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A great deal of evidence has been mounting over the years, showing a deep connection between
acceleration, radiation, and the Unruh effect. Indeed, the fact that the Unruh effect can be codified in the
Larmor radiation emitted by the charge was used to propose an experiment to experimentally confirm
the existence of the Unruh thermal bath. However, such connection has two puzzling issues: (1) how the
quantum Unruh effect can be codified in the classical Larmor radiation and (2) the fundamental role played
by zero-Rindler-energy modes of the Unruh thermal bath in such a context. Here we generalize a recent
analysis made for the scalar case to the more realistic case of Maxwell electrodynamics and settle these two
puzzling issues.
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I. INTRODUCTION

Acceleration and radiation are deeply interconnected
phenomena and their relationship has intrigued physicists
for decades, dating back to the publication of Larmor’s
seminal work [1]. Although Larmor’s formula played an
instrumental role in establishing the relationship between
acceleration and radiation, there were disagreements about
its interpretation and validity (in particular, in light of
Einstein’s equivalence principle, see, e.g., Refs. [2,3]). The
works of Rohrlich [4,5] and Boulware [6] shed some light
on the classical aspects of this question. They found that
radiation is not a covariant concept, as the perception of
radiative phenomena is intrinsically associated with the
observer’s state of motion: if an inertial observer detects
radiation coming from a uniformly accelerated charge,
another observer in the coaccelerated frame of the charge
will not. However interesting and surprising that such
classical results may be, it is in the context of quantum
field theory (QFT) that the interplay between acceleration
and radiation presents its most interesting hues.
In 1976, Unruh [7] discovered that uniformly accelerated

observers in the inertial vacuum perceive themselves immer-
sed in a thermal bath of (Rindler) particles at a temperature

TU ¼ ℏa
2πckB

; ð1:1Þ

knownas theUnruh temperature. TheUnruh effect vindicated
Fulling’s previous discovery that the particle concept in

quantum field theory is observer dependent [8] and provided
the correct explanation to the observations by Davies [9] that
an accelerated observer registers radiation with a temperature
proportional to his acceleration (see Ref. [10] for a review on
the Unruh effect).
The connection between the Unruh effect and brems-

strahlung has been analyzed in Ref. [11] (see also
Refs. [12,13]), finding that the emission and absorption
rate of zero-energy Rindler photons in the accelerated
frame agrees with the emission rate of the accelerated
charge seen by the inertial perspective. Such an agreement
can only be achieved by taking into account the existence of
the thermal bath at temperature TU in the accelerated frame.
The deep link between the Unruh effect and bremsstrahlung
has been strengthened by Ref. [14], where the authors
found, rather surprisingly, that classical Larmor radiation
codifies the purely quantum Unruh effect and provided an
experimental procedure whose result can be directly
interpreted in terms of the Unruh effect. More recently,
in Ref. [15], the authors analyzed the scalar version of the
radiation emission problem to clarify (1) the central role
played by the zero-energy Rindler photons in the QFT
calculations and (2) how the classical Larmor radiation can
codify the quantum Unruh effect.
In this work, we expand Ref. [15] to the more realistic

case of Maxwell electrodynamics. After extending the
definition of Unruh modes to vector-valued solutions of
the electromagnetic field equation (while retaining the
important characteristics that made them useful for the
scalar analysis), we use them to expand the retarded
potential associated with a uniformly accelerated charge
and find the corresponding expansion amplitudes. With
such an expansion, we define and compute the classical
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number of photons emitted by the charge and show the
fundamental role played by the zero-energy Rindler pho-
tons of the Unruh thermal bath in such a process. Next, we
proceed to the quantum analysis of the radiation emission
by relating the field state in the asymptotic past and future,
to find that not only the number of emitted photons will
coincide with the classical case, but also the expectation
values of the field and energy-momentum tensors agree
with their classical counterparts. As in the classical case, it
is made explicit how the radiation seen by the inertial
observers can be traced back to zero-energy Rindler
photons absorbed/emitted from/to the Unruh thermal bath
perceived in accelerated frame.
The paper is structured as follows. In Sec. II, we describe

the details corresponding to the radiation emitted by an
accelerated charge. In Sec. III, we define vector Rindler and
Unruh modes. Section IV is dedicated to finding the
amplitudes associated with the Unruh mode decomposition
of the classical field, while Sec. V is reserved for the
quantum calculations with a classical source. Some final
remarks and discussion are presented in Sec. VI. We work
with a four-dimensional spacetime with metric signature
ðþ;−;−;−Þ, along with Heaviside-Lorentz units for the
electromagnetic quantities, and set ℏ ¼ c ¼ 1 throughout
the paper.

II. THE FOUR CURRENT AND FOUR POTENTIAL
FROM A UNIFORMLY ACCELERATED CHARGE

The Lagrangian density for the electromagnetic field that
allows for the field quantization in a globally hyperbolic
spacetime ðM; gabÞ is given by

L ¼ −
ffiffiffiffiffiffi
−g

p �
1

4
FabFab þ

1

2α
ð∇aAaÞ2 þ jaAa

�
; ð2:1Þ

where Fab ≡ 2∇½aAb�, Aa is the four potential, ja is the
four-current source of the electromagnetic field, ∇a corre-
sponds to the covariant derivative compatible with the
Lorentzian metric gab, and g indicates the determinant of
gab in some arbitrary coordinate system [16]. The field
equation for a Ricci-flat (Rab ¼ 0) spacetime in the
Feynman gauge α ¼ 1 is given by

∇b∇bAa ¼ ja; ð2:2Þ

which can also be achieved by imposing

∇aAa ¼ 0; ð2:3Þ

known as the Lorenz condition, a priori.
Let us consider an initially inertial charge q in

Minkowski spacetime ðR4; ηabÞ, which is accelerated with
constant proper acceleration a for a finite proper time 2T
and then becomes inertial again. Here, ηab indicates the
Minkowski metric whose line element in usual inertial
Minkowski coordinates ðt; x; y; zÞ takes the form

ds2 ¼ dt2 − dx2 − dy2 − dz2: ð2:4Þ

In such coordinates, the worldline of the charge is given by
(see Fig. 1)

zaðtÞ ¼

8>><
>>:

(t; 0; 0; a−1 coshðaTÞ − tanhðaTÞ½tþ a−1 sinhðaTÞ�) if t ≤ −a−1 sinhðaTÞ;
ðt; 0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a−2 þ t2

p
Þ if jtj < a−1 sinhðaTÞ;

(t; 0; 0; a−1 coshðaTÞ þ tanhðaTÞ½t − a−1 sinhðaTÞ�) if t ≥ a−1 sinhðaTÞ;
ð2:5Þ

and the four current associated with this worldline is given by

jaðxÞ ¼
(
jaI ðxÞ if jtj ≥ a−1 sinhðaTÞ;
jaAðxÞ if jtj < a−1 sinhðaTÞ: ð2:6Þ

Here, jaI is the current associated with the inertial part of the
motion and has components

jtIðxÞ¼
�
qcoshðaTÞδ2ðx⊥ÞΔþðz;tÞ if t≤−a−1 sinhðaTÞ;
qcoshðaTÞδ2ðx⊥ÞΔ−ðz;tÞ if t≥a−1 sinhðaTÞ;

