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A great deal of evidence has been mounting over the years, showing a deep connection between
acceleration, radiation, and the Unruh effect. Indeed, the fact that the Unruh effect can be codified in the
Larmor radiation emitted by the charge was used to propose an experiment to experimentally confirm
the existence of the Unruh thermal bath. However, such connection has two puzzling issues: (1) how the
quantum Unruh effect can be codified in the classical Larmor radiation and (2) the fundamental role played
by zero-Rindler-energy modes of the Unruh thermal bath in such a context. Here we generalize a recent
analysis made for the scalar case to the more realistic case of Maxwell electrodynamics and settle these two

puzzling issues.
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I. INTRODUCTION

Acceleration and radiation are deeply interconnected
phenomena and their relationship has intrigued physicists
for decades, dating back to the publication of Larmor’s
seminal work [1]. Although Larmor’s formula played an
instrumental role in establishing the relationship between
acceleration and radiation, there were disagreements about
its interpretation and validity (in particular, in light of
Einstein’s equivalence principle, see, e.g., Refs. [2,3]). The
works of Rohrlich [4,5] and Boulware [6] shed some light
on the classical aspects of this question. They found that
radiation is not a covariant concept, as the perception of
radiative phenomena is intrinsically associated with the
observer’s state of motion: if an inertial observer detects
radiation coming from a uniformly accelerated charge,
another observer in the coaccelerated frame of the charge
will not. However interesting and surprising that such
classical results may be, it is in the context of quantum
field theory (QFT) that the interplay between acceleration
and radiation presents its most interesting hues.

In 1976, Unruh [7] discovered that uniformly accelerated
observers in the inertial vacuum perceive themselves immer-
sed in a thermal bath of (Rindler) particles at a temperature

ha
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(1.1)

known as the Unruh temperature. The Unruh effect vindicated
Fulling’s previous discovery that the particle concept in
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quantum field theory is observer dependent [8] and provided
the correct explanation to the observations by Davies [9] that
an accelerated observer registers radiation with a temperature
proportional to his acceleration (see Ref. [10] for a review on
the Unruh effect).

The connection between the Unruh effect and brems-
strahlung has been analyzed in Ref. [11] (see also
Refs. [12,13]), finding that the emission and absorption
rate of zero-energy Rindler photons in the accelerated
frame agrees with the emission rate of the accelerated
charge seen by the inertial perspective. Such an agreement
can only be achieved by taking into account the existence of
the thermal bath at temperature 7'y in the accelerated frame.
The deep link between the Unruh effect and bremsstrahlung
has been strengthened by Ref. [14], where the authors
found, rather surprisingly, that classical Larmor radiation
codifies the purely quantum Unruh effect and provided an
experimental procedure whose result can be directly
interpreted in terms of the Unruh effect. More recently,
in Ref. [15], the authors analyzed the scalar version of the
radiation emission problem to clarify (1) the central role
played by the zero-energy Rindler photons in the QFT
calculations and (2) how the classical Larmor radiation can
codify the quantum Unruh effect.

In this work, we expand Ref. [15] to the more realistic
case of Maxwell electrodynamics. After extending the
definition of Unruh modes to vector-valued solutions of
the electromagnetic field equation (while retaining the
important characteristics that made them useful for the
scalar analysis), we use them to expand the retarded
potential associated with a uniformly accelerated charge
and find the corresponding expansion amplitudes. With
such an expansion, we define and compute the classical
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number of photons emitted by the charge and show the
fundamental role played by the zero-energy Rindler pho-
tons of the Unruh thermal bath in such a process. Next, we
proceed to the quantum analysis of the radiation emission
by relating the field state in the asymptotic past and future,
to find that not only the number of emitted photons will
coincide with the classical case, but also the expectation
values of the field and energy-momentum tensors agree
with their classical counterparts. As in the classical case, it
is made explicit how the radiation seen by the inertial
observers can be traced back to zero-energy Rindler
photons absorbed/emitted from/to the Unruh thermal bath
perceived in accelerated frame.

The paper is structured as follows. In Sec. II, we describe
the details corresponding to the radiation emitted by an
accelerated charge. In Sec. III, we define vector Rindler and
Unruh modes. Section IV is dedicated to finding the
amplitudes associated with the Unruh mode decomposition
of the classical field, while Sec. V is reserved for the
quantum calculations with a classical source. Some final
remarks and discussion are presented in Sec. VI. We work
with a four-dimensional spacetime with metric signature
(+,—,—,—), along with Heaviside-Lorentz units for the
electromagnetic quantities, and set # = ¢ = 1 throughout
the paper.

II. THE FOUR CURRENT AND FOUR POTENTIAL
FROM A UNIFORMLY ACCELERATED CHARGE

The Lagrangian density for the electromagnetic field that
allows for the field quantization in a globally hyperbolic
spacetime (M, g,;,) is given by

(#,0,0,a"" cosh(aT) — tanh(aT)[t + a~! sinh(aT))])

24(1) =

(1,0,0,vVa> + 1)

(2,0,0,a7" cosh(aT) + tanh(aT)[t — a~' sinh(aT)])

and the four current associated with this worldline is given by

o) = {j?(x)

Ja(x)

if [t| > a~'sinh(aT),

. . (2.6)
if [t| < a=!sinh(aT).

Here, j{ is the current associated with the inertial part of the
motion and has components

" {qcosh(aT)éz(xL)AAz,t) if t <—a~'sinh(aT),

X)=

I geosh(aT)&(x )A_(z,1) if 1> a~"sinh(aT),
(2.7)

1 1 .
L= _\/:§<1FabFab + Z(vaAa)z +JaAa>’ (2.1)

where F,, =2V|,A;, A, is the four potential, j, is the
four-current source of the electromagnetic field, V, corre-
sponds to the covariant derivative compatible with the
Lorentzian metric g,;,, and g indicates the determinant of
gqp 1N some arbitrary coordinate system [16]. The field
equation for a Ricci-flat (R,, = 0) spacetime in the
Feynman gauge a = 1 is given by

vhtha = juv (22)
which can also be achieved by imposing
V,A* =0, (2.3)

known as the Lorenz condition, a priori.

