, (24) and
(25) reduce to the solutions of (22) and (23) in the Feynman
gauge. Plugging (24) and (25) into the definitions (9) and
(10) gives the canonical momenta

πA ¼ −b2
i
kτ

1ffiffiffiffiffi
2k

p e−ikτ ¼ b2
iH
k
aðτÞ 1ffiffiffiffiffi

2k
p e−ikτ; ð26Þ

π0A ¼ b2
i − kτ
kτ2

1ffiffiffiffiffi
2k

p e−ikτ ¼ b2HaðτÞ
�
1 −

i
kτ

�
1ffiffiffiffiffi
2k

p e−ikτ;

ð27Þ

which are contributed only by the inhomogeneous part of A
and A0, and are independent of ζ. It should be remarked that
the positive frequency (∝ e−ikτ) modes (24), (25), (26), (27)
will not evolve into the negative frequency modes (∝ eikτ)
during the de Sitter expansion prescribed by (1) and (19).
Note that the dimension ½A0� ¼ k½A� and ½π0A� ¼ k½πA�.

The solutions (24) and (25) in the de Sitter space will
reduce to the solutions in the Minkowski spacetime. But, if
one naively took a ¼ 1 and high k in (24) and (25), one
would come up with an incorrect claim that the Minkowski
limit can be obtained at only for ζ ¼ −3. In fact, aðτÞ and
its time derivatives are implicit in (24) and (25).
An appropriate procedure of taking the limit of the
Minkowski spacetime is the following: Setting D ¼ 0
in Eqs. (17) and (18) leads to Eqs. (B6) and (B7) in
Minkowski spacetime, and the solutions are listed in
Appendix B.
The solutions (24), (25), (26), (27) can also be derived in

another way as the following. First, by applying ∂0 and
combinations on the basic equations (12) and (13), we
arrive at the equations of πA and π0A,

ð∂20 −D∂0 þ k2ÞπA ¼ 0; ð28Þ

ð∂20 −D∂0 −D0 þ k2Þπ0A ¼ 0; ð29Þ

which are independent of ζ. By rescaling πA ¼ aπ̄A,
π0A ¼ aπ̄0A, Eqs. (28) and (29) become

π̄A
00 þ k2π̄A ¼ 0; ð30Þ

π̄0A
00 þ

�
k2 −

2

τ2

�
π̄0A ¼ 0; ð31Þ

and the normalized solutions are

π̄A ¼ b2H
i
k

1ffiffiffiffiffi
2k

p e−ikτ; ð32Þ

π̄0A ¼ b2H
1ffiffiffiffiffi
2k

p
�
1 −

i
kτ

�
e−ikτ: ð33Þ
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Multiplying the above by aðτÞ gives the solutions (26) and
(27). Note that Eq. (30) of π̄A is the same as the equation of
a rescaled conformally coupling massless scalar field, and
Eq. (31) of π̄0A is the same as the equation of a rescaled
minimally coupling massless scalar field [9]. Next, apply-
ing ∂0 on the definitions (9) and (10) and by combinations,
we arrive at

∂
2
0AþD∂0Aþ k2A ¼ ð∂0 þDÞπA − ζπ0A; ð34Þ

∂
2
0A0 þDA0

0 þD0A0 þ k2A0 ¼ −ðk2πA þ ζ∂0π
0
AÞ; ð35Þ

which are the second-order differential equations of A and
A0 with the nonhomogeneous term as the source. [The
homogeneous equations of (34) (35) are just the equations
of A and A0 of Maxwell theory without the GF term under
the Lorenz condition Aμ

;μ ¼ 0.] By rescaling A0 ¼ 1
a Ā0 and

A ¼ 1
a Ā, Eqs. (35) and (34) become

Ā00 þ
�
k2 −

2

τ2

�
Ā ¼ ΠðτÞ; ð36Þ

Ā0
00 þ k2Ā0 ¼ Π0ðτÞ; ð37Þ

where the nonhomogeneous terms are

ΠðτÞ≡ aðð∂0 þDÞπA − ζπ0AÞ; ð38Þ

Π0ðτÞ≡ −aðk2πA þ ζ∂0π
0
AÞ; ð39Þ

which are known from the given πA and π0A. The homo-
geneous solutions of (36) and (37) are simply given by

ĀhðτÞ ¼
i
k

1ffiffiffiffiffi
2k

p
�
1 −

i
kτ

�
e−ikτ; ð40Þ

Ā0hðτÞ ¼
1ffiffiffiffiffi
2k

p e−ikτ; ð41Þ

which correspond to the b1 part of the solutions (24) and
(25), and the Wronskians are

W½τ� ¼ ĀhĀ�0
h − Āh

0Ā�
h ¼

i
k2

; ð42Þ

W0½τ� ¼ Ā0hĀ�0
0h − Ā0h

0Ā�
0h ¼ i: ð43Þ

Interestingly, the homogeneous equation (36) and the
solution (40) of Āh are similar to (31) and (33) of π̄0A,
and, the homogeneous equation (37) and the solution (41)
of Ā0h are similar to (30) and (32) of π̄A [9]. By the standard
formulas of the inhomogeneous equations, we obtain the
inhomogeneous solution of (36) and (37)

ĀðτÞ ¼ −ĀhðτÞ
Z

τ
dτ0

Πðτ0ÞĀ�
hðτ0Þ

W
þ Ā�

hðτÞ
Z

τ
dτ0

Πðτ0ÞĀhðτ0Þ
W

;

¼ b2
ðð3 − ζÞðkτ þ iÞe2ikτEið−2ikτÞ − 3iþ 2iζÞ

3Hkτ
1ffiffiffiffiffi
2k

p e−ikτ; ð44Þ

Ā0ðτÞ ¼ Ā0hðτÞ
Z

τ
dτ0

−Π0ðτ0ÞĀ�
0hðτ0Þ

W0

þ Ā�
0hðτÞ

Z
dτ0

Π0ðτ0ÞĀ0hðτ0Þ
W0

¼ b2
ðð3i − iζÞk2τ2e2ikτEið−2ikτÞ þ ζðkτ − iÞÞ

3Hkτ2
1ffiffiffiffiffi
2k

p e−ikτ: ð45Þ

After rescaling by 1=aðτÞ, the sum of (40) and (44)
recovers the solution A in (24), and the sum of (41) and
(45) recovers the solution of A0 in (25). As we shall see
later, the complicated, inhomogeneous parts of A and A0

will simply cancel in the expectation value of the stress
tensor.
We analyze the gauge transformations of the Maxwell

field, and examine the consequential changes on the
solutions. The Maxwell field without the GF term is
invariant under the gauge transformation Aμ → A0

μ ≡ Aμ þ
θ;μ with θ being an arbitrary scalar function; each compo-
nent transforms as

Bi → B0
i ¼ Bi;

A → A0 ≡ Aþ θ;

A0 → A0
0 ≡ A0 þ θ;0:

When the GF term ∝ ð∇μAμÞ2 is present, the Lagrangian
(2) and the field equation (3) are invariant only under a
residual gauge transformation with θ satisfying the follow-
ing equation:

□θ≡∇ν∇νθ ¼ 0: ð46Þ
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This is also the equation of a minimally coupling massless
scalar field [9], and its k-mode equation is

θ00k þDθ0k þ k2θk ¼ 0: ð47Þ

In de Sitter space the k-mode solution is

θkðτÞ ¼ C
1

aðτÞ
i
k

�
1 −

i
kτ

�
1ffiffiffiffiffi
2k

p e−ikτ; ð48Þ

with C being an arbitrary complex constant. The function
θk in (48) is of the same form as the homogeneous solution
Ah of (24), and its time derivative is

θk;0 ¼ C
1

aðτÞ
1ffiffiffiffiffi
2k

p e−ikτ; ð49Þ

whose form is the same as the homogeneous solution A0h of
(25). Thus, under the residual gauge transformation, the
longitudinal and temporal k modes transform as

Ak → Ak þ C
1

aðτÞ
i
k

�
1 −

i
kτ

�
1ffiffiffiffiffi
2k

p e−ikτ; ð50Þ

A0k → A0k þ C
1

aðτÞ
1ffiffiffiffiffi
2k

p e−ikτ: ð51Þ

Comparing with the solutions (24) and (25) of A and A0, the
residual gauge transformation (50) and (51) amounts to a
change of the homogeneous parts of A and A0 as the
following:

b1 → b01 ¼ b1 þ C: ð52Þ

Under the residual gauge transformation the canonical
momenta are invariant,

πA → ∂0ðAþ θÞ − ðA0 þ θ;0Þ ¼ πA; ð53Þ

π0A→−
1

ζ
ð∂0ðA0þθ;0ÞþDðA0þθ;0Þþk2ðAþθÞÞ¼π0A:

ð54Þ

This invariant property is consistent with the fact that the
solutions πA and π0A in (26) and (27) are contributed only by
the inhomogeneous parts of A and A0, and, therefore,
unaffected by any change of the homogeneous parts.
As we shall show in the next section, a consistent

covariant canonical quantization requires that the homo-
geneous part of A and A0 be nonvanishing, b1 ≠ 0, b01 ≠ 0.
Therefore, at the quantum level, the parameter C of residual
gauge transformation will be further restricted.

