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We study the effects of a fixed de Sitter geometry background in scenarios of false vacuum decay. It is
currently understood that bubble nucleation processes associated with first order phase transitions are
particularly important in cosmology. Considering the geometry of spacetime complicates the interpretation
of the decay rate of a metastable vacuum. However, the effects of curvature can still be studied in the
particular case where backreaction is neglected. We compute the imaginary part of the action in de Sitter
space, including the one-loop and the gradient corrections. We use two independent methodologies and
quantify the size of the corrections without any assumptions on the thickness of the wall of the scalar
background configuration.
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I. INTRODUCTION

Cosmological phase transitions have been interesting
historically for different reasons and remain an active field
of study. The current state of the Standard Model (SM) of
particle physics is that, given the masses of the top quark
and the Higgs boson, the effective potential at Next-to-next-
to-leading order (NNLO) approximation displays two
minima, one of which is associated with a lower vacuum
energy appearing at high field values, explored probably at
extremely high energies ∼1011 GeV [1,2]. This means that
at zero temperature, the effective SM potential presents us
with a metastable situation. Although it is known that the
electroweak phase transition (EWPT) is not of first-order [3]
when including the effects of temperature, such a process
remains interesting to study in the context of cosmology,
especially in possible extensions to the SM since this type of
phase transitions is present in a variety of different contexts.
One example are early models of inflation [4,5], which
feature a first order phase transition. It also appears in
baryogenesis, which addresses the matter and anti-matter
asymmetry or baryon asymmetry of the universe (BAU) [6],
where some of the models rely on strong enough first-order
EWPTs. An even more interesting relation might even
be that of the Higgs and inflation as in Higgs-inflation [7].

This model would bring these different ideas together,
making the Higgs field responsible for both phenomena.
Alternatively, a remarkable feature of phase transitions in

the early universe is the generation of gravitational waves,
as has been suggested [8,9]. While this is still a topic of
discussion (see Ref. [10] for a review), current technology is
reaching the point where we may observe gravitational
waves from inflation [11,12], so that an understanding of
how often bubbles of true vacuum can be nucleated may
lead to a better insight into the details of a possible early
phase transition. Eventually, this will serve to check
possible signals in the stochastic gravitational waves back-
ground (SGWB) [13]. Other studies have attempted to put
bounds on the Higgs coupling to the curvature scalar by
studying similar settings during inflation [14] or to model
the exit of inflation via a first order phase transition [15]. For
all of these applications, it is important to study in detail
how first order phase transitions occur in field theory on
nonflat backgrounds.
First order phase transitions are characterized by a

tunneling process running through a potential barrier
between local minima. In general, the minimum sitting
at higher energy is called the false vacuum, while we refer
to the lowest-lying one as the true vacuum. The path
integral formalism allows us not only to approximate the
decay rate of the false vacua at 0th order but also to expand
the action around inhomogeneous solutions and to consider
the contributions coming from quantum fluctuations. After
these ideas were initially put forward by Callan and
Coleman [16,17], there have been several studies around
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false vacuum decays in different settings, some of which
attempt to introduce gravitational effects through the
consideration of more general geometries [18,19].
In this communication, we compute the decay rate of the

false vacua in a theory with a scalar field in a fixed de Sitter
background, subject to a potential allowing for two distinct
local minima. De Sitter space is particularly important in
accelerated expansionary phases of the universe, such as
inflation or the current epoch. Therefore, studying how the
decay rate of the false vacuummay be influenced by curved
spacetimes, or in particular, a cosmological constant, can
lead to a better understanding of these stages (see e.g. [20]).
A review of the metastability of the vacuum is given in [21].
We present two methods that permit the computation of

contributions of higher order effects in a fixed de Sitter space
background. First, we compute the associated functional
determinants, using the Gel’fand-Yaglom theorem [22] and
Green’s functions [23]. Later we include the backreaction of
gradient effects fed back into the scalar field background,
expanding on ideas first discussed in [24–26]. We include
one-loop effects with gradients in a zero temperature setting,
which is related to studies such as [27–29]. We focus
specifically on computing the imaginary part of an effective
action for bouncelike field configurations.
Traditional treatments of the computation of the decay

rate rely on a number of approximations, such as ignoring
the gradients of the field or assuming degenerate vacua. In
this paper, we focus on computing the effects of a fixed
geometrical background, that is we neglect the dynamics of
the gravitational sector. We consider a general type of wall,
as opposed to a thin wall case. Self-consistent methods will
be used to obtain corrections coming from the gradients of
the bounce solution ϕð0Þ.
The paper is organized as follows. In Sec. II we briefly

review the theory behind vacuum decay in flat spacetime,
introducing notation and concepts that will be used
throughout the document. In Sec. III we describe how
the expressions are adapted to a curved spacetime setting

and introduce the necessary details pertaining to the de
Sitter spacetime. Subsequently, in Sec. IV, we compute the
fluctuation operator and elaborate on the two methods we
employ to calculate the functional determinants therein.
In Sec. V we take care of renormalizing the theory by
employing the WKB expansion to obtain the divergences
appearing at the one-loop level. Section VI contains the
computation of the tadpole functions and quantum correc-
tions to the scalar background. We show how the pre-
viously exposed framework can be used in Sec. VII, where
the numerical treatment of a benchmark set of parameters
is fully explained. We summarize our work and findings
in Sec. VIII.

II. VACUUM DECAY IN FLAT SPACETIME

Mainstream computations of amplitudes of physical
processes generally employ the path integral formulation
of quantum field theory expanded around homogeneous
expectation values [30,31]. The partition function is

hΩoutjUðtf; tiÞjΩini ¼ Z½0�≡
Z

Ωout

Ωin

D½ϕ�ei
ℏS½ϕ�; ð1Þ

which corresponds to the transition between the vacua Ωin
andΩout. These appear as boundary conditions on the right-
hand side (rhs), where it is understood that the functional
integration covers all field configurations that satisfy
ϕðti; x⃗Þ ¼ Ωinðx⃗Þ and ϕðtf; x⃗Þ ¼ Ωoutðx⃗Þ.
Let us then consider a field theory for a single real scalar

field ϕðxÞ, subject to a potential VðϕðxÞÞ, which is analytic
and displays more than one local minimum, as seen in
Fig. 1. The standard Lagrangian density for such a theory is

L ¼ 1

2
ð∂xϕðxÞÞ2 − VðϕðxÞÞ; ð2Þ

where VðϕðxÞÞ is such that there exist at least two solutions
to ∂

∂ϕVðϕðxÞÞ ¼ 0 associated with two minima, say for field
values ϕ�. This feature of the potential implies the existence
of an additional saddle point in the path integral, meaning an
overlap of states that are located at each minima. As we will
see, there exist field configurations that interpolate between
these two field values, for which the action is finite.
Generically, one of these field values will be associated
with a higher potential; take ϕ− > ϕ− and Vðϕ−Þ ≤ Vðϕ−Þ
and add a constant to the potential as to have Vðϕ−Þ ¼ 0. In
this setup, a static field configuration ϕðt; x⃗Þ ¼ ϕ− will a
have a zero action, while a field configuration located at the
other minimum, ϕðt; x⃗Þ ¼ ϕ−, will have a negative action.
As both are saddle points of the theory, one can expand the
action around a scalar field having an expectation value
about either of these vacua. These two settings are usually
referred to as true and false vacuum, respectively, where the
false one corresponds to the minimum associated with a
higher potential.

FIG. 1. Example of a scalar potential displaying several minima
which are nondegenerate. The higher local minimum is referred
to as the false vacuum, while the right local minimum which
stands at a lower potential is called the true vacuum.
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We are interested in tunneling phenomena between these
two configurations. The corresponding expansion is not
made around homogeneous expectation values but around
a field configuration that spends an infinitely long time
around each of the minima. This solitonic configuration,
known as the bounce, can be shown to correspond to
imaginary energy values [16,32]. Therefore, the transition
amplitude can be interpreted as a decay rate from the false
vacuum to the true vacuum.
To compute the transition from one vacuum state to the

other, we will need to employ a Wick rotation and compute
in the limit where time is taken to infinity:

hϕ−jeiHT jϕ−i¼
Z

ϕðTÞ¼ϕ−

ϕð−TÞ¼ϕ−

D½ϕ�exp
�
i
ℏ

Z
T

−T
dtd3x⃗L

�
; ð3Þ

here T is a real parameter that can be analytically continued
to the complex plane. We do this in two steps. First
substitute T → iT , with T ∈ R and obtain the following
expression:

hϕ−je−HT jϕ−i ¼
Z

ϕðiT Þ¼ϕ−

ϕð−iT Þ¼ϕ−

D½ϕ� exp
�
i
ℏ

Z
iT

−iT
dtd3x⃗L

�
:

ð4Þ
The next step is to perform the analytic continuation of the
time variable within the integration, t → iτ, again with
τ ∈ R, which leads to:

hϕ−je−HT jϕ−i ¼
Z

ϕðiT Þ¼ϕ−

ϕð−iT Þ¼ϕ−

D½ϕ� exp

×

�
−
1

ℏ

Z
T

−T
dτd3x⃗Δ4ϕðxÞ þ VðϕðxÞÞ

�
:

ð5Þ
The simplest approximation to the path integral is obtained
by a saddle-point expansion. Let ϕð0Þ be a saddle-point
configuration, satisfying the boundary conditions of the
path integral above. Then,

hϕ−je−HT jϕ−i ∼ exp

�
−
SE½ϕð0Þ�

ℏ

�Z
ϕð1ÞðiT Þ¼0

ϕð1Þð−iT Þ¼0

D½ϕð1Þ�

× exp

�
−
1

ℏ
δ2SE½ϕð0Þ�
δðϕð1ÞÞ2

�
≡ Ke−S0=ℏ; ð6Þ

where the subscript E denotes the use of Euclidean space.
The original field was decomposed as ϕ ¼ ϕð0Þ þ ϕð1Þ and
K is defined as the result of the Gaussian path integral over
the fluctuation operator and is known to be imaginary due
to its negative eigenvalue. The negative eigenvalue is
essential for the interpretation as a decay rate [17]. The
formal expression on the left hand side of the equation
above, can be written in terms of the energies of the
eigenstates of the theory

hϕ−je−HT jϕ−i ¼
X
n

hϕ−jnie−EnT hnjϕ−i

∼
T →∞

e−E0T hϕ−jϕþihϕþjϕ−i: ð7Þ

Equating the two expressions above, it is usually argued
[32] that the decay rate per unit volume is

Γdecay

V
¼ 2 lim

V;T →∞

jImZ½0�j
VT

¼ 2 lim
V;T →∞

jKj e
−S0=ℏ

VT
: ð8Þ

To include higher order corrections from one-loop con-
tributions and background gradients, one can employ the
effective action construction [30], combined with a semi-
classical expansion in ℏ and the method of constrained
sources [33,34].
We are interested in calculating the vacuum-to-vacuum

transition rate between nontrivial field configurations, as
this is related to tunneling phenomena via the nucleation of
true vacuum bubbles [16,17]. We compute both one-loop
and gradient effects, by considering the one-loop effective
action as in previous studies [35], similarly to the usage of
the Coleman-Weinberg effective potential [31]. In the
same context of a semiclassical expansion, a one-loop
self-consistently quantum corrected evaluation of the
action is [26]

Γð1Þ½ϕð0þ1Þ� ¼ S½ϕð0þ1Þ� þ ℏ
2
log

detG−1ðϕð0þ1ÞÞ
detG−1ðϕ−Þ

; ð9Þ

where quantum corrections to ϕ, ϕð1Þ, are taken into
account. Above, G−1 stands for the fluctuation operator
and ϕð0þ1Þ is the bounce together with its quantum
corrections. The corrected version of Eq. (8) takes on
almost the same form:

γ̃

V
¼ 2 lim

V;T →∞

e−Γ
ð1Þ½ϕð0þ1Þ�=ℏ

VT
: ð10Þ

We see, that the original action and the factor K are
replaced by the effective action in Eq. (9), as explained
in [33,34].
Our objective is to first estimate the one-loop homo-

geneous contributions, appearing in the last term of the
effective action above, when evaluated on the bounce
solution. Later we compute the full effective action, by
including contributions coming from its evaluation on the
quantum-corrected bounce. To compute Γð1Þ in Eq. (9) we
may separate the background from the quantum correc-
tions, ϕð0þ1Þ ¼ ϕð0Þ þ ℏϕð1Þ, and decompose the different
contributions as follows

Γð1Þ½ϕð0þ1Þ� ¼ SE½ϕð0Þ� þ Bð1Þ þ Bð2Þ þOðϕð1Þ2Þ; ð11Þ

where
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Bð1Þ ≡ ℏ
2
log

detG−1ðϕð0ÞÞ
detG−1ðϕ−Þ

; ð12Þ

Bð2Þ ≡ ℏ2

2

Z
ϕð1ÞðxÞ δ

δϕðxÞ log
detG−1ðϕÞ
detG−1ðϕ−Þ

����
ϕ¼ϕð0Þ

: ð13Þ

The computation is self-consistent in the sense that the
quantum corrections are to be obtained from the equations
of motion after the one-loop contributions have been
computed, and afterward fed back in into the action. We
will obtain analogous quantities for the case of a curved
spacetime, fixed to be de Sitter, while ignoring any back-
reaction on the geometry. The formulas above require
modification due to the possible presence of negative or
zero modes, which we will discuss later in Sec. IVA.

III. VACUUM DECAY IN CURVED SPACETIME

Solving the vacuum Einstein field equations in four
dimensions with a positive cosmological constant gives the
so-called de Sitter spacetime [36]. The symmetry group of
de Sitter space is SOð1; 4Þ, which has dimension ten in
analogy to the Poincaré group for Minkowski space. It is
possible to choose coordinates covering half the spacetime,
namely ðt; x⃗Þ ∈ R4, which result in a line element in an
FLRW form,

ds2 ¼ dt2 − e2Htdx⃗2; ð14Þ

where H is related to the expansion rate and the cosmo-
logical constant. It is more propitious to choose a global
coordinate patch and to use the Euclidean version of de
Sitter space, as required by the saddle-point expansion
shown in Sec. II. This is done by changing coordinates,
such that the metric takes on the following form

ds2 ¼ dτ2 þ 1

H2
sin2ðHτÞdΩ2

3; ð15Þ

where τ ∈ ½0; π=H� and H is the Hubble constant. We can
recognize a Euclidean scale factor

aðτÞ ¼ 1

H
sinðHτÞ; ð16Þ

as well as compute the spacetime volume element, to find

ffiffiffiffiffi
gE

p
d4x ¼ a3ðτÞdτdΩ3

¼ 1

H3
sin3ðHτÞsin2ðθ1Þ sin ðθ2Þdτdθ1dθ2dϕ: ð17Þ

A. Our model

In our approach we neglect the evolution of the scale
factor according to the Friedmann equations and assume

that the scalar field ϕ has an energy scale such that its
evolution will not have an impact on the de Sitter
background.
We consider a standard curved spacetime Lagrangian

for a scalar field subject to a potential V. V exhibits two
different local minima and therefore allows for tunneling
phenomena. We consider cases where the scale of possible
bubbles is much smaller than the expansion scale, thus we
fix the metric to that of de Sitter and ignore its dynamics. As
in [25,37], this corresponds to a scenario where the back-
ground metric can be approximated by de Sitter and where
simultaneously gravitational effects may not be negligible.
The former is justified as long as the fractional variation of
the potential is small when the field varies between ϕ− and
ϕþ, explicitly, if one can write the potential as

VðϕÞ ¼ V0 þ V̄ðϕÞ; ð18Þ

we are in the regimewhere V̄ðϕÞ=V0 ≪ 1 for ϕ ∈ ðϕ−;ϕþÞ.
Gravitational effects can be compared to tunneling phenom-
ena using the expansion parameterH and the variation scale
of the potential between the minima, V̄ ∼m4, and consid-
ering its ratio. So that with H2 ∼ V0=M2

Pl from the first
Friedmann equation, the ratio ðH=mÞ4 ∼ V2

0=ðmMPlÞ4 can
surpass one if V0=M4

Pl ≳m4=V0 without leaving the de
Sitter regime. Similar studies have been carried out in the
past, in particular, we expand on the work done by [38],
where the starting Euclidean action is

SDunne ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
∇μϕ∇μϕ − VðϕÞ − 1

2κ
R

�
; ð19Þ

R being the Ricci scalar and κ ¼ 8π=M2
Pl. However, we

focus on the special case κ ≪ 1, which corresponds to
gravitational decoupling explained above and ignore any
backreaction on the geometry. With this in mind, we use the
simplified action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
; ð20Þ

where ϕ is a real scalar field, gμν is the metric corresponding
to de Sitter space. The potential is chosen to be polynomial
and to feature two different local minima

VðϕÞ ¼ V0 −
m2

2
ϕ2 −

b
3!
ϕ3 þ λ

4!
ϕ4: ð21Þ

We Wick rotate the entire action by performing the sub-
stitution t → iτ,

S½ϕ� → −i
Z

dτd3x⃗
ffiffiffiffiffi
gE

p �
1

2
gijE∂iϕ∂jϕþ VðϕÞ

�
≡ −SE½ϕ�;

ð22Þ
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denoting by gE the positive-definite Euclidean metric. This
has the effect of creating a saddle point in the path integral,
while at the same time changing the sign of the potential. To
understand the gradients of ϕ, ∂μϕ, we expand the action
around our background

ϕ → ϕð0Þ þ ϕð1Þ; ð23Þ

where ϕð0Þ is the solution to the tree-level equation of
motion, with appropriate boundary conditions, which will be
discussed later in Sec. III B. The choice of parametrization of
the fluctuations above is equivalent to choosing the weighing
function for fluctuations also used in [38]:

jjϕð1Þjj2≡
Z

d4x
ffiffiffiffiffi
gE

p ðϕð1ÞÞ2¼2π2
Z

dτa3ðτÞðϕð1ÞÞ2: ð24Þ

This fixes the form of the fluctuation operator we use for
subsequent computations (for alternatives, consider the
appendices in [38,39]). The expansion is

