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We study the quasinormal modes of the charged scalar perturbations in the background of the Einstein-
Maxwell-aether black hole through three methods (WKB method, continued fraction method, generalized
eigenvalue method). Then we propose the specific treatment for the generalized effective potential with ω-
dependence and the complete procedure of transforming calculation continued fraction method into finding
the zero point of the corresponding complex function numerically. These methods are valid because the
results from different methods are consistent. We also investigate the allowed region of the second kind
aether black hole among the system parameters (c13; c14; Q). Finally we show the existence of
quasiresonances of massive perturbation for Einstein-Maxwell-aether black hole even with large aether
parameter.
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I. INTRODUCTION

Quasinormal modes are the eigenvalues of dissipative
systems arising by the perturbations of additional fields or
metric under the background of black hole [1–4]. The energy
dissipation of this system comes from the purely outgoing
boundary condition (ingoing waves at horizon and outgoing
waves at spatial infinity). The associated linear differential
equation, called perturbed equation, generates the non-
Hermitian eigenvalue problem because of the non-time
symmetry evolution. In astrophysics, quasinormal modes
describe the ringdownphase of black holemergers and allow
new tests of general relativity [1]. For theoretical interest,
these modes were used to probe various properties of black
holes with respect to quantum gravity and investigate the
strongly coupled quantum field theories due to the gauge-
gravity duality [1,5]. Currently there are gravitational wave
(GW) signals detected by LIGO [6,7]. However, various
modified gravity theories are not excluded by the current
observed data in the gravitational and electromagnetic
spectra because of the large uncertainty of the determination
of the mass and angular momentum of black holes [8].
The modified gravity theory we are interested in is the

Einstein-Maxwell-aether theory, which belongs to the
Lorentz violation (LV) models. The reason for introducing
Lorentz violation is that Lorentz invariance may not be an
exact symmetry at all energies [9]. Different quantum
gravity theories have investigated the possibility of the

existence of Lorentz violation and the noncommutative
field theory, one of the high energy models of spacetime
structure, even contains Lorentz violation explicitly [10].
In Einstein-Maxwell-aether theory, the Lorentz violating
terms are added to the gravity sector in the dynamical
framework [1]. This model assumes that each point of
spacetime introduces a preferred timelike direction,
marked by an aether vector field ua. This assumption
caused the Lorentz symmetry to be broken down to a
rotation subgroup. Many interesting phenomena have been
found in this theory [11–16], e.g., a superluminal group
velocity is allowed for the modified scalar field [14]. The
corresponding light-cones therefore can be completely flat
and the causality is not violated by the superluminal
phenomena. On the other hand, there are black hole
solutions in aether theory [15]. A three-dimensional
spacelike hypersurface, called universal horizon, replaces
the killing horizon as the event horizon because of the
existence of superluminal particle, i.e., because only the
universal horizon can trap arbitrarily fast excitations [17].
Furthermore, the Einstein-Maxwell-aether theory here
introduces the extra source-Free Maxwell field than pure
aether theory. For black holes, the interaction between
photon and deformed aether may induce new dynamo-
optical effects [15]. The quasinormal modes of the
uncharged aether theory have been investigated by
Konoplya [18], Ding [19,20] and Churilova [8] for scalar
or gravitational perturbations. Churilova [8] argued that
the perturbation of the energy-momentum tensor of the
aether field should be taken into account for the calculation
of the Einstein-aether gravitational perturbations.
In this paper, we first calculate the quasinormal frequen-

cies of the charged massless scalar perturbation in the
background of the Einstein-Maxwell-aether black hole. For
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this charged background, the charged scalar field is natu-
rally introduced to couple with the electromagnetic field
[5,21], which can better reveal the new effect of the
electromagnetic field on the background of the aether black
hole. This perturbation field is necessary for studying the
perturbations of charged particles in scalar electrodynamics
in the curved charged background [3], which is the Einstein-
Maxwell-aether black hole in our cases.
We also confirm the existence of the quasiresonances

under the charged aether black hole background, by
calculating the massive charged perturbations under these
backgrounds. The quasiresonance is the arbitrary long-
living mode with real frequency, which is due to the
nonzero value of at least one of the boundaries of the
effective potential [8,21–32].
The paper is organized as follows. In Sec. II, we introduce

the Einstein-Maxwell-aether theory and two black hole
solutions. In Sec. III, we specify three different methods for
the calculations. The results of the quasinormal frequencies
are presented in Sec. IV and the discussion of quasireso-
nances is shown in Sec. V. We conclude in Sec. VI.

II. EINSTEIN-MAXWELL-AETHER BLACK HOLE

In this section we briefly review the Einstein-Maxwell-
aether theory and investigate the scalar perturbation around
black hole solutions.