ð2:7Þ

jzIðxÞ¼
�−qsinhðaTÞδ2ðx⊥ÞΔþðz;tÞ if t≤−a−1 sinhðaTÞ;

qsinhðaTÞδ2ðx⊥ÞΔ−ðz;tÞ if t≥a−1 sinhðaTÞ;
ð2:8Þ

along with jxI ðxÞ ¼ jyI ðxÞ ¼ 0. Here we have defined the
auxiliary functions

Δ�ðz; tÞ≡ δ(z − a−1sechðaTÞ � t tanhðaTÞ): ð2:9Þ

The current jaA describes the uniformly accelerated part
of the motion. In the right Rindler wedge (RRW), i.e., the
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spacetime region defined by z > jtj, jaAðxÞ can be cast in a
simple form by using Rindler coordinates ðλ; ξ; x; yÞ, where
x and y are left unaltered, while the other two inertial
coordinates are written as

t ¼ a−1eaξ sinhðaλÞ; z ¼ a−1eaξ coshðaλÞ; ð2:10Þ

yielding

jaA ¼ qδðξÞδ2ðx⊥ÞθðT − jλjÞð∂λÞa: ð2:11Þ

Here, δ is the Dirac delta distribution, θ is the Heaviside
step function, and x⊥ ≡ ðx; yÞ ∈ R2. We have included the
step function to reinforce the fact that this part of the current
is limited to the region defined by jtj < a−1 sinhðaTÞ.
Notice the trajectory (2.5) is not constrained to the RRW
(like an infinitely accelerated particle would): before the
acceleration, the charge moves in the contracting degen-
erate Kasner universe (CDKU, t < −jzj), it then crosses
the Killing horizon tþ z ¼ 0 to the RRW, and after the
acceleration it crosses the surface t − z ¼ 0 into the
expanding degenerate Kasner universe (EDKU, t > jzj).
As we are interested in describing radiation, let us recall

from the classical theory that the energy radiated by a
point charge over a unit solid angle per emission time is
given by [17]

d2H
dΩdtret

¼ lim
R→∞

ð1 − vðtretÞ · nðtretÞÞR2SðtÞ · nðtretÞ

¼ q2

16π2

�jn × ½ðn − vÞ × a�j2
ð1 − v · nÞ5

�
ret
; ð2:12Þ

where n is a unitary vector that points from the point of
emission to the point of evaluation, v is the velocity of the
charge, and a is its acceleration. We can see from Eq. (2.12)
that the only contribution to the radiated energy comes
from the parts of the trajectory where acceleration is
nonzero. Indeed, by using the worldline (2.5) of our charge
together with n ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ, where the
angles θ and φ are defined from the point of emission,
Eq. (2.12) reduces to

d2H
dΩdtret

¼ ð16π2Þ−1a2q2 sin2 θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2t2

p
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2t2

p
− at cos θÞ5

����
ret

ð2:13Þ

if jtretj < a−1 sinhðaTÞ, and to zero otherwise.
The Liénard-Wiechert potential produced by the current

(2.6) is given by [17,18]

RjaðxÞ¼ q
2π

Z
∞

−∞
dτ

dza

dτ
θ(x0−z0ðτÞ)δ(½x−zðτÞ�2); ð2:14Þ

where τ is the charge’s proper time. Born [19] used this
expression for the case where the charge is uniformly
accelerated for an infinite amount of time (result that
was further discussed and refined in works like [6,20]),
yielding

Rjt¼ q
4πðt2−z2Þ

�
azða−2− t2þr2Þ

2ρ0ðxÞ
− t

�
θðtþzÞ; ð2:15Þ

Rjz¼ q
4πðt2−z2Þ

�
atða−2− t2þr2Þ

2ρ0ðxÞ
−z

�
θðtþzÞ; ð2:16Þ

Rjx ¼ Rjy ¼ 0; ð2:17Þ

where r2 ¼ x2 þ y2 þ z2 and

ρ0ðxÞ≡ a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

a2
ðt2 − z2Þ þ

�
1

a2
− t2 þ r2

�
2

s
: ð2:18Þ

This solution codifies all the information about the charge q
following the worldline (2.5) in the limit T → ∞. Later in
the paper, we will show how this solution is built entirely
from zero-energy Rindler modes.
For the sake of some calculations, it will be useful

to consider the following compactified version of the
current (2.6):

jaL ≡ θðL − jtjÞja; ð2:19Þ

which will enable us to use some useful mathematical
identities. Here, we have introduced a “compactification
parameter” L > a−1 sinhðaTÞ. We note that jaL is not
locally conserved as

FIG. 1. Spacetime diagram describing the worldline of an
initially inertial charge q which is uniformly accelerated for a
finite proper time 2T and then becomes inertial again. The slices
Σ− and Σþ are Cauchy surfaces to the past and future, respec-
tively, of the support of the compactified four current jaL.
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∇ajaL ¼ jtδðL − jtjÞ ≠ 0; ð2:20Þ

where we used the current ja defined in Eq. (2.6), which
does satisfy ∇aja ¼ 0. However, as L is a free parameter,
we can compute the quantities of interest using this current
of compact support and then recover the physically relevant
results, where charge is locally conserved, by taking the
limit L → ∞. As our aim is to study the radiation emitted
by a charge accelerated during a finite amount of its proper
time, and the inertial portions of the motion of this charge
will not contribute to the radiation emitted (nor detected),
the analysis of the radiation using jaL (eventually taking
L → ∞) will be enough for our purposes. It is important to
note that we will also present the corresponding correction
terms coming from the inertial parts of the motion and the
compactification, to guarantee that it does not contribute
when the limit L → ∞ is taken.

III. RINDLER AND UNRUH MODES

The main idea behind this study is to decompose both the
classical and quantum electromagnetic four potential in
terms of vector Unruh modes, the definition of which is
based on Rindler modes that appear on the description of a
scalar field on both Rindler wedges. In the following, we
recall the discussion for the scalar case as it is fundamental
to our procedure.
Let us consider a free scalar field ϕ in ðR4; ηabÞ,

satisfying the Klein-Gordon (KG) equation

∇a∇aϕ ¼ 0: ð3:1Þ

As the RRW is a globally hyperbolic static spacetime on its
own right, with timelike Killing field ð∂λÞa, one can define
the set of positive-frequency right Rindler modes fvRωk⊥g,
which are solutions of Eq. (3.1) vanishing in the left Rindler
Wedge (LRW), i.e., the spacetime region defined by
t < −jzj, and taking the form

vRωk⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπω=aÞ

4π4a

r
Kiω=a

�
k⊥eaξ
a

�
eik⊥·x⊥e−iωλ; ð3:2Þ

in the RRW using Rindler coordinates. Here, KνðzÞ is the
modified Bessel function of the second kind,
k⊥ ≡ ðkx; kyÞ ∈ R2nf0g, and ω ∈ Rþ. We can also define
left Rindler modes vLωk⊥ by means of the relation

vLωk⊥ðt;x⊥; zÞ≡ vR�ωk⊥ð−t;x⊥;−zÞ: ð3:3Þ

Hence, they vanish in the RRW and take the form (3.2) in
Rindler coordinates covering the LRW. The set of modes
fvRωk⊥ ; v

L
ωk⊥g, together with their Hermitian conjugates,

forms a complete set of solutions of the Klein-Gordon
equation in Minkowski spacetime [10].