Let us consider an initially inertial charge ¢ in
Minkowski spacetime (R*,7,,), which is accelerated with
constant proper acceleration a for a finite proper time 27
and then becomes inertial again. Here, 7., indicates the
Minkowski metric whose line element in usual inertial
Minkowski coordinates (7,x,y, z) takes the form

ds? = d? — dx? — dy? — dZ%. (2.4)
In such coordinates, the worldline of the charge is given by
(see Fig. 1)

if 1 < —a~!sinh(aT),
if |t| < a~'sinh(aT),
if t > a~!sinh(aT),

(2.5)

|

(1) { —gsinh(aT)&*(x)A, (z,t) if t<—a~'sinh(aT),
X)) =

I gsinh(aT)&?(x | )A_(z,t) if t>a 'sinh(aT),

(2.8)

along with j¥(x) = j;(x) = 0. Here we have defined the
auxiliary functions

A, (z,t) = 8(z — a'sech(aT) + ttanh(aT)).  (2.9)

The current j§ describes the uniformly accelerated part
of the motion. In the right Rindler wedge (RRW), i.e., the
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FIG. 1. Spacetime diagram describing the worldline of an

initially inertial charge ¢ which is uniformly accelerated for a
finite proper time 27" and then becomes inertial again. The slices
Y_and X, are Cauchy surfaces to the past and future, respec-
tively, of the support of the compactified four current j¢.

spacetime region defined by z > |7], j4(x) can be cast in a

simple form by using Rindler coordinates (4, £, x, y), where

x and y are left unaltered, while the other two inertial

coordinates are written as
t = a~'e® sinh(al),

z=a"'e*cosh(al), (2.10)

yielding

Ji = a8 (x )O(T - A (9. (2.11)
Here, 6 is the Dirac delta distribution, 6 is the Heaviside
step function, and x| = (x,y) € R2. We have included the
step function to reinforce the fact that this part of the current
is limited to the region defined by |f| < a~!sinh(aT).
Notice the trajectory (2.5) is not constrained to the RRW
(like an infinitely accelerated particle would): before the
acceleration, the charge moves in the contracting degen-
erate Kasner universe (CDKU, 7 < —|z]|), it then crosses
the Killing horizon ¢+ z = 0 to the RRW, and after the
acceleration it crosses the surface #—z =0 into the
expanding degenerate Kasner universe (EDKU, 7 > |z|).

As we are interested in describing radiation, let us recall
from the classical theory that the energy radiated by a
point charge over a unit solid angle per emission time is
given by [17]

d*H
dQdt,,

= lim (1 - V(tret) : n(tret))RZS(t) : n(tret)

R—o0
¢ [Inxln-v)xalf
167° (1-v-n) ret

(2.12)

where n is a unitary vector that points from the point of
emission to the point of evaluation, v is the velocity of the
charge, and a is its acceleration. We can see from Eq. (2.12)
that the only contribution to the radiated energy comes
from the parts of the trajectory where acceleration is
nonzero. Indeed, by using the worldline (2.5) of our charge
together with n = (sin @ cos @, sin @ sin @, cos 8), where the
angles 6 and ¢ are defined from the point of emission,
Eq. (2.12) reduces to

’H (1672)~1a*q* sin? 0
dQdtey 1+ @2 (V1 + a?? — atcos 0)°|

(2.13)

if |t,] < a~'sinh(aT), and to zero otherwise.
The Liénard-Wiechert potential produced by the current
(2.6) is given by [17,18]

o  dz¢
Ri*0) = [ a5 000D Nalv-2(e)). (214)
where 7 is the charge’s proper time. Born [19] used this
expression for the case where the charge is uniformly
accelerated for an infinite amount of time (result that
was further discussed and refined in works like [6,20]),
yielding

. q az(a? =12 +1r?)

Rj'= —1|0(t , 2.15
! M@—fﬂ 200(x) e
, q at(a™2=1>+1?)

Rj*= —z|6(¢ , 2.16
| e @19

Rj* =R}’ =0, (2.17)
where 7> = x> +y% + 7 and
a |4 5, L, 57
pO(x)EE (P =)+ |-+ . (2.18)
a a

This solution codifies all the information about the charge ¢
following the worldline (2.5) in the limit 7 — oo. Later in
the paper, we will show how this solution is built entirely
from zero-energy Rindler modes.

For the sake of some calculations, it will be useful
to consider the following compactified version of the
current (2.6):

Ji = 6(L — [t]) (2.19)
which will enable us to use some useful mathematical
identities. Here, we have introduced a “compactification
parameter” L > a~!'sinh(aT). We note that j¢ is not
locally conserved as
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Vg = J'6(L — 1)) # 0. (2.20)
where we used the current j* defined in Eq. (2.6), which
does satisfy V,j* = 0. However, as L is a free parameter,
we can compute the quantities of interest using this current
of compact support and then recover the physically relevant
results, where charge is locally conserved, by taking the
limit L — oo. As our aim is to study the radiation emitted
by a charge accelerated during a finite amount of its proper
time, and the inertial portions of the motion of this charge
will not contribute to the radiation emitted (nor detected),
the analysis of the radiation using j¢ (eventually taking
L — oo0) will be enough for our purposes. It is important to
note that we will also present the corresponding correction
terms coming from the inertial parts of the motion and the
compactification, to guarantee that it does not contribute
when the limit L — oo is taken.