A. Einstein-Maxwell-aether theory

The action of Einstein-Maxwell-aether theory is [15]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πGæ
ðRþ LæÞ þ LM

�
; ð1Þ

where the g is the determinant of the metric gμν and R the
Ricci scalar. The constant Gæ denotes the Newton’s
gravitational constants GN by Gæ ¼ ð1 − c14=2ÞGN, which
is obtained by the renormalization of the total energy of
Einstein-aether theory [33]. The aether Lagrangian is

Læ ¼−Zab
cdð∇aucÞð∇budÞþ λðu2þ 1Þ;

Zab
cd ¼ c1gabgcdþ c2δacδbdþ c3δadδbd − c4uaubgcd; ð2Þ

where ci (i ¼ 1, 2, 3, 4) are coupling constants of the theory
and the λðu2 þ 1Þ term constraints the vector field to satisfy
the normalization condition u2 ¼ −1. The source-free
Maxwell Lagrangian is

LM ¼ −
1

16πGæ
F abF ab;

F ab ¼ ∇aAb −∇bAa: ð3Þ

The observational and theoretical bounds of the cou-
pling constants ci have been investigated by requiring the

absence of gravitational Cherenkov radiation for theoreti-
cal constants [14,34–36]. Because of the theoretical
interest of this LV gravity theory, we impose the following
constraints [37],

0 ≤ c14 < 2; 2þ c13 þ 3c2 > 0; 0 ≤ c13 < 1; ð4Þ

where cij ≡ ci þ cj.

B. Black hole solutions

In asymptotical flat spherically symmetric spacetime,
the static metric for Einstein-Maxwell-aether black hole is
given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2 θdφ2Þ: ð5Þ

There are two kinds of exact solutions for the cases
c14 ¼ 0, c123 ≠ 0 and c123 ¼ 0, c14 ≠ 0 [15]. They re-
present two different behaviors of propagation speed of
spin-0 mode with respect to linearized aether-metric per-
turbations around flat spacetime respectively [17,38]. In the
first kind aether black hole (c14 ¼ 0, c123 ≠ 0), the metric
function is

fðrÞ¼1−
r0
r
þQ2

r2
þ c13B
ð1−c13Þr4

;

B¼ðr0−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−32Q2þ9r20

p
Þð3r0þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−32Q2þ9r20

p
Þ3

4096
; ð6Þ

where ADMmass is given by r0=2Gæ, with the constraint of
charged Q ≤ r0=2 which is obtained by requiring regularity
of the aether theory for each point in the spacetime [15].
This constraint is the same as that given in the Reissner-
Nordström black hole. The metric function shows that the
aether correction term is added asOð1=r4Þ in the metric and
this correction term vanishes when c13 → 0.
The metric function of the second kind aether black hole

(c123 ¼ 0, c14 ≠ 0) is given by

fðrÞ ¼ 1 −
r0
r
−
ruðr0 þ ruÞ

r2
;

ru ¼
r0
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − c14

2ð1 − c13Þ
−

4Q2

ð1 − c13Þr20

s
− 1

�
; ð7Þ

with the following constraints

Q ≤
r0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c13 −

c14
2

r
;

c13 ≥
c14
2

: ð8Þ
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C. Massless charged scalar perturbation

Here, we present a massless charged scalar perturbation
around black hole solutions (5). For massless charged
scalar perturbation, the first-order perturbation OðϵÞ of the
scalar field in the given background perturbs the spacetime
at the second orderOðϵ2Þ [39], i.e., to leading order, we can
treat this scalar perturbation as a probe into the background
with a fixed geometry. Therefore the following perturbation
equation is

DμDμΦ ¼ 0; ð9Þ

where Dμ ≡∇μ − ieAμ, Aμ is the electromagnetic potential
four-vector above, and e the test charge of the scalar field.
The source-free Maxwell field F ab has been imposed in

[15] and the vector-potential is given by

A ¼ −
Q
r
dt: ð10Þ

The equation of motion (9) can be separated into

Φðt; r; θ;φÞ ¼
X
lm

Z
dω e−iωt

ϕðrÞ
r

Ylmðθ;φÞ; ð11Þ

where Ylmðθ;φÞ is the spherical harmonics for the 2-sphere
S2. Hence (9) remains the radial equation

ϕðrÞ½ðeQ − rωÞ2 − rfðrÞðlðlþ 1Þrþ f0ðrÞÞ�
þ r2fðrÞf0ðrÞϕ0ðrÞ þ r2f2ðrÞϕ0ðrÞ ¼ 0: ð12Þ

The main difference between this equation and the
uncharged case is the introduction of ðeQ − rωÞ2 term,
which brings the first power term of ω and modifies the
boundary behavior at the horizon.