III. THE COVARIANT CANONICAL
QUANTIZATION OF MAXWELL FIELD WITH

GENERAL ζ IN DE SITTER SPACE

After obtaining all of the k modes (14) and (24)–(27) for
general ζ in de Sitter space, we shall implement the
covariant canonical quantization. This procedure will con-
strain the coefficients for each mode, and restrict the
residual gauge transformation as well. The field operators
are required to satisfy the equal-time covariant canonical
commutation relations,

½Aμðτ;xÞ; πνAðτ;x0Þ� ¼ igνμδðx − x0Þ; ð55Þ
with gνμ ¼ δνμ, and the other commutators vanish. The ij
component of commutation relations can be decomposed into

½Ai; π
j
A� ¼ ½ðBi þ A;iÞ; ðwj þ π;jAÞ�

¼ ½Bi; wj� þ ½∂iA; ∂jπA�; ð56Þ
where the transverse and longitudinal components are inde-
pendent, and commute with each other.
The transverse components Bi in de Sitter space are

simply the same as in Minkowski spacetime. We write the
operators of the transverse fields and canonical momenta as

Biðx; τÞ ¼
Z

d3k

ð2πÞ3=2
X2
σ¼1

ϵσi ðkÞ½aðσÞk fðσÞk ðτÞeik·x

þ aðσÞ†k fðσÞ�k ðτÞe−ik·x�; ð57Þ

wiðτ;xÞ ¼
Z

d3k

ð2πÞ3=2
X2
σ¼1

ϵσi ðkÞ½aðσÞk fðσÞ
0

k ðτÞeik·x

þ aðσÞ†k fðσÞ�
0

k ðτÞe−ik·x�; ð58Þ

where the modes fð1;2Þk ðτÞ are given by (14), and the
commutators of the transverse creation and annihilation
operators are

½aðσÞk ; aðσ
0Þ†

k0 � ¼ ησσ
0
δð3Þðk − k0Þ; ðσ ¼ 1; 2Þ; ð59Þ

and the transverse polarizations satisfyX
i¼1;2;3

kiϵσi ðkÞ ¼ 0;
X
i

ϵσi ðkÞϵσ0i ðkÞ ¼ δσσ
0
;

X
σ¼1;2

ϵσi ðkÞϵσj ðkÞ ¼ δij −
kikj
k2

: ð60Þ

Calculation yields

½Biðτ;xÞ; wjðτ;x0Þ�

¼ iδijδð3Þðx − x0Þ − i
Z

d3k
ð2πÞ3

�
kikj
k2

�
eik·xe−ik·x

0
: ð61Þ

The longitudinal A and temporal A0 are mixed
up in the basic equations (12) and (13) in de Sitter
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space, so their field operator expansions are written as
follows:

A ¼
Z

d3k

ð2πÞ3=2 ½ða
0
kA1k þ a3kA2kÞeik·x þ H:c:�; ð62Þ

A0 ¼
Z

d3k

ð2πÞ3=2 ½ða
0
kA01k þ a3kA02kÞeik·x þ H:c:�; ð63Þ

where að3Þk and að0Þk are the annihilation operator of the
respective longitudinal and temporal field and satisfy

½a0k; a0†k0 � ¼ η00δð3Þðk − k0Þ ¼ −δð3Þðk − k0Þ; ð64Þ

½a3k; a3†k0 � ¼ η33δð3Þðk − k0Þ ¼ δð3Þðk − k0Þ: ð65Þ

Equations (59), (64), (65) together constitute the covariant
commutator

½aðμÞk ; aðνÞ†k0 � ¼ ημνδð3Þðk − k0Þ; ð66Þ
which is independent of the gauge parameter ζ. The
longitudinal and temporal k modes in (63) and (62) are
chosen to be

A1k ¼ c1
1

aðτÞ
i
k

1ffiffiffiffiffi
2k

p
�
1 −

i
kτ

�
e−ikτ − c2

ðð3 − ζÞðkτ þ iÞe2ikτEið−2ikτÞ − 3iþ 2iζÞ
3k

1ffiffiffiffiffi
2k

p e−ikτ; ð67Þ

A2k ¼ m1

1

aðτÞ
i
k

1ffiffiffiffiffi
2k

p
�
1 −

i
kτ

�
e−ikτ −m2

ðð3 − ζÞðkτ þ iÞe2ikτEið−2ikτÞ − 3iþ 2iζÞ
3k

1ffiffiffiffiffi
2k

p e−ikτ; ð68Þ

A01k ¼ c1
1

aðτÞ
1ffiffiffiffiffi
2k

p e−ikτ − c2
ðð3i − iζÞk2τ2e2ikτEið−2ikτÞ þ ζðkτ − iÞÞ

3kτ
1ffiffiffiffiffi
2k

p e−ikτ; ð69Þ

A02k ¼ m1

1

aðτÞ
1ffiffiffiffiffi
2k

p e−ikτ −m2

ðð3i − iζÞk2τ2e2ikτEið−2ikτÞ þ ζðkτ − iÞÞ
3kτ

1ffiffiffiffiffi
2k

p e−ikτ; ð70Þ

where c1, c2, m1, m2 are dimensionless complex coef-
ficients, and will be subject to some constraints by the
canonical quantization. From the expansions (62) and (63)
together with (67)–(70) follow the expansions of the
canonical momentum operators

πA ¼
Z

d3k

ð2πÞ32 ðða
ð0Þ
k πA1k þ að3Þk πA2kÞeik·x þ H:c:Þ; ð71Þ

π0A ¼
Z

d3k

ð2πÞ32 ðða
ð0Þ
k π0A1k þ að3Þk π0A2kÞeik·x þ H:c:Þ; ð72Þ

where the k modes of the longitudinal and temporal
canonical momenta are found to be

πA1k ¼ c2
−i
kτ

1ffiffiffiffiffi
2k

p e−ikτ; ð73Þ

πA2k ¼ m2

−i
kτ

1ffiffiffiffiffi
2k

p e−ikτ; ð74Þ

π0A1k ¼ c2k

�
−

1

kτ
þ i
k2τ2

�
1ffiffiffiffiffi
2k

p e−ikτ; ð75Þ

π0A2k ¼ m2k
�
−

1

kτ
þ i
k2τ2

�
1ffiffiffiffiffi
2k

p e−ikτ: ð76Þ

These canonical momentum k modes are contributed by
only the inhomogeneous part of (67)–(70). There are
relations among the modes

m2πA1k ¼ c2πA2k; ð77Þ

m2π
0
A1k ¼ c2π0A2k; ð78Þ

which will be used in Sec. IV to simplify the calculation of
the stress tensor. πA ≠ 0 and π0A ≠ 0 require that c2 ≠ 0 and
m2 ≠ 0.
Substituting the operators (62), (63), (71), (72) into each

component of (55), and using the commutator (66), by
lengthy calculation, we obtain the following constraints
upon the coefficients:

jm1j2 − jc1j2 ¼ 0; ðfrom½A0; Ai�Þ; ð79Þ

jm2j2 − jc2j2 ¼ 0; ðfrom½A0; π0A�Þ; ð80Þ

m2m�
1 − c2c�1 ¼ −ik=H; ðfrom½A0; π0A�Þ; ð81Þ
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other commutators give no new constraint. It is seen that
c1 ≠ 0, m1 ≠ 0, c2 ≠ 0, m2 ≠ 0. This means that both
the homogeneous and inhomogeneous parts of the modes
(67)–(70) must be present in order to achieve the covariant
canonical quantization (55). There are many choices to
satisfy the set of constraints (79), (80), (81). For instance,
we take the following specific values:

c1 ¼ m1 ¼ 1; c2 ¼ i
k
2H

; m2 ¼ −i
k
2H

; ð82Þ

which are consistent with those in Minkowski spacetime.
Another implication of the constraints (79), (80), (81) is

that, in order to ensure the nonvanishing homogeneous part
of A and A0, the residual gauge transformation will be
further restricted. Under the residual gauge transformation
(50) and (51), the k modes ðA1k; A01kÞ and ðA2k; A02kÞ
change as