SE ¼
Z

d4x
ffiffiffiffiffi
gE

p �
1

2
gijE∂iϕ

ð0Þ
∂jϕ

ð0Þ þ Vðϕð0ÞÞ

þ gijE∂iϕ
ð0Þ
∂jϕ

ð1Þ þ ∂V
∂ϕ

����
ϕ¼ϕð0Þ

ϕð1Þ

þ 1

2
gijE∂iϕ

ð1Þ
∂jϕ

ð1Þ þ 1

2

∂
2V
∂ϕ2

����
ϕ¼ϕð0Þ

ϕð1Þϕð1Þ
�
: ð25Þ

with Latin indices denoting Euclidean coordinates, i.e.
i; j ¼ 1; 2; 3; 4 and τ understood as x4. Here linear terms
in ϕ vanish by construction. The derivatives of the potential
are explicitly

∂VðϕÞ
∂ϕ

¼ −m2ϕ −
b
2
ϕ2 þ λ

6
ϕ3; ð26Þ

∂V2ðϕÞ
∂ϕ2

¼ −m2 − bϕþ λ

2
ϕ2: ð27Þ

We split the action SE ¼ Bþ Sð2ÞE ½ϕð1Þ�, where Sð2ÞE ½ϕ�
contains bilinear terms for ϕ, with operators evaluated
over the ϕð0Þ background. Higher dimensional terms do
not contribute at the one-loop level, so that

B≡
Z

d4x
ffiffiffiffiffi
gE

p �
1

2
gijE∂iϕ

ð0Þ
∂jϕ

ð0Þ þ Vðϕð0ÞÞ
�

ð28Þ

Sð2ÞE ½ϕð1Þ�≡
Z

d4x
ffiffiffiffiffi
gE

p �
1

2
gijE∂iϕ

ð1Þ
∂jϕ

ð1Þ

þ 1

2

∂
2V
∂ϕ2

����
ϕ¼ϕð0Þ

ϕð1Þϕð1Þ
�
: ð29Þ

Truncating SE to second order, we obtain a Gaussian path
integral

Z½0� ¼
Z

Dϕ exp

�
−
1

ℏ
B −

1

ℏ
Sð2ÞE

�

¼ exp

�
−
1

ℏ
B

�Z
Dϕ exp

�
−
1

ℏ
Sð2ÞE

�
: ð30Þ

We can compute the path integral containing the fluctuations
as follows for the case of de Sitter, using Eq. (17):

Sð2ÞE ½ϕð1Þ� ¼
Z

dΩ3dτ

�
−
1

2
ϕð1Þ

∂iða3ðτÞgijE∂jϕð1ÞÞ

þ a3ðτÞV
00ðϕÞ
2

ϕð1Þ2
�

ð31Þ

¼
Z

dΩ3dτ

�
1

2
ϕð1Þ

�
−∂ia3ðτÞgijE∂j þ a3ðτÞ ∂

2VðϕÞ
∂ϕ2

�
ϕð1Þ

�
;

ð32Þ

where an integration by parts was performed to obtain the
first line. We then define the fluctuation operator as

G−1
b ðx; yÞ≡ δðx − yÞ

�
−∂ia3ðτÞgijE∂j þ a3ðτÞ∂

2V
∂ϕ2

����
ϕ¼ϕð0Þ

�

ð33Þ

and include a regularization for the determinant by evalu-
ating at the false vacuum,

G−1
− ðx; yÞ ¼ δðx − yÞ

�
−∂ia3ðτÞgijE∂j þ a3ðτÞ∂

2V
∂ϕ2

����
ϕ¼ϕ−

�
:

ð34Þ

We thus obtain finite results at the price of introducing an
additional contribution equivalent to a shift in the cosmo-
logical constant. In contrast to the flat space case, where this
is actually just an unphysical constant, we assume that this
results from the backreaction on the geometry and do not
focus our attention on the consequences or physical inter-
pretation of this shift. Using the result of a Gaussian path
integral we obtain schematically

Z½0� ∝
���� det

0 ðG−1
b ðx; yÞÞ

det ðG−1
− ðx; yÞÞ

����
−1
2

e−B; ð35Þ

where the prime indicates the determinant does not include
negative or zero modes. The proportionality factor will be
discussed later, when we examine the nonpositive modes.
In a more general setting, where gravitational effects are

included, the fluctuations of the metric can lead to nontrivial
constraints on the fluctuation operator. Expressions for such
cases have been found [40,41], fromwhich we can specialize
to our de Sitter case. The parametrization we use follows
Dunne’s previous work [24,38], where the following
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expressions are derived while neglecting fluctuations of the
scale factor and fixing its evolution to be as in de Sitter
space, namely where the scale factor is fixed as in Eq. (16).
As it is shown in the literature [19,42–45], a theory with

a scalar field with self-interactions over de Sitter spacetime
is renormalizable, but as opposed to the flat case scenario,
where there is a clear interpretation for the divergent pieces
in terms of counterterms of the scalar couplings, the scalar
sector one-loop contribution now demands as well the
removal of purely gravitational divergent pieces.

B. Computing the classical background

In order to compute the decay rate of the false vacuum,
we must first find the saddle-point field configuration
known as the bounce, ϕð0Þ. Motivated by the proofs of
minimization in the flat space cases [16], we look for an
Oð4Þ symmetric solution to the equation of motion, which
greatly simplifies to

ϕ̈þ 3H cotðHτÞ _ϕ ¼ V 0ðϕÞ; ð36Þ

where the dot denotes differentiation with respect to τ and 0
denotes derivatives with respect to ϕ. It is convenient to
employ the dimensionless field ϕ

v; however, in order to
avoid complicating the notation, we keep using ϕ, while it
is to be understood to be written in units of v for the rest of
the document unless otherwise specified. We can now write
the potential as

VðϕÞ ¼ V0 þ βH2v2
�
−
1

2
ϕ2 −

b
3
ϕ3 þ 1

4
ϕ4

�
; ð37Þ

with the tree-level mass parameter, m2, reparametrized as
βH2 and the equation of motion as

ϕ̈þ 3 cotðσÞ _ϕ ¼ V 0ðϕÞ
H2v2

; ð38Þ

where, in this instance, the dots denote derivatives with
respect to the rescaled time σ ¼ Hτ and prime is a
derivative with respect to the new ϕ.
The bounce has the following boundary conditions,

_ϕbð0Þ ¼ 0 and ϕbðπÞ ¼ ϕ− for ϕ as a function of σ.
These are obtained from the Cartesian analogous condi-
tions presented in Sec. II simply transcribed to our de Sitter
coordinates. Notice that in the de Sitter case without a thin
wall approximation, there is a friction term in the equation
of motion Eq. (36), which changes sign within ð0; πÞ. Thus
by continuity (of an under/overshooting procedure), a
bounce solution with the above boundary conditions
exists.1 Moreover, in contrast to the flat space case, where

the bounce solution does not actually reach the true vacuum
when a thick wall is considered, the present bounce
configuration does. This is a special feature of this model,
where the geometry is kept fixed to de Sitter, and will not
hold in a more general setting.

IV. FUNCTIONAL DETERMINANT
OF THE FLUCTUATION OPERATOR

When we examine the fluctuation operator, specializing
to the Euclidean de Sitter space, from Eq. (32), we get:

Sð2ÞE ½ϕð1Þ� ¼ 1

2

Z
dΩ3dτϕð1Þ½−∂τa3ðτÞ∂τ þ a3ðτÞUðτÞ�ϕð1Þ;

ð39Þ

with

UðτÞ ¼ V 00ðϕð0ÞÞ − Δ3

a2
; ð40Þ

where Δ3 stands for the Laplacian on the 3-sphere. The
fluctuations operator for the general case, when variations
of the metric are considered, can be found in [38,40],
nonetheless in this document we are only interested in the
case where the background is fixed to be de Sitter space,
and the fluctuations operator is then explicitly

δ4ðx − x0ÞG−1
b ðx; x0Þ

≡ δ4ðx − x0Þ sin
3ðHτÞ
H3

ð−∂2τ − 3H cotðHτÞ∂τ
−H2 csc2ðHτÞΔ3 þ V 00ðϕð0ÞÞÞ: ð41Þ

The related differential equation for a scalar field fluc-
tuation written in terms of hyperspherical harmonics (for
notation and properties see [46]) gives the Jacobi equation:

ϕ̈ð1Þ þ 3
_a
a
_ϕð1Þ −

�
V 00ðϕð0ÞÞ þ lðlþ 2Þ

a2

�
ϕð1Þ ¼ λϕð1Þ: ð42Þ

A. Negative and zero modes

The fluctuations operator G−1
b may have zero modes, in

other words eigenfunctions for the fluctuation operator with
eigenvalue zero. It is important to notice that these modes,
in this case, follow a wave equation with an effective mass,
nevertheless they represent directions in field space in
which one may deform the scalar background configuration
without modifying the value of the action up to one-loop
order. Zero modes if present, have to be exchanged by
collective coordinates in order to avoid the functional
determinant being immediately zero. A typical zero mode
is usually related to translations of the bounce ∂μϕð0Þ. If ϕð0Þ

satisfies
1A posteriori we verify that a bounce with ϕð0Þ ¼ ϕ−, does

indeed exist.

CRUZ, BRANDT, and URBAN PHYS. REV. D 106, 065001 (2022)

065001-6



1ffiffiffiffiffi
gE

p ∂ið
ffiffiffiffiffi
gE

p
gijE∂jϕ

ð0ÞÞ ¼ V 0ðϕð0ÞÞ; ð43Þ

it is usually possible to show that translations along the
directions of the wall of the bounce satisfy the fluctuation
operator differential equation with a zero-eigenvalue. This
is done by computing and additional derivative of the
equation of motion, viz.

