
Models of a modified-inertia formulation of MOND

Mordehai Milgrom
Department of Particle Physics and Astrophysics, Weizmann Institute, Rehovot 7610001, Israel

(Received 11 August 2022; accepted 18 September 2022; published 30 September 2022)

Models of “modified-inertia” formulation of MOND are described and applied to nonrelativistic many-
body systems. Whereas the interbody forces are Newtonian, the expression for their inertia is modified from
the Newtonian ma to comply with the basic tenets of MOND. This results in time-nonlocal equations of
motion.Momentum, angular momentum, and energy are (nonlocally) defined for bodies, and the total values
are conserved for isolatedmany-body systems. Themodelsmake all the salientMONDpredictions. Yet, they
differ in important ways from existing “modified-gravity” formulations in their second-tier predictions.
Indeed, the heuristic value of the model is in limelighting such possible differences. The models describe
correctly the motion of a composite body in a low-acceleration field even when the internal accelerations of
its constituents are high (e.g., a star in a galaxy). They exhibit aMOND external field effect (EFE) that shows
some important differences from what we have come to expect from modified-gravity versions: in one,
simple example of the models, what determines the EFE, in the case of a dominant external field, is
μðθhaexi=a0Þ, where μðxÞ is the MOND “interpolating function” that describes rotation curves, compared
with μðaex=a0Þ for presently knownmodified-gravity formulations. The twomain differences are that, while
aex is themomentary value of the external acceleration, haexi is a certain time average of it and that θ > 1 is an
extra factor that depends on the frequency ratio of the external- and internal-field variations. Only ratios of
frequencies enter, and a0 remains the only new dimensioned constant. For example, for a system on a circular
orbit in a galaxy (such as the vertical dynamics in a disk galaxy), the first difference disappears, since
haexi ¼ aex. But the θ factor can appreciably enhance the EFE in quenching MOND effects, over what is
deduced in modified gravity. This θ enhancement is important in most applications of the EFE. Some exact
solutions are also described, such as for rotation curves, for an harmonic force, and the general, two-body
problem, which in the deep-MOND regime reduces to a single-body problem.
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I. INTRODUCTION

From the basic tenets of MOND [1] follow a number of
major predictions concerning aspects of the mass discrep-
ancies in galactic systems, which MOND accounts for
without invoking “dark matter” [2]. Reviews of MOND
can be found inRefs. [3–8]. However, different formulations
that embody these tenets may still differ to varying degrees
in making important second-tier predictions. Among the
first-tier prediction, one may mention those that pertain to
the rotation curves of isolated disk galaxies: asymptotic
flatness, the relation between asymptotic speed and total
baryonicmass,M (also known as “the baryonic Tully-Fisher
relation”), V4

∞ ¼ MGa0, and the full prediction of rotation
curves. Other first-tier predictions are: the mass-velocity
dispersion relation, MGa0 ¼ ησ4, with η ∼ 1, in deep-
MOND, pressure-supported systems; the presence of effects
of an external field on the internal dynamics of a gravitating
system—the external-field effect (hereafter, EFE), etc.
Among second-tier predictions, one may count some fine
details of the rotation curves (e.g., Refs. [9–13]), the exact
value of η in the M − σ relation, and its dependence on
dimensionless attributes of the system; the exact dependence

of the effective two-body force on the masses; the exact
nature and strength of the EFE; etc.
There are some full-fledged, self-consistent, working

formulations of MOND. Among them we have nonrela-
tivistic formulations, such as AQUAL [14] and QUMOND
[15]; and we have several relativistic formulations, such as
the more recent ones described in Refs. [16,17]). They are
all of the type that may be called “modified gravity” (MG),
in that they modify the gravitational (Poisson) action in the
nonrelativistic case or the Einstein-Hilbert action in the
case of relativistic versions.1

The presently known nonrelativistic, MG theories
(AQUAL and QUMOND) do differ somewhat on sec-
ond-tier predictions, or else they would not be different
theories (e.g., Refs. [15,18]). For example, they exhibit
small differences in the EFE (e.g., Refs. [15,19,20]), small

1The definition is not always clear cut. There are theories that
can be described equivalently as either a modification of the
Einstein-Hilbert action for the metric, with test particles moving
on geodesics of the modified metric, or, leaving the gravitational
action intact, they modify the particle equation of motion away
from the geodesics.
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differences in the stability criteria of disks [21], and small
differences in the predicted rotation curves of disk galaxies
(e.g., Ref. [13]). However, they do tend to differ only little
from each other even on such prediction (less than would be
necessary to distinguish between them observationally, at
present). For example, Ref. [22] derived a general, deep-
MOND, virial theorem for nonrelativistic MG theories,
showing that all such theories predict the same value of η in
the M − σ relation, independent of system parameters, the
same dependence of the deep-MOND, two-body force on
the two masses, and the same “Q parameter” (as defined in
Ref. [10]) for all deep-MOND, disk galaxies.
Concentrating on MG formulations might, however, be

too restrictive. For one reason, this may lead us to accept
the second-tier predictions of such theories as absolute
predictions of MOND.
Also, MOND, as we know it now, and as described by

any of its presently known formulations, is, arguably, an
effective theory, an approximation, that must have roots in a
more fundamental theory—a “Fundamond.” Indeed,
beyond their usefulness as practical tools for making
predictions and affording self-consistent calculations in
MOND, such effective versions of MOND are expected to
point the way to a Fundamond.
It is thus quitevaluable to explore awidevariety ofmodels

that embody the basic tenets of MOND—and thus make all
its salient prediction—even if these models are not satis-
factory in all regards. Such models can give us some idea of
the variety of predictions that MOND can make regarding
the second-tier predictions. They can also, potentially, point
to more promising paths to the Fundamond.
One possible approach to constructing MOND effective

theories is to modify not the gravitational part but the
“free,” or “inertial” part of the equations of dynamics
(gravitational or otherwise).2 This idea has been discussed
at length in the context of MOND [23–25].
In a way of support for the idea, one can recall that

physics is replete with examples of acquired, or modified,
inertia: inertia of bodies that emerges fully from, or is
modified by, the interaction of the body with some
omnipresent background medium: the acquisition of par-
ticle masses (inertia) by their interaction with the ambient
Higgs field in the standard model of particle physics; the
renormalization of masses (e.g., in quantum electrodynam-
ics) by interaction with the vacuum; effective modification
of the inertia of electrons and holes in solids; effective
inertia of a body moving in a perfect fluid [26]; etc.
In Ref. [24], I suggested that inertia results from such

interaction with the quantum vacuum. The vacuum can, in
the least, define an absolute inertial frame, in that bodies
can “know” that they are accelerated with respect to it, for
example via the Unruh effect.