By using the Rindler modes (3.2) and (3.3), we can define
another suitable set of solutions of the KG equation, the so-
called Unruh modes fw1

ωk⊥ ; w
2
ωk⊥g. They are defined as

w1
ωk⊥ ≡ vRωk⊥ þ e−πω=avL�ω−k⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p ; ð3:4Þ

w2
ωk⊥ ≡ vLωk⊥ þ e−πω=avR�ω−k⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p ; ð3:5Þ

and, although they are labeled by the Rindler energy ω and
transverse momentum k⊥, they are positive frequency with
respect to the inertial time t and form (together with their
Hermitianconjugate)acompletesetoforthonormalsolutions
of the KG equation. This makes them suitable to investigate
the relation between radiation seen by inertial observers and
the physics of uniformly accelerated observers.
Having defined the scalar Unruh modes, we can now

turn our attention to the electromagnetic case. The solutions
of the homogeneous electromagnetic field equation in
ðR4; ηabÞ,

∇b∇bAa ¼ 0; ð3:6Þ
can be decomposed in terms of four independent polari-
zation modes on the RRW given by [11]

VRð1Þ
ωk⊥a ¼

1

k⊥
ð0; 0; kyvRωk⊥ ;−kxv

R
ωk⊥Þ; ð3:7Þ

VRð2Þ
ωk⊥a ¼

1

k⊥
ð∂ξvRωk⊥ ; ∂λv

R
ωk⊥ ; 0; 0Þ; ð3:8Þ

VRðGÞ
ωk⊥a ¼

1

k⊥
∇avRωk⊥ ; ð3:9Þ

VRðLÞ
ωk⊥a ¼

1

k⊥
ð0; 0; kxvRωk⊥ ; kyv

R
ωk⊥Þ; ð3:10Þ

where vRωk⊥ are the scalar right Rindler modes given in
Eq. (3.2). These have been selected in such a way that they
are orthonormalized with respect to the generalized Klein-
Gordon inner product

hAð1Þ; Að2ÞigKG ¼
Z
Σ
dΣaΞa½Að1Þ; Að2Þ� ð3:11Þ

between two modes, Að1Þ and Að2Þ, of the electromagnetic
field. Here, the integration is done over any Cauchy surface
Σ, with proper-vector-valued-volume element dΣa and
conserved current Ξa½Að1Þ; Að2Þ� given by

Ξa½Að1Þ; Að2Þ�≡ iffiffiffiffiffiffi−gp ðAð1Þ�
b πð2Þab − Að2Þ

b πð1Þab�Þ; ð3:12Þ

where we have used the generalized momenta of the
electromagnetic potential defined as πab ≡ ∂L=∂ð∂aAbÞ.
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On the Feynman gauge, these are computed explicitly
yielding

πab ¼ ffiffiffiffiffiffi
−g

p ð∇bAa −∇aAb − gab∇cAcÞ: ð3:13Þ

The left electromagnetic Rindler modes are defined, as in
the scalar case, as

VLðκÞ
ωk⊥aðt;x⊥; zÞ≡ VRðκÞ�

ωk⊥að−t;x⊥;−zÞ; ð3:14Þ

with κ ¼ 1; 2; G; L. Here, the modes (both left and right)
labeled with κ ¼ 1, 2 are physical modes, while the ones
labeled with κ ¼ G, L are nonphysical, as they are pure
gauge and do not satisfy the Lorenz condition, respectively.
By making use of VRðκÞ

ωk⊥a and VLðκÞ
ωk⊥a, we can extend the

definition of theUnruhmodes to the electromagnetic case, in
analogous fashion to the definitions of Eqs. (3.4) and (3.5),

W1ðκÞ
ωk⊥b ≡

VRðκÞ
ωk⊥b þ e−πω=aVLðκÞ�

ω−k⊥bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω=a

p ; ð3:15Þ

W2ðκÞ
ωk⊥b ≡

VLðκÞ
ωk⊥b þ e−πω=aVRðκÞ�

ω−k⊥bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω=a

p : ð3:16Þ

These, by using Eqs. (3.4) and (3.5); (3.7)–(3.10), can be
expressed directly in terms of the scalar Unruh modes as

Wσð1Þ
ωk⊥a ¼

1

k⊥
ð0; kywσ

ωk⊥ ;−kxw
σ
ωk⊥ ; 0Þ; ð3:17Þ

Wσð2Þ
ωk⊥a ¼

1

k⊥
ð∂zwσ

ωk⊥ ; 0; 0; ∂tw
σ
ωk⊥Þ; ð3:18Þ

WσðGÞ
ωk⊥a ¼

1

k⊥
∇awσ

ωk⊥ ; ð3:19Þ

WσðLÞ
ωk⊥a ¼

1

k⊥
ð0; kxwσ

ωk⊥ ; kyw
σ
ωk⊥ ; 0Þ: ð3:20Þ

Hence, they satisfy

hWσðκÞ
ωk⊥ ;W

σ0ðκ0Þ
ω0k0⊥

igKG ¼ δσσ0δκκ0δðω − ω0Þδ2ðk⊥ − k0⊥Þ
ð3:21Þ

and form (together with their Hermitian conjugate) a com-
plete set of solutions for the homogeneous electromagnetic
field equation (3.6), which are positive frequency with
respect to the inertial time t.

IV. UNRUH MODE DECOMPOSITION OF THE
CLASSICAL RETARDED POTENTIAL

Let us consider two Cauchy surfaces Σþ and Σ−
in Minkowski spacetime with Σþ ⊂ IþðΣ−Þ and

Σ� ⊂ R4 − suppðjaLÞ (see Fig. 2). Here, IþðAÞ denotes
the chronological future of a subset A ⊂ R4.
The advanced and retarded solution of the field equa-

tion (2.2) with source jaL are given by

AjaLðxÞ ¼
Z
R4

d4x0
ffiffiffiffiffiffiffi
−g0

p
Gadvðx; x0ÞjaLðx0Þ; ð4:1Þ

RjaLðxÞ ¼
Z
R4

d4x0
ffiffiffiffiffiffiffi
−g0

p
Gretðx; x0ÞjaLðx0Þ; ð4:2Þ

respectively, where Gadv and Gret are the advanced and
retarded Green’s functions for the electromagnetic field
[18]. Given our choice for Cauchy surfaces, we find that

RjaLðxÞ ¼ −EjaLðxÞ ∀ x ∈ Σþ; ð4:3Þ

where we have defined EjaL ≡ AjaL − RjaL and we have used
that AjaL vanishes in R4 − J−ðsuppjaLÞ.
In order to analyze the role played by the Unruh thermal

bath (with particular interest in the zero-energy Rindler
modes) in building the radiation emitted by the charge as
seen by inertial observers, it will be important to decom-
pose RjaL in terms of Unruh modes (3.17)–(3.20). To this
end, we will use our compactified current jaL to compute
RjaL and take the limit L → ∞ to recover the physical
current case. Such a task will be greatly simplified by using
the identity (proven in Appendix A)

FIG. 2. Conformal diagram of our setup. The red portion of the
worldline displays the support of the accelerated part of the
compactified current jaL, while the supports of the inertial parts
are shown in green. The orange lines depict the Killing horizons
and the blue ones the Cauchy surfaces.
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hÃ; Ej̃igKG ¼ −i
Z
M

d4x
ffiffiffiffiffiffi
−g

p
Ã�
aj̃a; ð4:4Þ

which is valid for any Ricci-flat (Rab ¼ 0) globally hyper-
bolic spacetime ðM; gabÞ, with Ãa being any solution of the
homogeneous electromagnetic field equation (3.6) and j̃a

any compact-support current.
Let us now expand Eq. (4.3) in terms of Unruh modes on

