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In this present work, we study the observational appearance of Kerr-Melvin black hole (KMBH)
illuminated by an accretion disk. The accretion disk is assumed to be located on the equatorial plane and to
be thin both geometrically and optically. Considering the fact that outside the innermost stable circular orbit
(ISCO) the accretion flow moves in prograde or retrograde circular orbit and falls toward the horizon along
plunging orbit inside the ISCO, we develop the numerical backward ray-tracing method and obtain the
images of KMBH accompanying with the accretion disk for various black hole spins, strengths of magnetic
fields, and inclination angles of observers. We present the intensity distribution horizontally and
longitudinally and show the profiles of the redshift for the direct and lensed images. Our study suggests
that the inner shadow and critical curves can be used to estimate the magnetic field around a black hole
without degeneration.
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I. INTRODUCTION

The existence of black holes in the universe has been
supported by lots of evidences, including the gravitational
waves detected by the LIGO/Virgo [1] and the black hole
images photographed by the Event Horizon Telescope
(EHT) [2,3]. In particular, the polarized image of the
supermassive black hole in the center of the M87 galaxy
reveals a strong magnetic field around the black hole [4,5].
In fact, there could exist a fairly strong magnetic field in
the environment containing an astrophysically realistic
black hole [6]. For example, the strongest magnetic field
around a black hole can attain B ¼ 1.6 × 1014 Gauss which
is provided by a magnetar companion close to Sagittarius
A* (Sgr A*), known as SGR J1745-29 [7,8]. Moreover, in
addition to synchrotron radiations around a black hole,
there are also significant phenomena closely related to the
magnetic fields, such as the jets and energy extraction [9],
magnetic accretion disks [10,11] and so on.
Thus, it is interesting tomodel a black hole surrounded by a

magnetic field and explore the effects of the magnetic field.
Along this line, ignoring the backreaction to spacetime,Wald
found a solution to the source-free Maxwell equation which
can describe a weakly uniform magnetic field in
Schwarzschild and Kerr black hole spacetimes [12]. When

the backreaction of the magnetic field is considered, Ernst
found analytical solutions to the Einstein-Maxwell equations,
which represent Schwarzschild and Kerr black holes
embedded in the Melvin universe [13,14], also dubbed as
Schwarzschild-Melvin black hole (SMBH) and Kerr-Melvin
black hole (KMBH). These black holes admit a vertical
magnetic field which involves in the metric of the corre-
sponding spacetime, called theMelvinmagnetic field in some
literatures. The SMBH and KMBH have been extensively
studied in various aspects. The geodesics in the SMBH and
KMBH spacetimes were investigated in [15–17]. The
motions of charged particles were discussed in [18–20]. In
[21,22], the authors studied the light rings and critical curves
in SMBH and KMBH spacetimes. In [23], the synchrotron
radiations and polarized images of SMBH was studied.
On the other hand, motivated by the black hole images

produced by the EHT, the black hole shadow and photon
ring have been considered as promising tools to estimate the
parameters of black holes, such as the mass, spin, as well as
the magnetic field and the accretion disk in the environment
[24–30]. In addition, the black hole shadow has been found
some interesting connections with other properties of black
hole spacetimes [31–36]. Besides, the analysis of shadow
can impose limits on the modified gravities [37–49].
Recently, there was an interesting work suggesting that
the “inner shadow” and photon ring in the Kerr black hole
image illuminated by an accretion disk can be used to
estimate the black hole mass and spin, respectively [50].
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Thus, it is natural to ask if the inner shadow and photon ring
can be applied to estimate the magnetic field outside a black
hole. With this question, we would like to calculate and
discuss the images of the KMBH illuminated by a geo-
metrically and optically thin accretion disk in this work.
The remaining parts of this paper are organized as

follows. In Sec. II, we review the Kerr-Melvin spacetime
and discuss its innermost stable circular orbits (ISCOs). In
Sec. III, we set up our problems and construct our accretion
disk model. In Sec. IV we discuss the appearance of the
KMBH illuminated by the disk model. In Sec. V, we
summarize and conclude this work.

II. KMBH SPACETIME AND
TIMELIKE GEODESICS

In this section, we would like to give a brief review on
the KMBH spacetime and exhibit some important timelike
geodesic orbits around the KMBH.