It has to be noted, though, that the Einstein-Hilbert action
may be considered the free action of the gravitational field.
So, an eventual relativistic Fundamondwill probably involve
modification of all parts of the action.3 Remember, for
example, that general relativity modifies all parts of the
Newtonian action: on top of the modified choice of gravi-
tational degrees of freedom (ametric instead of a potential), it
modifies the Poisson action to the Einstein-Hilbert action,
and the Newtonian kinetic Lagrangian, mv2=2, first to the
special relativistic Lagrangian (even in the absence of
gravity), −mc2γðv=cÞ,4 and then to the general relativistic
one. However, here, we consider only the nonrelativistic
limit, where the gravitational field may be considered static.
I thus restrict myself to modifications of only the kinetic part
of the equations of motion.
Following a seed idea in Ref. [25], I construct here a

class of effective, nonrelativistic models of “modified
inertia” that embody the basic axioms of MOND. The
equations of motion describe a system of many (pointlike)
bodies interacting through some (not necessarily gravita-
tional) force. These equations are time nonlocal. (See the
discussion in Ref. [23] as to why such nonlocality arises
naturally in modified-inertia theories.)
The models are described in Sec. II, where I also show

that the equations of motion obey conservation laws of
momentum, energy, and angular momentum, with certain
modified definitions of these quantities. Here, I also
consider the two-body problem and scaling laws in the
deep-MOND limit. Further details are worked out in
Sec. III. In Sec. IV, I discuss some consequences of the
models: the prediction of rotation curves of disk galaxies,
exact solutions for harmonic forces, the equation of motion
of composite bodies, and the MOND external-field effect.
Section V is a discussion.

II. MODELS

Consider a system of (pointlike) bodies of masses mp,
with the Newtonian force (not necessarily gravitational) of
body q on body p being fpqðrp; rqÞ, and fqp ¼ −fpq.

5 We
want the trajectories of the bodies, rpðtÞ, to be dictated
by MOND.6

Along its trajectory, body p is subject to the total, time-
dependent force

2Such theories may modify directly the equations of motion
and are not necessarily governed by an action.

3This will also be necessary, it appears, if we want to reproduce
the observation that gravitational waves follow the same world
lines as photons.

4Special relativity can be viewed as modifying Newtonian
inertia.

5We usually deal with forces, whereby fqp is along rpq ¼
rp − rq and depends on jrpqj.

6I use “trajectory” for the path rðtÞ, including its time history,
and “orbit” for the collection of points covered by the trajectory.
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FpðtÞ ¼
X
q≠p

fpq½rpðtÞ; rqðtÞ�: ð1Þ

Newtonian dynamics tell us that the acceleration aðtÞ to
which the body is subject at time t depends only on the
force at time t (for now, I omit the subscript p) according to
maNðtÞ ¼ FðtÞ, which in Fourier space reads mâNðωÞ ¼
F̂ðωÞ. Hatted quantities are Fourier components,

r̂ðωÞ¼
Z

∞

−∞
rðtÞe−iωtdt; rðtÞ¼ 1

2π

Z
∞

−∞
r̂ðωÞeiωtdω; ð2Þ

with the velocity and acceleration Fourier components
v̂ðωÞ ¼ iωr̂ðωÞ, âðωÞ ¼ −ω2r̂ðωÞ.
We want to modify the Newtonian relation, in accor-

dance with the basic axioms of MOND, by modifying
the left-hand, inertia term. We can then write, quite
generally,

mâðωÞI ½fr̂g;ω; a0� ¼ F̂ðωÞ; or

âðωÞI ½fr̂g;ω; a0� ¼ âNðωÞ; ð3Þ

where the inertia functional, I ½fr̂g;ω; a0�, is a dimension-
less functional of the whole trajectory—designated fr̂g to
distinguish it from the number r̂ðωÞ. I can also be an
explicit function of ω, and it is constructed using a0 as
the only dimensioned constant (in a minimalist view of
MOND, we want a0 to be the only new, dimensioned
constant appearing).
To avoid possible confusion, note that the right-hand

side of Eq. (3) is not calculable directly from Newtonian
dynamics. It is not the Newtonian acceleration on
Newtonian orbits; it is rather the Newtonian acceleration
on the MOND orbits, which are not known a priori. Thus,
these equations have to be solved self-consistently.
As has been discussed in detail, e.g., in Refs. [24,27], it

is natural in MOND to posit the existence of an absolute
inertial frame with respect to which the absolute accel-
erations we call aðtÞ here are measured. For example, as
argued in Ref. [24], the quantum vacuum may define such
a frame.
To comply with the MOND basic tenets, I ½fr̂g;ω; a0�

has to approach unity in the formal limit a0 → 0, so as to
restore the Newtonian relation when all quantities with
dimensions of acceleration are much larger than a0. In the
gravitational context, at least, MOND is posited to become
space-time scale invariance in the opposite limit [28],
defined by a0 → ∞ and G → 0, such that Ga0 remains
fixed, i.e., invariant under ðt; rÞ → λðt; rÞ. The Newtonian
gravitational force scales as λ−2, so F̂ðωÞwhose dimensions
are of force times time, scales as λ−1, while âðωÞ
(whose dimensions are of velocity) is invariant to scaling.
This means that in this deep-MOND limit, I ½fr̂g;ω; a0� has

to scale as λ−1. But, under scaling, I ½fr̂g;ω; a0� →
I ½fr̂g;ω; λa0�,7 which means that in this limit I must be
of the form

I ½fr̂g;ω; a0� → A½fr̂g;ω�=a0; ð4Þ

where A is a functional of the orbit, and a function of the
frequency, with the dimensions of acceleration, and with no
dimensioned constant appearing in its construction.
Note that, since for gravity F̂ðωÞ ∝ m, the theory

obeys the universality of free fall (the weak equivalence
principle).
If instead of applying Eq. (3) to a self-interacting closed

system, or to a body moving in some given force field, we
dictate a time-dependent force on a body, FðtÞ, one may ask
whether we should not make sure that the law of motion is
causal, in the sense that aðtÞ should depend only on Fðt0Þ
for t0 ≤ t. In linear-response systems, where the cause
(input) can be clearly separated from the effect (output),
such causality is guaranteed by certain analyticity proper-
ties in the complex frequency plane, of the analog of
I ½fr̂g;ω; a0� here. Perhaps the models here can be modi-
fied to incorporate such a requirement. But to avoid
complications, I assume that we are dealing with a closed
system, allowed to evolve on its own, so the forces are
determined as part of the solution and are not dictated
at will.
In some applications below, I shall specify I ½fr̂g;ω; a0�

to be of the form

I ½fr̂g;ω; a0� ¼ μ½A1ðωÞ=a0;A2ðωÞ=a0;…�; ð5Þ

whereAaðωÞ—which may be called “nonlocal acceleration
parameters of the trajectory”—are of the type A described
above. In fact, for simplicity of presentation, and also to
make more direct comparison with presently known MG
theories, I proceed with just one argument in μ.
Then, the interpolating function, μðxÞ, has to approach

unity for high arguments μðx → ∞Þ → 1 and become linear
in its argument, AðωÞ=a0, in the opposite limit.