III. RINDLER AND UNRUH MODES

The main idea behind this study is to decompose both the
classical and quantum electromagnetic four potential in
terms of vector Unruh modes, the definition of which is
based on Rindler modes that appear on the description of a
scalar field on both Rindler wedges. In the following, we
recall the discussion for the scalar case as it is fundamental
to our procedure.

Let us consider a free scalar field ¢ in (R* 7,,),
satisfying the Klein-Gordon (KG) equation

V.Vip =0. (3.1)
As the RRW is a globally hyperbolic static spacetime on its
own right, with timelike Killing field (9,)“, one can define
the set of positive-frequency right Rindler modes {vka}
which are solutions of Eq. (3.1) vanishing in the left Rindler
Wedge (LRW), i.e., the spacetime region defined by
t < —|z|, and taking the form

sinh(zw/a) ki e®\ . . _.
Uf)kL = WKM)/G T e’ki XLe m”l, (32)

in the RRW using Rindler coordinates. Here, K, (z) is the
modified Bessel function of the second kind,
k, = (k.. k,) € R*\{0}, and € R". We can also define
left Rindler modes vgkl by means of the relation

vor, (6.X1.2) = vy (—1.x1.—2). (3.3)
Hence, they vanish in the RRW and take the form (3.2) in
Rindler coordinates covering the LRW. The set of modes
{vf vy}, together with their Hermitian conjugates,
forms a complete set of solutions of the Klein-Gordon
equation in Minkowski spacetime [10].

By using the Rindler modes (3.2) and (3.3), we can define
another suitable set of solutions of the KG equation, the so-
called Unruh modes {w;, ,wg, }. They are defined as

—mu/u Lx
k te Vok,

1 E , 3.4

Waok 1 — g~270/a ( )
k 1e —nw/a Rik

w2 = Tok, , (3.5)

ok V1 = g~2rw/a

and, although they are labeled by the Rindler energy @ and
transverse momentum k | , they are positive frequency with
respect to the inertial time t and form (together with their
Hermitian conjugate) acomplete set of orthonormal solutions
of the KG equation. This makes them suitable to investigate
the relation between radiation seen by inertial observers and
the physics of uniformly accelerated observers.

Having defined the scalar Unruh modes, we can now
turn our attention to the electromagnetic case. The solutions
of the homogeneous electromagnetic field equation in

(R47 nab),
V,VPA, =0, (3.6)

can be decomposed in terms of four independent polari-
zation modes on the RRW given by [11]

Vﬁlja kll (0, O’kvak ) kxvf)kL)’ (3.7)
fofa = é (GCUCISRL’ a/lvf)ky 0,0), (3.8)

ﬁ@=—%mL (39)
Ve = kl (0,0, k08 ko ). (3.10)

where vR k, are the scalar right Rindler modes given in

Eq. (3.2). These have been selected in such a way that they
are orthonormalized with respect to the generalized Klein-
Gordon inner product

<A<‘>,A<2>>gm:/dZaE“[A(‘),A(Z)] (3.11)
z

between two modes, A() and A, of the electromagnetic
field. Here, the integration is done over any Cauchy surface
2, with proper-vector-valued-volume element dX, and
conserved current Z¢[A(1), A®)] given by

! (Aél)*ﬂ.(Z)ab —Af)ﬂ'(l)ab*), (312)

where we have used the generalized momenta of the
electromagnetic potential defined as 7% = dL/d(d,A,).
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On the Feynman gauge, these are computed explicitly
yielding
7 = /=g(VPA® — VAP — g@bV A°). (3.13)

The left electromagnetic Rindler modes are defined, as in
the scalar case, as

Vi a(t:x1.2) = Vali(—tx,-2), (3.14)
with k = 1,2, G, L. Here, the modes (both left and right)
labeled with k = 1, 2 are physical modes, while the ones
labeled with k = G, L are nonphysical, as they are pure
gauge and do not satisfy the Lorenz condition, respectively.

By making use of Vf,;fl)u and Vﬁfju, we can extend the
definition of the Unruh modes to the electromagnetic case, in
analogous fashion to the definitions of Egs. (3.4) and (3.5),

R(x) —nw L(k)*
Vwklib + el Vw—Kk b

Wi = , 3.15
wk | b W ( )
L(x) —nw/ay/R(K)x
Wz(l,:)b _ Vek,p T € / Veox,b (3.16)
WKL V1 = ¢~2rw/a ’ ’

These, by using Eqs. (3.4) and (3.5); (3.7)—(3.10), can be
expressed directly in terms of the scalar Unruh modes as

o(1 1 - c

wo, = E(o, kywoi —kowo L0).  (3.17)
a(2) 1 - -
W(UkJ_a = E(azwwkl,O,O,a,wwkl), (318)
o) _ 1 -

W(UkJﬁ = Evawka, (319)

o(L 1 - -
wor), = E(0, kowoy kwo L0). (3.20)

Hence, they satisfy

<WZ;<1<’:<)L’ WZ;’<|’:’L)>gKG = 50'6’51«’5((0 - w/)éz(ki - k/J_)
(3.21)

and form (together with their Hermitian conjugate) a com-
plete set of solutions for the homogeneous electromagnetic
field equation (3.6), which are positive frequency with
respect to the inertial time ¢.