A. The spacetime

The spacetime of a rotating black hole immersed in a
strong uniform magnetic field is described by the KMBH
metric, which is a stationary and axisymmetric solution of
the Einstein-Maxwell equations [14],

ds2 ¼ jΛj2Σ
�
−
Δ
A
dt2 þ dr2

Δ
þ dθ2

�

þ A
ΣjΛj2 sin

2θðdϕ − ωdtÞ2; ð2:1Þ

where

Σ ¼ r2 þ a2cos2θ; A ¼ ðr2 þ a2Þ2 − Δa2sin2θ;

Δ ¼ r2 − 2Mrþ a2; Λ ¼ 1þ 1

4
B2

A
Σ
sin2θ −

i
2
B2Ma cos θ

�
3 − cos2θ þ a2

Σ
sin4θ

�
; ð2:2Þ

and

ω ¼ a
r2 þ a2

�
ð1 − B4M2a2Þ − Δ

�
Σ
A

þ B4

16
ð−8Mr cos2 θð3 − cos2 θÞ2 − 6Mr sin4θ

þ 2Ma2 sin6 θ
A

½rðr2 þ a2Þ þ 2Ma2� þ 4M2a2 cos2 θ
A

½ðr2 þ a2Þð3 − cos2θÞ2 − 4a2sin2θ�Þ
��

: ð2:3Þ

The parametersM, a denote the mass and spin parameter of
the black hole, B is the strength of the magnetic field
aligned along the symmetry axis of black hole, and i is the
imaginary unit, that is, i2 ¼ −1. From Δ ¼ 0, we can see
that the coordinate singularity is at r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
,

which is the same with the Kerr black hole spacetime.
Though the concept of the event horizon for such non-
asymptotically flat spacetime is not completely clear, we
can still regard rH ¼ rþ as the apparent horizon of KMBH,
which remains as a marginally outer trapped horizon
for the KMBH solution generated from the event horizon
in a seed Kerr-Newman solution via the Harrison
transform [51].
From the metric Eq. (2.1), we can see that the KMBH

spacetime reduces to the Kerr BH spacetime when the
magnetic field is vanishing. On one hand, near the horizon,
the strong gravity is mainly contributed by the mass of the
KMBH when BM ≪ 1. On the other hand, when moving
out from the black hole, the curvature of the spacetime
is gradually dominated by the magnetic field, which is
described by the metric of the Melvin universe [52]. In
order to have an intuitive understanding of the strength of

the Melvin magnetic field in practice, we transfer the field
strength to the Gaussian unit as follows

BGauss¼
c4

G3=2M
B≈2.36×1019

M⊙

M
ðBMÞ Gauss: ð2:4Þ

In the case of supermassive black holes M ∼ 109 M⊙,
a dimensionless BM ¼ 0.01 corresponds to BGauss ∼ 108

Gauss in the Gaussian unit, which is already a very strong
magnetic field in astronomical observations. Therefore, we
mostly choose BM ¼ 0.01 to display our results in the
following sections.1 In addition, for simplicity and without
loss of generality, we set M ¼ 1.

B. Timelike geodesics

The geodesics in the KMBH spacetime have been
investigated in some interesting works [15–17]. Con-

1In [21,22], it is very interesting that there appear chaos in the
images of spherical source when BM is large. For comparison, we
show in Appendix C that there is chaos in the image of accretion
disk as well, if the magnetic field is strong enough.
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sidering that the metric of the KMBH spacetime is very
complicated and the Hamilton-Jacobi equation cannot be
separated, one is not allowed to study the geodesics in the
KMBH spacetime analytically in general. Nevertheless, if
the magnetic field is not very strong such that we have
1 ≪ r ≪ 1=B, a transition region exists between the near
region with Br ≪ 1 and the far region with r ≫ 1. The near
region is approximately described by a Kerr metric, while
the far region is governed by the Melvin universe metric, and
the two regions overlap in the transition region. We argue
that one can calculate the particle motions separately in the
near and far regions, and paste the two geodesics via the
matched asymptotic expansion technique.2 However, our
present work is not limited to the case 1 ≪ r ≪ 1=B, and
thus we have to appeal to the numerical method to solve the
geodesic problems. In the present work, we are interested in
the geometrically thin disk which is located at the equatorial
plane with θ ¼ π=2, it is enough for us to focus on the
equatorial timelike geodesics.
The KMBH spacetime has two killing vectors originat-

ing from the time translational and rotational invariance,
thus a massive neutral particle with four-velocity ua has
two conserved quantities along a geodesic, namely