A. Uniqueness, the initial conditions problem,
and solution by iteration

The inertia functional, I ½fr̂g;ω; a0�, has to obey some
condition, to ensure a certain desired uniqueness require-
ment of the solutions.
In the MG theory AQUAL, the MOND gravita-

tional potential is determined from the equation

7To see this, first apply to I scaling of the degrees of freedom
by λ. Then, make a change of time and length unit—under which
I , being dimensionless, does not change—multiplying them
by a factor λ. All the degrees of freedom (so, fr̂g and ω) go back
to their original numerical values, but the value of a0 in the
new units is multiplied by λ. In other words, under scaling,
I ½fr̂g;ω; a0� → I ½fr̂g;ω; λa0�.
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∇⃗ · ½μðj∇⃗ϕj=a0Þ∇⃗ϕ� ¼ 4πGρðrÞ, where ρ is the baryonic
density. In one-dimensional configurations such as spheri-
cally symmetric systems, this gives an algebraic relation
between the Newtonian acceleration, gN , and the MOND
acceleration, g, at any position: gμðg=a0Þ ¼ gN . The
Newtonian acceleration field is unique, given ρ and spatial
boundary conditions. For the MOND field to be unique, it
is necessary that xμðxÞ be monotonic. Reference [29]
shows that this monotonicity is also a sufficient condition
for the AQUAL equation to have a unique solution under
analogs of the Neumann or Dirichlet spatial boundary
conditions, for an arbitrary density distribution.
There is an analogous requirement of our models here.

Consider a physical trajectory, rðtÞ, of a body of massm, in
a Newtonian force field, FðrÞ. We do not want another
trajectory, rλðtÞ≡ rðλtÞ, to also be a solution of the
equations of motion. Such a solution would have the same
orbit as the former, but with the velocities vλðrÞ ¼ λvðrÞ
and accelerations aλðrÞ ¼ λ2aðrÞ. We would have, for
example, in the case of a circular orbit in an axisymmetric
potential, more than one orbital velocity at the same radius.
This, in turn, will not give a unique prediction for the
rotation curve in a disk galaxy.
For the undesired trajectory, rλðtÞ, we can write the

relevant quantities appearing in the equations of motion in
terms of those of rðtÞ: For the frequency ω in the spectrum
of rλðtÞ we have F̂λðωÞ ¼ λ−1F̂ðω0Þand âλðωÞ ¼ λâðω0Þ,
where ω0 ≡ ω=λ is the matching frequency in the spectrum
of rðtÞ. Also, on dimensional grounds it can be shown that
Iλ½frλg;ω; a0� ¼ I ½frg;ω0; λ−2a0�. Thus, if rλðtÞ satisfies
Eq. (3), we have

mλ2âðω0ÞI ½fr̂g;ω0; λ−2a0� ¼ F̂ðω0Þ. ð6Þ

But, because rðtÞ satisfies the equations of motion for all
frequencies, Eq. (6) is satisfied for all ω0 with λ ¼ 1. To
avoid the above unwanted nonuniqueness, it is necessary
that, at least for single-frequency orbits,

Uða0; fr̂g;ω0Þ≡ a−10 I ½fr̂g;ω0; a0� ð7Þ

be monotonic as a function of a0, so the left-hand side of
Eq. (6) cannot take the same value for different values of λ.8

In the special case where I ½fr̂g;ω; a0� ¼ μ½AðωÞ=a0�, this
necessary uniqueness requirement is tantamount to xμðxÞ
being monotonic, as in the case of AQUAL.
It is useful to require that Uða0; fr̂g;ωÞ is monotonic in

a0 for all physical trajectories and all frequencies, not only
for single-frequency trajectories (see, e.g., an application in
Sec. II C). From the basic tenets of MOND, U ∝ a−10 for

a0 → 0, andU ∝ a−20 for a0 → ∞. So,U is decreasing with
a0 and takes up all values between 0 and ∞ for all
trajectories and for all frequencies.
Another matter of principle concerns the question of

initial conditions: in Newtonian dynamics, which is local,
the theory leads to second-order differential equations,
which are solved to propagate the system from some values
of the positions and velocities of all constituents at some
given time. This is not the situation with time-nonlocal
theories. These may be thought of as a sieve—some
conditions on the full history—that pinpoint the physical
system histories out of the many imagined histories.
Technically, this is much more difficult to apply, especially
given that MOND is also nonlinear even in the non-
relativistic regime. But this does not argue against a theory.
It would be interesting to establish whether in the present

models it is still the case that a unique history is defined by
dictating the positions and velocities of all particles at some
time t. I will show below that this is indeed the case for a
particle in a harmonic force field. It is also the case for a
body in a constant force field, in which the acceleration is
also constant.9 But is it the case in general?
We can, in principle, add this as a requirement on I , but

we cannot be sure that there is a choice of I that satisfies it
in addition to the other requirements.
We may come closer to an answer by considering a

gedanken process of solving the equations of motion by
iteration. For all bodies in the system, take some values of
rp and vp at some time t0, which I shall refer to as the
“initial values,” even though in the present framework there
is no initiation of the system. Start with some initial-guess
trajectories rpðtÞ and vpðtÞ that take the initial values at t0.
Substitute these trajectories in the right-hand side to
calculate the initial guess for F̂pðωÞ. Then, in one option,
try to calculate the corresponding âpðωÞ from the equa-
tions. In another option, substitute the initial guess also in
Ip on the left-hand side, then obtain âpðωÞ directly. From
âpðωÞ, calculate apðtÞ; then, use it to integrate the
trajectories forward and backward in time from the initial
conditions. These will not generally coincide with our
initial guess but will be our second-iteration trajectories,
used for the next iteration. There are many possible
iteration schemes. If there is one for which the process
converges to a unique set of trajectories, we have estab-
lished our goal, since all the trajectories on the iteration
path satisfy the initial conditions exactly.
One promising iteration scheme involves also changing

the value of a0 “adiabatically” in the iteration process, as
follows: start with the (unique) Newtonian trajectory that
satisfies the initial conditions; calculate the nonlocal
acceleration for all frequencies; and start with a value of
a0 that is (much) smaller than all these. The field equations
are then satisfied to a desired accuracy by the Newtonian8In the multifrequency case, nonuniqueness can be avoided

even if U is not monotonic, because there may not be a single λ
for all frequencies. 9In this case, FðωÞ ∝ δðωÞ, and so aðωÞ ∝ δðωÞ.
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solution. Use this as the initial guess, then increase a0 a little,
and calculate the new trajectories as described above,
possibly iterating until convergence for this new value of
a0 is achieved (which is what I mean by changing a0
adiabatically). In the iteration process we also need to let
the frequencies change, since the frequencies of the sought-
after solution are, generally, not those of the initial guess.
Then, increase a0 more, and repeat, until the actual value of
a0 is obtained. In this way, we can be sure that the guess is as
close as we want to the convergence value. If this process
does converge uniquely, it also establishes an interesting path
between the Newtonian and MOND solutions.
We cannot, at present, be sure that any iteration scheme

actually converges, that there are no bifurcation points on
the iteration path that could lead to multiple convergent
solutions, nor that all MOND trajectories can be reached by
starting from Newtonian trajectories. But at least this can
provide a means to probe the question numerically, and it
can also afford solving the equations of motion, at least for
simple enough systems, such as few-body problems.
If it can be established that in some version of the model

the standard initial conditions determine the solution
uniquely, we can say that the theory determines the future
of a system from only the initial conditions at some finite
time, even though, unlike the standard case, the (putative?)
past of the system also enters the dynamics and must be part
of the procedure for determining the future.