A1k → Ã1k ¼ A1k þ C
1

a
i
k

�
1 −

i
kτ

�
1ffiffiffiffiffi
2k

p e−ikτ; ð83Þ

A01k → Ã01k ¼ A01k þ C
1

a
1ffiffiffiffiffi
2k

p e−ikτ; ð84Þ

A2k → Ã2k ¼ A2k þM
1

a
i
k

�
1 −

i
kτ

�
1ffiffiffiffiffi
2k

p e−ikτ; ð85Þ

A02k → Ã02k ¼ A02k þM
1

a
1ffiffiffiffiffi
2k

p e−ikτ; ð86Þ

where C and M are two constants and shift only the
coefficients of the homogeneous parts

c1 → c01 ¼ c1 þ C; ð87Þ

m1 → m0
1 ¼ m1 þM: ð88Þ

In analogy to the constraints (79)–(81), the new coefficients
also obey the following constraints:

jm0
1j2 − jc01j2 ¼ 0; ð89Þ

jm0
2j2 − jc02j2 ¼ 0; ð90Þ

m0
2m

0�
1 − c02c

0�
1 ¼ −i

k
H
; ð91Þ

which leads to the following restriction on the constants
C and M:

jMj2 − jCj2 þ 2Reðm�
1M − c�1CÞ ¼ 0; ð92Þ

m2M� − c2C� ¼ 0: ð93Þ

For the choice (82), the restriction (92) and (93) becomes

C ¼ −M ¼ ir; ð94Þ

where r is an arbitrary real number. As a result, the
homogeneous parts will not be transformed to zero

c01 ¼ 1þ ir ≠ 0; m0
1 ¼ 1 − ir ≠ 0: ð95Þ

We call the residual gauge transformation with the restric-
tion (92) and (93), or (94), the quantum residual gauge
transformation. It is required by the covariant canonical
quantization, and is only a subset of the residual gauge
transformation (50) and (51) at the classical level.

IV. THE STRESS TENSOR OF THE MAXWELL
FIELD WITH GUAGE FIXING TERM IN DE

SITTER SPACE

The stress tensor serves as the source of the Einstein
equation. Given the action S½Aμ� ¼ R

Ld4x, the stress
tensor is defined by Tμν ¼ − 2ffiffiffiffi−gp δS

δgμν, which is covariant.

Variation gives the stress tensor of the Maxwell field with
the GF term,

Tμν ¼ FμλFν
λ −

1

4
gμνFσλFσλ

þ 1

ζ

�
1

2
gμνðAσ

;σÞ2 þ gμνAλAσ
;σλ −Aσ

;σμAν −Aσ
;σνAμ

�
;

ð96Þ

and the trace of the stress tensor is Tμ
μ ¼ 2

ζ ðAλAσ
;σÞ;λ which

is contributed by the GF term only. The corresponding
energy density and pressure consist of three parts:

ρ ¼ −T0
0 ¼ ρTR þ ρLT þ ρGF; ð97Þ

p ¼ 1

3
Tj

j ¼ pTR þ pLT þ pGF: ð98Þ

The transverse stress tensor is

ρTR ¼ 3pTR ¼ 1

2
a−4ðB0

jB
0
j þ Bi;jBi;jÞ; ð99Þ

which has an extra factor a−4 to that in Minkowski
spacetime. This part corresponds to the Maxwell field
without the gauge term in the Coulomb gauge. Since Bj is
independent of the gauge fixing constant ζ and invariant
under the residual gauge transformation, so are ρTR and
pTR. The longitudinal-temporal (LT) stress tensor is

ρLT ¼ 3pLT ¼ 1

2
a−4ðA0

;jA
0
;j þ A0;jA0;j − 2A0;jA;j0Þ

¼ 1

2
a−4∂iπA∂iπA; ð100Þ
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which is written in terms of the longitudinal canonical
momentum πA. Since πA is independent of ζ and invariant
under the residual gauge transformation (53), so are ρLT

and pLT. The GF stress tensor is

ρGF¼ 1

a4

�
−
1

2
ζðπ0AÞ2−A0ð∂0π0A−Dπ0AÞ−A;jπ

0
A;j

�
; ð101Þ

pGF¼ 1

a4

�
1

2
ζðπ0AÞ2−A0ð∂0π0A−Dπ0AÞþ

1

3
A;jπ

0
A;j

�
: ð102Þ

This part comes from a variant of the GF term
− 1

2ζ

ffiffiffiffiffiffi−gp ðAν
;νÞ2 with respect to the metric gμν, and involves

π0A, A, and A0. At the classical level, ρGF and pGF in (101)
and (102) apparently depend on ζ. Besides, since A and A0

vary under the residual gauge transformation, ρGF and pGF

seem to vary too. Later we shall see that the expectation
values of the operators ρGF and pGF in the GB state are
independent of ζ, and invariant under the quantum residual
gauge transformation.
In the above the stress tensor of the Maxwell field is still

a quantum operator. To be a source of the Einstein equation,
its expectation value in quantum states is pertinent [10–14].
We now calculate the expectation value of the stress tensor.
In a state jϕi of the transverse field, using the property (60)
of transverse polarizations, we obtain the expectation value
of the transverse stress tensor

hϕjρTRjϕi ¼ 3hϕjpTRjϕi ¼ 1

2
a−4hϕjðB0

jB
0
j þ Bi;jBi;jÞjϕi

¼
Z

∞

0

ρTRk
dk
k
þ
Z

dk
k
ρTRk

X
σ¼1;2

hϕjaðσÞ†k aðσÞk jϕi;

ð103Þ
where the first term is the vacuum part, the second term is
the photon part, and the spectral energy density and
pressure in de Sitter space is

ρTRk ¼ 3pTR
k ¼ k3

2π2a4
½jfð1Þ0k ðτÞj2 þ k2jfð1Þk ðτÞj2� ¼ k4

2π2a4
;

ð104Þ

where the transverse mode fð1Þk is given by (14). If the
photon part during de Sitter inflation is in thermal equi-
librium approximately, the photon number distribution will

be described by hϕjaðσÞ†k aðσÞk jϕi ∝ 1=ðek=T − 1Þ, and the
integration over k yields the photon part of the transverse
energy density

Z
dk
k
ρTRk

X
σ¼1;2

hϕjaðσÞ†k aðσÞk jϕi ¼ π2

15

�
T

aðτÞ
�

4

; ð105Þ

which is convergent, and diluting as a−4 with the cosmic
expansion. We are more interested in the vacuum part.

The transverse vacuum spectral stress tensor (104) has only
one UV divergent k4 term, which is similar to that in the
Minkowski spacetime [see (B41) in Appendix B]. Since the
solution (14) of Bi holds for a general RW spacetime, so
does the transverse stress tensor (104), which also respects
the conservation law in a general RW spacetime

ρTRk
0 þ 3

a0

a
ðρTRk þ pTR

k Þ ¼ 0: ð106Þ

The LT stress tensor should be removed since the
longitudinal and temporal fields are not radiative dynamical
degrees of freedom. This is conventionally implemented by
adopting the GB physical state [6–8]. For the longitudinal
and temporal fields, the GB physical states jψi are defined
as the following. The positive frequency part of the
temporal canonical momentum operator π0A of (72) anni-
hilates the state jψi,

π0ðþÞ
A jψi ¼ 0 → ðc2að0Þk þm2a

ð3Þ
k Þjψi ¼ 0: ð107Þ

This GB condition on the physical state is weaker than the
Lorenz condition ð∇νAν ¼ 0Þ on the field operators. By the
choice (82), c2 ¼ −m2, (107) can be written as