E ¼ −ut; L ¼ uϕ: ð2:5Þ

where E and L are the energy per unit mass and angular
momentum per unit mass, respectively. Combining with the
normalization condition uaua ¼ −1, we can obtain the
radial equation of the motion

ur ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
Vðr; E; LÞ

grr

s
; ð2:6Þ

where

Vðr; E; LÞ ¼ ð1þ gttE2 þ gϕϕL2 − 2gtϕELÞjθ¼π
2

ð2:7Þ

is defined as the effective potential function.
At first, we would like to consider the circular orbits

which satisfy V ¼ ∂rV ¼ 0. From these two equations, we
can determine the conserved quantities E ¼ EcirðrÞ and
L ¼ LcirðrÞ for the circular orbits. To discuss the stability of
circular orbits, it is convenient to define

d2VðrÞ ¼ ∂
2
rVjE¼EcirðrÞ;L¼LcirðrÞ; ð2:8Þ

and a stable circular orbit requires d2V ≥ 0. For usual
asymptotically flat spacetimes, there always exists the ISCO
which satisfies d2V ¼ 0. Recall that the KMBH spacetime
is no longer asymptotically flat due to the Melvin magnetic
field, there are another bound where ðd2VÞ−1 ¼ 0, which
means that in addition to the ISCO near the horizon, there
appears an outermost stable circular orbit (OSCO)3 far from
the horizon of the KMBH. Thus, by definition the stable
circular orbits only exist between the ISCO and OSCO.
Furthermore, one can generally demonstrate that if there is
an ISCO in the KMBH spacetime, then there has to be
an OSCO as well. The reason is that when r ≫ 1, the
KMBH spacetime approaches the Melvin universe and in
Appendix A, we demonstrate that all the circular orbits are
unstable in the Melvin universe. In Fig. 1, we show some
examples of the variations of ISCOs and ðd2VÞ−1 with
respect to B and r, respectively. From the Fig. 1, we can see
that the radius of the OSCO rOSCO ≫ rH when B is not big.
Therefore, in this work we take the OSCO and the horizon
as the outer and inner boundaries of the KMBH spacetime,

FIG. 1. Left: ISCOs as the functions of B. From light to dark gray, a is taken to be 0, 0.6, 0.998. The solid and dashed lines represent
prograde and retrograde orbits, respectively. Right: ðd2VÞ−1 of prograde orbits. The spin is a ¼ 0.6. The OSCO of B ¼ 0.01 is located at
rOSCO ≈ 114.8. The retrograde orbits have similar behavior at a large r and have very similar OSCOs.

2The matched asymptotic expansion technique has been suc-
cessfully applied to analytically study the photon emissions in near-
horizon extremal rotating black hole spacetimes and Myers-Perry
black hole spacetimes in the large dimension limit. The interested
readers are suggested to see more details in [53,54].

3Here the OSCO is different from the ISCO, since outside the
OSCO there are no circular orbits while inside the ISCO there are
still unstable circular orbits. For example, in Eq. (A5) we can see
that the condition 4 − 3B2r2 ≥ 0 should be satisfied and
rOSCO¼ 2ffiffi

3
p

B
corresponds to ðd2VÞ−1 ¼ 0.
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respectively, and we place the observer ðto; ro; θo;ϕoÞ far
from the horizon and inside the OSCO, that is,
rH ≪ ro < rOSCO.
Moreover, for the purpose in the next section, we also

take into consideration the plunging orbits which start from
the ISCO and fall into the horizon on the equatorial plane.
Hence, we are allowed to let these critical plunging orbits
carry the conserved quantities E ¼ EISCO, L ¼ LISCO, then
from Eq. (2.6), the radial equation of motion is given by

urc ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
Vðr; EISCO; LISCOÞ

grr

s 					
θ¼π

2

; ð2:9Þ

where the minus sign in front of the square root means
ingoing motions and r is confined as rH < r < rISCO.

III. ACCRETION DISK AND IMAGING METHOD

In this section we turn to present our accretion disk
model and the method to take photographs of the KMBH
illuminated by the accretion disk.
In our study, the accretion disk is taken to be geomet-

rically thin on the equatorial plane, so that the compositions
of the accretion disk can be regarded as free electrically
neutral plasma which move along the equatorial timelike
geodesics. Also, the accretion disk has a width: its external
radius is larger than that of the ISCO, and it is able to extend
to the horizon of the KMBH. Thus, the ISCO can be seen as
the dividing line, outside of which the particles of the
accretion disk move in stable circular orbits and inside of
which they would travel in critical plunging orbits. More
precisely, for the particles in the accretion disk, the radial
motion is determined by the equations V ¼ ∂rV ¼ 0 when
r ≥ rISCO, while for rH < r < rISCO, the radial motion is
governed by the Eq. (2.9).
Next, we consider the photons emitted from the accretion

disk and arriving at a distant observer. Due to the sym-
metries in t and ϕ directions, We consider a zero-angular-
momentum observer (ZAMO) at ðto ¼ 0; ro; θo;ϕo ¼ 0Þ,
whose tetrad reads

eð0Þ ¼ ξð1;0;0;−γÞ; eð1Þ ¼
�
0;−

1ffiffiffiffiffiffi
grr

p ;0;0

�
;

eð2Þ ¼
�
0;0;