B. Conservation laws

We can define a quantity that stands for the momentum,
PðtÞ, of a body, in such a way that dP

dt ¼ FðtÞ, or in terms
of the Fourier components iωP̂ðωÞ ¼ F̂ðωÞ. Thus, from
Eq. (3),

P̂ðωÞ ¼ mv̂ðωÞI ½fr̂g;ω; a0�: ð8Þ
While P depends on time, it is not defined locally by the
instantaneous velocity but, rather, depends also on thewhole
trajectory via I that appears in its definition.
Because, for an isolated system,

P
p Fp ¼ 0, the total

momentum in the system is conserved: dðPp PpÞ=dt ¼ 0.
From this follows that the radius RðtÞ, whose Fourier

transform is

R̂ðωÞ ¼
�X

p

mp

�
−1X

p

mpr̂pðωÞI ½fr̂pg;ω; a0�; ð9Þ

moves at a constant speed d2R=dt2 ¼ 0. R can be viewed
as a (nonlocal) representation of the “center of mass.”
We can also define a (nonlocal) kinetic energy, EkðtÞ, by

its Fourier transform. It is defined such that dEk=dt ¼
vðtÞ · FðtÞ. Using the convolution theorem for the Fourier
transform of a product

½αðtÞβðtÞ�ω ¼ 1

2π

Z
αðω0Þβðω − ω0Þdω0; ð10Þ

we have from Eq. (3)

ÊkðωÞ¼
m
2π

Z
ω0

ω
v̂ðω−ω0Þ · v̂ðω0ÞI ½fr̂g;ω0;a0�dω0: ð11Þ

If the interbody forces are derivable from potentials,
ϕpqðrpqÞ, with fpq ¼ −fqp ¼ −dϕpqðrpqÞ=drpq (rpq ¼
rp − rq), we have

P
p Fp · vp ¼ −dϕ=dt, where ϕðtÞ ¼P

p<q ϕpq½rpqðtÞ�, and the total energy ϕþ Ek is con-
served (Ek ¼

P
p E

k
p).

Similarly, we define the angular momentum of a body so
that its time derivative is r × F:

ĴðωÞ¼ m
2π

Z
ω0

ω
r̂ðω−ω0Þ× v̂ðω0ÞI ½fr̂g;ω0;a0�dω0: ð12Þ

For a many-body system, the total angular momentum
defined in this way is conserved if fpq are along rpq.
For high-acceleration trajectories, for which I → 1,

PðtÞ, EkðtÞ, and JðtÞ reduce to the standard expressions,
mvðtÞ, ð1=2Þmv2ðtÞ, and mrðtÞ × vðtÞ, respectively.10

C. Two-body problem

Consider an isolated system of two bodies of massesm1,
m2 and trajectories r1ðtÞ, r2ðtÞ, interacting via a force
Fðr12Þ acting on body 1, along r12 ¼ r1 − r2 (the force on
m2 is −F). We saw that the radius defined in Eq. (9) moves
with a constant speed, so let us work in the Galilei frame
where it vanishes and serves as our origin. From its
definition, we see that in the two-body system

m1r̂1ðωÞI ½fr̂1g;ω; a0� ¼ −m2r̂2ðωÞI ½fr̂2g;ω; a0�: ð13Þ

This does not mean, in general, that the origin is always on
the line connecting the two masses, since parallelism of the
Fourier components does not imply that of the positions
themselves. Are then the two bodies collinear with the
origin, and do the distances of the two bodies from the
origin always have the same ratio, as in Newtonian
dynamics? Try if r1ðtÞ ¼ −αr2ðtÞ, with some constant α
[so r̂1ðωÞ ¼ −αr̂2ðωÞ], is consistent with Eq. (13).
Arguments similar to those in Footnote 7 show that
I ½fαr̂2g;ω; a0� ¼ I ½fr̂2g;ω; a0=α�, so the question trans-
lates to the following: is there a single α for which

m1αI ½fr̂2g;ω; a0=α� ¼ m2I ½fr̂2g;ω; a0� ð14Þ

for all frequencies? If I satisfies our general monotonicity
requirement discussed in Sec. II A, then there is a unique
value of α for each ω.

10To a body with aðtÞ≡ 0 (in the underlying absolute
inertial frame), the model assigns vanishing momentum, kinetic
energy, and angular momentum. This does not contradict any
observations.
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So, when the orbits are described by a single frequency,
such as when the orbits are circular, or when F is harmonic,
we do have r1ðtÞ ¼ −αr2ðtÞ. When there is more than one
frequency involved, there is not, in general, a single value
of α that matches them all (unless I does not depend
explicitly on ω).
However, in the deep-MOND regime—where the gen-

eral expression (4) applies, with AðωÞ ≪ a0 for both
bodies—the general two-body problem simplifies and—
as in the Newtonian regime—can be reduced to the
problem of a single body in a force field Fðr12Þ, since
Eq. (14) holds, for all frequencies, with a single α ¼
ðm2=m1Þ1=2. Defining all the relevant quantities for the
relative trajectory r12ðtÞ, using all our model definitions, we
have â12ðωÞ¼ð1þα−1Þâ1ðωÞ,A12ðωÞ ¼ ð1þ α−1ÞA1ðωÞ.
We then find that the relative trajectory satisfies the deep-
MOND limit of Eq. (3),

m̄â12ðωÞ
A12ðωÞ

a0
¼ F̂ðωÞ; ð15Þ

with the reduced mass

m̄ ¼ m1m2

ðm1=2
1 þm1=2

2 Þ2
; ð16Þ

and FðtÞ is, naturally, defined along the relative trajectory.11
So far, we have not specified the dependence of the force

on the distance. Applying this result to a self-gravitating
binary on a circular orbit—which involves a single
frequency and where the magnitude of all quantities is
constant—our models give a velocity difference,

V4
12 ¼ ðq1=21 þ q1=22 Þ2MGa0; ð17Þ

where M is the total mass, and qi ¼ mi=M the mass ratios.
The dependent on the masses is different from what one has
in MG theories, which is [22,30]

V4
12¼

4

9

ðq1þq2Þ2
q21q

2
2

½ðq1þq2Þ3=2−q3=21 −q3=22 �2MGa0: ð18Þ

The MOND mass-asymptotic-speed relation (“baryonic
Tully-Fisher relation”), V4

12 ¼ MGa0, is gotten, for both
expressions, when one mass is much smaller than the other.
Unlike expression (17), which is valid only for circular

orbits, expression (18) is valid for an arbitrary orbit (inMG),
if V2

12 is understood as the mass-weighted mean-squared
velocity difference on the trajectory: V2

12 ¼ hðΔVÞ2i. But
the case of a general trajectory in a gravitationally held

binary in our models involves many frequencies and is not
obviously solvable analytically (except, perhaps, in some
epicyclic approximation). But one can argue that on such
orbits, the average V12 is smaller, with the maximum speed
occurring at closest approach and the smallest occurring at
the largest separation, with weightier contribution to the
average from the latter, where the binary spends more time.
In a central force field, the acceleration (unlike dP=dt) is

not in the radial direction, so Kepler’s second law does not
hold in general. This is similar to the case in special
relativity, which might also be seen as modified inertia vis-
à-vis Newtonian dynamics.