IV. UNRUH MODE DECOMPOSITION OF THE
CLASSICAL RETARDED POTENTIAL

Let us consider two Cauchy surfaces £, and X_
in  Minkowski spacetime with X, C/T(X_) and

Y. C R* —supp(j§) (see Fig. 2). Here, I"(A) denotes
the chronological future of a subset A C R*.

The advanced and retarded solution of the field equa-
tion (2.2) with source j§ are given by

Aj) = [ @V G (5 ). (41)

Rif) = [ aV/=dGux (). (42)

respectively, where G, and G, are the advanced and
retarded Green’s functions for the electromagnetic field
[18]. Given our choice for Cauchy surfaces, we find that

Rj¢(x) =—-Eji(x) V xeX,, (4.3)
where we have defined Ej§ = Aj¢ — Rj¢ and we have used
that Aj¢ vanishes in R* — J~(suppj§ ).

In order to analyze the role played by the Unruh thermal
bath (with particular interest in the zero-energy Rindler
modes) in building the radiation emitted by the charge as
seen by inertial observers, it will be important to decom-
pose Rj¢ in terms of Unruh modes (3.17)—(3.20). To this
end, we will use our compactified current j{ to compute
Rj{ and take the limit L — oo to recover the physical
current case. Such a task will be greatly simplified by using
the identity (proven in Appendix A)

FIG. 2. Conformal diagram of our setup. The red portion of the
worldline displays the support of the accelerated part of the
compactified current j§, while the supports of the inertial parts
are shown in green. The orange lines depict the Killing horizons
and the blue ones the Cauchy surfaces.
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(A, Ef) g = - /d“xrAaj, (4.4)

which is valid for any Ricci-flat (R,;, = 0) globally hyper-
bolic spacetime (M, g,;,), with A being any solution of the
homogeneous electromagnetic field equation (3.6) and j¢
any compact-support current.

Let us now expand Eq. (4.3) in terms of Unruh modes on
X, as

RjLa:—ZA dedekL

x ((Wor VEj) o Wo) y +cc). (4.5)

where c.c. represents the complex conjugate of the

previous expression. The coefficients (W:)(Q,E JL)eka

can be computed using Eq. (4.4). We immediately find
1 . L) -
that (WZ)(kI,E]ﬁgKG = (W >,E]L>gKG =0, as the cur-

wk |
rent does not couple with the corresponding modes. As the
support of j4 is contained in the RRW (even on the limit
T — o), by using Eqgs. (2.6) and (2.19) we can cast the

other coefficients as

ige™/% sin(wT) K
Vidaw
+ 7', T, L).

wk |

(ki /a)

(4.6)

12) .
<W(u(kj_’ Eji)ekc =~

g sin(wT)e™/?¢
V2rtak |
1(G

+ L, (@.T.L),

(G .
<W(,;<kj’ E.]L>gKG = Kiw/a(kL/a)

(4.7)

ig sin(wT)
V2rtae™ @
22
+ T (a.T. L),

2(2 .
(4.8)

and

g sin(wT)
V2rtae™/ k|
+ 29 (a.T.L),

2(G .
<Ww<kj’ E]L>gKG = - Kiw/a(kJ_/a)

(4.9)

where we have used the prime to denote differentiation with
respect to the argument. Here, we have written the
amplitudes in Eqs. (4.6)—(4.9) separating two different
contributions: the first one coming from the uniformly
accelerated part of the current j§ and the second one

T2 = —iglcosh(aT)AZY + sinh(aT)BLY) ], (4.10)

with

~(z,1)

(4.11)

L
AT = / dr / dz[Wo" (1,0,0,2)A
a~'sinh(aT) R

+ W (=1,0,0,2) A (z, 1)),

L
BZfQE/l ' dt/dz[ o (1,0,0,2)A_(2.1)
a~!sinh(aT) R

— WO (=1,0,0,2)A , (z. —1)], (4.12)
coming from the inertial part of j{. Now, after computing
the above integrals, we take the limit L — oo to obtain the
complete result for our physical current, i.e., the current
given in Eq. (2.6) which satisfies V,j* = 0. In Appendix B
we present the details of such calculation.

Having determined the amplitudes for our physical
current, let us now find their form in the limit where
the charge accelerates for an infinite proper time, i.e.,
T — . By using

lim sin(wT)
T—oo [0}

= 76(w), (4.13)

the identity K} (z) = vK,(z)/z — K, 1(z) for the modified
Bessel functions of the second kind, and the fact (proven in

Appendix B) that IZ}Q and T' :)(kcl) vanish for 7 — oo, we
find that the amplitudes of Egs. (4.6)—(4.9) can be cast as

12 . 2(2
<Ww(ki’E]>gKG = <Ww(ki E]>gKG

"9k, (h> S(w), (4.14)

2ar a

1(G . 2(G .
(w ( )vE]>gKG = (W ( )vE]>gKG =0.

wk | wk |

(4.15)

We can now define the total number of classical photons
emitted by the charge (as seen by inertial observers) as
NCU = <KRJ KRJ>gKG - ||I<R.]||gKG7 (416)
where KRj, is the (inertial) positive-energy part of the
retarded solution given in Eq. (2.2),

KR]HZ—Z/ dech

wkl E]>gKGWw(kia

(4.17)

By using the orthonormality of the Unruh modes, we can
write Ny explicitly in terms of the coefficients of the
expansion (3.21) as
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2

. (4.18)

N =3 [Tdo [ @RWR Ei

which enables us to interpret |( wki Ej)ggl* as the
number of photons associated with the Unruh mode o,
per polarization mode «, per transverse momentum k ; and
Rindler energy w. To avoid divergences, we will deal with
the number of Unruh photons per transverse momentum

= / o[ (W) Ef) gl (4.19)

In the limit 7 — oo, we can use Egs. (4 14) and (4.15) in
1(2)

dN
d’k |

Eq. (4.19), together with the property kam =W_ ka0
write

dn, cU q2 2

dsz = mllﬁ(h/a)l T (4.20)
where we have used that T\ = 276(w)|,—o. This

gives exactly the total rate of emission and absorption of
zero-energy Rindler photons in the Unruh thermal
bath seen by an accelerated observer and the rate of emission
detected by an inertial one, as computed in Ref. [11] using tree-
level QFT. It interesting to note how this (classical) radiation is
built from zero-Rindler-energy Unruh modes, as can be seen
explicitly from the form of the amplitudes in Eq. (4.14).
Now, let us explicitly compute the expansion (4.5) and
show it reduces to the usual and well-known solution for
the electromagnetic four potential (15) in the asymptotic
future. For this purpose, let us focus on region EDKU in
Fig. 2, the so-called expanding degenerate Kasner universe
(the region where ¢ > |z|). In the limit 7 — oo, we can see
from Eqgs. (4.14) and (4.15) that the only modes that couple

with our current are Ww(k>a As aresult, by using again that

20 _ wl®
kala =W -k a
can be expressed as

to perform the integration in w, Eq. (4.5)

q
V2ar?