III. THE METHODS

In this section we summarize the three methods we will
use in our computation of quasinormal modes.

A. The WKB method

For WKB method, Eq. (12) is conventionally reduced
to the Schrödinger-like equation by taking the tortoise
coordinate dr� ¼ dr=fðrÞ,

d2ϕðrÞ
dr2�

¼ ½Vðω; rÞ − ω2�ϕðrÞ; ð13Þ

Vðω; rÞ ¼ 2eQω

r
þ e2Q2

r2
− lðlþ 1ÞfðrÞ− fðrÞf0ðrÞ

r
; ð14Þ

where r� ranges from−∞ at the horizon toþ∞ at the radial
infinity. This Schrödinger-like equation has an effective
potential barrier (Fig. 1) between the horizon and the radial
infinity for both first and second kind aether black hole,
where the ω-dependence is assumed to be ω ¼ 1. These
effective potentials depend on the frequency ω for charged
scalar perturbation, which is different from the uncharged
case [19,40,41]. However the WKB method is also suitable
for this effective potential [40,42,43] when the quasinormal
modes satisfy the condition ReðωÞ > 0 [43]. The scheme to
solve this problem will be discussed in detail below.
The WKB method can semianalytically calculate the

quasinormal modes which satisfy the suitable boundary
conditions (ingoing for horizon and outgoing for spatial
infinity). The first-order WKB was first used by Schutz and
Will [44], and the third-order WKB was given by Iyer and
Will [40] two years later. After that this method was
extended to the sixth-order by Konoplya [42] and to the
thirteenth-order by Matyjasek and Opala [45]. The higher-
order WKB formula is given by [43]
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FIG. 1. The effective potential for the first kind aether black hole (left) and the second kind aether black hole (right) with
l ¼ 1; e ¼ 0.1; Q ¼ 0.1; r0 ¼ 1.
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0 ¼ U0ðωÞ þ A2ðK2Þ þ A4ðK2Þ þ A6ðK2Þ þ…

− iK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2U2ðωÞ

p
ð1þ A3ðK2Þ þ A5ðK2Þ

þ A7ðK2Þ þ…Þ; ð15Þ

where

K¼nþ1

2
; U0ðωÞ¼Uðω;rmaxÞ;

U2ðωÞ¼
d2Uðω;rÞ

dr2�

����
r¼rmax

; U3ðωÞ¼
d3Uðω;rÞ

dr3�

����
r¼rmax

;…:

ð16Þ
The rmax denotes the value of coordinate r where the
effective potential (14) reaches its maximum and the n is
the overtone number. The AiðK2Þ is the correction of order i
which depends on K2 and the values U2; U3;… of higher
derivatives of U0. For charged scalar perturbation, the
Uðω; rÞ can be expended by Vðω; rÞ − ω2. Hence the WKB
formula becomes

ω2 ¼ V0ðωÞ þ A2ðK2Þ þ A4ðK2Þ þ A6ðK2Þ þ…

− iK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2V2ðωÞ

p
ð1þ A3ðK2Þ þ A5ðK2Þ

þ A7ðK2Þ þ…Þ; ð17Þ

where the meanings of V0; V2;… are similar to
U0; U2;… above.
The accuracy of third-order WKB has been verified for

the low-lying modes n < l [41,46] and has significant error
for n > l. However the result cannot be improved by simply
increasing the WKB formula order due to the asymptotical
convergence of the WKB method [47]. The Padé approx-
imants can be used to improve the accuracy of the higher-
order WKBmethod [43]. This approach starts by defining a
polynomial PkðϵÞ

PkðϵÞ ¼ V0ðωÞ þA2ðK2Þϵ2 þA4ðK2Þϵ4 þA6ðK2Þϵ6 þ…

− iK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2V2ðωÞ

p
ðϵþA3ðK2Þϵ3 þA5ðK2Þϵ5 þ…Þ;

ð18Þ

and it returns to WKB formula (17) by taking ϵ ¼ 1,

ω2 ¼ Pkð1Þ: ð19Þ

Next we can construct a family of rational functions
called Padé approximants

Pñ=m̃ðϵÞ ¼
Q0 þQ1ϵþ � � � þQñϵ

ñ

R0 þ R1ϵþ � � � þ Rm̃ϵ
m̃ ð20Þ

with ñþ m̃ ¼ k. The divergence between Padé approxim-
ants and pure WKB formula is given by Oðϵkþ1Þ
near ϵ ¼ 0.