D. Deep-MOND limit for self-gravitating systems

There are general scaling laws obeyed by self-gravitating
systems in the deep-MOND limit, which follow from its
space-time scale invariance, and dimensional arguments. It
might be instructive to see how these follow in the context
of the present models.
Take a many-body system, of masses mp, and physical

trajectories, rpðtÞ, all satisfying, for all frequencies, the deep-
MOND limit of Eq. (3)—namely, with the form (4) of I .
Consider another system, with masses m�

p ¼ αmp, and
trajectories r�pðtÞ ¼ γrpðβtÞ, with α, β, γ some positive
constants, such that these are still in the deep-MOND regime.
The quantities appearing in Eqs. (3) and (4) calculated for
the new trajectories are then F̂�ðωÞ ¼ ðα2=βγ2ÞF̂ðω=βÞ (for
gravity), â�ðωÞ ¼ ðβγÞâðω=βÞ, andA�ðωÞ ¼ ðβ2γÞAðω=βÞ
[such thatwe still haveA�ðωÞ ≪ a0]. This history of the new
system is also physical if α ¼ β2γ2. Velocities scale as
v�ðtÞ ¼ ðβγÞvðβtÞ. So, this condition underlies the central
deep-MOND M ∝ V4 relation: the whole family described
above has the same value of V4=MGa0. Reference [2]
explains why this ratio—which depends only on dimension-
less attributes of the system—is expected to be of order unity
and not change appreciably among systems. Taking βγ ¼
α ¼ 1 corresponds to space-time scaling (in which the
masses do not scale).

III. CONSTRUCTION OF THE NONLOCAL
ACCELERATION A

I now concentrate on the special case where I is
described by Eq. (5) and consider the construction of the
nonlocal acceleration parameters, collectively designated
AðωÞ. We already stated that AðωÞ has to be of the
dimensions of acceleration and has to be constructed from
the orbit (and ω) without using dimensioned constants.
What other constrains can we cast on its choice?

A. Symmetry requirements

To ensure translation and Galilei invariance of this
model, we constructAðωÞ from âðωÞ because it is invariant
to these [depending only on aðtÞ]. Formally, under

11The inverse also holds. Namely, if r12ðtÞ is a solution of
Eq. (15) with the reduced mass (16), then r2ðtÞ¼ð1þαÞ−1r12ðtÞ
and r1ðtÞ ¼ −αð1þ αÞ−1r12ðtÞ solve the MOND equation with
their respective masses.
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translations by r0, and a Galilei boost by v0, under
which rðtÞ → rðtÞ þ r0 þ v0t, we have âðωÞ → âðωÞ−
2πðω2r0 − iωv0ÞδðωÞ, which equals âðωÞ if not applied
(as a distribution) to functions that diverge as 1=ω or faster,
at ω ¼ 0.
Rotational invariance dictates that only scalars, such as

âðωÞ · âðωÞ, or âðωÞ·̂a�ðωÞ, appear.
We also require time-translation invariance of the inertia

term, so that trajectories in a time-independent force field
are not affected by a time shift; namely, if rðtÞ is a trajectory,
so is rðtþ t0Þ. Under time translations, âðωÞ → eiωt0 âðωÞ.
To this, constructs such as âðω1Þâðω2Þ… are invariant,
provided ω1 þ ω2 þ � � � ¼ 0. For example, jâðωÞ · âðωÞj
and âðωÞâ�ðωÞ are invariant. For the sake of concreteness, I
shall construct AðωÞ from jâðωÞj, where the absolute value
in jâj ¼ ðâ · â�Þ1=2 is both in the complex and the vectorial
sense, and from jâ · âj1=2 (here, the absolute value is in
the complex sense), which both satisfy all the above
requirements, in addition to invariance to time and space
reflections.

B. Explicit dependence on ω?

If A does not depend explicitly on ω, i.e., if, for a given
trajectory all frequencies are affected by the same factor
μðA=a0Þ (for example, if A ∝

R jâðωÞjdω), the theory
can be simply solved for trajectories in a static external
field. Take some Newtonian trajectory rNðtÞ. Then, the
trajectory rðtÞ ¼ rNðβtÞ is a solution of the field equations
for some unique value of β > 0. For the above MOND
trajectory, FðtÞ ¼ FNðβtÞ, so F̂ðωÞ ¼ β−1F̂Nðω=βÞ. Also,
r̂ðωÞ ¼ β−1r̂Nðω=βÞ, âðωÞ ¼ βâNðω=βÞ, and since A does
not depend on ω, we have on dimensional grounds
A ¼ β2AN , where AN is the value of A for the
Newtonian trajectory.12 Thus, given that rNðtÞ satisfies
the field equations with μ≡ 1, rðtÞ satisfies them, provided

β2μðβ2AN=a0Þ ¼ 1: ð19Þ

This equation has a unique solution for β > 1. This is
because xμðxÞ is required to be increasing, and it takes up
all values from 0 to ∞, as discussed in Sec. II A.
This MOND trajectory has the same orbit as the

Newtonian one, but with velocities scaled up by a factor
β and accelerations scaled up by a factor β2 ¼ 1=μðA=a0Þ.
The correspondence is one to one: if rðtÞ solves the

equations of motion and A is its frequency-independent,
nonlocal acceleration, define β such that β2μðA=a0Þ ¼ 1.
Then, rNðtÞ ¼ rðt=βÞ solves the Newtonian equations.
Such a theory would satisfy the basic tenets of MOND

and imply its salient predictions. However, it is too
restricted, and, importantly, it does not produce the correct

center-of-mass motion of bodies with high intrinsic accel-
erations (e.g., stars) in a low-acceleration field (e.g., of a
galaxy).
We will thus require some appropriate, explicit depend-

ence of A on ω, as discussed below.

C. Decoupling of the frequencies?

If AðωÞ is a function of âðωÞ (and ω) (i.e., depends only
on âðωÞ at the same frequency), the theory decouples
different frequencies; i.e., it modifies the acceleration
frequency by frequency. Such a theory would satisfy the
basic MOND axioms and predict the salient MOND
predictions, but it would practically exhibit no MOND
EFE (see Sec. IV D below for more details). The EFE
would act only if the frequency of the external force were
the same as that of the internal one, which is hardly ever the
case. This demonstrates that an EFE can, in practice, be
avoided in a theory satisfying the basic tenets of MOND.
But there are strong indications that an EFE is required in
MOND (e.g., to account for the fact that no MOND effects
have shown up in terrestrial experiments). In the framework
of the present model, this requires that different frequencies
(e.g., of the external and internal accelerations) are coupled
in AðωÞ.

D. Heuristic example of a choice of AðωÞ
Away to define AðωÞ under all the above requirements,

using only jâðω0Þj for concreteness (see below on the
effects of using jâ · âj1=2 as well), is

AðωÞ ¼ 1

23=2π

Z
∞

−∞
θ

�
ω0

ω

�
jâðω0Þjdω0

¼ 1ffiffiffi
2

p
π

Z
∞

0

θ

�
ω0

ω

�
jâðω0Þjdω0

¼ 1ffiffiffi
2

p
π

Z
∞

0

θ

�
ω0

ω

�
jr̂ðω0Þjω02dω0; ð20Þ

where θðyÞ is a dimensionless function, which I take to be
symmetric, θð−xÞ ¼ θðxÞ. In the second equality in
Eq. (20), I use the fact that jâðωÞj is symmetric, since
aðtÞ is real, and hence â�ðωÞ ¼ âð−ωÞ.13
The normalization of θðyÞ is degenerate with that of a0.