1ffiffiffiffiffiffi
gθθ

p ;0

�
; eð3Þ ¼

�
0;0;0;−

1ffiffiffiffiffiffiffigϕϕ
p

�
; ð3:1Þ

where

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gϕϕ
gttgϕϕ − g2tϕ

s
; γ ¼ gtϕ

gϕϕ
; ð3:2Þ

and we have included a minus sign in each of eð1Þ and eð2Þ to
facilitate the backward ray-tracing method such that we can
take the light path of the photons emanating from the

ZAMO to be reversible. In the ZAMO’s frame, the four-
momentum of photons reads

pðμÞ ¼ kνeνðμÞ; ð3:3Þ

where eνðμÞ is given in Eq. (3.1). On the other hand, in the

frame of the ZAMO we can define the celestial coordinates
Θ and Ψ to label each light ray. We follow the convention in
[55] where the relation between the celestial coordinates and
the four-momentum of photons pðμÞ is given by

cos Θ ¼ pð1Þ

pð0Þ ; tan Ψ ¼ pð3Þ

pð2Þ : ð3:4Þ

Then, on the screen of the ZAMO, considering a Cartesian
coordinates system we have

x ¼ −2 tan
Θ
2
sin Ψ; y ¼ −2 tan

Θ
2
cos Ψ; ð3:5Þ

which in turn determine the initial values of the momentum
of the photons at the ZAMO with the initial values of
the position ð0; ro; θo; 0Þ. Then combining with the
Hamiltonian canonical equations of the null geodesics
we can numerically obtain the complete geodesic trajec-
tories. Note that when tracing back the light ray, it may
pass through the equatorial plane many times, with the
radii of the intersections rnðx; yÞ; n ¼ 1; 2;…Nmaxðx; yÞ,
where Nmaxðx; yÞ is the maximum number of intersections.
Thus we can see that the profiles of frnðx; yÞg are discrete
for different n on the screen. In addition, rnðx; yÞ is called
the transfer function which actually give the shape of the
n-th image of the disk. For example, n ¼ 1 is the “direct”
image, and n ¼ 2 is the “lensed” image. It is worth
mentioning that the transfer function depends on the
observational angle θo.
Then, we turn to discuss the intensity of the KMBH

image illuminated by the accretion disk. Considering a
complete light ray connecting the light source, i.e., the
accretion disk around the KMBH, with the screen in
the frame of the ZAMO, the intensity would change due
to the emission and absorption when the light ray interacts
with the accretion disk. For simplicity, we assume the disk
medium have ignorable refraction effect, then the change of
the intensity is determined by the following equation [56]

d
dλ

�
Iν
ν3

�
¼ Jν − κνIν

ν2
; ð3:6Þ

where λ is the affine parameter of null geodesics, Iν, Jν, κν
are the specific intensity, emissivity and absorption coef-
ficient at the frequency ν, respectively. When the light
propagates in vacuum, both Jν and κν are 0, thus Iν=ν3 is
conserved along the geodesics.
We assume that the accretion disk is steady, axisym-

metic, and have Z2 symmetry about the equatorial plane.
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Recall that the disk is geometrically thin so that the
emissivity and absorption coefficient keep unchanged
when light rays pass through it. By integrating Eq. (3.6)
along traced-back trajectories we obtain the formula of
intensity at each location on the observer’s screen which
takes the form (a detailed derivation can be found in
Appendix B)

Iνo ¼
XNmax

n¼1

�
νo
νn

�
3 Jn
τn−1

�
1 − e−κnfn

κn

�
; ð3:7Þ

where νo ¼ Eo ¼ −pð0Þjr¼ro is the observed frequence on
the screen and νn ¼ En ¼ −kμuμjr¼rn is the frequence
observed by the local rest frames comoving with the
accretion disk. For simplicity, we call the class of the
frames fFng, where n ¼ 1…Nmax is the number of times
that the ray crosses the equatorial plane, and we use the
subscript n to denote the corresponding measurements in
the local rest frames Fn. The quantity τm is the optical depth
of photons emitted at m

τm ¼
�
exp ½Pm

n¼1 κnfn� if m ≥ 1;

1 if m ¼ 0
ð3:8Þ

with fn ¼ νnΔλn being the “fudge factor” which needs to
be further specified for specific models of accretion disk. In
the fudge factor, Δλn is the change in the affine parameter
when the ray passing through the disk medium at Fn. When
the absorption can be neglected, that is, the accretion disk is
assume to be optically thin, the Eq. (3.7) would reduce to