On the EDKU let us define the coordinates (17,{,x ) b

Rj,—— / Pk, [iK, (ki/a)Woo) +ecl. (4.21)
R

t = a~'e™ cosh(af), z = a 'esinh(af), (4.22)

while keeping the transverse position coordinates X
unaltered. In such coordinates, the vector Unruh mode
(3.18) reads

1
Wijlzia (aCW(ukL 9 kaL 0, 0)7

with the scalar Unruh mode wﬁ,kL having the rather simple
form in the EDKU

R L TS
* 327%a

From Eq. (4.23) we can see that ()(:w(z)kL = 0 and, therefore,
the only nonzero component of the four potential will be

; qean a ik -
Riclo) = o || Ky () HE (ke fa) e
+c.c.], (4.24)
where we have used the identity Hf)z)'(z) =-H 52)(z) for

the Hankel functions. To carry out the rest of the integra-
tion, let us define polar coordinates for the transverse
momentum vector by X, = (x; cosg,x, sing) and
k, = (kycos(p+9).k, sin(p+9)), with k; >0 and
0<9 <27 As a result, k; -x;, =k, x, cosd and
d’k | = dddk  k,, so we can rewrite the nonzero compo-
nent of the retarded solution in Eq. (4.24) as

. e‘m o0
Rje(x) = 7 / kdk, |:K](ki/a)H§2>(kie[m/a)

872a J,
2
X / d9exp(ik x, cos9) + C.C.] :
0
Here, we recognize one of the integral forms of the
Bessel function of order zero [21]

1

2r
Jo(z) = §A ddexp(izcos9)

and use the definition of the second Hankel functions
HY(z) = J,(z) = iY,(z) to show that

. qe‘m oo a
Rj. = 5 / ki Ki(ki/a)J,(ke™/a)](k, x,)dk, .
za Jo
(4.25)
We can now apply the identity [22,23]
/ " K (a9)J,(ip9)Jo(79)9d8
0
- 2 g0
:L{ a Pty _1}, (4.26)
20 [\/(® + 7 + )7 = 4
which holds for the Rea > 0, Reff = 0, and y > 0. If we
identify a = a~!, f = —ie™/a, and y = x|, it is immediate
to find
, _gqala(a—a” 62“’7+x 2) ]
Rjs(x) = [ —-1(. (4.27

This four potential is gauge equivalent to the Born solution
in Eq. (15). To prove this, we can define a scalar function
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A(x) = —qa({ +n)/4n and apply the gauge transforma-
tion Rj, —» Rj, + V,A to obtain exactly the solution
originally found by Born, but written in Rindler coordi-
nates. Again, it is interesting to note how the usual retarded
solution Egs. (2.15)—(2.17) is built entirely from zero-
Rindler-energy Unruh modes, as can be seen
from Eq. (4.21).

V. UNRUH MODE DECOMPOSITION OF THE
QUANTUM POTENTIAL

Let us now analyze the quantum aspects of the radiation
emitted by the charge and its relation with the Unruh
thermal bath. To this end, we will focus on the quantum
four-potential operator A, defined as a solution to the field
equation

V,VPA® = jT. (5.1)

We can write a this operator in different ways, depending
on the boundary/initial conditions chosen. One suitable
choice is

A, =AM+ Rj, I (5.2)

where A" is the solution to the homogeneous field equation

V,VPAM = 0, (5.3)
and we recall that Rj; “ is the retarded solution associated
with the current j{. As a result, we can expand Ag“ as

Ap(6,%) =D (uga(t, )i (uf;) +He),  (54)
J

where {u(;)} g, With §F being a suitable set of quantum
numbers, is a complete set of (Minkowski) positive-
frequency modes. We can define |0M) as the state such
that &in(uz‘j))|0{‘§> =0, forall j € §. As Rj{ vanishes in the
asymptotic past (for instance, on the Cauchy surface X_ in
Fig. 2), one can interpret |0¥) as the vacuum state as seen
by inertial observers in the asymptotic past. The Fock space
describing particle states as seen by such observers is
generated by the states

[ [&i“T(u(j))]”j |0M>
=no/mt

where n; € N for each j € J.
Alternatively, we can also write a solution of Eq. (5.1) as

(5.5)

|n/1’ Njys-- '>in =

Aa = Agut + AjLaﬁ’ (56)

where AZ‘“ is a solution of the homogeneous field equation,

V,VPAS =0, (5.7)

and we recall that Aj{ is the advanced solution associated
with the current j¢. Hence, we can expand A% g

AL (1,%) = (vggalt, )@ (vf;)) + Hee.),
J

(5.8)

where {v(j)} e, With & being a suitable set of quantum
numbers, is any set of (Minkowski) positive-energy modes.
We can then define |0Y,) as the state such that
a™(v(;))|05u) = 0, for all j€ K. As Aj vanishes in
the asymptotic future (for example, in the Cauchy surface
X, shown in Fig. 2), we can interpret it as the vacuum state
seen by an inertial observer in the asymptotic future. We
can also construct the Fock space describing the particle
states of the field by successive applications of the