We pick the normalization such that θð1Þ ¼ 1 because then,
as we shall see below, the standard value of a0 and the form
of μðxÞ that have been routinely used in rotation-curve
analysis apply.

IV. EXAMPLES

As a general comment, we note that it is impractical, in
general, to solve a many-body system in full, but as is

12If A does depend explicitly on ω, we have AðωÞ ¼
β2ANðω=βÞ, and our argument does not go through.

13jâðωÞ · âðωÞj1=2, which can also be used in the construction
of AðωÞ, is also symmetric under ω → −ω.
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usually realized, there are problems where we can apply a
mean-field approximation, where we consider the motion
of a single body (e.g., a star in a galaxy) in the combined
mean field of all the others assumed time independent.14

Itmay gowithout saying, but I emphasize that such amean
field does not define an effective, MOND force field—or an
acceleration field in the case of gravity—as is the case ofMG.
This is because the accelerations of different bodies, at the
sameposition,maydiffer fromeachother, depending on their
kinematics and, in the present, time-nonlocal case, on details
of their trajectories.What is common to all bodies at the same
position, r, is their dP=dt ¼ FðrÞ in a given force field, or
m−1dP=dt ¼ aNðrÞ, in a Newtonian, acceleration field
aNðrÞ.15
In some important applications, the motion of the

constituents is described, to a good approximation, as
the combination of several trajectories, with distinct
frequencies, or of bunches of frequencies (which we lump
into one for simplicity),

rðtÞ¼
X
k

rkðtÞ; rkðtÞ¼
1ffiffiffi
2

p ðr̄keiωktþ r̄�ke
−iωktÞ; ð21Þ

where r̄k are complex amplitudes, normalized such that for
a circular orbit the orbital radius is jr̄kj ¼ ðr̄k · r̄�kÞ1=2.
Furthermore, in such instances, the (Newtonian) force on
a constituent separates, to a good approximation, into
forces that depend on the separate component trajectories:

F½rðtÞ� ≈
X
k

Fk½rkðtÞ�: ð22Þ

Consider, e.g., a small many-body system, such as a binary
star, or a star cluster, moving on a “large” orbit, of scales
much larger than its size, in the field of a large body, such as
a galaxy. Then, one component of the motion of a
constituent corresponds to the large motion, and the force
associated with it is that applied by the large body, while the
other components describe the motion of the constituent
within the body, and is dictated mainly by the interbody
force. So, there is a natural separation of trajectories and the
associated forces.
Another example is the vertical dynamics in a thin

galactic disk. Each constituent—such as a star, or a gas
element—may be viewed as performing a combination of
two motions: one in the mean field of the galaxy

characterized by an orbital size close to the galactic radius,
R, at the position of the body and the other a vertical
motion, governed by the local density distribution vertical
to the disk. Provided that we are probing heights much
smaller than R, and that the characteristic frequencies are
distinct, the separation of forces, as above, is a good
approximation. A separation may also be justified if we
are considering separately motions along different axes,
i.e., if the vectorial components of Eq. (3) are described by
different frequencies (e.g., in a triaxial harmonic field).
We can then write separate equations for the different

components that are coupled thoughAðωkÞ, which depends
on the motions in all the components. The equations of
motion (3) then read

mâkðωkÞμ½AðωkÞ=a0� ¼ F̂kðωkÞ: ð23Þ
Each frequency component describes an elliptical orbit, with

r2kðtÞ ¼ r̄k · r̄�k þ Reðr̄k · r̄ke2iωktÞ
¼ r̄k · r̄�k þ jr̄k · r̄kj cos ð2ωktþ φkÞ: ð24Þ

So, jr̄kj is the root-mean-square radius, and jr̄k · r̄kj1=2
measures the ellipticity: it vanishes for a circular orbit and
equals jr̄kj for a radial orbit. Then,

âðωÞ ¼ −
ffiffiffi
2

p
π
X
k

ω2
k½r̄kδðω − ωkÞ þ r̄�kδðωþ ωkÞ�: ð25Þ

For ω > 0, needed in Eq. (20), we have (remembering that
the product of delta functions with different frequencies
vanishes)

jâðωÞj ¼
ffiffiffi
2

p
π
X
k

ω2
kjr̄kjδðω − ωkÞ;

jâðωÞ · âðωÞj1=2 ¼
ffiffiffi
2

p
π
X
k

ω2
kjr̄k · r̄kj1=2δðω − ωkÞ: ð26Þ

The two are equal for radial trajectories, and the second
vanishes for circular ones. Proceeding, using only the first for
concreteness sake, we have

AðωÞ ¼
X
k

ω2
kjr̄kjθ

�
ωk

ω

�
: ð27Þ

To determine the motion, we need to know AðωÞ at the
frequencies underlying each component. For the nth
component,

AðωnÞ ¼ ω2
njr̄nj þ

X
k≠n

ω2
kjr̄kjθ

�
ωk

ωn

�
: ð28Þ

Thus, importantly, the acceleration measure AðωnÞ, which
enters that MOND “magnification factor” for frequency ωn,
namely, 1=μ½AðωnÞ=a0�, does not equal the acceleration at

14If the (Newtonian) force field in which the body is moving
is derivable from a potential, FðtÞ ¼ −∇⃗ϕ½rðtÞ�, with the
above definition of the kinetic energy, we have conservation
of the energy dðEk þ ϕÞ=dt ¼ 0 along a trajectory.

15In special relativity, where the equation of motion is
dp=dt ¼ mdðγvÞ=dt ¼ mγ½aþ γ2c−2ðv · aÞv� ¼ F, it is also
the case that an electric field does not define an acceleration
field for an electron, say. What is common to all electrons at the
same position is dP=dt.
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ωn itself, which is ω2
njr̄nj, but it picks up contributions from

all other frequencies, weighted by θðωk=ωnÞ.

A. Circular orbits—rotation curves

For the important example of circular orbits in an
axisymmetric field, underlying rotation curves of disk
galaxies, there is only one frequency, and the basic
equation (3) gives directly the MOND algebraic relation
between the Newtonian and MOND accelerations, radius
by radius,

aμða=a0Þ ¼ aN; ð29Þ

where aN is the Newtonian acceleration at the orbital
radius, r, and a ¼ ω2ðrÞr ¼ V2ðrÞ=r. This is as expected
from the general theorem for modified inertia theories [23].
Here, it follows simply from the general equations of
motion (3), since circular trajectories (with constant speeds)
are characterized only by their radius, r, and frequency, ω,
so for these, I must reduce to some μðω2r=a0Þ.
When the models are applied to the case where the forces

are gravitational, this describes correctly the rotation curves
of galaxies, with aN ¼ gN , the Newtonian gravitational
acceleration at radius r.