0 ¼ ∂k

�
1ffiffiffiffiffi
gE

p ∂ið
ffiffiffiffiffi
gE

p
gijE∂jϕ

ð0ÞÞ − V 0ðϕð0ÞÞ
	

ð44Þ

¼ −
�
1

2
g−3=2E ∂kgE

�
∂ið

ffiffiffiffiffi
gE

p
gijEÞ∂jϕð0Þ

−
�

1

2gE
∂kgE

�
gijE∂i∂jϕ

ð0Þ

þ 1ffiffiffiffiffi
gE

p ∂i½∂kð
ffiffiffiffiffi
gE

p
gijEÞ∂jϕð0Þ�

þ 1ffiffiffiffiffi
gE

p ∂ið
ffiffiffiffiffi
gE

p
gijE∂j∂kϕ

ð0ÞÞ − V 00ðϕð0ÞÞ∂kϕð0Þ: ð45Þ

Since the metric has some dependencies on the angular
coordinates, the first three terms are nonzero, and we
cannot immediately conclude that partial derivatives of the
bounce configuration become zero modes. In the zero
temperature flat spacetime case, the SOð4Þ-symmetric
bounce is expressed through the coordinate r2 ¼ τ2 þ x2 þ
y2 þ z2 so that such a configuration still depends on each
direction indirectly and ∂iϕ

ð0Þ is not immediately null for
i ∈ fτ; x; y; zg. In our case, the bounce is expressed in
terms of the independent coordinate τ and translations with
respect to any other direction are by construction zero. This
leads to an interesting question: what happens to the zero
modes in this scenario?
Given that we are not working under the thin wall

approximation and the temporal direction always remains
compact once the metric is Euclideanized, there is the
possibility that the zero modes are no longer present,
because fixing the background in this manner breaks the
symmetry. We can then consider expanding an arbitrary
fluctuation in a basis of hyperspherical harmonics as the
fluctuation operator can still be solved for through a
separation of variables. Then one can check every l sector
for zero modes in the radial direction. This we do for our
benchmark point in the numerical implementation described
in Sec. VII. In our numerical treatment, we consider the
sector l ¼ 1 and give some of our insights and results on
this point which was left unanswered in [38].
The lack of zero modes seems to impact the interpretation

of the mass dimensions of the expressions. In its most naive
saddle-point expansion, the decay rate acquires its dimen-
sions via the extraction of the zero modes in the fluctuation
determinant evaluated at the bounce (read pertaining

comments in [17]). If this is not the case, full cancellation
of eigenvalues occurs when taking the ratio with the
functional determinant of the fluctuation operator evaluated
at the false vacuum. From this perspective, we may only
interpret the imaginary part of the action as a tunneling
probability, instead of a tunneling probability per spacetime
volume. We do not include the contributions of the sector
l ¼ 1 in the following computations, as we do not have a
general proof of the absence or presence of zero modes.
Besides the zero modes, related to the translation

symmetry of the problem, we know that there must be
at least one mode of negative eigenvalue present in order to
give the appropriate imaginary contribution to the energy in
the tunneling process. It was shown by Coleman that for the
present case there is only a single negative mode, which lies
in the l ¼ 0 sector [47]. In order to extract it we therefore
again consider the fluctuation equation setting l ¼ 0

ϕ̈ð1Þ þ 3
_a
a
_ϕð1Þ − V 00ðϕð0ÞÞϕð1Þ ¼ λϕð1Þ: ð46Þ

Since we have compactified the temporal direction, we
expect the spectrum of the fluctuation operator to be
discrete, and since there is only one negative mode, it will
belong to the fluctuation with the lowest eigenvalue. We
find the lowest eigenvalue numerically for the benchmark
case illustrated in Sec. VII.

B. The determinant of the fluctuation operator
via the Gel’fand Yaglom theorem

The eigenvalue equation of the fluctuations operatorG−1
b

as defined through Eq. (41) cannot be solved directly.
Instead we make use of the Gel’fand-Yaglom [22] method
to calculate the determinant ratio. After writing down the
eigenfunctions as linear combinations of hyperspherical
harmonics we can define functional determinants for each
fixed value of l as

det0 G−1
b;lðτ; τ0Þ

detG−1
−;lðτ; τ0Þ

¼ ΦðlÞðτfÞ
ΦðlÞ

fv ðτfÞ
; ð47Þ

where ΦðlÞ are the eigenfunctions for the eigenvalue 0 for
their corresponding fluctuation operator. Their calculation
is greatly facilitated by the fact that there exists an
analytical solution for the homogeneous configuration
case:

ΦðlÞ
− ðτÞ ¼ N

sinðHτÞP
lþ1
α ðcosðHτÞÞ with

α ¼ −
1

2
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00ðϕ−Þ
H2

−
9

4

r
; ð48Þ

where y ¼ Plþ1
α ðxÞ are the associated Legendre functions

of the first kind and solve
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ð1 − x2Þy00 − 2xy0 þ
�
lðlþ 1Þ − α2

1 − x2

�
y ¼ 0: ð49Þ

With the definition of the auxiliary function

TðlÞðτÞ ≔ ΦðlÞðτÞ
ΦðlÞ

− ðτÞ ; ð50Þ

it is necessary to solve the differential equation for each
l sector

− T̈ðlÞðτÞ −
�
2

_ΦðlÞ
−

ΦðlÞ
−

þ 3
_a
a

�
_TðlÞðτÞ

þ
�
Uðϕð0ÞÞ −

�
V 00ðϕ−Þ −

Δ3

a2

��
TðlÞðτÞ ¼ 0; ð51Þ

subject to initial conditions Tð0Þ ¼ 1 and _Tð0Þ ¼ 0, to
obtain the ratio of functional determinants:

TðlÞðτfÞ ¼
det0 G−1

b;lðτ; τ0Þ
detG−1

−;lðτ; τ0Þ
: ð52Þ

Knowing the solutions to Eq. (51) for all values of l
enables us to compute the functional determinant in
theory through the following expression for the one-loop
corrections:

ln
det0G−1

b ðx;yÞ
detG−1

− ðx;yÞ ¼ tr0 log
G−1
b ðx;yÞ

G−1
− ðx;yÞ ¼

X∞
l¼2

ðlþ 1Þ2 lnTðlÞðτfÞ;

ð53Þ

where the prime, next to the determinant and the trace,
indicates that negative and possible zero modes are to be
omitted. In order to get the last equality, the angular part has
been factorized and written explicitly. In the practice we
find the TðlÞ functions numerically for some values of l,
more details are given later in Sec. VII.

C. The determinant of the fluctuation operator
via Green’s functions

We can define a Green’s equation by employing the
fluctuations operator from Eq. (41):

G−1
b ðxÞGðx; x0Þ ¼ δðx − x0Þ: ð54Þ

The usual spectral decomposition can be written as:

Gðx; x0Þ ¼
X
λ

1

λ
fλðxÞf�λðx0Þ; ð55Þ

where the λ’s are the eigenvalues of the operator G−1 that
may be discrete, continuous or mixed and fλðxÞ are the

corresponding eigenfunctions. The Euclidean de Sitter
space is compact and immediately implies that the spec-
trum will be formally discrete. Given the symmetry of the
problem, it is possible to further factorize each eigenfunc-
tion into a τ-dependent piece and an angular part. By taking
the latter to be a hyperspherical harmonic Yl;m1;m2

, we can
diagonalize the Laplace-Beltrami operator on S3,

− Δ3Yl;m1;m2
ðθ1; θ2;φÞ ¼ lðlþ 2ÞYl;m1;m2

; with

l ≥ m1 ≥ jm2j: ð56Þ

By taking the eigenfunctions to be fλðxÞ ¼ ψnðτÞ
Yl;m1;m2

ðθ1; θ2;φÞ, the Green’s function can be written as

Gðx; x0Þ ¼
X

n;l≥m1≥jm2j

1

λn;l
ψnðτÞψ�

nðτ0Þ

× Yl;m1;m2
ðθ1; θ2;φÞY�

l;m1;m2
ðθ01; θ02;φ0Þ: ð57Þ

The sums over m1 and m2 can be carried out using the sum
rules for hyperspherical harmonics [48], to obtain

X
m1≥jm2j

Yl;m1;m2
ðθ1; θ2;φÞY�

l;m1;m2
ðθ01; θ02;φ0Þ

¼ ð1þ lÞ
2π2

C1
lðe · e0Þ ¼

ð1þ lÞ
2π2

Ulðe · e0Þ: ð58Þ

Here e and e0 are unit vectors associated with the angle
coordinates ðθ1; θ2;φÞ and ðθ01; θ02;φ0Þ respectively and

CðmÞ
n ðxÞ are Gegenbauer polynomials which coincide with

Chebyshev polynomials of the second kind, Un, form ¼ 1.
This leads to the following simplification of the Green’s
function

Gðx; x0Þ ¼ 1

2π2
X
n;l

ð1þ lÞ
λn;l

Ulðe · e0ÞψnðτÞψ�
nðτ0Þ

≡ 1

2π2
X
l

ð1þ lÞUlðe · e0ÞGlðτ; τ0Þ: ð59Þ

With this factorization, we obtain the following Green’s
function equation for the τ part from Eq. (41):

sin3ðHτÞ
H3

ð−∂2τ − 3H cotðHτÞ∂τ þH2 csc2ðHτÞlðlþ 2Þ
þ V 00ðϕð0ÞÞÞGlðτ; τ0Þ ¼ δðτ − τ0Þ: ð60Þ