“creation operators” a°"(v(;)) on |0%,), hence

o [a (v(;)]"

J
|nj1’njz’ e '>out = & 7]'|0%t>

J=h n;

(5.9)

We can connect the in and out Fock spaces via the S
matrix [24]

S=exp (—i/ d*x/=gA%" (1, x)j4 (1, X)) . (5.10)
R4
which, in particular, relates the two vacua by

[05) = S108%)- (5.11)

In order to compute this operator explicitly, let us expand
the out field in terms of Unruh modes (3.20),

A =3 A dw A 2 &k WO a0 (Wow)

+WG(K)* &-]- (Wa(/c) )] )

wk | a™*out wk |

(5.12)

In order to cast Eq. (5.12) in a more convenient form, let us
first define the smearing of the quantum four potential with
the classical current as

i) = [ e i, (5.3

Next, by using Egs. (5.12) and (4.4) we can write A%"(j, ) as
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A" (jL) = ;A do AZ &’k
X (W Ejihaxatton(Woi,)
~ (W Ejakotu(Woi ). (5.14)
This motivates the definitions of the creation and annihila-

tion operators associated with the (inertial) positive energy
part of the expansion as

out(KE]L

_02/ da)Ade

and

(uk R EjL) gKGazut(WZ;gg)

(5.15)

out(KEJL

_;/ deZdZ

respectively. By means of Egs. (5.15) and (5.16), the S
matrix (5.10) can be cast as

CUkJ_ E]L>gKGaout(Wz;(l’2 )’

(5.16)

§= exp( j)u (KEJL) &out(KEjz))' (517)
Now, by using the canonical commutation relation
[ out(KEJL> out(KEJL)] - HKEJLH KGﬁ’ (518)
together with Zassenhaus formula
XY — X ¥ -[X, Y]/2 (5.19)

where [X,[X.¥]]=[V.[X.¥]]=0, we can rewrite

Eq. (5.17) as

S‘ _HKE/LHZKG/ze zu((KEiL>e_&nm(KEjz)' (520)
Note that the above S matrix is completely determined, as

we have already found the expansion amplitudes

ka .EjL)ekg» as well as the norm ||KEjy ||,xg (which

gives the classical number of photons N ;) in Sec. IV. After
we recover our physical current (i.e., take L — o) and take
the limit where our charge accelerates forever T — oo, the
nonvanishing amplitudes are given by Eq. (4.14) and the
norm by

2
q o]
IKE 6 = 5 T [ dhukil Kk fa)f (520

where we recall that T, = 276(w)|,,_, and we are using j to
denote the physical current describing the charge accelerat-
ing forever.

Now, by using Egs. (4.14) and (4.15) in Egs. (5.15) and
(5.16), together with the fact that Wiy = W'

ok, » We can
cast gy (KEj*) and &), (KEJ) as

. - iq . .

b KE]) =<2 | @K (b /) (W)
(5.22)

and

ahu(KE]) =2 / @K, K, (k [a)al,(WoD), (5.23)

respectively. If we now use Egs. (5.20)—(5.23) in Eq. (5.11),
we can write the in vacuum |0)) as

(_ ¢’|K, (k. /a) Isz)

8ar’

0))= & exp

conp (5 2Kk W) 0t (520

which explicitly shows that the radiation emitted by the
charge in the asymptotic future is built entirely by
zero-Rindler-energy Unruh photons when the field is
initially in the Minkowski vacuum. Moreover, Eq. (5.24)
is a (multimode) coherent state with respect to out-Unruh

modes. To see this, let us show that |0¥) is an eigenstate of
Ezout(WZ,(lfi*) eigenvalue <WZ,(Q, Ej). To this end, let us first
note that Eq. (5.20) is equivalent to

_”KEjllékc/z e&:ut

00) = e KED|0gL)

(5.25)
where we recall that || KEj|| ;g and al(KEj) are given in
Egs. (5. 21) and (5.23), respectively. Now, let us apply
(W7 ka ) to Eq. (5.25) to find

é\loul( ka )|0 > _HKEJHZKG/zeAOL“(KEJ)
o(K)* 21* .
x (e~ uul(KEJ)aout(Ww(ki )e uul(KEJ))|0%t>_
(5.26)
By using the identity

PPN PN 1.~ .
eXYeX =Y - [X, Y]+ T [X,[X, Y]]+ (5.27)

and the canonical commutation relation
(o (Won! ), abu(KEf)] = (Wi Ej) ol (5.28)
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one can see that Eq. (5.26) can be rewritten as

dou (Wi )I0N) = (Wo) Ef)exalON).  (5:29)
which proves the in vacuum is an eigenstate of the out-
annihilation operator associated with any Unruh mode, i.e.,
a multimode coherent state.

The previous result gives us a straightforward way to
show that the expectation value of the out potential (5.12) in
the in vacuum in the asymptotic future is given by

(OM]A™ (x)[0M) = —Rj(x),

where we have used that Ej = —Rj in the asymptotic
future. This implies that the out field has an expectation
value given by

(5.30)

(OM|F3]0Y) = —RF,. (5.31)
where RF,, =V ,Rj,
Faraday tensor.