B. Harmonic force

Another example that is easy to solve is that of the
motion of a particle in a harmonic force field, for example,
a star moving in the gravitational field of a spherical mass
of constant density.
Start with the isotropic case, where FðtÞ ¼ −krðtÞ. In

this case, Eq. (3) reads

ω2μ½AðωÞ=a0� ¼ ω2
0; ð30Þ

where ω0 ¼ ðk=mÞ1=2 is the Newtonian frequency of a
particle of mass m in this field. There are then single-
frequency, oscillatory solutions, on elliptical orbits, of the
type (21), with arbitrary values of the six components of the
complex amplitude r0, with frequency ω given by

ω2μðω2jr0j=a0Þ ¼ ω2
0; ð31Þ

for which there is a unique solution for �jωj for any jr0j.
This is, again, because xμðxÞ is monotonically increasing
from 0 to ∞, as discussed in Sec. II A. We see that the
oscillation frequency depends on the root-mean-square
radius of the orbit, jr0j, but not on the ellipticity [see
Eq. (24)]. Had we also used jâ · âj1=2 in the construction of
AðωÞ, there would also be a dependence on the ellipticity
through jr0 · r0j.
As in Newtonian dynamics, given a position rð0Þ, and

velocity, vð0Þ at some time, say t ¼ 0, there is a unique

solution with these initial conditions, since they determine
r0: Reðr0Þ ¼ rð0Þ, and Imðr0Þ ¼ −ω−1vð0Þ.
The motion of a particle of mass m in an anisotropic

harmonic field can also be easily solved. If the principal force
constants are kn, and the Newtonian frequencies ω̄n ¼
ðkn=mÞ1=2, then themotion is still a combination of harmonic
motions in the principal axes xnðtÞ ¼

ffiffiffi
2

p
x0n cosðωntþ φnÞ,

with arbitrary amplitudes, x0n, and phases φn, but the
frequencies are determined from coupled equations

ω2
nμn ¼ ω̄2

n;

μn ¼ μ

��
x0nω2

n þ
X
l≠n

θ

�
ωl

ωn

�
x0lω

2
l

��
a0

	
: ð32Þ

Note that this expressiondoes not tend exactly to relation (31)
when all the frequencies are equal. This has to do with our
working with sharp delta functions in the Fourier transform.

C. Motion of a composite system in an external field

Consider now the so-called center-of-mass-motion prob-
lem. It concerns the fact that objects—such as stars and gas
clouds—move in a galaxy according to MOND, while their
constituents (e.g., ions) are subject to very high acceler-
ations. The problem was solved early on for modified-
gravity MOND [14]. In the context of the models discussed
here, what matters is how the high-acceleration, high-
frequency components of the constituent motions affect the
low-acceleration, low-frequency components of motion in
the galaxy. Take ω1 to be that of the dominant acceleration
in the galaxy and ω2 to represent the frequencies of the
internal motions.
We need the MOND acceleration at ω1, which is given in

our models by aðω1Þμ½Aðω1Þ=a0� ¼ aNðω1Þ, where

Aðω1Þ ¼ ω2
1jr̄1j þ ω2

2jr̄2jθ
�
ω2

ω1

�
: ð33Þ

While for the problem at hand, ω2
1jr̄1j ⋘ ω2

2jr̄2j (for the
sun in the Galaxy, the ratio is ∼1012), we also have ω1⋘
ω2 (also with a ratio of ∼1012). So, if θðyÞ decreases fast
enough (e.g., exponentially, or even as a power larger
than 1), the second term in Eq. (33) can be neglected, and
we get the desired center-of-mass motion.16

Such large frequency ratios are the rule in such circum-
stances: we are dealing with systems small compared
with their orbit size, jr̄2j ≪ jr̄1j, but much larger internal
accelerations, ω2

1jr̄1j ⋘ ω2
2jr̄2j, so, clearly, ω1 ⋘ ω2.

16The ω1 component affects negligibly the ω2 motion, since
Aðω2Þ ¼ ω2

2jr̄2j þ ω2
1jr̄1jθð0Þ ≈ ω2

2jr̄2j.
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D. External-field effect

The MOND EFE pertains to a subsystem that is falling in
the field of some larger mother system. Examples are a
dwarf satellite, a globular cluster, or a binary star in the field
of a galaxy; a galaxy in a field of a galaxy cluster; or the
dynamics perpendicular to a galactic disk, while the
region is being accelerated on its circular orbit in the field
of the galaxy. MOND predicts, quite generically,17 that the
internal dynamics of the subsystem, with a characteristic
acceleration ain, is affected by the external field, of
characteristic acceleration aex. This is unlike Newtonian
dynamics (and general relativity) where, as long as the
external field may be considered constant across the
subsystem (so that there are no tidal effects), the internal
dynamics is oblivious to the external field in which the
subsystem falls freely. This, in general relativity, is an
expression of the strong equivalence principle, which is not
obeyed in MOND.
We already saw in Sec. III C that in the present models it

is possible to avoid an EFE by adopting AðωÞ that
decouples the different frequencies. But this is undesirable.
The EFE was, in fact, found to be relevant, in varying

degrees, inmany astrophysical circumstances.Reference [31]
finds signs for an EFE in the internal dynamics of some
satellites of the Andromeda galaxy. References [32,33] dis-
cuss the importance of the EFE in ultradiffuse galaxies. Also,
Refs. [34–38] show that the MOND predictions of rotation
curved perform somewhat better if one takes into account an
EFE from large-scale structure. Reference [39] demonstrates
that the Fornax cluster EFE on dwarf-galaxy members
makes them vulnerable to tidal distortion and disruption,
as observed, and contrary to the expected protection endowed
by their putative dark-mater halos. The EFE is also respon-
sible for quenching, practically completely, allMONDeffects
in experiments on Earth.
The EFE is expected to depend on the relative strength of

ain and aex and on their values relative to a0 and also on their
directions and the general geometry of the system. But in the
limit where jainj ≪ jaexj, the presently known modified-
gravity versions of MOND—which are all underlain by an
interpolating function μðxÞ—predict that the internal dynam-
ics is essentially Newtonian, with an increased gravitational
constant Ḡ ≈G=μðjaexj=a0Þ (and some anisotropy intro-
duced by the direction of aex). And, importantly, in such
theories, the EFE depends only on the momentary value of
aex at the position of the subsystem.
In modified-inertia versions, as exemplified by the

present models, the EFE acts differently. The two main
differences being as follows:

(i) It is expected in such time-nonlocal theories that the
EFE will depend not on the momentary value of the

external field but, in some way on the full trajectory
of the subsystem.

(ii) Such formulation may introduce dependence of the
EFE on other parameters.