½að0Þk − að3Þk �jψi ¼ 0; ð108Þ

which also implies

hψ jað0Þ†k að0Þk jψi ¼ hψ jað3Þ†k að3Þk jψi; ð109Þ

i.e., the number of temporal and longitude photons are
equal in the GB physical state. Together with the transverse
state jϕi, the complete state of the Maxwell field can be
denoted as a direct product jϕ;ψi ¼ jϕi ⊗ jψi. It is known
that the GB condition (107) may not hold for a general RW
spacetime [15], where the positive frequency modes in the
asymptotic in-region may evolve into a combination of
positive and negative frequency modes in the asymptotic
out-region. This generally happens when the cosmic
expansion consists of several stages of power-law expan-
sion [16,17]. However, during the de Sitter expansion (1)
and (19), the positive frequency modes (24)–(27) remain
∝ e−ikτ for the whole range of τ, so that the GB condition
(107) can be imposed consistently.
The expectation of the LT stress tensor in the GB

physical state is

hψ jρLTjψi ¼ 3hψ jpLTjψi ¼ 1

2
a−4hψ j∂iπA∂iπAjψi: ð110Þ

Substituting the operator πA of (71) into the above gives

hψ jρLTjψi ¼ 3hψ jpLTjψi ¼
Z

ρLTk
dk
k
; ð111Þ
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where

ρkLT ¼ k5

4π2a4
ð2hψ jað0Þ†k að0Þk jψijπA1kj2 þ 2hψ jað3Þ†k að3Þk jψijπA2kj2 − jπA1kj2 þ jπA2kj2Þ

þ k5

4π2a4
ð2hψ jað3Þ†k að0Þk jψiπ�A2kπA1k þ 2hψ jað0Þ†k að3Þk jψiπ�A1kπA2kÞ

þ k5

4π2a4
ðhψ jað0Þk að0Þ−kjψiπ2A1k þ hψ jað3Þk að0Þ−kjψiπA2kπA1k

þ hψ jað0Þk að3Þ−kjψiπA1kπA2k þ hψ jað3Þk að3Þ−kjψiπ2A2k þ H:c:Þ: ð112Þ

Applying the GB condition (107) and (109) and the mode
relation (77) with c2 ¼ −m2, we find that the longitudinal
and temporal contributions cancel each other, and (112)
becomes

ρLTk ¼ 3pLT
k ¼ 0; ð113Þ

including the photon and vacuum parts. Thus, the LT stress
tensor is vanishing in the GB state even before regulari-
zation. This result is independent of ζ. The longitudinal-
temporal cancellation occurs in the GB state as long as the
modes πA1k and πA2k satisfy the relation (77), regardless the
concrete functions πA1k and πA2k. We have also checked
that the LT stress tensor is zero also for the radiation
dominant stage (a ∝ τ). So, it might be expected that the LT
stress tensor will be zero for a general power-law expansion
with a ∝ τn. But this may not hold in a general RW
spacetime consisting of several stages of power-law ex-
pansion.
More interesting is the GF stress tensor which is less

studied in literature. The expressions (101) and (102) in the
GB physical state give

hψ jρGFjψi ¼ 1

a4
hψ j

�
−
1

2
ζðπ0AÞ2 − A0ð∂0π0A −Dπ0AÞ

− A;jπ
0
A;j

�
jψi; ð114Þ

hψ jpGFjψi ¼ 1

a4
hψ j

�
1

2
ζðπ0AÞ2 − A0ð∂0π0A −Dπ0AÞ

þ 1

3
A;jπ

0
A;j

�
jψi: ð115Þ

It can be shown that the expectation value hψ jðπ0AÞ2jψi ¼ 0
in the GB physical state, so (114) and (115) reduce to

hψ jρGFjψi ¼ 1

a4
hψ jð−A0ð∂0π0A −Dπ0AÞ − A;jπ

0
A;jÞjψi;

ð116Þ

hψ jpGFjψi ¼ 1

a4
hψ j

�
−A0ð∂0π0A −Dπ0AÞ þ

1

3
A;jπ

0
A;j

�
jψi:

ð117Þ

Substituting the operators (62), (63), (72) into (116), using the
commutators (64) and (65), the mode relation (78), the
coefficient constraint (80), and the GB condition (107), we
obtain

hψ jρGFjψi ¼
Z

ρGFk
dk
k
; ð118Þ

hψ jpGFjψi ¼
Z

pGF
k

dk
k
; ð119Þ

where the GF spectral energy density and pressure are

ρGFk ¼ k3

2π2a4

�
hψ jað0Þ†k að0Þk jψi

��
c2
m2

A02k − A01k

�
ð∂0 −DÞπ0�A1k þ k2

�
c2
m2

A2k − A1k

�
π0�A1k

�

þ hψ jað3Þ†k að3Þk jψi
��

m2

c2
A01k − A02k

�
ð∂0 −DÞπ0�A2k þ k2

�
m2

c2
A1k − A2k

�
π0�A2k

�

þ ðA01kð∂0 −DÞπ0�A1k − A02kð∂0 −DÞπ0�A2k þ k2A1kπ
0�
A1k − k2A2kπ

0�
A2kÞ

�
; ð120Þ
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pGF
k ¼ k3

2π2a4

�
hψ jað0Þ†k að0Þk jψi

��
c2
m2

A02k − A01k

�
ð∂0 −DÞπ0�A1k −

1

3
k2
�
c2
m2

A2k − A1k

�
π0�A1k

�

þ hψ jað3Þ†k að3Þk jψi
��

m2

c2
A01k − A02k

�
ð∂0 −DÞπ0�A2k −

1

3
k2
�
m2

c2
A1k − A2k

�
π0�A2k

�

þ
�
A01kð∂0 −DÞπ0�A1k − A02kð∂0 −DÞπ0�A2k −

1

3
k2A1kπ

0�
A1k þ

1

3
k2A2kπ

0�
A2k

��
; ð121Þ

each consisting of three contributions: the temporal photons, the longitudinal photons, and the vacuum. Substituting the
modes A1k, A2k, A01k, A02k, of (67)–(70) and the modes π0A1, π

0
A2 of (75) and (76) into (120) and (121), we do lengthy

calculations. As we notice, the inhomogeneous parts of A0 cancel in each of the following combinations: ðc2m2
A02k − A01kÞ,

ðm2

c2
A01k − A02kÞ,A01kð∂0 −DÞπ0�A1k − A02kð∂0 −DÞπ0�A2k; and similarly, the inhomogeneous parts ofA cancel in the following:

ðc2m2
A2k − A1kÞ, ðm2

c2
A1k − A2kÞ, ðA1kπ

0�
A1k − A2kπ

0�
A2kÞ. So, only the homogeneous parts contribute to (120) and (121), yielding

ρGFk ¼ k4

ð2π2Þa4
�
ðhψ jað3Þ†k að3Þk jψi − hψ jað0Þ†k að0Þk jψiÞ

�
1þ 1

2k2τ2

��
þ k4

2π2a4

�
1þ 1

2k2τ2

�
; ð122Þ

pGF
k ¼ k4

ð2π2Þa4
1

3

�
ðhψ jað3Þ†k að3Þk jψi − hψ jað0Þ†k að0Þk jψiÞ

�
1 −

1

2k2τ2

��
þ k4

ð2π2Þa4
1

3

�
1 −

1

2k2τ2

�
: ð123Þ

By hψ jað0Þ†k að0Þk jψi ¼ hψ jað3Þ†k að3Þk jψi, the longitudinal and
temporal photons cancel each other, and only the vacuum
part remains,

ρGFk ¼ k4

2π2a4

�
1þ 1

2k2τ2

�
; ð124Þ

pGF
k ¼ k4

2π2a4
1

3

�
1 −

1

2k2τ2

�
: ð125Þ

This GF vacuum part is independent of ζ too, because the
ζ-dependent, inhomogeneous parts of the kmodes of A and
A0 have canceled. The GF vacuum stress tensor also
respects the conservation law

ρGFk
0 þ 3

a0

a
ðρGFk þ pGF

k Þ ¼ 0 ð126Þ

but contributes a nonzero trace

−ρGFk þ 3pGF
k ¼ −

k4

2π2a4
1

ðk2τ2Þ ≠ 0: ð127Þ

The form of (124) and (125) is the same as twice the
vacuum stress tensor of the minimally coupling massless
scalar field [9,14]. It contains two UV divergent terms: the
k4 term is dominant and corresponds to the UV divergence
in the Minkowski spacetime [see (B46) in Appendix B],
and the k2 term reflects the effect of the cosmic expansion
and is absent in Minkowski spacetime.
The transverse stress tensor and the LT stress tensor are

invariant under the residual gauge transformation even at
the classical level. Now we examine the behavior of the GF
vacuum stress tensor (124) and (125) under the quantum
residual gauge transformation. Firstly, according to (95),
c01 ≠ 0 and m0