The coherent state structure of (5.29) is also useful to
find the number of photons radiated by the charge as seen
by inertial observers in the asymptotic future. For this
purpose, let us note that Eq. (5.29) implies that

—V,Rj, is the classical retarded

< |N0ut(kaL)|0 > |< a)kl E.]>gKG 27 (532)

where we used the number operator

&Z (W6<K> )aout<W6(K>*>'

wk | wk |

Nout ( Wﬁ(lc) )

wk |

(5.33)

The result of Eq. (5.32) coincides with our interpretation of
the classical number of Unruh photons (4.18). We can now
add for all polarizations x, Unruh modes o, and integrate
them with respect to Rindler energy @ to obtain the
quantum number of photons per transverse momentum Kk | ,

= / deo (O [N (W7 02
-y / Aol (W2 | Efgral

which we can compute explicitly in the 7 — oo case by
using Eq. (4.20), yielding

dNg
d’k |

(5.34)

dNgl
Pk,

iy |K1 (ki/a)PT . (5.35)

This is consistent with our previous result in the classical
case and thus also with the result obtained by Higuchi et al.
[11] in the tree-level QFT calculations using the Unruh
thermal bath.

To conclude, we can now study the normal ordered
stress-energy tensor for the out field,

1
b . bd . b. red te.
Tgut =0cd- FglthFout ga (F Fou

L (536)

From Eq. (5.29) it is simple to prove that : F¢ F<d, : will
coincide with the product between two retarded classical
Faraday tensors,

(O | Fb Fed 2 0M) = RFPRF<,  (5.37)
and, therefore, the expectation value of the stress-energy-
momentum tensor (5.36) is given by

1
(O3 1: T6h 2 of) =gcdRF"CRde—Zg”bRFCdRch, (5.38)
which is exactly the classical value of the stress-energy
tensor for the out field. This implies, in particular, that the
energy flux integrated over a large sphere S? in the

asymptotic future gives
_2/(¢%a
- 3\4x )’

which is the usual Larmor formula. Here, dS¢ is the vector-
valued-volume element on the sphere and (d,)* is the
Killing field associated with the global inertial congruence.

/ 4 (0M]: 7% (3, 0} (5.39)
SZ

VI. FINAL DISCUSSION

In this work we have studied the classical and quantum
radiation emitted by a classical charge. In the classical
realm, we have shown, by extending the definition of the
well-known Unruh modes used in scalar electrodynamics
to the vector case, that only zero-Rindler-energy Unruh
modes contribute to the decomposition for the retarded
potential and the corresponding amplitudes for our classical
current in the limit where it accelerates for an infinite
amount of proper time. We have also shown that the
number of (classical) photons recover the usual results
for the photon emission computed using tree-level quantum
field theory [11].

For the quantum analysis, we have computed the S matrix
connecting the quantum field theory construction made by
inertial observers in the asymptotic past and future. We have
found that if the state is prepared in the (Minkowski) vacuum
associated with the past inertial observers, the future ones
will detect this as a multimode coherent state built entirely
from zero-Rindler-energy Unruh modes in the limit of
infinite proper acceleration. In addition, the expectation
values of the four potential, Faraday field tensor, and stress-
energy tensor are in agreement with the corresponding
classical counterparts that arise from the retarded solution
described in the classical analysis.
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As a result, we were able to extend the analysis made
previously by one of the authors of the (classical and
quantum aspects of the) radiation emitted by a scalar source
coupled to a real scalar field to the more realistic case of a
classical charge coupled to the electromagnetic field. This
enabled us to settle the two puzzling aspects of the interplay
between the Unruh effect and Larmor radiation: (1) how the
(quantum) Unruh effect can be codified in the classical
Larmor radiation and (2) the key role played by the zero-
energy Rindler modes in such context.
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APPENDIX A: DERIVATION OF EQ. (4.4)

Let us prove the validity of the identity written in
Eq. (4.4). For this purpose, let (M, g,;) be a four-dimen-
sional globally hyperbolic spacetime such that R, = 0. Let
us consider solutions A% of the homogeneous electromag-
netic equation (3.6) and let j* be a compactly supported
four current in (M, g,,). Hence, we can choose a Cauchy
surface X_ in the causal past of the support of j¢, which will
enable us to write the functional

1A, j] = / &g (A1)
M
as
1A, j) = / W=7 (A2)
JH(ED)

where J7(X_) denotes the causal future of X_. As the

advanced solution Aj satisfies Eq. (4.1), we can cast
Eq. (Al) as

LW B VS THUA YOS
JH(E)

Now, the integrand of Eq. (A3) can be cast as
~ ~ &b
AL(V,VPAjT) =V, (ALY Aj), (A4)

which, from the properties of the covariant derivative and

the definition of the current Z°[A, Aj] given in Eq. (3.12),
can be written as

ALV, VPAjY) = iV, EA, Aj] + 2R,A AP, (AS)

Here, we have used that one can write Eq. (3.12) as

~ - . ©b
ZP[A, Aj] = 2iV, (Al AP — iALV Aje, (A6)
as well as 2V, V,A° = —R;,,°A? and R, = R,.,° [16].
If we now use Egs. (A4) and (AS5) in Eq. (A3) together
with the fact that we are dealing with Ricci-flat spacetimes
(R, = 0), we can write I[A, j] using Gauss’s theorem as

1A, j] = iL dx,59A, Aj]. (A7)

Now, by using Egs. (3.11) and (Al) and noting that
Aj=FEj on X_, since Rj* =0 in this region, Eq. (A7)
can be cast as

(A Ej) e = —i /M e ghie, (A8)

which is exactly the form of Eq. (4.4), as we wanted
to prove.