We can simplify the computation if we consider the
alternative Green’s function equation
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ð−∂2τ − 3H cotðHτÞ∂τ þH2 csc2ðHτÞlðlþ 2Þ
þ V 00ðϕð0ÞÞÞGlðτ; τ0Þ ¼ δðτ − τ0Þ; ð61Þ

and later correct for the factor of sin3ðHτÞ=H3 multiplying
the Dirac delta as we explain in the following.
The alternative equation is numerically more stable and

we are able to compute the corresponding Green’s func-
tions up to values of l ¼ 200, an example of the results is
shown in Fig. 6 in the numerical implementation Sec. VII.
The Green’s functions are computed using an Ansatz which
decomposes the two-point function Glðτ; τ0Þ into an
increasing and a decreasing solution to the left and to
the right of τ0, explicitly

Glðτ; τ0Þ ¼
1

W½gR; gL�
½Θðτ − τ0Þgl;LðτÞgl;Rðτ0Þ

þ Θðτ0 − τÞgl;Lðτ0Þgl;RðτÞ�; ð62Þ

where Θ is the Heaviside step function and W is the
Wronskian,

W½f; g�ðxÞ ¼ det

�
fðxÞ gðxÞ
f0ðxÞ g0ðxÞ

�
: ð63Þ

This decomposition already considers continuity and the
appropriate jump in the first derivative, reducing the
problem to two simpler one-dimensional problems. That
is, gL;R must solve the homogeneous version of the
differential Eq. (61) with boundary conditions gLð0Þ ¼
0; g0L ¼ 1; gRðπ=HÞ ¼ 0 and g0Rðπ=HÞ ¼ −1 for every
value of l. It is worth noting that the value taken for the
first derivative is auxiliary, and the result does not depend
on it, as expected for a second order differential equation.
We can recover the actual Green’s functions correcting the
Wronskian of the alternative equation by reintroducing
the scale factor, a3ðτÞ ¼ sin3ðHτÞ=H3, that was ignored,
explicitly

Glðτ; τ0Þ ¼
1

a3ðτ0ÞW½gR; gL�
½Θðτ − τ0Þgl;LðτÞgl;Rðτ0Þ

þ Θðτ0 − τÞgl;Lðτ0Þgl;RðτÞ�: ð64Þ

Once the value of l is specified and the bounce solution
is available, it is possible to use available integration
routines to obtain Glðτ; τ0Þ numerically. We expand and
comment on the numerical implementation in Sec. VII.
We only need to connect the Green’s functions with the
functional determinant. This can be done by means of the
resolvent method [23,49]. In brief, for a positive-definite
operator, it is possible to write

log
G−1
b ðx;yÞ

G−1
− ðx;yÞ

¼
Z

dλ logðλÞfλ;bðxÞf�λ;bðyÞ−
Z

dλ logðλÞfλ;−ðxÞf�λ;−ðyÞ

¼−
Z

dλ

�Z
∞

0

ds
gλ;bðxÞg�λ;bðyÞ

λþs
−
Z

∞

0

ds
fλ;−ðxÞf�λ;−ðyÞ

λþs

�

¼−
Z

∞

0

dsðGbsðx;yÞ−G−s
ðx;yÞÞ;

where

Gsðx; yÞ≡
Z

dλ
fλðxÞf�λðyÞ

λþ s
ð65Þ

are the Green’s functions associated with the deformed
operator

G−1
s ðτ; τ0Þ≡ G−1ðτ; τ0Þ þ s1 ð66Þ

and where the integral over λ above may refer to a sum in
the discrete case, we however will approximate the result
by assuming a continuous spectrum in the numerical
implementation. For our specific case we arrive at

log
det0G−1

b ðx;yÞ
detG−1

− ðx;yÞ ¼ tr0 log
G−1
b ðx;yÞ

G−1
− ðx;yÞ ¼ tr0 log

a3ðτÞG−1
b ðx;yÞ

a3ðτÞG−1
− ðx;yÞ :

ð67Þ

For positive-definite operators the combination tr log
satisfies the usual properties of the logarithm and linearity,
so that the scale factors a, cancel and we can employ the
following formula to obtain the determinant using simply
the alternative Green’s functions

1

2
log

det0 G−1
b ðx; yÞ

detG−1
− ðx; yÞ ¼ −

1

2

X∞
l¼2

ðlþ 1Þ2
Z

π=H

0

dτ

×
Z

∞

0

dsðGbðl;sÞ ðτ; τÞ −G−ðl;sÞ ðτ; τÞÞ;

ð68Þ

where the negative and possible zero modes have been
omitted. Usually, in the flat-space case and the thin-wall
approximation (see Refs. [50,51]), the knowledge of the
Green’s function for all values of the momentum along
the bubble wall means that the Green’s functions for the
deformed operator are readily available. Here in the de
Sitter case, because of the csc2ðHτÞ factor in the fluctuation
operator, that is no longer the case and an additional scan
over the s parameter is required to obtain the one-loop term.
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V. RENORMALIZATION

It is known that UV divergences in de Sitter spacetime
can be dealt with by means of dimensional regularization
[44] in the more general case where the metric is not fixed.
As we are considering a scenario where the de Sitter
background is fixed, we renormalize instead by following
the techniques described by Dunne et al. [24] by means of
the WKB approximation and extend the method to define a
homogeneous fraction of the one-loop contributions, which
will allow us to determine the gradient contributions to the
one-loop level. In the following section, similar methods
are employed to obtain a renormalized tadpole function and
a quantum corrected bounce.

A. Applying the WKB Ansatz to the Jacobi equation

Let us consider the Jacobi equation, Eq. (42). To extract
the divergent behavior we consider its large-l limit.
First, we need to bring this expression into a form such
that the WKB method can be directly applied. To do so, we
absorb the linear term in the derivatives to obtain a
Schrödinger-type equation. Consider therefore an equation
of the type

φ̈ðτÞ þ ω2ðτÞφðτÞ ¼ 0; ð69Þ

and define

φðτÞ≡ cðτÞϕð1ÞðτÞ: ð70Þ

As we want to solve for ω, we insert this into the expression
above to obtain

cðτÞϕ̈ð1ÞðτÞ þ 2 _ϕð1ÞðτÞ _cðτÞ þ c̈ðτÞϕð1ÞðτÞ
þ ω2cðτÞϕð1ÞðτÞ ¼ 0: ð71Þ

We identify

2
_c
c
¼ 3

_a
a
; and

c̈
c
þ ω2 ¼ −U; ð72Þ

then comparing coefficients, straightforwardly yields the
frequency:

ω2 ¼ −
�
3

4

_a2

a2
þ 3

2

ä
a
þ Uða;ϕ;lÞ

�
: ð73Þ

The Jacobi equation for the false vacuum solution is almost
the same, with the exception of a different fluctuation
potential

U− ≡ V 00ðϕ−Þ þ
lðlþ 2Þ

a2
: ð74Þ

Thus,

ω2
− ¼ −

�
3

4

_a2

a2
þ 3

2

ä
a
þ U−

�
: ð75Þ

For the fluctuation alone, the Ansatz to solve Eq. (42) is
given by

ϕð1Þ ¼ 1ffiffiffiffi
ω

p e�i
R

τmax
0

dτ ω; ð76Þ

where ω takes the form stated earlier. The validity of the
WKB approximation is subject to the condition that

���� _ω

ω2

���� ≪ 1; ð77Þ

which is satisfied for all large values of l. We expect the
accuracy of the Ansatz to increase with growing l, as this
corresponds to a larger effective mass for the scalar field.
Using now the definition of T in Eq. (50), we can write the
WKB approximation as

TðlÞðτmaxÞ ¼
ffiffiffiffiffiffi
ω−

ω

r
e�i

R
τmax
0

dτðω−ω−Þ: ð78Þ

The expansion of the one-loop contributions can be
expanded in negative powers of lþ 1 as

ln
detG−1

b;lðτ; τ0Þ
detG−1

−;lðτ; τ0Þ
¼

X∞
l¼0

ðlþ 1Þ2
�

α

lþ 1
þ γ

ðlþ 1Þ3

þOððlþ 1Þ−5Þ
�
; ð79Þ

and then the divergent terms can be read off as explained in
the following. From the first order solution we may now
extract the leading divergence and confirm the result found
in [38]:

α ¼ 1

2

Z
dτaðτÞ½V 00ðϕð0ÞÞ − V 00ðϕ−Þ�: ð80Þ

We can compute the frequency to next order in the WKB
expansion, whose contribution to the log det will make it
accurate up to Oðl−3Þ, and obtain

ωð2Þ ¼ −
�
1

4

ω̈ð1Þ
ω2
ð1Þ

−
3

8

_ωð1Þ
ω3
ð1Þ

�
: ð81Þ

The γ coefficient appearing in Eq. (79) gives
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γ ¼ −
1

8

Z
dτaðτÞ½ðV 00ðϕð0ÞÞ − V 00ðϕ−ÞÞ

× ð−2 − 2 _a2 þ a2ðV 00ðϕð0ÞÞ þ V 00ðϕ−ÞÞÞ�: ð82Þ

This is very similar in appearance to the factor that was
postulated by Dunne on the basis of the flat space results.
However, it differs by factors that would be absent in the
flat space analog and is therefore numerically different. In
Sec. VII, we further comment on the numerical imple-
mentation of this strategy.