1 ≠ 0, the homogeneous part of A and A0 will
not be transformed to zero under the quantum residual
gauge transformation. As a result, the vacuum GF stress
tensor will not be transformed to zero since it is contributed
by the homogeneous part. More than that, the GF stress
tensor in the GB state is actually invariant under the
quantum residual gauge transformation. This fact can be
shown by a direct calculation of the variation of the GF
spectral stress tensor (120) and (121)

δρGFk ¼ k3

2π2a4
ðc�2C −m�

2MÞiH
�
ðhψ jað3Þ†k að3Þk jψi − hψ jað0Þ†k að0Þk jψiÞ

�
1þ 1

2k2τ2

�
þ
�
1þ 1

2k2τ2

��
; ð128Þ

δpGF
k ¼ k3

2π2a4
1

3
ðc�2C −m�

2MÞiH
�
ðhψ ja3†k a3kjψi − hψ ja0†k a0kjψiÞ

�
1 −

1

2k2τ2

�
þ
�
1 −

1

2k2τ2

��
: ð129Þ

According to the constraint m2M� − c2C� ¼ 0 of (93), the above is vanishing

δρGFk ¼ 0; δpGF
k ¼ 0: ð130Þ
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V. THE REGULARIZATION OF STRESS TENSOR
OF MAXWELL FIELD IN DE SITTER SPACE

So far three parts of the vacuum stress tensor have been
derived in de Sitter space. The LT stress tensor (113) is zero
in the GB state, no need for regularization. The transverse
vacuum stress tensor and the GF vacuum stress tensor both
contain UV divergences, which need to be regularized as
the following.
The transverse vacuum stress tensor (104) has only one

quartic k4 divergent term, so the zeroth-order adiabatic
regularization is sufficient to remove the UV divergence
[9,14,16–18]. The equation of two transverse modes is

Eq. (11) and the exact solution is fðσÞk ðτÞ in (14). The
adiabatic transverse modes are the same for two polar-
izations (σ ¼ 1, 2), given by the Wenzel-Kramers-Brillouin
(WKB) solution of (11) as the following [9–11,14,16,17]:

fkðτÞ ¼ ð2WðτÞÞ−1=2 exp
�
−i

Z
τ
Wðτ0Þdτ0

�
; ð131Þ

where the effective frequency is

WðτÞ ¼
�
ω2 −

1

2

�
W00

W
−
3

2

�
W0

W

�
2
��

1=2
; ð132Þ

which will be solved iteratively. The zeroth-order fre-
quency and mode are

W0th ¼ ω ¼ k; ð133Þ

fk0thðτÞ ¼
1ffiffiffiffiffi
2k

p e−ikτ ¼ fðσÞk : ð134Þ

In fact, all adiabatic orders for the transverse modes are the
same

W0th ¼ W2nd ¼ W4th ¼ … ¼ k; ð135Þ

fk0thðτÞ ¼ fk2ndðτÞ ¼ fk4thðτÞ ¼ … ¼ fðσÞk ; ð136Þ

like a conformally coupling massless scalar field [9,14].
Substituting the zeroth-order mode fk0th of (134) into (104)

to replace fð1Þk yields

ρTRk 0th ¼ 3pTR
k 0th ¼

k3

2π2a4
½jf0k 0thðτÞj2 þ k2jfk 0thðτÞj2�

¼ k4

2π2a4
¼ ρTRk ¼ 3pTR

k ; ð137Þ

i.e., the zeroth-order adiabatic subtraction term for the
transverse spectral stress tensor is just equal to the exact
spectral stress tensor (104). Hence, by subtraction, the
zeroth-order regularized transverse vacuum spectral stress
tensor is vanishing,

ρTRk reg ≡ ρTRk − ρTRk 0th ¼ 0; ð138Þ

pTR
k reg ≡ pTR

k − pTR
k 0th ¼ 0: ð139Þ

The results (137)–(139) hold also for a general RW
spacetime. This is because Bi of (14) and its adiabatic
modes (136) hold for a general RW spacetime [9].
The GF vacuum stress tensor (124) and (125) has the k4

and k2 divergent terms, so the second-order adiabatic
regularization is sufficient to remove the UV divergences
[9,14,16–18]. To calculate the second-order adiabatic sub-
traction terms of the stress tensor, we need also respectively
the second-order adiabatic modes of π0Ak, Ak, and A0k.
The equation of rescaled π̄0A is given by (31) and the

solution is given by (33). The WKB solution of (31) is

π̄0Anth ¼ ð2WðτÞÞ−1=2 exp
�
−i

Z
τ
Wðτ0Þdτ0

�
; ð140Þ

where the effective frequency is

WðτÞ ¼
�
ω2 −

2

τ2
−
1

2

�
W00

W
−
3

2

�
W0

W

�
2
��

1=2
; ð141Þ

which will be solved iteratively. The zeroth-order is
W0th ¼ ω ¼ k, and the second-order and the higher orders
are found as

W2nd ¼ W4th ¼ … ¼ k −
1

kτ2
; ð142Þ

so the second-order and all higher order adiabatic modes
are the same, and given by

π̄0A 2nd ¼ π̄0A 4th ¼ π̄0A 6th ¼ …

¼ 1ffiffiffiffiffi
2k

p
�
1þ 1

2

1

ðkτÞ2
�
exp

�
−ik

Z
τ
�
1 −

1

ðkτ0Þ2
�
dτ0

�

≃
1ffiffiffiffiffi
2k

p
�
1 −

i
kτ

�
e−ikτ; ð143Þ

which is equal to the exact mode π̄0A in (33). Multiplying by
aðτÞ, one has π0A 2nd ¼ π0A, i.e., the second and higher order
adiabatic modes are equal to the exact modes (75) and (76).
The WKB approximation of A and A0 can be derived, in

principle, from their fourth-order differential equations, but
the calculation will be more involved. Actually we can
directly get their second-order adiabatic modes from high k
expansions of the exact modes (67)–(70). Moreover, as
mentioned earlier, the inhomogeneous part of A and A0 do
not contribute to the GF stress tensor, so we need only the
homogeneous parts of (67)–(70) as the following:

A1k ¼ c1
1

aðτÞ
i
k

�
1 −

i
kτ

�
1ffiffiffiffiffi
2k

p e−ikτ; ð144Þ
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A2k ¼ m1

1

aðτÞ
i
k

�
1 −

i
kτ

�
1ffiffiffiffiffi
2k

p e−ikτ; ð145Þ

which are of the second adiabatic order already, and

A01k ¼ c1
1

aðτÞ
1ffiffiffiffiffi
2k

p e−ikτ; ð146Þ

A02k ¼ m1

1

aðτÞ
1ffiffiffiffiffi
2k

p e−ikτ; ð147Þ

which are of the zeroth adiabatic order, and are also equal to
all higher order homogeneous modes. [Similarly, for πA, the
adiabatic modes of all orders are equal to the exact mode
(26). Here we shall not need these for regularization.]
Substituting these adiabatic modes into the expressions
(120) and (121) to replace π0A1k, π

0
A2k, A1k, A2k, A01k, A02k,

we obtain

ρGFk 2nd ¼
k4

2π2a4

�
1þ 1

2k2τ2

�
¼ ρGFk ; ð148Þ

pGF
k 2nd ¼

1

3

k4

2π2a4

�
1 −

1

2k2τ2

�
¼ pGF

k : ð149Þ

As expected, the second-order adiabatic subtraction term
for the GF spectral stress tensor is equal to the exact GF
spectral stress tensor. By subtraction, the second-order
regularized GF vacuum stress tensor is zero,

ρGFk reg ≡ ρGFk − ρGFk 2nd ¼ 0; ð150Þ

pGF
k reg ≡ pGF

k − pGF
k 2nd ¼ 0; ð151Þ

and the regularized trace is also zero,

−ρGFk reg þ 3pGF
k reg ¼ 0: ð152Þ

So, there is no need to introduce a ghost field to cancel the
vanishing GF vacuum stress tensor (150) and (151), and
this vanishing vacuum stress tensor cannot be a candidate
for the cosmological constant [3,4]. (Instead, the regular-
ized vacuum stress tensor of a massive scalar field, either
minimally or conformally coupling, does give rise to the
cosmological constant [14,18]). Putting the three parts
together, the total regularized vacuum stress tensor of a
Maxwell field with a general GF term is zero,

ρreg ¼ preg ¼ 0; ð153Þ

and there is no trace anomaly. This result is independent of
ζ, and also invariant under the quantum residual gauge
transformation. Reference [1] adopted the point-splitting
regularization [18–20], and also arrived at the zero vacuum

stress tensor of the Maxwell field in the Feynman gauge, at
the price of introducing a ghost field to cancel the GF stress
tensor. The trace anomaly has been regarded as a consensus
since the 1970s; nevertheless our calculation shows no
trace anomaly for the Maxwell field. References [21,22]
claimed the trace anomaly under the assumption that the
Green’s function contains a boundary term wðx; x0Þ which
is unsymmetric in ðx; x0Þ. But, as we show, the exact
Green’s functions (A8) and (A9) in de Sitter space do not
contain such an unsymmetric boundary term [9,14,18].