APPENDIX B: COMPACTIFIED
CURRENT CALCULATIONS

We need to find the amplitudes A and B (Q in order

wk | @)

to determine the form of the corrections 7 pr

| appearing in
the expansion coefficients defined in Eqgs. (4.6)—(4.9). For
simplicity we shall only compute these for x = 2, as the
amplitudes corresponding to the pure gauge mode labeled
with k = G can be omitted. To this end, let us first note that
we can use the fact that A (z,—1) = A_(z,1) to rewrite

Egs. (4.11) and (4.12) as

(2 L o(2)*
Am(kl B L" sinh(aT) & /[R dZ[W’“(ki f(t’ 0,0, Z)

+Woe (=1.0,0,2)|A_(z.1), (B1)
L
By = / dr / dz[Wo (.0,0,2)
a~!sinh(aT) R
o(2)*
— WO (=1,0,0,2)]A_(z.1). (B2)

Next, we can use the integral form of the scalar Unruh
modes [22]

eierl 0
Wﬁk — dgei(—l)"&u/a
Y (21)°V2a -

x exp[ik (zsinh 9 — tcosh 9)],

to find integral expressions for the components of the
vector Unruh modes we need,
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:—ik | X
o(2)x tem ood19 —i(=1)w/a 1 i
= e sinh 9 exp|—ik | (zsinh 9 — tcosh 9)], B3
oKk, ¢ (2”)2 5a ] p[ J_( )] ( )
W;')(kz)* =+ e [ dde~(=1)"0/a cosh § exp[—ik | (z sinh § — t cosh 9)]. (B4)
L2 (27)*\/2a J-

Now, by using Egs. (B3) and (B4) into Egs. (B1) and (B2), we find that

A2 — / dt/ dz/ dde~i=1)79/a ginh 9e=ikrzsinhd cog(k | tcosh9)A_(z, 1), BS
ok, 27[2\/261 a~' sinh(aT) ( - ) ( ) ( )

q 1 L *© © —i(=1)"9w/a —i sin 4
Bwfi =P / o dt / ) dz / ) d8e~!(=179@/a cogh 9e=k12500d gin (k| tcosh 9)A_(z, 1). (B6)

The integrals in the z variable in the above expressions can be computed immediately, yielding

A:)(]fi — _ 5 2i > L dt/oo dtge—i[(—l)"19a)+kLsech(aT) sinh 9] /a sinh 19e—iklttanh(aT) sinh 9 COS(kltCOSh 19)’ (B7)
7T°\ 2a Ja ! sinh(aT) —o0

o(2)
wk |

1 L e . . . .
- - dr dQe—il(=1)"8w+k sech(aT)sinh8]/a ol 9e—ikLttanh(aT) sinh 9 sin(kLt cosh 19) (BS)
27°\/2a l sinh(aT /—oo
For the sake of notation, let us define

L
A ikLttanh aT) sinh 9
1 5
fa,L,T) / (aT) cos(k tcosh9) (B9a)
a smh aT)

L , .
fE(9,L,T) / te~ikurtanh(al)sinhd gin (k| £ cosh 9), (B9b)
U'sinh(aT)
which we can use to cast A:,(Q and B:,(Q as

S d&e—i[(—l)(’&w*’kLSCCh(ﬂT) sinh 19]/af12 (19’ L, T) sinh 9, <B10a)

A”(Z) — _ i /
ks 252v/2a J-oo

w

w( % +2 zi 5 /oo dge—i[(—l)”Bw-ﬁ—kLseCh(aT) sinh&]/afg (19’ L, T) cosh 9. (BlOb)
-V A4 J -0

We can see now from Egs. (B10a) and (B 10b) that, if we want to study the behavior of the physical current (recovered when
L — o) and of the infinite acceleration proper time (i.e., T — o), it is enough to analyze f4 and fZ in such limits.
Direct integration of equations of Egs. (B9) yields

isinhdtanh(aT)
k | [sinh?9tanh?(aT) — cosh?J]

icothd
tanh(aT)

, . . k thd k)
+eli(ki/a)sinh(aT)tanh(aT)sinh® {cos <;Lsmh(aT) cosh&) +%s'n (;smh(aT) cosh&)} }, (Blla)

fa(8.L.T)=

{eikiLtanh(aT) sinhd |:COS(/€J_L coshd) + sin(k L coshﬁ)]

isinhdtanh(aT)
k, [sinh?9tanh?(aT) — cosh?J]

icothd
tanh(aT)

fB(9,L.T)= {e"ki“‘“’h(“” sinh§ [sin(le cosh®) — cos(k L cosh&)]

. . . k icothd k
+eilke/a)sinh(aT)tanh(aT)sinh | i ( “Lginh(aT)coshd _ 1O os ~Lsinh(aT)coshd | | +. (B11b)
a tanh(aT) a
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Let us now take the limit L — oo. To this end, we can use (4.13) and the identity cos(QL) = sin [Q(L + z/2Q)] to see that,

if Q # 0, we can set

lim cos(QL) = lim sin(QL) = 7Q5(Q)=0.

As coshd > 1 for all values of 9, we have

i sinh 9 tanh(aT)

pi(ky/a)sinh(aT) tanh(aT) sinh §

lim f4(9.L.T) =

X {cos (k—l sinh(aT') cosh 19) + ———=sin (k—l sinh(aT') cosh 19) ] ,
a a

i sinh d tanh(aT)

k, [sinh? 9 tanh?(aT) — cosh? 8]

icothd
B12
tanh(aT) (B12a)

i(ky /a)sinh(aT) tanh(aT) sinh 9

lim f5(9,L,T) =

The same arguments can be used in the limit 7 — oo to
see that

im lim f4(9.L,7) = lim lim f5(3.L,T) =0,

1
T—o00 L—>0 —o00 L—oo

which, directly implies that

k| [sinh? 8 tanh?(aT) — cosh? 9]

k
X [sin <—l sinh(aT) cosh 8) -
a

icothd

tanh(aT) (B12b)

k
cos <—l sinh(aT) cosh 19> ] .
a

fim_lim 772 =0,

The analysis for 7, ka(i) follows the same reasoning, as direct

calculations will show that these depend on the same
integrals f4(9,L,T) and f2(9,L,T).
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