B. Applying the WKB Ansatz to build
the Green’s functions

The WKB method can also be used to compute a
homogeneous version of the Green’s functions in a very
similar way as above, but gaining some more physical
insight. Applying the WKB method to build the Green’s
functions in Eq. (64) as in [50], it is possible to find
analytical expressions for the divergent pieces of the
effective potential, as a function of τ and renormalize
the theory as we describe in the following. Notice that since
we are looking for expressions in terms of the coordinate τ,
we may not use the Green’s functions of the alternative
fluctuation equation.
Exploiting the Ansatz in Eq. (76), we define

ghoml;L=R ¼ 1

WlðτÞ
e�

R
τ

0
dτ0Wlðτ0Þ: ð83Þ

Each of the functions above must solve the homogeneous
version of Eq. (61) with boundary conditions set at opposite
ends of the range of τ. The decomposition made in Eq. (64)
already ensures that the Green’s function contains the
correct discontinuity in the first derivative. However, in
order to find the divergent terms, we may ignore the linear
derivative and assume that l ≫ 1. Plugging the expression
above into the deformed homogeneous differential equa-
tion (including the s parameter), leads to

0 ¼ lðlþ 2Þcsc2ðHτÞ þ V 00ðϕð0ÞðτÞÞ

þ s −WlðτÞ2 þ
ẄlðτÞ
2WlðτÞ

−
3 _WlðτÞ2
4WlðτÞ2

; ð84Þ

where the prime denotes derivatives with respect to ϕ and
the dots stand for differentiation with respect to τ. Looking
for a homogeneous solution, we discard the last two terms
of the last equation, to find a leading order expression
for Wl:

WlðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 2Þ csc2ðHτÞ þ V 00ðϕð0ÞðτÞÞ þ s

q
: ð85Þ

Whether a closed expression for the two-point Green’s
function is obtainable will depend on the potential and
the bounce. For a numerical bounce, however, we can only
give an expression for the coincident limit, because the
exponentials in the WKB Ansätze will cancel in this limit.
Equation (64) reduces to

Ghom
bðl;sÞ ðτ; τÞ≡

ghoml;R ðτÞghoml;L ðτÞ
W½ghoml;R ; g

hom
l;L �

¼ ðlþ 1Þ2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 2Þcsc2ðHτÞ þ V 00ðϕð0ÞðτÞÞ þ s

q ;

ð86Þ

where the numerator comes from taking the coincident
limit of the angular part following Eq. (58) and the factor of
two in the denominator comes from the Wronskian. The
same expression can be found for the Green’s function
evaluated at false vacuum, ϕ−, that is

Ghom
−ðl;sÞ ðτ; τÞ≡

ghoml;RðτÞghoml;L ðτÞ
W½ghoml;R ; g

hom
l;L �

¼ ðlþ 1Þ2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 2Þcsc2ðHτÞ þ V 00ðϕ−Þ þ s

p : ð87Þ

We can now write a homogeneous version of the one-loop
term in our curved setting, in close analogy to the well-
known Coleman-Weinberg potential. Using the general
relation in Eq. (68) we have

1

2
log

det0Ghom
−1 ðx; yÞ

detGhom
−1 ðx; yÞ

¼ −
1

2

X∞
l¼2

ðlþ 1Þ2
Z

π=H

0

dτ

×

�
a−3ðτÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 2Þcsc2ðHτÞ þ V 00ðϕð0ÞðτÞÞ

q

− a−3ðτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 2Þcsc2ðHτÞ þ V 00ðϕ−ÞðτÞ

q �
: ð88Þ

Observe, that it is necessary to use the Green’s function of
the fluctuation operator in Eq. (33) and not the ones of the
alternative operator, since equality between these expres-
sions only holds after the full trace has been performed.
Since we are seeking the counterterms for the model and
thus terms for the Lagrangian density, we must use the
former ones. Expanding the expression for l ≫ 1, or more

specifically for l >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00ðϕð0ÞÞ

q
∼ β, keeping contributions

up to l−3 we have
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1

2
log

det0Ghom
−1 ðx; yÞ

detGhom
−1 ðx; yÞ ¼

Z
π=H

0

dτ
X∞
l¼2

�
sin5ðHτÞ

H5

V 00ðϕð0ÞÞ3 − V 00ðϕ−Þ3
32ðlþ 1Þ3

−
sin3ðHτÞ

H3

3ðV 00ðϕð0ÞÞ2 − V 00ðϕ−Þ2Þ
32ðlþ 1Þ3 þ sinðHτÞ

H
3ðV 00ðϕð0ÞÞ − V 00ðϕ−ÞÞ

32ðlþ 1Þ3

−
sinðHτÞ

H
ðV 00ðϕð0ÞÞ − V 00ðϕ−ÞÞðsin2ðHτÞðV 00ðϕð0ÞÞ þ V 00ðϕ−ÞÞ=H2 − 2Þ

16ðlþ 1Þ

þ 1

4H
ðlþ 1Þ sinðHτÞðV 00ðϕð0ÞÞ − V 00ðϕ−ÞÞ

�
: ð89Þ

We can perform the sum up to a hard cutoff for l, lmax ≥ β, allowing us to write

1

2
log

det0Ghom
−1 ðx;yÞ

detGhom
−1 ðx;yÞ ¼

Z
π=H

0

dτ
−ψ ð2Þð1Þ
64H5

sin5ðτÞðV 00ðϕð0ÞðτÞÞ3−V 00ðϕ−Þ3Þ

þ 1

8H
sinðHτÞ

�
l2
max½V 00ðϕð0ÞðτÞÞ−V 00ðϕ−Þ�þ 3lmax½V 00ðϕð0ÞðτÞÞ−V 00ðϕ−Þ�

þ logðlmaxÞ½V 00ðϕð0ÞðτÞÞ−V 00ðϕ−Þ�þ
�
2þ γE −

3

8
ψ ð2Þð1Þ

�
½V 00ðϕ−Þ−V 00ðϕ−Þ�

�

−
sin3ðHτÞ
16H3

�
logðlmaxÞ½V 00ðϕð0ÞðτÞÞ2−V 00ðϕ−Þ2� þ

�
γE −

3

4
ψ ð2Þð1Þ

�
½V 00ðϕð0ÞðτÞÞ2 −V 00ðϕ−Þ2�

�
: ð90Þ

Here ψ ðmÞðzÞ is the polygamma function defined as

ψ ðmÞðzÞ≡ dmþ1

dzmþ1
lnΓðzÞ ¼ dmþ1

dzmþ1
ln
Z

∞

0

xz−1e−xdx: ð91Þ

The last three lines of Eq. (90) contain divergent pieces,
which are to be removed by introducing counterterms to the
original Lagrangian. By extracting a factor of

ffiffiffiffiffiffi−gp
, what

remains is naively expected to be a polynomial in the scalar
field (if the tree-level potential was also chosen as a
polynomial) so that one can then interpret the divergences
to reflect the running of the self-interaction couplings,
including the mass. We see from the above expression
that this is not immediately the case, and although some
divergent pieces have indeed the form of

ffiffiffiffiffiffi−gp
times a

polynomial, some do not and require purely gravitational
interactions to be added to the Lagrangian. As mentioned
earlier, this is known from the full renormalization program
in de Sitter space [44,52]. We perform the regularization
of the expressions, nonetheless the interpretation of such
divergences as local counterterms falls outside the scope of
this paper.

VI. HIGHER ORDER CORRECTIONS
FROM GRADIENTS

Gradient effects may be included in the decay rate not
only through an exact numerical computation of the func-
tional determinant over the background, but also through an

additional functional derivative of the effective action,
which provides a quantum corrected equation of motion
for the bounce [26]. It could in principle be used to
reevaluate the one-loop contributions on a quantum cor-
rected bounce, effectively including specific two-loop
effects. Here we do not carry out the full program but
only calculate the corrected bounce as a cross-check in
relation to previous studies and a proof of concept for the
de Sitter case.
Considering the effective action, shown in Eq. (9), but

evaluated on a generic field ϕ, we obtain the quantum
equation of motion by means of a functional derivative. Let
us for that purpose first rewrite the effective action more
explicitly evaluated at a generic field φ

Γð1Þ½φ� ¼ S½φ� þ ℏ
2
log

detG−1ðφÞ
detG−1ðϕ−Þ

¼
Z

d4x
ffiffiffiffiffi
gE

p �
1

2
gijE∂iφ∂jφþ VeffðφÞ

�
ð92Þ

where we have defined the effective potential as the sum of
the tree-level potential and the one-loop contributions

VeffðφÞ ¼ VðφÞ þ V1−loopðφÞ; ð93Þ

such that integrating the last term together with the
spacetime volume element gives
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Z
d4x

ffiffiffiffiffi
gE

p
V1−loopðφÞ ¼

ℏ
2
log

detG−1ðφÞ
detG−1ðϕ−Þ

: ð94Þ

The condition above leads to the expression

ℏ
2
tr log

G−1ðφÞ
G−1ðϕ−Þ

¼ ℏ
2

Z
dΩ3

Z
dτ log

G−1ðφÞ
G−1ðϕ−Þ

¼
Z

d4x
ffiffiffiffiffi
gE

p
V1−loopðφÞ; ð95Þ

which allows us to identify the effective one-loop potential
term as

V1−loopðφÞ ¼
ℏ
2

1

a3ðτÞ log
G−1ðφÞ
G−1ðϕ−Þ

: ð96Þ

As we have shown above, the one-loop contributions can be
included in order to obtain a quantum corrected bounce:

0 ¼ δΓð1Þ

δφðxÞ ¼
δ

δφðxÞ
Z

d4y
ffiffiffiffiffi
gE

p �
1

2
gijE∂iφ∂jφþ VeffðφÞ

�
;

ð97Þ

0¼−
1ffiffiffiffiffi
gE

p ∂i
ffiffiffiffiffi
gE

p
gijE∂jφðxÞþV 0ðφðxÞÞþδV1−loopðφÞ

δφðxÞ ; ð98Þ

where the last term corresponds to the tadpole function
for the scalar field fluctuations. This can be seen from the
explicit computation of the derivative, and receives its name
from the case of a potential with a single quartic self-
interaction. Assuming the field only depends on the τ
coordinate,

δV1−loopðφÞ
δφðτÞ ¼ ℏ

2

1

a3ðτÞ
X
l¼2

ðlþ 1Þ2Gb;lðτ; τÞa3ðτÞV 000ðφðτÞÞ

≡ΠðφðτÞÞ ð99Þ

where Eq. (96) and the specific form of the operator,
Eq. (61), were used. The quantum corrected equation of
motion can be written as
�
−

1ffiffiffiffiffi
gE

p ∂i
ffiffiffiffiffi
gE

p
gijE∂jφþV0ðφðτÞÞþΠðφðτÞÞ

�
¼0: ð100Þ

If we consider splitting φ into the bounce plus quantum
corrections, using the bounce equation, Eq. (43), we have for
the next to leading order the differential equation

−
1

a3ðτÞ ∂i
ffiffiffiffiffi
gE

p
gijE∂jϕ

ð1Þ þ V 00ðϕð0ÞÞϕð1Þ

þ Πðϕð0ÞðτÞÞ þOðϕð1Þ2Þ ¼ 0: ð101Þ

Here we can recognize the fluctuation operator of Eq. (33),
so that knowledge of the associated Green’s function,

Gðx; x0Þ, allows us to quickly compute the quantum correc-
tions to the background through

ϕð1ÞðxÞ ¼ −
Z

dx0Gðx; x0Þa3ðτÞΠðϕð0ÞðτÞÞ ð102Þ

¼ −
1

2π2
X
l¼0

ðlþ 1Þ
Z

dΩ0
3dτ

0Ulðex · ex0 Þ

×Glðτ; τ0ÞΠðϕð0Þðτ0ÞÞ: ð103Þ

Here we have inserted our expression for the Green’s
function from Eq. (59). Computing the integral over the
solid angle gives the following:

ϕð1ÞðxÞ ¼ −
X

l¼0;even

ðlþ 1Þ
Z

dτ0Glðτ; τ0ÞΠðϕð0Þðτ0ÞÞ;

ð104Þ

where the integration over the Chebyshev polynomials is
equal to π for even values of l and 0 otherwise. Moreover if
the fluctuations are assumed to occur only in the τ-direction
the only modes that are needed are the ones in the l ¼ 0
sector, thus

ϕð1ÞðxÞ ¼ −
Z

dτ0G0ðτ; τ0ÞΠðϕð0Þðτ0ÞÞ: ð105Þ

Once the quantum corrections are known, it is in principle
viable to self-consistently evaluate the one-loop effective
action on ϕð0þ1Þ to include specific two-loop effects such as
dumbbell diagrams (see [50]).

VII. NUMERICAL IMPLEMENTATION
AND RESULTS

We apply the techniques described in the previous
sections to a case study for a given set of values for the
parameters appearing in the rescaled potential Eq. (37)
where in addition we parametrize the value at the top of the
potential as

V0 ¼
H2v2

ϵ2
: ð106Þ

The set of Mathematica notebooks and codes can be found
in the false-vacuum-decay-desitter GitHub
repository.2 Specifically and throughout this section, we
consider the same parameter set as the one considered
in [38], namely

β ¼ 45; b¼ 0.25; ϵ¼ 0.046 and H ¼ 1; ð107Þ

2https://github.com/Stephan-Brandt/false-vacuum-decay-
desitter
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which allow for a direct comparison with their work, but
does not allow to perturbatively include the effects of the
bounce’s quantum corrections self-consistently.
We first compute the bounce configuration solving

Eq. (38), demanding that ϕð0Þ ¼ ϕþ and ϕðπ=HÞ ¼ ϕ−.
A solution satisfying these conditions exists exactly in the
non-thin-wall case, due to the change of sign in the friction
term, so that the starting point is extremely close to the
true vacuum.
Numerically, the problem is solved via a so-called

shooting method, which turns the boundary value problem
into a set of initial value problems.We keep the initial speed
fixed to 0 and vary the initial position of the candidate
solution such that the method converges to the bounce by
demanding the right behavior at σ → Hπ, namely ensuring
that the bounce approaches some value close to ϕ− for
σ ¼ Hπ − ε. In order to find the initial position in the
shooting method, we must update the initial position as
follows. The algorithm looks for the minimum of the field
configuration, and if it lies outside the range between true
and false vacuum, the solution is said to have overshot,
consequently the updated initial position is shifted further
toward ϕ−. Alternatively, if the first local minimum lies
between the two vacua, the solution undershot and more
potential energy is required to reach the other vacuum,
meaning the starting position is shifted closer to ϕþ.
Iterating this procedure, the output converges to a
Coleman-de Luccia-like bounce. An example of the profile
of the bounce configuration used in the present study can be
found in Fig. 2.
Before solving for the full one-loop contributions, we

extract the negative mode, essential in describing the
tunneling process. This can be done straightforwardly using,
for example, Mathematica’s algorithm Eigensystem.
The negative mode was determined to be λ ¼ −2.71191
for the original system. The corresponding eigenfunction is
shown in figure 3.
We search for possible zero modes numerically, for the

set of parameters in Eq. (107). It should be noted, that
an expansion in hyperspherical harmonics for the to-be

fluctuations implies that if zero modes exist, they must
come from the τ-dependent factor. We find that no zero
modes associated with the lower values of l are present.
That is, Eq. (42) does not seem to have zero modes for
l ¼ 0 or l ¼ 1. Moreover, we observe that the absolute
value of the eigenvalues keeps increasing in every l sector,
which seems to indicate no zero modes will at all be
present. We do not find any such modes, which, together
with the expressions given in Sec. IVA, indicate that the
question of finding the zero modes in this scenario is subtle
and requires a study of its own.
Having a numerical expression for the bounce configu-

ration, we now solve for the one-loop contributions to
the action, making no approximations regarding the scalar
background.
First, we discuss the Gel’fand-Yaglom method. As

explained in Sec. IV, we must solve the Jacobi equation,
Eq. (51), and compute the specific ratio of its eigenfunctions
as in Eq. (50) and evaluate at τf ¼ π. With Mathematica,
the analytical solution for the free case, written in Eq. (48),
cannot be evaluated reliably at arbitrarily small times or
times close to the Hubble horizon. To mitigate this problem,
the function is tabulated for several intervals and patched
together piecewise to generate the full solution. The value of
the ratio-operator at time τ → Hπ is sensitive to the initial
time τ0 ≪ 1 from where we start to solve equation (51).
We solve the differential equation, determine TðHτÞ for a
sequence of initial times and subsequently extrapolate back
to τ0 → 0. A plot of the partial determinants is shown in
Fig. 4 and is seen to be in excellent agreement with [38].
We write down the coefficients of the divergent contribu-
tions with α and γ respectively as found using the WKB
approximation [Eqs. (80), (82)].
In order to check how accurately the WKBAnsatz solves

the Jacobi equation, we check its remainder. Explicitly,
we verify that the zeroth order WKB solution satisfies the
differential equation well even for low values of l, where
the spacetime dependence of the potential is expected to
dominate, when compared to the l term. The same is
verified when including the next order WKB corrections.

FIG. 2. Profile of the classical background that interpolates
between the local minima of the potential, ϕ− and ϕþ.