VI. CONCLUSION AND DISCUSSIONS

We have studied the Maxwell field with a general gauge
fixing term in de Sitter space. All four components Aμ are
formally treated as independent variables, and no Lorenz
condition is imposed. The introduction of the GF term
restricts the gauge invariance of the Maxwell field down to
a residual gauge invariance given by (48). Furthermore, the
covariant canonical quantization restricts further the
residual gauge invariance down to the quantum residual
gauge invariance specified by Eq. (94).
The transverse components Bi are separated from other

components, independent of the gauge fixing constant ζ,
and represent real dynamical degrees of freedom, and their
equation (11) and solution (14) hold for a general RW
spacetime including de Sitter space. The transverse stress
tensor (103) consists of the particle parts (105) and the
vacuum part (104) with a UV divergent term ∝ k4.
The longitudinal and temporal components A and A0 are

mixed up in the ζ-dependent equations (12) and (13). We
have obtained their solutions (24) and (25) in two different
ways. In particular, in the second way, via the inhomo-
geneous equations (34) and (35), the nontrivial structure of
the solutions A and A0 is revealed, each being a sum of the
homogeneous and inhomogeneous solutions. The canoni-
cal momenta are contributed only by the inhomogeneous
solutions of A and A0, and only the homogeneous parts will
vary under the residual gauge transformation (50) and (51).
For a consistent covariant canonical quantization, both the
homogeneous and inhomogeneous k modes of A and A0

need to be present in the operator expansions. Moreover,
the homogeneous k modes of A and A0 will not go
vanishing under the quantum residual gauge transforma-
tion. The LT stress tensor (110) is independent of ζ, and
invariant under the quantum residual gauge transformation.
Further, its expectation (113) is zero in the GB physical
state due to the longitudinal and temporal cancellation.
More interesting is the GF stress tensor, which is less

studied in literature. At the classical level the GF stress
tensor (101) and (102) depends upon ζ; nevertheless, its
expectation value (122) and (123) in the GB physical state
is independent of ζ, and also is invariant under the quantum
residual gauge transformation. Moreover, its particle part is
zero due to the longitudinal and temporal cancellation; only
the vacuum part (124) and (125) remains, which contains
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two UV divergent terms, ∝ k4; k2, and is equal to twice the
vacuum stress tensor of the minimally coupling massless
scalar field.
To remove the UV divergences of the vacuum stress

tensor, we have carried out the adiabatic regularization.
The transverse vacuum stress tensor becomes zero under
the zeroth-order adiabatic regularization, and, respectively,
the GF vacuum stress tensor becomes zero under the
second-order adiabatic regularization. Thus, there is no
need to introduce a ghost field to cancel the GF stress
tensor, and the vanishing vacuum GF stress tensor of the
Maxwell field cannot be a possible candidate for the
cosmological constant. Instead, the regularized vacuum
stress tensor of a (minimally or conformally coupling)
massive scalar field corresponds to the cosmological
constant that drives the de Sitter inflation [14,18].
In summary, for the Maxwell field with a general GF

term in de Sitter space described by (1) and (19), the total
regularized vacuum stress tensor in the GB state is zero, and
only the photon part of the transverse stress tensor (105)
remains, and all the predicted physics will be the same as
that of the Maxwell field without the GF term.
We have also carried out analogous calculations in the

Minkowski spacetime, attached in the Appendix B. The
outcome is similar to de Sitter space, except that the GF
vacuum stress tensor has only one k4 term, which can be
made zero by the normal ordering.
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APPENDIX A: GREEN’S FUNCTIONS FOR
MAXWELL FIELD IN THE FEYNMAN GAUGE

Reference [19] proposed the following relations (see also
Ref. [1] for the application)

Gð1Þ;ν
νσ0 ¼ −GS;σ0 ; ðA1Þ

Gð1Þ;σ0
νσ0 ¼ −GS;ν; ðA2Þ

where

Gð1Þ
νσ0 ðx; x0Þ ¼ h0jðAνðxÞAσ0 ðx0Þ þ Aσ0 ðx0ÞAνðxÞÞj0i ðA3Þ

is the Hadamard type Green’s function for the Maxwell
field in the Feynman gauge (ζ ¼ 1), and

GSðx; x0Þ ¼ h0jϕðxÞϕðx0Þ þ ϕðx0ÞϕðxÞj0i ðA4Þ

is the Green’s function for a minimally coupling massless
scalar field where ϕðxÞ is the scalar field operator. Note that

Gð1Þ
νσ0 ðx; x0Þ is not an ordinary tensor, but a bivector at x and

at x0 respectively. Similarly, GSðx; x0Þ is a biscalar at x and
at x0 respectively. In the following we check the relation
(A1) in de Sitter space.
Write the operator ϕ as

ϕðxÞ ¼
Z

d3k

ð2πÞ32 ðak⃗ϕkðτÞeik·x þ a†
k⃗
ϕkðτÞ�e−ik·xÞ; ðA5Þ

where the k mode of ϕ in de Sitter space is [9,14]

ϕkðτÞ ¼
1

aðτÞ
1ffiffiffiffiffi
2k

p
�
1 −

i
kτ

�
e−ikτ: ðA6Þ

Simple calculation yields the Green’s function of the scalar
field

GS ¼
Z

d3k
ð2πÞ3

H2

2k3
ðð−iþ kτÞðiþ kτ0Þ

× e−ikðτ−τ0Þ þ c:c:Þeik·ðx−x0Þ: ðA7Þ

After the k integration, (A7) becomes [18]

GSðx; x0Þ ¼ −
H2

8π2

�
1

σ
þ ln

�
−
2ττ0

τ20
σ

��
ðA8Þ

with σ ≡ 1
ð2ττ0Þ ½ðτ − τ0Þ2 − jx − x0j2� and τ0 being a con-

stant. For the conformally coupling massless scalar field the
Green’s function is

Gðx; x0Þ ¼ −
H2

8π2
1

σ
; ðA9Þ

which is relevant to the case in Refs. [1,21,22]. Both (A8)
and (A9) are symmetric in ðx; x0Þ. For an extension of (A8)
to vacuum states other than the Bunch-Davies vacuum
state, see Ref. [23].
The time and spatial derivatives of (A7) are

GS;00 ¼
Z

d3k
ð2πÞ3

ðHτÞðHτ0Þ
2

×

��
iþ 1

kτ

�
e−ikðτ−τ0Þ þ c:c:

�
eik·ðx−x0Þ; ðA10Þ

GS;i0 ¼ −
Z

d3k
ð2πÞ3 ðiki0 Þ

H2

2k3
ðð−iþ kτÞðiþ kτ0Þ

× e−ikðτ−τ0Þ þ c:c:Þeik·ðx−x0Þ: ðA11Þ

From the solutions (14), (24), (25), of AμðxÞ in de Sitter
space, we obtain each component of the Green’s functions
of the Maxwell field as the following:
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Gð1Þ
000 ¼

Z
d3k
ð2πÞ3

e−ikðτþτ0Þ

6k3ττ0
½−iζðτ2e2ikτ þ τ02e2ikτ0 Þ þ kζττ0ðτe2ikτ þ τ0e2ikτ0 Þ − ζτ2ðiþ kτ0Þe2ikτ0 − ζτ02ðiþ kτÞe2ikτ