Σþ as

RjLa ¼ −
X
σ;κ

Z
∞

0

dω
Z
R2

d2k⊥

× ðhWσðκÞ
ωk⊥ ; EjLigKGW

σðκÞ
ωk⊥a þ c:c:Þ; ð4:5Þ

where c:c: represents the complex conjugate of the

previous expression. The coefficients hWσðκÞ
ωk⊥ ; EjLigKG

can be computed using Eq. (4.4). We immediately find

that hWσð1Þ
ωk⊥ ; EjLigKG ¼ hWσðLÞ

ωk⊥ ; EjLigKG ¼ 0, as the cur-
rent does not couple with the corresponding modes. As the
support of jaA is contained in the RRW (even on the limit
T → ∞), by using Eqs. (2.6) and (2.19) we can cast the
other coefficients as

hW1ð2Þ
ωk⊥ ; EjLigKG ¼ −

iqeπω=2a sinðωTÞffiffiffiffiffiffiffiffiffiffi
2π4a

p
ω

K0
iω=aðk⊥=aÞ

þ I1ð2Þ
ωk⊥ða; T; LÞ; ð4:6Þ

hW1ðGÞ
ωk⊥ ; EjLigKG ¼ q sinðωTÞeπω=2affiffiffiffiffiffiffiffiffiffi

2π4a
p

k⊥
Kiω=aðk⊥=aÞ

þ I1ðGÞ
ωk⊥ ða; T; LÞ; ð4:7Þ

hW2ð2Þ
ωk⊥ ; EjLigKG ¼ −

iq sinðωTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π4aeπω=a

p
ω
K0

iω=aðk⊥=aÞ

þ I2ð2Þ
ωk⊥ða; T; LÞ; ð4:8Þ

and

hW2ðGÞ
ωk⊥ ; EjLigKG ¼ −

q sinðωTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π4aeπω=a

p
k⊥

Kiω=aðk⊥=aÞ

þ I2ðGÞ
ωk⊥ ða; T; LÞ; ð4:9Þ

where we have used the prime to denote differentiation with
respect to the argument. Here, we have written the
amplitudes in Eqs. (4.6)–(4.9) separating two different
contributions: the first one coming from the uniformly
accelerated part of the current jaL and the second one

IσðκÞ
ωk⊥ ≡ −iq½coshðaTÞAσðκÞ

ωk⊥ þ sinhðaTÞBσðκÞ
ωk⊥ �; ð4:10Þ

with

AσðκÞ
ωk⊥ ≡

Z
L

a−1 sinhðaTÞ
dt
Z
R
dz½WσðκÞ�

ωk⊥ tðt; 0; 0; zÞΔ−ðz; tÞ

þWσðκÞ�
ωk⊥ tð−t; 0; 0; zÞΔþðz;−tÞ�; ð4:11Þ

BσðκÞ
ωk⊥ ≡

Z
L

a−1 sinhðaTÞ
dt
Z
R
dz½WσðκÞ�

ωk⊥ zðt; 0; 0; zÞΔ−ðz; tÞ

−WσðκÞ�
ωk⊥ zð−t; 0; 0; zÞΔþðz;−tÞ�; ð4:12Þ

coming from the inertial part of jaL. Now, after computing
the above integrals, we take the limit L → ∞ to obtain the
complete result for our physical current, i.e., the current
given in Eq. (2.6) which satisfies ∇aja ¼ 0. In Appendix B
we present the details of such calculation.
Having determined the amplitudes for our physical

current, let us now find their form in the limit where
the charge accelerates for an infinite proper time, i.e.,
T → ∞. By using

lim
T→∞

sinðωTÞ
ω

¼ πδðωÞ; ð4:13Þ

the identity K0
νðzÞ ¼ νKνðzÞ=z − Kνþ1ðzÞ for the modified

Bessel functions of the second kind, and the fact (proven in

Appendix B) that Iσð2Þ
ωk⊥ and IσðGÞ

ωk⊥ vanish for T → ∞, we
find that the amplitudes of Eqs. (4.6)–(4.9) can be cast as

hW1ð2Þ
ωk⊥ ; EjigKG ¼ hW2ð2Þ

ωk⊥ ; EjigKG
¼ iqffiffiffiffiffiffi

2a
p

π
K1

�
k⊥
a

�
δðωÞ; ð4:14Þ

hW1ðGÞ
ωk⊥ ; EjigKG ¼ hW2ðGÞ

ωk⊥ ; EjigKG ¼ 0: ð4:15Þ

We can now define the total number of classical photons
emitted by the charge (as seen by inertial observers) as

NcU ≡ hKRj;KRjigKG ≡ kKRjk2gKG; ð4:16Þ

where KRja is the (inertial) positive-energy part of the
retarded solution given in Eq. (2.2),

KRja ¼ −
X
σ;κ

Z
∞

0

dω
Z
R2

d2k⊥hWσðκÞ
ωk⊥ ; EjigKGW

σðκÞ
ωk⊥a:

ð4:17Þ

By using the orthonormality of the Unruh modes, we can
write NcU explicitly in terms of the coefficients of the
expansion (3.21) as
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NcU ¼
X
σ;κ

Z
∞

0

dω
Z
R2

d2k⊥jhWσðκÞ
ωk⊥ ; EjigKGj2; ð4:18Þ

which enables us to interpret jhWσðκÞ
ωk⊥ ; EjigKGj2 as the

number of photons associated with the Unruh mode σ,
per polarization mode κ, per transverse momentum k⊥ and
Rindler energy ω. To avoid divergences, we will deal with
the number of Unruh photons per transverse momentum

dNcU

d2k⊥
≡X

σ;κ

Z
∞

0

dωjhWσðκÞ
ωk⊥ ; EjigKGj2: ð4:19Þ

In the limit T → ∞, we can use Eqs. (4.14) and (4.15) in

Eq. (4.19), together with the property W2ð2Þ
ωk⊥a ¼ W1ð2Þ

−ωk⊥a to
write

dNcU

d2k⊥
¼ q2

4π3a
jK1ðk⊥=aÞj2T tot; ð4:20Þ

where we have used that T tot ¼ 2πδðωÞjω¼0. This
gives exactly the total rate of emission and absorption of
zero-energy Rindler photons in the Unruh thermal
bath seen by an accelerated observer and the rate of emission
detected by an inertial one, as computed inRef. [11] using tree-
level QFT. It interesting to note how this (classical) radiation is
built from zero-Rindler-energy Unruh modes, as can be seen
explicitly from the form of the amplitudes in Eq. (4.14).
Now, let us explicitly compute the expansion (4.5) and

show it reduces to the usual and well-known solution for
the electromagnetic four potential (15) in the asymptotic
future. For this purpose, let us focus on region EDKU in
Fig. 2, the so-called expanding degenerate Kasner universe
(the region where t > jzj). In the limit T → ∞, we can see
from Eqs. (4.14) and (4.15) that the only modes that couple

with our current areWσð2Þ
ωk⊥a. As a result, by using again that

W2ð2Þ
ωk⊥a ¼ W1ð2Þ

−ωk⊥a to perform the integration in ω, Eq. (4.5)
can be expressed as

Rja ¼−
qffiffiffiffiffiffiffiffiffiffi
2aπ2

p
Z
R2

d2k⊥½iK1ðk⊥=aÞW2ð2Þ
0k⊥aþ c:c:�: ð4:21Þ

On the EDKU let us define the coordinates ðη; ζ;x⊥Þ by

t ¼ a−1eaη coshðaζÞ; z ¼ a−1eaη sinhðaζÞ; ð4:22Þ

while keeping the transverse position coordinates x⊥
unaltered. In such coordinates, the vector Unruh mode
(3.18) reads