In the present heuristic models, the EFE depends also on
the frequency ratios of the internal and external motions (as
we saw is the case also in connection with the center-of-
mass motion of the subsystem).
To demonstrate this with a simple example, consider

again the two-frequency case described by Eq. (33). But
now, ω1 characterizes the intrinsic motions, the dynamics
of which we want to describe, while ω2 characterizes the
time variation of the external field. So, we write

AðωinÞ ¼ ω2
injr̄inj þ ω2

exjr̄exjθ
�
ωex

ωin

�
: ð34Þ

In practically all applications, we have ωex < ωin. In
some dwarf satellites of the Milky Way and Andromeda
(and presumably other mother galaxies), we estimate
ωex ∼ ωin.
We saw above that to predict the correct center-of-mass

motion of composite systems, we need A to depend on ω,
as modeled here by θðyÞ ≢ 1. Furthermore, we need θðyÞ to
be decreasing relatively fast for y ≫ 1. If, in fact, θ
decreases everywhere, including for y < 1, which is rea-
sonable, we will have θðωex=ωinÞ > 1 [since θð1Þ ¼ 1].
Instead of the external acceleration ω2

exjr̄exj deciding the
effect, it is the larger ω2

exjr̄exjθðωex=ωinÞ. For the prevalent
occurrence of ωex ≪ ωin, this is ≈ω2

exjr̄exjθð0Þ.
We have no knowledge of the form of θðyÞ, but unless it

behaves unusually below y ¼ 1, we can expect θð0Þ to be of
the order of a few. For example, for θðyÞ ¼ 2=ð1þ y2Þ,
θð0Þ ¼ 2; for θðyÞ ¼ eð1−xÞ, θð0Þ ¼ e; more generally, for
θðyÞ ¼ eð1−xÞ=q, θð0Þ ¼ e1=q; etc.
The EFE is simply accounted for in the present models,

when the subsystem is moving on a circular orbit, say in a
disk galaxy. Then, the external field is indeed characterized
by a single orbital frequency ωex, and ω2

exjr̄exj is the
observed orbital acceleration aex ¼ V2=r. Inasmuch as
the internal accelerations at all frequencies are appreciably
smaller than the orbital one and that the internal frequencies
are appreciably smaller than ωex, the models give for all
internal frequencies

âðωinÞμ½θð0Þaex=a0� ¼ âNðωinÞ: ð35Þ

Since μ here is a constant (at a given radius in the disk
galaxy), the intrinsic accelerations are what one would
calculate in Newtonian dynamics for the observed mass
distribution and particle positions,18 all multiplied by the

17See Ref. [2] for a discussion of the extent to which the EFE
follows from the basic tenets of MOND.

18We reiterate that the right-hand side employs the calculated
Newtonian accelerations on the observed (MOND) orbits, not on
what we would calculate as Newtonian orbits.

MORDEHAI MILGROM PHYS. REV. D 106, 064060 (2022)

064060-10



approximately constant factor 1=μ½θð0Þaex=a0�. Remember
that with the normalization θð1Þ ¼ 1, it is μðaex=a0Þ that
enters the rotation-curve analysis, such that 1=μðaex=a0Þ is
the mass discrepancy indicated by the rotation curve at
position r. So, importantly, it is not this factor that enters
the EFE, as is the case in the presently used modified-
gravity theories.
For example, for the description of vertical dynamics, or

that of wide binaries in the solar neighborhood, we have
aex=a0 ≈ 2, and even a value of θð0Þ of a few can have a
large impact on 1 − μ, which determines the departure of
the internal dynamics from Newtonian, since 1 − μ½2θð0Þ�
can be rather smaller than 1 − μð2Þ.
Regarding the vertical dynamics in thin disk galaxies, I

already noted at the beginning of the section that one
cannot describe such dynamics in terms of some vertical
acceleration field. It is well known that different popula-
tions of stars, and the gas in the disk, have different
kinematics: they have different velocity dispersions,
different scale heights, and hence different characteristic
vertical motions, with different characteristic frequencies.
Some of these frequencies can be below and some can
be above the local orbital frequency around the
galaxy. A proper treatment of the vertical dynamics in
the framework of the present models must take all this
into account.

V. CONCLUSIONS

Here, I am propounding a class of models that embody
the basic axioms of MOND but, unlike presently known
MOND theories, are based on modifying the kinetic,
inertial response of bodies to applied forces. These models
have a relatively simple, quasialgebraic formulation in
terms of the Fourier components of the body’s trajectory.
This choice was inspired by the observation, made in
Ref. [23], that such modified-inertia formulations probably
have to be time nonlocal. This conclusion was reached on
formal grounds. But also from the physics point of view,
such modifications envisage inertia as an acquired attribute,
which results from the interaction of the body with some
ambient medium, which resists acceleration. A time-local
inertia results if the medium cures the effects of the bodies
acceleration on timescales much shorter that characteristic
kinematic times of the body. But in general, we expect
nonlocal effects to result. The model is also inspired by
linear-response systems (e.g., in electronics) which are
described by an algebraic relation in frequency space
between the input, output, and the response function of
the device and produce time nonlocality. But, here, in
addition to the nonlocality, the equations of motion are
nonlinear, so as to be compatible with the axioms
of MOND.
I call this construction “a class of models” because,

as we saw, even within the general form of the equations
of motion (3), there may be other possible choices of A

as a function of ω and a functional of the trajectory.
It may also be possible to construct such models with μ as
a function of several variables Aa. For example, we can
use jâðωÞ · âðωÞj1=2 to form a second nonlocal acceler-
ation measure, as in Eq. (20), even with its own θ
function. Since this quantity vanishes for circular orbits,
using it as a second variable, x2 in μðx1; x2Þ would mean
that μðx; 0Þ is what enters the predictions of rotation
curves.
Also, the equations of motion (3) can be generalized in

various ways. For example, we may generalize I not to be a
number that multiplies âðωÞ but as an operator that acts on
it, replacing Eq. (3), for example, by

Z
I ½fr̂g;ω;ω0; a0�âðω0Þdω0 ¼ F̂ðωÞ: ð36Þ

While the construction of the models is somewhat
arbitrary at present, these models are helpful especially
in pointing to some important possible differences between
the second-tier predictions of such theories from those of
MG. At present, I see this has their main value. But perhaps,
with some deliberation, they will show a (different) way to
look for a more fundamental theory for MOND.
We have known that modified-inertia and MG theories

make slightly different predictions of the exact rotation
curves of galaxies, in that, unlike the latter, the former
predict an algebraic relation between the Newtonian and
the MOND acceleration at every radius. This is confirmed
in the present class of models as seen in Eq. (29). We also
saw that in the present models, the strength of the EFE, and
its mode of action in general, can differ materially in the
two classes of theories. In another example, we saw that the
exact dependence on the masses of the velocity difference
in a deep-MOND binary on a circular orbit differ between
the two classes; the difference is of order unity but might be
detectable.
The first full-fledged, NR, MG formulation of

MOND, AQUAL, is highly nonlinear, and harder to
solve. It generally requires numerical solution, which is
done by iterating from some initial guess, as suggested in
Sec. II A for the present models. In contradistinction,
QUMOND is “quasilinear” in that its solution requires
solving only linear differential equations, with one non-
linear, algebraic step in between. In some rough
sense, it achieves this by inverting the AQUAL equation
from the schematic gμðjgj=a0Þ ¼ gN to the schematic
g ¼ gNνðjgN j=a0Þ. Might we also construct modified-
inertia models that invert the field equations (3), by which
âðωÞ is more easily gotten from the Newtonian trajectories,
e.g., a relation of the type

âðωÞ ¼ âNðωÞJ ½fr̂Ng;ω; a0�: ð37Þ
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If feasible, this will make life much easier. At present, I see
two obstacles to constructing such a formulation:

(i) I do not see a way to define conserved momentum,
energy, and angular momentum in such a formu-
lation, which I deem necessary for a healthy theory.

(ii) In any event, the right-hand, “Newtonian” side
cannot be calculated as part of Newtonian dynamics,
since it has to be calculated for the MOND trajec-
tories, which are not known a priori. But it is
worthwhile to look for a formulation in this vein.
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