− ik2ð−3þ ζÞτ2τ02ðEið2ikτÞ þ Eið2ikτ0Þ þ e2ikðτþτ0ÞðEið−2ikτÞ þ Eið−2ikτ0ÞÞÞ�e−ik·ðx−x0Þ; ðA12Þ

Gð1Þ
0i0 ¼

Z
d3k
ð2πÞ3

iki0

6k3τ
½ðe−ikðτþτ0Þð1þ ikτ0Þðk2τ2ð−3þ ζÞEið2ikτÞ þ e2ikτζð1 − ikτÞÞ

þ eikðτþτ0Þe−2ikτk2τ2ð3 − 2ζ þ e−2ikτ
0 ð−3þ ζÞð1þ ikτ0ÞEið2ikτ0ÞÞÞ

− ðeikðτþτ0Þð−1þ ikτ0Þðk2τ2ð−3þ ζÞEið−2ikτÞ þ e−2ikτζð1þ ikτÞÞ
þ e−ikðτþτ0Þe2ikτk2τ2ð−3þ 2ζ þ e2ikτ

0 ð−3þ ζÞð−1þ ikτ0ÞEið−2ikτ0ÞÞÞ�e−ik·ðx−x0Þ; ðA13Þ

Gð1Þ
li0 ¼

Z
d3k⃗

2kð2πÞ3
�
δli0 −

klki0

k2

�
ðe−ikðτ−τ0Þ þ e−ikðτ0−τÞÞeik·ðx−x0Þ

þ
Z

d3k
ð2πÞ3

klki0

6k5
e−ikðτþτ0Þ½ik2ð−iþ kτÞðe2ikτ0 ð−3þ 2ζÞ − ið−3þ ζÞð−iþ kτ0ÞEið2ikτ0ÞÞ

− ik2e2ikτ
0 ðiþ kτ0Þð−3þ 2ζ þ ie2ikτð−3þ ζÞðiþ kτÞEið−2ikτÞÞ

þ ik2ð−iþ kτ0Þðe2ikτð−3þ 2ζÞ − ið−3þ ζÞð−iþ kτÞEið2ikτÞÞ
− ik2e2ikτðiþ kτÞð−3þ 2ζ þ ie2ikτ

0 ð−3þ ζÞðiþ kτ0ÞEið−2ikτ0ÞÞ�eik·ðx−x0Þ: ðA14Þ

Each contains the exponential-integration function Ei. In a
homogeneous and isotropic RW spacetime, there is a
symmetry

Gð1Þ
μν0 ðx; x0Þ ¼ Gð1Þ

ν0μðx0; xÞ;

so that

Gð1Þ
i00 ðx0; xÞjx↔x0 ¼ Gð1Þ

0i0 ðx; x0Þjx↔x0 :

Since G1
νσ0 ðx; x0Þ is a vector at the point x, the 00 component

of the four divergence is calculated as

Gð1Þ;ν
ν00 ¼ gμνGð1Þ

ν00;μ ¼ gμνðGð1Þ
ν00;μ − Γα

νμG
ð1Þ
α00 Þ

¼ a−2
�
−Gð1Þ

000;0 þGð1Þ
i00;i − 2

a0

a
Gð1Þ

000

�
ðA15Þ

with Γ0
00 ¼ a0

a , Γ0
ij ¼ δij

a0
a , Γi

0j ¼ a0
a δij. Substituting

(A12)–(A14) with ζ ¼ 1 into the above yields,

Gð1Þ;ν
ν00 ¼ −GS;00 ; ðA16Þ

where GS;00 is given by (A10), and the Ei function has
been canceled. Similarly, the i0 component of the four
divergence is

Gð1Þ;ν
νi0 ¼ 1

aðτÞ2
�
−Gð1Þ

0i0;0 − 2
aðτÞ0
aðτÞ G

ð1Þ
0i0 þGð1Þ

li0;l

�
: ðA17Þ

Calculation shows that

Gð1Þ;ν
νi0 ¼ −GS;i0 ; ðA18Þ

where GS;i0 is given by (A11). So, the relation (A1) in the
Feynman gauge is verified. Similarly, (A2) can be also
checked. Note that (A1) and (A2) are not valid for a
general ζ.

APPENDIX B: MAXWELL FIELD WITH
A GAUGE FIXING TERM IN MIKOWSKI

SPACETIME

Although the Maxwell field in the Minkowski spacetime
is well known, the Maxwell field with a general GF term is
nontrivial, and has not been adequately reported in liter-
ature [8]. The procedure of calculation is analogous to that
in de Sitter space. In the following we shall report briefly
the results. Setting D ¼ 0 in (4) gives the field equation

ησρ∂σ∂ρAν þ
�
1

ζ
− 1

�
∂νðηρσ∂σAρÞ ¼ 0: ðB1Þ

Setting D ¼ 0 in (12) and (13) gives the following basic
second-order equations:
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−∂20A −
1

ζ
k2Aþ

�
1 −

1

ζ

�
∂0A0 ¼ 0; ðB2Þ

−
1

ζ
∂
2
0A0 − k2A0 þ k2

�
1 −

1

ζ

�
∂0A ¼ 0; ðB3Þ

where A0 and A are mixed up, and Bi has the same equation
and solution as (11) and (14) in de Sitter space. The
decomposition is similar to (5)–(10), but the temporal
canonical momentum is

π0A ¼ −
1

ζ
ð∂0A0 þ k2AÞ: ðB4Þ

Equations (28) and (29) reduce to ð∂20 þ k2ÞπA ¼ 0, and
ð∂20 þ k2Þπ0A ¼ 0 in Minkowski spacetime; the positive
frequency solutions are

πA ¼ d1
1ffiffiffiffiffi
2k

p e−ikt; π0A ¼ d2ðikÞ
1ffiffiffiffiffi
2k

p e−ikt; ðB5Þ

where d1 and d2 are arbitrary coefficients. By differ-
entiation and combination of Eqs. (B2) and (B3), we
obtain the fourth-order differential equations

ð∂20 þ k2Þ2A ¼ 0; ðB6Þ

ð∂20 þ k2Þ2A0 ¼ 0; ðB7Þ

which are separate, and independent of ζ, unlike (20) and
(21) in the de Sitter space. The positive frequency solutions
of (B6) and (B7) are

AðτÞ ¼ b
i
k

1ffiffiffiffiffi
2k

p e−ikτ þ c
i
k
ð1þ 2ikτÞffiffiffiffiffi

2k
p e−ikτ; ðB8Þ

A0ðτÞ ¼ b0
1ffiffiffiffiffi
2k

p e−ikτ þ c0
ð1þ 2ikτÞffiffiffiffiffi

2k
p e−ikτ; ðB9Þ

where b, b0, c, c0 are arbitrary constants. Substituting (B8)
and (B9) into the basic equations (B2) and (B3) to
constraint ðc; c0; b; b0Þ, we obtain, for ζ ≠ −1,

AðτÞ ¼ b
i
k

1ffiffiffiffiffi
2k

p e−ikτ þ 1

2
ðb − b0Þ

ζ − 1

ζ þ 1

i
k
ð1þ 2ikτÞffiffiffiffiffi

2k
p e−ikτ;

ðB10Þ

A0ðτÞ ¼ b
1ffiffiffiffiffi
2k

p e−ikτ þ ðb − b0Þ

×

�
−1þ 1

2

ζ − 1

ζ þ 1
ð1þ 2ikτÞ

�
1ffiffiffiffiffi
2k

p e−ikτ; ðB11Þ

πA ¼ 2ðb − b0Þ
ζ þ 1

1ffiffiffiffiffi
2k

p e−ikτ; ðB12Þ

π0A ¼ 2ðb − b0Þ
ζ þ 1

ð−ikÞ 1ffiffiffiffiffi
2k

p e−ikτ; ðB13Þ

where the canonical momenta are contributed only by the
ðb − b0Þ part of (B10) and (B11). Similarly, for ζ ≠ 1, we
obtain

AðτÞ ¼ b
i
k

1ffiffiffiffiffi
2k

p e−ikτ þ cð1þ 2ikτÞ i
k

1ffiffiffiffiffi
2k

p e−ikτ; ðB14Þ

A0ðτÞ ¼ b
1ffiffiffiffiffi
2k

p e−ikτ þ c

�
ð1þ 2ikτÞ− 2

ζþ 1

ζ − 1

�
1ffiffiffiffiffi
2k

p e−ikτ;