W2ð2Þ
ωk⊥a ¼

1

k⊥
ð∂ζw2

ωk⊥ ; ∂ηw
2
ωk⊥ ; 0; 0Þ;

with the scalar Unruh mode w2
ωk⊥ having the rather simple

form in the EDKU

w2
ωk⊥ ¼ −

ieπω=ð2aÞffiffiffiffiffiffiffiffiffiffiffiffi
32π2a

p eiðk⊥·x⊥þωζÞHð2Þ
iω=aðk⊥eaη=aÞ: ð4:23Þ

From Eq. (4.23) we can see that ∂ζw2
0k⊥ ¼ 0 and, therefore,

the only nonzero component of the four potential will be

RjζðxÞ ¼
qeaη

8π2a

Z
R2

d2k⊥½K1ðk⊥=aÞHð2Þ
1 ðk⊥eaη=aÞeik⊥·x⊥

þ c:c:�; ð4:24Þ

where we have used the identity Hð2Þ0
0 ðzÞ ¼ −Hð2Þ

1 ðzÞ for
the Hankel functions. To carry out the rest of the integra-
tion, let us define polar coordinates for the transverse
momentum vector by x⊥ ≡ ðx⊥ cosφ; x⊥ sinφÞ and
k⊥ ≡ (k⊥ cosðφþ ϑÞ; k⊥ sinðφþ ϑÞ), with k⊥ > 0 and
0 ≤ ϑ < 2π. As a result, k⊥ · x⊥ ¼ k⊥x⊥ cosϑ and
d2k⊥ ¼ dϑdk⊥k⊥, so we can rewrite the nonzero compo-
nent of the retarded solution in Eq. (4.24) as

RjζðxÞ ¼
qeaη

8π2a

Z
∞

0

k⊥dk⊥
�
K1ðk⊥=aÞHð2Þ

1 ðk⊥eaη=aÞ

×
Z

2π

0

dϑ expðik⊥x⊥ cosϑÞ þ c:c:

�
:

Here, we recognize one of the integral forms of the
Bessel function of order zero [21]

J0ðzÞ ¼
1

2π

Z
2π

0

dϑ expðiz cos ϑÞ

and use the definition of the second Hankel functions

Hð2Þ
ν ðzÞ ¼ JνðzÞ − iYνðzÞ to show that

Rjζ ¼
qeaη

2πa

Z
∞

0

k⊥K1ðk⊥=aÞJ1ðk⊥eaη=aÞJ0ðk⊥x⊥Þdk⊥:

ð4:25Þ

We can now apply the identity [22,23]Z
∞

0

K1ðαϑÞJ1ðiβϑÞJ0ðγϑÞϑdϑ

¼ i
2αβ

�
α2 þ β2 þ γ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðα2 þ β2 þ γ2Þ2 − 4α2β2
p − 1

�
; ð4:26Þ

which holds for the Reα > 0, Reβ ¼ 0, and γ > 0. If we
identify α ¼ a−1, β ¼ −ieaη=a, and γ ¼ x⊥, it is immediate
to find

RjζðxÞ ¼ −
qa
4π

�
aða−2 − a−2e2aη þ x⊥2Þ

2ρ0ðxÞ
− 1

�
: ð4:27Þ

This four potential is gauge equivalent to the Born solution
in Eq. (15). To prove this, we can define a scalar function
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ΛðxÞ≡ −qaðζ þ ηÞ=4π and apply the gauge transforma-
tion Rja → Rja þ∇aΛ to obtain exactly the solution
originally found by Born, but written in Rindler coordi-
nates. Again, it is interesting to note how the usual retarded
solution Eqs. (2.15)–(2.17) is built entirely from zero-
Rindler-energy Unruh modes, as can be seen
from Eq. (4.21).

V. UNRUH MODE DECOMPOSITION OF THE
QUANTUM POTENTIAL

Let us now analyze the quantum aspects of the radiation
emitted by the charge and its relation with the Unruh
thermal bath. To this end, we will focus on the quantum
four-potential operator Âa, defined as a solution to the field
equation

∇b∇bÂa ¼ jaL Î: ð5:1Þ

We can write a this operator in different ways, depending
on the boundary/initial conditions chosen. One suitable
choice is

Âa ¼ Âin
a þ RjLa Î; ð5:2Þ

where Âin
a is the solution to the homogeneous field equation

∇b∇bÂin
a ¼ 0; ð5:3Þ

and we recall that RjLa is the retarded solution associated
with the current jaL. As a result, we can expand Âin

a as

Âin
a ðt;xÞ ¼

X
j

ðuðjÞaðt;xÞâinðu�ðjÞÞ þ H:c:Þ; ð5:4Þ

where fuðjÞgj∈J, with J being a suitable set of quantum
numbers, is a complete set of (Minkowski) positive-
frequency modes. We can define j0Min i as the state such
that âinðu�ðjÞÞj0Min i ¼ 0, for all j ∈ J. As RjaL vanishes in the

asymptotic past (for instance, on the Cauchy surface Σ− in
Fig. 2), one can interpret j0Min i as the vacuum state as seen
by inertial observers in the asymptotic past. The Fock space
describing particle states as seen by such observers is
generated by the states

jnj1 ; nj2 ; � � �iin ¼ ⨂
∞

j¼j1

½âin†ðuðjÞÞ�njffiffiffiffiffiffi
nj!

p j0Min i; ð5:5Þ

where nj ∈ N for each j ∈ J.
Alternatively, we can also write a solution of Eq. (5.1) as

Aa ¼ Âout
a þ AjLa Î; ð5:6Þ

where Âout
a is a solution of the homogeneous field equation,

∇b∇bÂout
a ¼ 0; ð5:7Þ

and we recall that AjaL is the advanced solution associated
with the current jaL. Hence, we can expand Âout

a as

Âout
a ðt;xÞ ¼

X
j

ðvðjÞaðt;xÞâoutðv�ðjÞÞ þ H:c:Þ; ð5:8Þ

where fvðjÞgj∈K, with K being a suitable set of quantum
numbers, is any set of (Minkowski) positive-energy modes.
We can then define j0Mouti as the state such that
âoutðv�ðjÞÞj0Mouti ¼ 0, for all j ∈ K. As AjaL vanishes in

the asymptotic future (for example, in the Cauchy surface
Σþ shown in Fig. 2), we can interpret it as the vacuum state
seen by an inertial observer in the asymptotic future. We
can also construct the Fock space describing the particle
states of the field by successive applications of the
“creation operators” âout†ðvðjÞÞ on j0Mouti, hence

jnj1 ; nj2 ; � � �iout ¼ ⨂
∞

j¼j1

½âout†ðvðjÞÞ�njffiffiffiffiffiffi
nj!

p j0Mouti: ð5:9Þ

We can connect the in and out Fock spaces via the S
matrix [24]

Ŝ≡ exp

�
−i

Z
R4

d4x
ffiffiffiffiffiffi
−g

p
Âout
a ðt;xÞjaLðt;xÞ

�
; ð5:10Þ

which, in particular, relates the two vacua by

j0Min i ¼ Ŝj0Mouti: ð5:11Þ

In order to compute this operator explicitly, let us expand
the out field in terms of Unruh modes (3.20),

Âout
a ¼

X
σ;κ

Z
∞

0

dω
Z
R2

d2k⊥½WσðκÞ
ωk⊥aâoutðW

σðκÞ�
ωk⊥ Þ

þWσðκÞ�
ωk⊥aâ

†
outðWσðκÞ

ωk⊥Þ�: ð5:12Þ

In order to cast Eq. (5.12) in a more convenient form, let us
first define the smearing of the quantum four potential with
the classical current as