0.5

1.0

1.5

FIG. 3. The eigenfunction belonging to the negative eigenvalue
λ ¼ −2.71191 for the model with parameters as in Eq. (107).
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For large values of l, the l-term dominates and the
corrections become extremely small, so the WKB approx-
imates the exact solution. We regularize the one-loop
expression, by removing the divergent terms, rendering
the sum in Eq. (53) finite. We plot the resulting series
in Fig. 5.
A problem affecting the numerical precision is the poor

quality of the numerical coefficients in Eq. (47), especially
at small times. The aforementioned extrapolation scheme of
TðHτÞ is needed to carry out the computation in the range
50 < l < 100 and enables us to estimate the full sum. For
l < 50 the associated Legendre function can be evaluated
for reasonably small times and there is no need for
extrapolation. For l > 120, however, the minimal time
for which we can evaluate the associated Legendre function
becomes too large for a reliable extrapolation. Additionally,
any deviation from the exact solution is multiplied by a

factor ðlþ 1Þ2. Thus, for l > 100 we observe the impact
of the noisy behavior toward the lower right corner
of Fig. 5.
In order to compute the one-loop contribution to the

action via the Green’s function method and include the
gradients of the bounce exactly, we employ the decom-
position shown in Eq. (62) and solve the alternative
system, Eq. (61). An example of the Green’s functions
obtained for a fixed value of l, together with the Green’s
function for the alternative fluctuation operator over the
false vacuum, is depicted in Fig. 6. Especially for low
values of l, it can be observed how the bounce configu-
ration deforms the solution over the false vacuum in the
region where gradients are strongest. For higher values, the
Green’s function over the bounce approaches the one over
false vacuum (black and blue in the figure). In order to
compute the functional determinant, it is necessary to have
available the Green’s functions for the deformed operator
in Eq. (66). In practice, we use an analogous deformation
but for the alternative operator and find the Green’s
functions numerically by scanning over 2 ≤ l ≤ 100
and 0 ≤ s ≤ 120000. The convergence of the integral in
Eq. (68) in the s direction is quite slow, and extrapolation
of the Green’s functions was used for higher values of the s
parameter once the behavior matched the power-law
expected from the homogeneous expressions (see Fig. 7).
For the computation of the Green’s function, it was
necessary to use a computation cluster and take advantage
of the parallelizability of the problem, given that for each
value of s and l, the differential equation solver could be
run independently. After collecting the output and includ-
ing the extrapolation, it was possible to obtain the log det
one-loop contribution fully, including the full scalar back-
ground as desired. The different quantities computed are
shown in Table I. It is worth adding that the result coming
from the Green’s functions is particularly sensitive to the

FIG. 4. The individual crosses show the partial determinants
lnTðlÞ, where α ¼ −20.45768 and γ ¼ 330.41108 as obtained
through Eqs. (80) and (82) for the set of parameters in Eq. (107).
The enveloping functions follow the diverging behavior for
large-l that has to be subtracted.

FIG. 5. A plot of the series of partial determinants after
regularizing the large-l behavior. As we can see, there is rapid
convergence in the middle section. However, at large values of l,
the numerical noise begins to take over.
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FIG. 6. Example of coincident Green’s function which solves
Eq. (61) for l ¼ 5, plotted against σ ¼ Hτ. For the parameters
β ¼ 45, b ¼ 1=4, ϵ ¼ 0.046 and H ¼ 1.
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precision used in the computation. Initially, using a
working precision of five digits, we obtained a result
much closer to the Gel’fand-Yaglom result and it is only
when increasing this precision that we can be certain of the
result that includes three significant figures reported in
the table. This points at the possibility of improving the
Gel’fand-Yaglom method by for example taking an even
finer partition for the numerical treatment of the Legendre
functions in Eq. (48).
As proof of concept we further compute the tadpole

function shown in Eq. (99) and the quantum corrections to
the bounce, Eq. (105). For this purpose, it is necessary to
renormalize the theory and use analytical expressions for
the divergent pieces, only then we can obtain a renormal-
ized tadpole function. In Fig. 8, we compare the bare
tadpole function with the corresponding divergent pieces
coming from the renormalization procedure. We find
excellent agreement between the two for the cutoff param-
eter (Λ > 100), meaning the WKB homogeneous Green’s
functions capture the UV divergences well. The ratio of
these functions can be found in the left plot of Fig. 9, where
it can be compared with the ratio of its homogeneous
analogue. Once the divergent pieces are removed, as in an
MS-like scheme, we obtain the plot on the right in Fig. 9,
where we observe that oscillations are typically of the size
of the mass scale of the field, βH2. We also compare the
renormalized homogeneous tadpole with the renormalized

exact tadpole, in order to isolate the gradient effects,
see Fig. 10.
Once the tadpole function is computed and renormal-

ized, it is possible to compute the quantum corrections to
the background Eq. (105). For our set of parameters, we
fall out of the perturbative regime, and the corrections
cannot be included at face value. Nonetheless, we con-
clude that the quantum corrections come out proportional
to the finite parts of the tadpole function since the l ¼ 0
sector has a Green’s function which is of order one. Thus,
the bounce corrections are of order β2 as can be seen
in Fig. 11.

40000 60000 80000 100000 120000 140000

1. × 10–7

1.5 × 10–7

2. × 10–7

2.5 × 10–7

3. × 10–7

3.5 × 10–7

4. × 10–7

110 000   115 000 120 000 125 000 130 000

–0.044

–0.042

–0.040

–0.038

–0.036

(a) (b)

FIG. 7. Extrapolations for larger s values for the difference and the integrated difference of the Green’s functions evaluated at the
bounce and the false vacuum respectively. (a) Example of the difference between coincident Green’s functions atHτ ¼ π=2 and l ¼ 50,
as a function of the deformation parameter s, together with a verification of its correct asymptotic behavior for large s. (b) Sum of the
integrated difference of Green’s functions at the bounce and the false vacuum, respectively, up to l ¼ 100, depicting the extrapolation on
the s-parameter corresponding to flat space.

TABLE I. Summary of the different contributions to the
effective action for the benchmark point.

Contribution S0 Bð1Þ hom Bð1ÞGY Bð1ÞGF %GY %GF

Value 620 −169 −164 −158 3.0 6.5

FIG. 8. Different tadpole functions plotted against the time
coordinate σ ¼ Hτ. The bare homogeneous tadpole correspond-
ing to the tadpole function obtained with the function in Eq. (86),
is shown as a continuous gray line, the bare exact tadpole
computed numerically is shown as dashed lines and the negative
functional derivative of the counter-terms capturing the divergent
pieces is drawn as a red dotted curve. The upper cutoff for l was
chosen Λ > 200 for this plot and the parameters in (107).
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VIII. CONCLUSIONS

We perform the computation of the one-loop effective
action over an inhomogeneous scalar background repre-
senting tunneling phenomena between two phases of a
scalar field theory. We consider a fixed de Sitter geometry
together with a potential displaying two nondegenerate
minima, which allows for transitions from one to the other.
For the computation of the effective action, we lift the
common assumption of a thin wall and include the effects
of the gradients of the scalar field at the level of the
one-loop corrections. For a generic benchmark point,
we conclude that considering the bounce background,
the one-loop effects are corrected by about 3%–6%
when compared to the homogeneous approximation of
the one-loop effects, depending on the method and its
precision.
We perform the numerical computation of the full one-

loop effects, i.e. homogeneous plus gradients, employing
two available methods in the literature and find them
consistent with each other. First, we employ the Gelfand-
Yaglom method for the computation of the one-loop effects.
Second, we employ the Green’s function method using
resolvents. Both methods are implemented in completely
independent ways and give compatible results for our
benchmark computation up to the percent level when
compared with each other.
We highlight the advantage of the Green’s function

method over the Gelfand-Yaglom one, where the former
provides simultaneously two-point correlation functions
and allows for the computation of higher-order effects, as
was indicated in this document. For potentials that allow for
a perturbative treatment in the couplings, we see no obstacle
in including the quantum corrections to the scalar back-
ground in a consistent way.

0
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0.998

0.999

1.000

1.001

1.002
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0

0

FIG. 9. Left: plot depicting the ratio between the homogeneous tadpole function and the negative of the divergent pieces computed via
WKB(dashed gray line), showing tachyonic regions between π=4 and π=2. Also the ratio between the exact (numerical) tadpole function
and the negative divergent pieces computed via WKB (solid black curve). Right: renormalized homogeneous tadpole function (dashed
gray) and renormalized numerical tadpole (solid black) for the benchmark parameters in Eq. (107) and against σ ¼ Hτ.
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FIG. 10. Ratio between the renormalized homogeneous tadpole
function and the renormalized numerical tadpole function. The
spikes toward the edges come from the nonsmooth extension of
the bounce profile and are not physical effects.

0

FIG. 11. Quantum corrections for the bounce solution for the
set of benchmark parameters chosen against σ ¼ Hτ.
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We carry out the full computation of the one-loop effects
and the regularization of this model, completing some of the
open ends in Dunne’s previous study [38]. This is done via
the identification of divergent terms in a WKB expansion of
the ratio of Jacobi equations or the fluctuations operator. We
give explicit expressions for the homogeneous estimates to
the tadpole functions and thus to the quantum corrections to
the scalar background. However, we do not address the task
of interpreting the divergent pieces as counterterms of a
local theory. Although it is known [44], that the specific case
of de Sitter space can be renormalized in that sense, we
leave this matter for future considerations.
After the renormalization procedure, we obtain the

tadpole functions and thereafter find quantum corrections
to the bounce configuration. Owing to the size of the β
parameter, we cannot include the size of the corrections
directly. Nonetheless, by observing the leading contribu-
tions of the renormalized homogeneous expressions, we
can see how the corrections appear to be proportional to β2

and completely in line with previously related studies
where the relative corrections to the bounce are found to
be below 10%.
There are several new questions to be answered. There is

no clear picture of what happens to the zero modes
expected in the l ¼ 1 sector and how the lack of them

would impact the interpretation of the tunneling process as
happening due to the appearance of bubbles. Instead, we
can only speak of an overall probability for the field to
transition globally from one vacuum to the other. It is
known that multibounce solutions also exist [25] and
contribute to the action, and it would be interesting to
consider their contributions compared to the gradients. The
impact of the curvature scale H−1 is expected to be more
and more relevant as it tends toward the length determined
by the mass scale of the field, but its exact effect on the
relevance of gradients and the overall decay rate requires
further examination.
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