Iνo ¼
XNmax

n¼1

fng3nJn; ð3:9Þ

where we have introduce the redshift factor

gn ¼
νo
νn

: ð3:10Þ

Note that Eq. (3.9) had been used to study the intensity of
the image of an optically thin disk in previous works
[50,57]. Moreover, the specific parameters of the emission
of the accretion disk, Jn and fn appeared in Eq. (3.9), are
still undetermined. Considering the fact that the images of
M87* and Sgr A* are photographed at the observing
wavelength of 1.3 mm (230 GHz), we choose the emissivity
to be a second-order polynomial in log-space

J ¼ exp

�
−
1

2
z2 − 2z

�
; z ¼ log

r
rH

ð3:11Þ

which has been also used in [50], to fit the 230 GHz images.
Notice that the emission profile is isotropic and axisym-
metric, and decreases rapidly with increasing radius, e.g., J

at 5rH reduces to one percent of that at rH. However,
different with the choices in [50], we normalize all the fudge
factors fn to 1. This is because our interest is focused on the
effects of the magnetic fields on the images and in practice
the values of fn mainly changes the strength of the narrow
photon ring which has limited effect on overall image.
Therefore, we can back-trace all the light ray and determine
their positions on the nth point and use Eq. (3.9) to plot
the image.
In addition, we would like to give a more detailed

expression for the redshift factor gn in Eq. (3.10) in order to
make it easier to understand. Recall that in our model, the
accretion flow consists of electrically neutral plasma, which
moves along timelike geodesics with conserved quantities
E and L. Outside the ISCO, the flow move along circular
orbits with angular velocity ΩnðrÞ ¼ ðuϕ=utÞjr¼rn. Then
the redshift factor can be rewritten as

gn ¼
e

ζð1 −ΩnbÞ
; rn ≥ rISCO; ð3:12Þ

where we have introduced

b ¼ L
E
¼ kϕ

−kt
; e ¼ Eo

E
¼ pð0Þ

kt
¼ ξð1þ bγÞ;

ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−1
gtt þ 2gtϕΩn þ gϕϕΩ2

n

s 					
r¼rn

ð3:13Þ

to make Eq. (3.12) more compact. Thereinto, b is the
impact parameter of photons with E ¼ −kt and L ¼ kϕ
being the conserved energy and angular momentum along
null geodesics, and e is the ratio of the observed energy on
the screen to the conserved energy along a null geodesic.
Note that e ¼ 1 for asymptotically flat spacetimes when we
set ro → ∞. However, the KMBH spacetime is not asymp-
totically flat so that there always is e < 1. For example,
when the observer is far from the black hole and we set
ro ≥ 1, Bro ¼ 1, then e ∼ 1=Λ0 ∼ 4=ð4þ sin2θoÞ, which
decreases with the increasing observational angle. For
θo ¼ 17°ð163°Þ, we have e ≈ 0.932, and for θo ¼ 80° we
find e ≈ 0.802.
On the other hand, the flows inside the ISCO should

move along critical plunging orbits with radial velocity urc
in Eq. (2.9). In this case the redshift factor becomes

gn ¼ −
e

urckr=E þ EISCOðgtt − gtϕbÞ þ LISCOðgϕϕb − gtϕÞ ;

rn < rISCO; ð3:14Þ

where urc, gtt, gtϕ and gϕϕ are evaluated at r ¼ rn. The same
treatment was used to study the images of Kerr black holes
in [27,58].
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IV. RESULTS

In this section, we would like to show the results by
fixing the observational distance ro ¼ 100. As for the radial
range of the accretion disk, we set the outside radius of the
accretion disk at ror ¼ 20 and extend the disk to the event
horizon, that is, the inside radius of the disk rir ¼ rH.
Considering the emission profile of the accretion disk
decreases quickly with its radius, the matters of the
accretion disk far from the event horizon would give less
contributions to the images of the KMBH.
In Figs. 2 and 3, we show the images of the KMBH

illuminated by an accretion disk with prograde and retro-
grade flows, respectively. Top images of both figures are
taken at θo ¼ 80° and bottom ones are given at θo ¼ 163°.
For each row in Figs. 2 and 3, we let the spin of the KMBH
a ¼ 0.6 for the first two images and a ¼ 0.998 for the last
two ones, while for the first and third we consider B ¼ 0

and for the others we take B ¼ 0.01.4

We illustrate four characteristic curves in the image of
the KMBH in Fig. 4. The dashed curves are images of the
accretion disk at r ¼ 9, of which the blue one is the direct
image and the green one is the lensed. The blue solid curve
is the image of the accretion disk at r ¼ rH which is also
called the inner shadow in [50] and the black solid is the
critical curve for the KMBHwhich is also called the photon
ring in the literatures.
From the images in Figs. 2 and 3, we can see that the