Âout
a ðjLÞ≡

Z
R4

d4x
ffiffiffiffiffiffi
−g

p
Âout
a ðxÞjaLðxÞ: ð5:13Þ

Next, by using Eqs. (5.12) and (4.4) we canwrite Âout
a ðjLÞ as
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iÂout
a ðjLÞ ¼

X
σ;κ

Z
∞

0

dω
Z
R2

d2k⊥

× ½hWσðκÞ
ωk⊥ ; EjLi�gKGâoutðW

σðκÞ�
ωk⊥ Þ

− hWσðκÞ
ωk⊥ ; EjLigKGâ

†
outðWσðκÞ

ωk⊥Þ�: ð5:14Þ

This motivates the definitions of the creation and annihila-
tion operators associated with the (inertial) positive energy
part of the expansion as

â†outðKEjLÞ

≡X
σ;κ

Z
∞

0

dω
Z
R2

d2k⊥hWσðκÞ
ωk⊥ ; EjLigKGâ

†
outðWσðκÞ

ωk⊥Þ

ð5:15Þ

and

âoutðKEj�LÞ

≡X
σ;κ

Z
∞

0

dω
Z
R2

d2k⊥hWσðκÞ
ωk⊥ ; EjLi�gKGâoutðW

σðκÞ�
ωk⊥ Þ;

ð5:16Þ

respectively. By means of Eqs. (5.15) and (5.16), the S
matrix (5.10) can be cast as

Ŝ ¼ expðâ†outðKEjLÞ − âoutðKEj�LÞÞ: ð5:17Þ

Now, by using the canonical commutation relation

½âoutðKEj�LÞ; â†outðKEjLÞ� ¼ kKEjLk2gKG Î; ð5:18Þ

together with Zassenhaus formula

eX̂þŶ ¼ eX̂eŶe−½X̂;Ŷ�=2; ð5:19Þ

where [X̂; ½X̂; Ŷ�] ¼ [Ŷ; ½X̂; Ŷ�] ¼ 0, we can rewrite
Eq. (5.17) as

Ŝ ¼ e−kKEjLk
2
gKG=2eâ

†
outðKEjLÞe−âoutðKEj�LÞ: ð5:20Þ

Note that the above Smatrix is completely determined, as
we have already found the expansion amplitudes

hWσðκÞ
ωk⊥ ; EjLigKG, as well as the norm kKEjLkgKG (which

gives the classical number of photonsNcU) in Sec. IV. After
we recover our physical current (i.e., take L → ∞) and take
the limit where our charge accelerates forever T → ∞, the
nonvanishing amplitudes are given by Eq. (4.14) and the
norm by

kKEjk2gKG ¼ q2

2aπ2
T tot

Z
∞

0

dk⊥k⊥jK1ðk⊥=aÞj2; ð5:21Þ

wherewe recall thatT tot ≡ 2πδðωÞjω¼0 andwe are using j to
denote the physical current describing the charge accelerat-
ing forever.
Now, by using Eqs. (4.14) and (4.15) in Eqs. (5.15) and

(5.16), together with the fact that W2ðκÞ
ωk⊥ ¼ W1ðκÞ

−ωk⊥ , we can

cast âoutðKEj�Þ and â†outðKEjÞ as

âoutðKEj�Þ ¼ iqffiffiffiffiffiffi
2a

p
π

Z
R2

d2k⊥K1ðk⊥=aÞâoutðW2ð2Þ�
0k⊥ Þ

ð5:22Þ
and

â†outðKEjÞ¼ −iqffiffiffiffiffiffi
2a

p
π

Z
R2

d2k⊥K1ðk⊥=aÞâ†outðW2ð2Þ
0k⊥Þ; ð5:23Þ

respectively. If we now use Eqs. (5.20)–(5.23) in Eq. (5.11),
we can write the in vacuum j0Min i as

j0Min i¼ ⨂
k⊥∈R2

exp

�
−
q2jK1ðk⊥=aÞj2T tot

8aπ3

�

×exp

�
iq
2π

ffiffiffi
2

a

r
K1ðk⊥=aÞâ†outðW2ð2Þ

0k⊥Þ
�
j0Mouti; ð5:24Þ

which explicitly shows that the radiation emitted by the
charge in the asymptotic future is built entirely by
zero-Rindler-energy Unruh photons when the field is
initially in the Minkowski vacuum. Moreover, Eq. (5.24)
is a (multimode) coherent state with respect to out-Unruh
modes. To see this, let us show that j0Min i is an eigenstate of
âoutðWσðκÞ�

ωk⊥ Þ eigenvalue hWσðκÞ
ωk⊥ ; Eji. To this end, let us first

note that Eq. (5.20) is equivalent to

j0Min i ¼ e−kKEjk
2
gKG=2eâ

†
outðKEjÞj0Mouti; ð5:25Þ

where we recall that kKEjkgKG and â†outðKEjÞ are given in
Eqs. (5.21) and (5.23), respectively. Now, let us apply

âoutðWσðκÞ�
ωk⊥ Þ to Eq. (5.25) to find

âoutðWσðκÞ�
ωk⊥ Þj0Min i¼e−kKEjk

2
gKG=2eâ

†
outðKEjÞ

×ðe−â†outðKEjÞâoutðWσðκÞ�
ωk⊥ Þeâ

†
outðKEjÞÞj0Mouti:

ð5:26Þ

By using the identity

e−X̂ŶeX̂ ¼ Ŷ − ½X̂; Ŷ� þ 1

2!
[X̂; ½X̂; Ŷ�]þ… ð5:27Þ

and the canonical commutation relation

½âoutðWσðκÞ�
ωk⊥ Þ; â

†
outðKEjÞ� ¼ hWσðκÞ

ωk⊥ ; EjigKG Î ð5:28Þ
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one can see that Eq. (5.26) can be rewritten as

âoutðWσðκÞ�
ωk⊥ Þj0Min i ¼ hWσðκÞ

ωk⊥ ; EjigKGj0Min i; ð5:29Þ

which proves the in vacuum is an eigenstate of the out-
annihilation operator associated with any Unruh mode, i.e.,
a multimode coherent state.
The previous result gives us a straightforward way to

show that the expectation value of the out potential (5.12) in
the in vacuum in the asymptotic future is given by

h0Min jÂout
a ðxÞj0Min i ¼ −RjðxÞ; ð5:30Þ

where we have used that Ej ¼ −Rj in the asymptotic
future. This implies that the out field has an expectation
value given by

h0Min jF̂out
ab j0Min i ¼ −RFab; ð5:31Þ

where RFab ¼ ∇aRjb −∇bRja is the classical retarded
Faraday tensor.
The coherent state structure of (5.29) is also useful to

find the number of photons radiated by the charge as seen
by inertial observers in the asymptotic future. For this
purpose, let us note that Eq. (5.29) implies that

h0Min jN̂outðWσðκÞ
ωk⊥Þj0Min i ¼ jhWσðκÞ

ωk⊥ ; EjigKGj2; ð5:32Þ

where we used the number operator

N̂outðWσðκÞ
ωk⊥Þ≡ â†outðWσðκÞ

ωk⊥ÞâoutðW
σðκÞ�
ωk⊥ Þ: ð5:33Þ

The result of Eq. (5.32) coincides with our interpretation of
the classical number of Unruh photons (4.18). We can now
add for all polarizations κ, Unruh modes σ, and integrate
them with respect to Rindler energy ω to obtain the
quantum number of photons per transverse momentum k⊥,

dNout
qU

d2k⊥
≡X

σ;κ

Z
∞

0

dωh0Min jN̂outðWσðκÞ
ωk⊥Þj0Min i

¼
X
σ;κ

Z
∞

0

dωjhWσðκÞ
ωk⊥ ; EjigKGj2; ð5:34Þ

which we can compute explicitly in the T → ∞ case by
using Eq. (4.20), yielding

dNout
qU

d2k⊥
¼ q2

4aπ2
jK1ðk⊥=aÞj2T tot: ð5:35Þ

This is consistent with our previous result in the classical
case and thus also with the result obtained by Higuchi et al.
[11] in the tree-level QFT calculations using the Unruh
thermal bath.