ðB15Þ

πA ¼ c
4

ζ − 1

1ffiffiffiffiffi
2k

p e−ikτ; ðB16Þ

π0A ¼ c
4

ζ − 1
ð−ikÞ 1ffiffiffiffiffi

2k
p e−ikτ: ðB17Þ

In the Feynman gauge Eqs. (B2) and (B3) with ζ ¼ 1
reduce to

ð∂20 þ k2ÞA ¼ 0; ðB18Þ

ð∂20 þ k2ÞA0 ¼ 0; ðB19Þ

which are already separated for A and A0, and the solutions
(B10)–(B13) reduce to

AðτÞ ¼ b
i
k

1ffiffiffiffiffi
2k

p e−ikτ; A0ðτÞ ¼ b0
1ffiffiffiffiffi
2k

p e−ikτ; ðB20Þ

πA¼ðb−b0Þ
1ffiffiffiffiffi
2k

p e−ikτ; π0A¼ðb−b0Þð−ikÞ
1ffiffiffiffiffi
2k

p e−ikτ:

ðB21Þ

The Feynman gauge is commonly used in text books,
whereas a general gauge is less addressed.
The solutions of A and A0 can be rederived by another

way. Setting D ¼ 0 in (34) and (35) leads to the following
inhomogeneous equations:

∂
2
0Aþ k2A ¼ ∂0πA − ζπ0A; ðB22Þ

∂
2
0A0 þ k2A0 ¼ −ðk2πA þ ζ∂0π

0
AÞ: ðB23Þ

Since πA and π0A are known in (B5), we get the solutions
of (B22) and (B23),

A¼ b
i
k

1ffiffiffiffiffi
2k

p e−ikτ−
1

4
ðd1þd2ζÞ

i
k
ð1þ2ikτÞffiffiffiffiffi

2k
p e−ikτ; ðB24Þ

YANG ZHANG and XUAN YE PHYS. REV. D 106, 065004 (2022)

065004-16



A0 ¼ b0
1ffiffiffiffiffi
2k

p e−ikτ −
1

4
ðd1 þ d2ζÞ

ð1þ 2ikτÞffiffiffiffiffi
2k

p e−ikτ: ðB25Þ

Substituting (B24) and (B25) into (B2) and (B3) leads to
the constraints on the coefficients

ðd1 þ ζd2Þ ¼ −2ðb − b0Þ
ðζ − 1Þ
ðζ þ 1Þ ðζ ≠ −1Þ; ðB26Þ

ðb − b0Þ ¼ −
ðζ þ 1Þ
2ðζ − 1Þ ðd1 þ ζd2Þ ðζ ≠ 1Þ: ðB27Þ

This gives (B10) and (B11) for ζ ≠ −1 and (B14) and
(B15) for ζ ≠ 1, respectively.
Given these solutions, we perform the canonical quan-

tization for a general ζ. The quantization of the transverse
fields Bi is the same as (57)–(61) in de Sitter space. The
longitudinal and temporal operators A, A0, πA and π0A for a
general ζ are the same as (62), (63), (71), (72), but with the
k modes (for ζ ≠ 1)

A1kðτÞ ¼ b1
i
k

1ffiffiffiffiffi
2k

p e−ikτ þ c1
i
k
ð1þ 2ikτÞ 1ffiffiffiffiffi

2k
p e−ikτ;

ðB28Þ

A2kðτÞ ¼ b2
i
k

1ffiffiffiffiffi
2k

p e−ikτ þ c2
i
k
ð1þ 2ikτÞ 1ffiffiffiffiffi

2k
p e−ikτ;

ðB29Þ

A01kðτÞ¼b1
1ffiffiffiffiffi
2k

p e−ikτþc1

�
ð1þ2ikτÞ−2

ζþ1

ζ−1

�
1ffiffiffiffiffi
2k

p e−ikτ;

ðB30Þ

A02kðτÞ ¼ b2
1ffiffiffiffiffi
2k

p e−ikτ þ c2

�
ð1þ 2ikτÞ − 2

ζ þ 1

ζ − 1

�

×
1ffiffiffiffiffi
2k

p e−ikτ; ðB31Þ

πA1k ¼ c1
4

ζ − 1

1ffiffiffiffiffi
2k

p e−ikτ; ðB32Þ

πA2k ¼ c2
4

ζ − 1

1ffiffiffiffiffi
2k

p e−ikτ; ðB33Þ

π0A1k ¼ c1
4

ζ − 1
ð−ikÞ 1ffiffiffiffiffi

2k
p e−ikτ; ðB34Þ

π0A2k ¼ c2
4

ζ − 1
ð−ikÞ 1ffiffiffiffiffi

2k
p e−ikτ; ðB35Þ

where ðb1; c1Þ; ðb2; c2Þ are two sets of coefficients. [In the
Feynman gauge, the conventional one-operator expansion
of A and A0 will be used since their equations are separated
as (B18) and (B19).] We impose the covariant canonical
commutation relations

½Aμðτ;xÞ; πνAðτ; yÞ� ¼ iημνδðx − yÞ: ðB36Þ

Substituting the operators (63), (62), (72), (71) into each
ðμνÞ component of (B36), using the commutation relations
(66), we obtain the following constraints upon the coef-
ficients (for ζ ≠ 1):

ðc2�b2 − c1�b1Þ ¼
1

4
ðζ − 1Þ; ðB37Þ

jc2j2 − jc1j2 ¼ 0; ðB38Þ

jb2j2 − jb1j2 ¼ 1: ðB39Þ

There are infinite many choices to satisfy the above
constraints. For instance, a simple choice is c1 ¼ −c2 ¼ 1,
b1 ¼ 2

ζ−1 −
ζ−1
8
, b2 ¼ − 2

ζ−1 −
ζ−1
8
.

The stress tensor is not actually used in the Minkowski
spacetime since gravity is not considered. Here, in analogy
to that in de Sitter space, we calculate the stress tensor in
Minkowski spacetime. The transverse, LT, and GF stress
tensors are defined similar to the expressions (99)–(102)
with a ¼ 1 and D ¼ 0. We list the main results. The
transverse stress tensor is

hϕjρTRjϕi ¼ 3hϕjpTRjϕi ¼
Z

∞

0

ρTRk
dk
k

þ
Z

dk
k
ρTRk

X
σ¼1;2

hϕja†ðσÞk aðσÞk jϕi; ðB40Þ

where the transverse spectral stress tensor is

ρTRk ¼ k3

2π2
½jfð1Þ0k ðτÞj2 þ k2jfð1Þk ðτÞj2� ¼ k4

2π2
¼ 3pTR

k :

ðB41Þ

The first term of (B40) is the UV divergent vacuum energy
density in Minkowski spacetime, which is routinely
removed by normal ordering of the creation and annihila-
tion operators. The LT stress tensor in the GB state jψi is

hψ jρLTjψi ¼ 3hψ jpLTjψi ¼ 1

2
hψ j∂iπA∂iπAjψi ¼

Z
ρLTk

dk
k
:

ðB42Þ
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where

ρLTk ¼ 3pLT
k ¼ 0: ðB43Þ

The GF stress tensor in the GB state is

hψ jρGFjψi ¼
Z

ρGFk
dk
k
; hψ jpGFjψi ¼

Z
pGF
k

dk
k
;

ðB44Þ

where

ρGFk ¼ 3pGF
k ¼ k4

2π2
½hψ jað3Þ†k að3Þk jψi − hψ jað0Þ†k að0Þk jψi þ k�:

ðB45Þ

[It is remarked that the trace of the GF part is zero in
Minkowski spacetime, unlike the nonzero trace (127) in

de Sitter space.] By the GB condition (109), the photon part
cancels, and only the vacuum part remains,

ρGFk ¼ 3pGF
k ¼ k4

2π2
; ðB46Þ

which has only one divergent k4 term, corresponding to the
dominant UV divergent terms of (124) and (125) in de Sitter
space. TheUVdivergence of (B46) inMinkowski spacetime
can be removed by normal ordering also, yielding a zero
GF stress tensor. The expectation values of all three parts of
the stress tensor are independent of ζ, and the regularized
vacuum stress tensor is zero. Thus, the properties of the
stress tensor of the Maxwell field with the GF term in
Minkowski spacetime are similar to those in de Sitter space.
The above calculations are based on the modes

(B28)–(B35) for ζ ≠ 1. We may as well use the modes
(B10)–(B13) for ζ ≠ −1, implement the covariant canoni-
cal quantization, and get the same stress tensor.
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