direct image and lensed image can be clearly distinguished

when θo ¼ 80° no matter the flow of the accretion disk is
prograde or retrograde, while for θo ¼ 163° the intensity
distribution is no longer so sharp that the direct and lensed
images are hard to tell apart. Nevertheless, the inner shadow
and the critical curve can be clearly observed for both θo ¼
80° and θo ¼ 163°. Note that the inner shadow is from the
fact that a light ray cannot gain any intensity if falling into
the horizon without crossing the equatorial plane, i.e.,
Nmax ¼ 0. It is a main feature of the geometrically thin
disks but not limited to them. The center intensity depres-
sion is observable as long as the disk is not too thick, i.e.,
H ≲ R, where H and R are the thickness and width of the
disk, respectively. In addition, with the increasing of the
strength of the magnetic field B, the images are stretched
significantly. Similar results have been found for the black
holes immersed in Melvin magnetic fields [21,22] and Wald
magnetic fields [59] illuminated by the spherical extended
source at infinity. Moreover, there are significant Doppler
effects on the left side of the screen due to the forward
rotation of the prograde accretion disk. In contrast, even
though the Doppler effects on the right side of the screen for
the retrograde accretion disk are obvious, they are weaker
due to the dragging effect of the KMBH.
Moreover, we show the redshifts of the direct and lensed

images of the accretion disk in Figs. 5 and 6 with θo ¼ 80°.
In the upper row we set B ¼ 0, and in the lower row we set
B ¼ 0.01. The accretion flows are prograde for the first two
columns, and they are retrograde in the other twos. Besides,
for the first and third columns a ¼ 0.001 while for the other
columns a ¼ 0.998. From these images, we can see that in
addition to the influence of the magnetic field on the size of

FIG. 2. Images of KMBH illuminated by prograde flows. The top row of the images is observed at θo ¼ 80°, and the bottom row is
observed at θo ¼ 163°.

4When generating the images, the color-function is taken as
RGBColor ðI1=8; I1=4; I1=2; ðI þ 1Þ−3Þ for better visual effect.
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the image, there are obvious blueshift near the ISCO, which
will be suppressed by the Melvin magnetic field. In Table I
we present the maximal blueshift factors under different
spin parameters and magnetic field strengths. The maximal
blueshift factors of both direct and lensed images are
significantly suppressed by the magnetic field.

Next, we turn to discuss the intensity distribution of the
image. In Fig. 7, we show the intensity distribution along
the x-axis and in Fig. 8 we show the intensity distribution
along y-axis on the screen. We use the light and deep
yellow lines to label B ¼ 0 and B ¼ 0.01 separately. From
these plots it is not hard to find that the magnetic field has
significant influence on the x-axis distribution when θo ¼
80° while having weaker effect on the y-axis distribution.
More precisely, the peak of the intensity is significantly
reduced and the positions of the peaks move to either side
along the x-axis in the presence of the magnetic fields.
Along the y-axis the positions of the peaks keep unchanged
and only the intensity at the peak decreases due to the
magnetic field. The results become different for θo ¼ 163°:
comparing with the B ¼ 0 case, the reductions of the peaks
of the intensity are very small and there is no variation of
the positions of the peaks for B ¼ 0.01, regardless of
whether the intensity distribution is along x-axis or along
y-axis.
In Table. I we also present the total flux defined as F ¼

r−2o
R
Iðx; yÞdxdy under different spin parameters and

magnetic field strengths, where Iðx; yÞ ¼ Iνo is the observed
intensity in Eq. (3.9), and the results are normalized by the
total flux of prograde disk around KMBH with a ¼ 0,
B ¼ 0, observed at θo ¼ 80°. The integration region is the
entire image within the field of view. When far from the
center of the viewpoint (0,0) the intensity is mainly from
the emission of direct image, Iðx; yÞ ∼ Jðr1ðx; yÞÞ, thus
the integral becomes

R
Jðr1Þdxdy ∼ 2π

R
JðrÞrdr ∼ 2πR

e−z
2=2dz, which converges quickly and the contribution

outside the field of view can be neglected.

FIG. 3. Images of KMBH illuminated by retrograde flows. The top row of the images is observed at θo ¼ 80°, and the bottom row is
observed at θo ¼ 163°.