To conclude, we can now study the normal ordered
stress-energy tensor for the out field,

∶Tab
out∶≡ gcd∶Fac

outF
bd
out∶ −

1

4
gab∶Fcd

outF
out
cd ∶: ð5:36Þ

From Eq. (5.29) it is simple to prove that ∶Fab
outF

cd
out∶ will

coincide with the product between two retarded classical
Faraday tensors,

h0Min j∶Fab
outF

cd
out∶j0Min i ¼ RFabRFcd; ð5:37Þ

and, therefore, the expectation value of the stress-energy-
momentum tensor (5.36) is given by

h0Min j∶Tab
out∶j0Min i¼ gcdRFacRFbd−

1

4
gabRFcdRFcd; ð5:38Þ

which is exactly the classical value of the stress-energy
tensor for the out field. This implies, in particular, that the
energy flux integrated over a large sphere S2 in the
asymptotic future gives

Z
S2
dSah0Min j∶Tout

ab ∶ð∂tÞbj0Min i ¼
2

3

�
q2a
4π

�
; ð5:39Þ

which is the usual Larmor formula. Here, dSa is the vector-
valued-volume element on the sphere and ð∂tÞa is the
Killing field associated with the global inertial congruence.

VI. FINAL DISCUSSION

In this work we have studied the classical and quantum
radiation emitted by a classical charge. In the classical
realm, we have shown, by extending the definition of the
well-known Unruh modes used in scalar electrodynamics
to the vector case, that only zero-Rindler-energy Unruh
modes contribute to the decomposition for the retarded
potential and the corresponding amplitudes for our classical
current in the limit where it accelerates for an infinite
amount of proper time. We have also shown that the
number of (classical) photons recover the usual results
for the photon emission computed using tree-level quantum
field theory [11].
For the quantum analysis, we have computed the Smatrix

connecting the quantum field theory construction made by
inertial observers in the asymptotic past and future.We have
found that if the state is prepared in the (Minkowski) vacuum
associated with the past inertial observers, the future ones
will detect this as a multimode coherent state built entirely
from zero-Rindler-energy Unruh modes in the limit of
infinite proper acceleration. In addition, the expectation
values of the four potential, Faraday field tensor, and stress-
energy tensor are in agreement with the corresponding
classical counterparts that arise from the retarded solution
described in the classical analysis.
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As a result, we were able to extend the analysis made
previously by one of the authors of the (classical and
quantum aspects of the) radiation emitted by a scalar source
coupled to a real scalar field to the more realistic case of a
classical charge coupled to the electromagnetic field. This
enabled us to settle the two puzzling aspects of the interplay
between the Unruh effect and Larmor radiation: (1) how the
(quantum) Unruh effect can be codified in the classical
Larmor radiation and (2) the key role played by the zero-
energy Rindler modes in such context.
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APPENDIX A: DERIVATION OF EQ. (4.4)

Let us prove the validity of the identity written in
Eq. (4.4). For this purpose, let ðM; gabÞ be a four-dimen-
sional globally hyperbolic spacetime such that Rab ¼ 0. Let
us consider solutions Ãa of the homogeneous electromag-
netic equation (3.6) and let ja be a compactly supported
four current in ðM; gabÞ. Hence, we can choose a Cauchy
surface Σ− in the causal past of the support of ja, which will
enable us to write the functional

I½Ã; j�≡
Z
M

d4x
ffiffiffiffiffiffi
−g

p
Ã�
aja ðA1Þ

as

I½Ã; j� ¼
Z
JþðΣ−Þ

d4x
ffiffiffiffiffiffi
−g

p
Ã�
aja; ðA2Þ

where JþðΣ−Þ denotes the causal future of Σ−. As the
advanced solution Aja satisfies Eq. (4.1), we can cast
Eq. (A1) as

I½Ã; j� ¼
Z
JþðΣ−Þ

d4x
ffiffiffiffiffiffi
−g

p
Ã�
að∇b∇bAjaÞ: ðA3Þ

Now, the integrand of Eq. (A3) can be cast as

Ã�
að∇b∇bAjaÞ ¼ ∇bðÃ�

a∇
↔b

AjaÞ; ðA4Þ

which, from the properties of the covariant derivative and
the definition of the current Ξb½Ã; Aj� given in Eq. (3.12),
can be written as

Ã�
að∇b∇bAjaÞ ¼ i∇aΞa½Ã; Aj� þ 2RabÃ

a�Ajb: ðA5Þ

Here, we have used that one can write Eq. (3.12) as

Ξb½Ã; Aj� ¼ 2i∇aðÃ½a�Ajb�Þ − iÃ�
a∇
↔b

Aja; ðA6Þ

as well as 2∇½a∇b�Ac ≡ −Rabd
cAd and Rab ≡ Racb

c [16].
If we now use Eqs. (A4) and (A5) in Eq. (A3) together

with the fact that we are dealing with Ricci-flat spacetimes
(Rab ¼ 0), we can write I½Ã; j� using Gauss’s theorem as

I½Ã; j� ¼ i
Z
Σ−

dΣaΞa½Ã; Aj�: ðA7Þ

Now, by using Eqs. (3.11) and (A1) and noting that
Aj ¼ Ej on Σ−, since Rja ¼ 0 in this region, Eq. (A7)
can be cast as

hÃ; EjigKG ¼ −i
Z
M

d4x
ffiffiffiffiffiffi
−g

p
Ã�
aja; ðA8Þ

which is exactly the form of Eq. (4.4), as we wanted
to prove.

APPENDIX B: COMPACTIFIED
CURRENT CALCULATIONS

We need to find the amplitudes AσðκÞ
ωk⊥ and BσðκÞ

ωk⊥ in order

to determine the form of the corrections IσðκÞ
ωk⊥ appearing in

the expansion coefficients defined in Eqs. (4.6)–(4.9). For
simplicity we shall only compute these for κ ¼ 2, as the
amplitudes corresponding to the pure gauge mode labeled
with κ ¼ G can be omitted. To this end, let us first note that
we can use the fact that Δþðz;−tÞ ¼ Δ−ðz; tÞ to rewrite
Eqs. (4.11) and (4.12) as

Aσð2Þ
ωk⊥ ¼

Z
L

a−1 sinhðaTÞ
dt
Z
R
dz½Wσð2Þ�

ωk⊥ tðt; 0; 0; zÞ

þWσð2Þ�
ωk⊥ tð−t; 0; 0; zÞ�Δ−ðz; tÞ; ðB1Þ

Bσð2Þ
ωk⊥ ¼

Z
L

a−1 sinhðaTÞ
dt
Z
R
dz½Wσð2Þ�

ωk⊥ zðt; 0; 0; zÞ

−Wσð2Þ�
ωk⊥ zð−t; 0; 0; zÞ�Δ−ðz; tÞ: ðB2Þ

Next, we can use the integral form of the scalar Unruh
modes [22]

wσ
ωk⊥ ¼ eik⊥·x⊥

ð2πÞ2 ffiffiffiffiffiffi
2a

p
Z

∞

−∞
dϑeið−1Þσϑω=a

× exp½ik⊥ðz sinhϑ − t coshϑÞ�;

to find integral expressions for the components of the
vector Unruh modes we need,
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Wσð2Þ�
ωk⊥ t