FIG. 4. An illustration of four characteristic curves in an image
of the KMBH illuminated by an prograde accretion disk with
θo ¼ 80°, a ¼ 0.6 and B ¼ 0. Blue dashed and solid lines are the
direct images of the accretion disk at r ¼ 9 and r ¼ rH ,
respectively. The green dashed curve is the lensed image of
the accretion disk at r ¼ 9 and the black solid curve is the critical
curve of the KMBH.
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At last, we move to study the influence of the magnetic
field on the sizes of the critical curve and inner shadow of
the KMBH. Recall that the coordinates on the screen of the
ZAMO are defined in Eq. (3.5), we can define ðxc; ycÞ,

xc ¼
xmax þ xmin

2
; yc ¼

ymax þ ymin

2
; ð4:1Þ

as the geometric center of a concerned curve (the critical
curve or the inner shadow), where xmax;min is the maximal/

minimal horizontal coordinate, and ymax;min is the maximal/
minimal vertical coordinate, respectively. Then, we are
allowed to introduce the polar coordinates ðρ; αÞ with the
origin at ðxc; ycÞ and the average radius is defined as

r̄ ¼ 1

2π

Z
2π

0

ρðαÞdα: ð4:2Þ

In order to show the difference between the KMBH and
Kerr black hole, it is convenient to calculate a rescaled

FIG. 5. The redshift factors of direct images of the accretion disk model. The radii range from rH to 20. Red and blue represent redshift
and blueshift, respectively, and the maximal blueshift points are indicated by red dots. The black regions are the inner shadows.

FIG. 6. The redshift factors of lensed images of the accretion disk model. The radii range from rH to 20. Red and blue represent
redshift and blueshift, respectively. The edges of the black regions are the lensed images of rH.

HOU, ZHANG, YAN, GUO, and CHEN PHYS. REV. D 106, 064058 (2022)

064058-8



quantity σ ¼ r̄=r̄Kerr, where r̄Kerr is the average radius of the
closed curve for the Kerr black hole with the same spin
parameter as the KMBH. We show several results of r̄=r̄Kerr
with respect to B in Fig. 9, under different spin and
observational angle. One can see that the profiles of the
critical curve and the inner shadow overlap, but certainly do
not equate. This means that both of them can be used to

estimate the magnetic field around the black hole. In
addition, we also see that the difference between the critical
curve and the inner shadow becomes large with the
increasing of the strength of the magnetic field B from
Fig. 9. Moreover, when the observational angle θo is closer
to π=2 other than the pole, the difference becomes more
significant.

FIG. 7. Intensity distribution along x-axis of the screen. The top rows correspond to prograde flow and the bottom rows correspond to
retrograde flow.

FIG. 8. Intensity distribution along y-axis of the screen. The top rows correspond to prograde flow and the bottom rows correspond to
retrograde flow.

TABLE I. The maximal blueshift (gmax) and total flux (F) under different spin parameters and field strengths. The observational angle
is θo ¼ 80°. “P” and “R” denote prograde and retrograde flow, respectively.

a 0.001 0.6 0.998

B 0 0.01 0 0.01 0 0.01

P
gmax

Direct 1.455 1.175 1.483 1.195 1.444 1.163
Lensed 1.565 1.308 1.627 1.362 1.647 1.336

F 1 0.774 1.065 0.835 0.559 0.445

R
gmax

Direct 1.454 1.175 1.43 1.161 1.417 1.153
Lensed 1.565 1.308 1.525 1.275 1.504 1.26

F 1 0.774 0.581 0.447 0.087 0.068
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V. CONCLUSION

In this paper, we considered a geometrically and opti-
cally thin accretion disk as a light source and studied the
appearance of the KMBH. Employing the numerical back-
ward ray-tracing method, we obtained the direct and lensed
images of KMBHs with different parameters including
the spin, the observational angle and the strength of the
magnetic field. We also took into account of both the
prograde and retrograde flows of accretion disks. In an
image of the KMBH, we mainly focused on four character-
istic curves, that is, the direct and lensed images of the outer
contour of the accretion disk, the critical curve and the inner
shadow. Quantitatively, we studied the redshift of the direct
and lensed images of the accretion disk, the intensity
distribution along the x-axis and y-axis, and the variations
of the average radii of the critical curve and the inner
shadow with respect to the strength of the magnetic field.
From our results, we found that the magnetic field would
give a significant influence on the shapes of the four curves
and the intensity distribution when the observational angle
is closer to π=2. This suggests most importantly that the
critical curve and the inner shadow could be used to

estimate the magnetic field around a black hole in addition
to the spin and mass of the black hole.
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APPENDIX A: CIRCULAR ORBITS IN MELVIN
UNIVERSE

The metric of theMelvin universe in spherical coordinates
is of the form [52]

ds2 ¼ Λ2
0ð−dt2 þ dr2 þ r2dθ2Þ þ 1

Λ2
0

r2 sin2θdϕ2; ðA1Þ

where

Λ0 ¼ Λja¼0 ¼ 1þ B2r2

4
sin2θ: ðA2Þ

FIG. 9. Rescaled average radius as the functions of B.
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This spacetime is stationary and axisymmetric due to the
existence of two Killing vectors along the t-direction and
ϕ-direction, respectively. In addition, it has a translational
symmetry along the direction of the magnetic field, which
can be seen directly from the cylindrical coordinates, i.e.,
ðρ; zÞ ¼ rðsin θ; cos θÞ. For timelike equatorial geodesic,
the equations of motion are

ur ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
V0ðr; E; LÞ

grr

s 					
θ¼π

2

; ut ¼ −E;

uϕ ¼ L; θ ¼ π

2
; ðA3Þ

where

V0ðr; E; LÞ ¼ −1þ 16E2

ð4þ B2r2Þ2 −
ð4þ B2r2Þ2L2

16r2
ðA4Þ

is the effective potential. The circular orbits should satisfy
V0 ¼ ∂rV0 ¼ 0, which determine their conserved quantities
as follows

E0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − B2r2

p
ð4þ B2r2Þ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3B2r2

p ;

L0ðrÞ ¼ � 4
ffiffiffi
2

p jBjr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4þ B2r2Þ2ð4 − 3B2r2Þ

p ðA5Þ

with� denoting the prograde/retrograde orbits relative to the
orientation of magnetic field. Obviously, this circular orbits
can only exist in

0 ≤ r ≤
2ffiffiffi
3

p jBj : ðA6Þ

Actually, the center of the circular orbit can be located
anywhere along the z-direction due to the translation
symmetry. The stability of the circular orbits means the
quantity

d2V0ðrÞ ¼ ∂
2
rV0jE¼E0ðrÞ;L¼L0ðrÞ

¼ −
8B2ð32 − 12B2r2 þ 3B4r4Þ
ð4þ B2r2Þ2ð4 − 3B2r2Þ ðA7Þ

should be non-negative. But within the range Eq. (A6), d2V0

is always negative and thus there is no stable timelike
circular orbit in the Melvin universe.

APPENDIX B: RAY-TRACING PROCESS
AND INTENSITY FORMULA

To derive the observed intensity from the transfer
equation Eq. (3.6), we define

I ¼ Iν
ν3

; J ¼ Jν
ν2

; K ¼ κνν; ðB1Þ

all of which are scalars [56]. In the ray-tracing perspective,
we set λ → −λ and thus J → −J, κ → −κ in Eq. (3.6). We
use Fn in Sec. III to label the rest frame of the disk on rn.
When tracing back and passing through the disk medium at
Fn, the light ray undergoes an emission and absorption
process

dI
dλ

¼ −J n þKnI ; ðB2Þ

and changes from In−1 to In. The initial scalar, I0, is
represented by the quantities measured on the screen, i.e.,
I0 ¼ Io=ν3o. Because the disk is very thin, the emission and
absorption coefficients can be taken as constants such that

In ¼ enIn−1 þ δn ðB3Þ

with the coefficients

en ¼ eKnΔλn ; δn ¼ ð1 − enÞ
J n

Kn
: ðB4Þ

Thus, the final intensity can be expressed as

IN ¼ eNIN−1 þ δN ¼ eNðeN−1IN−2 þ δN−1Þ þ δN

¼……¼ eN…e1I0 þ eN…e2δ1 þ � � � þ eNδN−1 þ δN

ðB5Þ

FIG. 10. An Image of KMBH illuminated by prograde flows.
We set rir ¼ rH, ror ¼ ro ¼ 5, B ¼ 0.2, a ¼ 0.998, and θo
¼ 163°.
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with N ¼ Nmax the maximal crossing number. Since the
end of the ray in ray-tracing perspective is actually the point
of its origin, which is at the horizon or infinity with no
initial intensity, IN must be zero and then we get a
covariant expression of the observed intensity

I0 ¼ −
XN
n¼1

δn
e1…en

: ðB6Þ

Replacing the three scalars with physical quantities In, Jn,
κn, and νn ¼ νo=gn observed in Fn, we can get Eq. (3.7).
Note that it works for geometrically thin disks with finite
optical depth. When the optical depth is vary large, i.e., the
disk medium interacts strongly with photons, Eq. (3.7) no
longer applies and one should consider the emission profile
as black body radiation.

APPENDIX C: CHAOS IN THE IMAGE

In this section, we would like to briefly discuss the chaos
in the image of KMBH with thin accretion disk for a
theoretical comparison with the results in [21,22]. We give
an example in Fig. 10.
From the Fig. 10, we can see that there are some irregular

bright lines at the edge of the picture and also some
irregular circles and arcs appear in the middle of the image
of the accretion disk. These results suggest chaotic behav-
iors of the gravitational lensing in the KMBH spacetime
when the magnetic field becomes strong enough. As a
result, we can conclude that the chaos in the image not
only happen for spherical source [21,22], but also
happen for the case illuminated by an accretion disk in
the KMBH spacetime with a strong enough magnetic
field.
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