¼ −
ie−ik⊥·x⊥

ð2πÞ2 ffiffiffiffiffiffi
2a

p
Z

∞

−∞
dϑe−ið−1Þσϑω=a sinhϑ exp½−ik⊥ðz sinhϑ − t coshϑÞ�; ðB3Þ

Wσð2Þ�
ωk⊥ z

¼ þ ie−ik⊥·x⊥

ð2πÞ2 ffiffiffiffiffiffi
2a

p
Z

∞

−∞
dϑe−ið−1Þσϑω=a coshϑ exp½−ik⊥ðz sinhϑ − t coshϑÞ�: ðB4Þ

Now, by using Eqs. (B3) and (B4) into Eqs. (B1) and (B2), we find that

Aσð2Þ
ωk⊥ ¼ −

i

2π2
ffiffiffiffiffiffi
2a

p
Z

L

a−1 sinhðaTÞ
dt
Z

∞

−∞
dz

Z
∞

−∞
dϑe−ið−1Þσϑω=a sinhϑe−ik⊥z sinhϑ cosðk⊥t coshϑÞΔ−ðz; tÞ; ðB5Þ

Bσð2Þ
ωk⊥ ¼ −

1

2π2
ffiffiffiffiffiffi
2a

p
Z

L

a−1 sinhðaTÞ
dt
Z

∞

−∞
dz

Z
∞

−∞
dϑe−ið−1Þσϑω=a coshϑe−ik⊥z sinhϑ sinðk⊥t coshϑÞΔ−ðz; tÞ: ðB6Þ

The integrals in the z variable in the above expressions can be computed immediately, yielding

Aσð2Þ
ωk⊥ ¼ −

i

2π2
ffiffiffiffiffiffi
2a

p
Z

L

a−1 sinhðaTÞ
dt
Z

∞

−∞
dϑe−i½ð−1Þσϑωþk⊥sechðaTÞ sinhϑ�=a sinhϑe−ik⊥t tanhðaTÞ sinhϑ cosðk⊥t coshϑÞ; ðB7Þ

Bσð2Þ
ωk⊥ ¼ −

1

2π2
ffiffiffiffiffiffi
2a

p
Z

L

a−1 sinhðaTÞ
dt
Z

∞

−∞
dϑe−i½ð−1Þσϑωþk⊥sechðaTÞ sinhϑ�=a coshϑe−ik⊥t tanhðaTÞ sinhϑ sinðk⊥t coshϑÞ: ðB8Þ

For the sake of notation, let us define

fAaðϑ; L; TÞ≡
Z

L

a−1 sinhðaTÞ
dte−ik⊥t tanhðaTÞ sinhϑ cosðk⊥t coshϑÞ; ðB9aÞ

fBa ðϑ; L; TÞ≡
Z

L

a−1 sinhðaTÞ
dte−ik⊥t tanhðaTÞ sinhϑ sinðk⊥t coshϑÞ; ðB9bÞ

which we can use to cast Aσð2Þ
ωk⊥ and Bσð2Þ

ωk⊥ as

Aσð2Þ
ωk⊥ ¼ −

i

2π2
ffiffiffiffiffiffi
2a

p
Z

∞

−∞
dϑe−i½ð−1Þσϑωþk⊥sechðaTÞ sinhϑ�=afAaðϑ; L; TÞ sinhϑ; ðB10aÞ

Bσð2Þ
ωk⊥ ¼ þ i

2π2
ffiffiffiffiffiffi
2a

p
Z

∞

−∞
dϑe−i½ð−1Þσϑωþk⊥sechðaTÞ sinhϑ�=afBa ðϑ; L; TÞ coshϑ: ðB10bÞ

We can see now from Eqs. (B10a) and (B10b) that, if we want to study the behavior of the physical current (recovered when
L → ∞) and of the infinite acceleration proper time (i.e., T → ∞), it is enough to analyze fAa and fBa in such limits.
Direct integration of equations of Eqs. (B9) yields

fAaðϑ;L;TÞ¼
isinhϑtanhðaTÞ

k⊥½sinh2ϑtanh2ðaTÞ−cosh2ϑ�
�
eik⊥LtanhðaTÞsinhϑ

�
cosðk⊥LcoshϑÞþ

icothϑ
tanhðaTÞsinðk⊥LcoshϑÞ

�

þeiðk⊥=aÞsinhðaTÞ tanhðaTÞsinhϑ
�
cos

�
k⊥
a
sinhðaTÞcoshϑ

�
þ icothϑ
tanhðaTÞsin

�
k⊥
a
sinhðaTÞcoshϑ

��	
; ðB11aÞ

fBa ðϑ;L;TÞ¼
isinhϑtanhðaTÞ

k⊥½sinh2ϑtanh2ðaTÞ−cosh2ϑ�
�
eik⊥LtanhðaTÞsinhϑ

�
sinðk⊥LcoshϑÞ−

icothϑ
tanhðaTÞcosðk⊥LcoshϑÞ

�

þeiðk⊥=aÞsinhðaTÞ tanhðaTÞsinhϑ
�
sin

�
k⊥
a
sinhðaTÞcoshϑ

�
−

icothϑ
tanhðaTÞcos

�
k⊥
a
sinhðaTÞcoshϑ

��	
: ðB11bÞ
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Let us now take the limit L → ∞. To this end, we can use (4.13) and the identity cosðΩLÞ ¼ sin ½ΩðLþ π=2ΩÞ� to see that,
if Ω ≠ 0, we can set

lim
L→∞

cosðΩLÞ ¼ lim
L→∞

sinðΩLÞ ¼ πΩδðΩÞ¼! 0:

As coshϑ ≥ 1 for all values of ϑ, we have

lim
L→∞

fAaðϑ; L; TÞ ¼
i sinhϑ tanhðaTÞ

k⊥½sinh2 ϑ tanh2ðaTÞ − cosh2 ϑ� e
iðk⊥=aÞ sinhðaTÞ tanhðaTÞ sinhϑ

×

�
cos

�
k⊥
a
sinhðaTÞ coshϑ

�
þ i coth ϑ
tanhðaTÞ sin

�
k⊥
a
sinhðaTÞ coshϑ

��
; ðB12aÞ

lim
L→∞

fBa ðϑ; L; TÞ ¼
i sinhϑ tanhðaTÞ

k⊥½sinh2 ϑ tanh2ðaTÞ − cosh2 ϑ� e
iðk⊥=aÞ sinhðaTÞ tanhðaTÞ sinhϑ

×

�
sin

�
k⊥
a
sinhðaTÞ coshϑ

�
−

i cothϑ
tanhðaTÞ cos

�
k⊥
a
sinhðaTÞ coshϑ

��
: ðB12bÞ

The same arguments can be used in the limit T → ∞ to
see that

lim
T→∞

lim
L→∞

fAaðϑ; L; TÞ ¼ lim
T→∞

lim
L→∞

fBa ðϑ; L; TÞ ¼ 0;

which, directly implies that

lim
T→∞

lim
L→∞

Iσð2Þ
ωk⊥ ¼ 0:

The analysis for IσðGÞ
ωk⊥ follows the same reasoning, as direct

calculations will show that these depend on the same
integrals fAaðϑ; L; TÞ and fBa ðϑ; L; TÞ.
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