However the turning point rmax cannot be evaluated
directly due to the ω-dependence of the effective potential
Vðω; rÞ and the correction AiðK2Þ will become a rather
complicated function of ω with increasing of i. In more
detail, Matyjasek and Opala [45] showed the number of
terms in Ai, where the A6 has 294 terms and the A13 has
even 22050 terms. Moreover, the Padé approximants
further increase the computational complexity.
If we treat ω as real-value, the turning point rmax of

effective potential becomes a numerical function of ω when
fixes all the other parameters [48]. The following procedure
is given by Konoplya [42]: substituting the numerical
function into Eq. (17) and the quasinormal frequency is
obtained by finding the root of this equation. More
specifically, we move ω2 to the right of Eq. (17) and regard
the right part as a numerical complex function on the
complex ω plane. For a given ω, the rmax can be found and
then the value of the numerical complex function is obtained
through the open Mathematica package [49]. Through an
iterative program, the quasinormal frequency is determined
by the approximation of the function value to zero.
In this paper, we use sixth-order WKB formula with padé

approximants P5=1ð1Þ to reproduce the results in [8] and
calculate the charged case.

B. The continued fraction method

Since Leaver first reported the results of quasinormal
modes calculated by the continued fraction method [50],
this method has been widely used in the study of scalar
perturbations under different black hole theories. However,
it is difficult to obtain a complete three-term recurrence
formula including all theoretical parameters. We use the
numerical program to obtain the three-term recurrence
formula, which will be expanded in detail below.
Equation (12) can be written in a different form

fðrÞ
�
pðrÞ d2

dr2
þ d
dr

þ qðr;ωÞ
�
ϕðrÞ ¼ 0: ð21Þ

When we fix all the parameters (e;Q; c13; c14; r0; l), the
Frobenius series can be constructed as [3]

e−IðωÞrr−IðωÞ
�
r − rh
r

�
HðωÞ X∞

k¼0

bk

�
r − rh
r

�
k
; ð22Þ

where IðωÞ,HðωÞ are functions of purely ω and defined by
the boundary conditions of Eq. (21). For instance, both
IðωÞ and HðωÞ are −iω for massless scalar perturbation of
Schwarzschild black hole.
The Frobenius Series (22) can be truncated to N and

substituted into (21). The N-term recurrence relation for the
coefficients bk is
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XminðN−1;iÞ

j¼0

cðNÞ
j;i bi−j ¼ 0; for i > 0: ð23Þ

Then, the Gaussian eliminations allows one to reduce the
N-term recurrence relation to the three-term recurrence
relation [3]

c30;ibi þ cð3Þ1;i bi−1 þ cð3Þ2;i bi−2 ¼ 0; for i > 1;

cð3Þ0;1b1 þ cð3Þ1;1b0 ¼ 0: ð24Þ
In our cases, the derivations of the three-term recurrence

relations can be executed from Eq. (23) by theMathematica
program step by step. Here, we can find b1=b0 from the
recurrence relation (24) in two ways:

b1
b0

¼ −
cð3Þ1;1

cð3Þ0;1

¼ −
cð3Þ2;2

cð3Þ1;2 −
cð3Þ
0;2c

ð3Þ
2;3

cð3Þ
1;3−

c
ð3Þ
0;3

c
ð3Þ
2;4

c
ð3Þ
1;4

−���

: ð25Þ

And the final equation with respect to the coefficients of the
three-term recurrence relations is given by

cð3Þ1;1 −
cð3Þ0;1c

ð3Þ
2;2

cð3Þ1;2 −
cð3Þ
0;2c

ð3Þ
2;3

cð3Þ
1;3−���

¼ 0: ð26Þ

Recall that Eq. (26) holds only if ω is the quasinormal
frequency. We choose this equation as the basis for judging
whether ω is the quasinormal frequency. The procedure is
the following: determining the value ofω and substituting it

into Eq. (22); then the coefficients cðNÞ
j;i of Eq. (23) become

complex numbers, which can be conveniently reduced to
the three-term recurrence relation (24) by the program; the
coefficient of the three-term recurrence relation can be used
to construct the left part of Eq. (26), that is, finally we
obtain the result as a complex number, which represents the

left part of Eq. (26). If this complex number is zero, we can
conclude that theω is the quasinormal frequency. Therefore
we turn the problem into searching the zero point of the
complex function [the left part of Eq. (26)] numerically on
the complex ω plane.

C. The generalized eigenvalue method

This numerical method developed by Jansen [51] is
finding the quasinormal modes by discretizing the pertur-
bation equation and solving the resulting generalized
eigenvalue equation. This method is convenient to work
under the ingoing Eddington-Finkelstein coordinate

ds2 ¼ −fðzÞdv2 − 2z−2dvdzþ z−2dΩ2
2; ð27Þ

where z≡ 1=r and v≡ tþ r�. Substituting it into (9) and
separating the result equation by

Φðv; z; θ;φÞ ¼
X
lm

Z
dω e−iωvϕðzÞYlmðθ;φÞ: ð28Þ

The remain radial equation is

ðlzþ l2z − ieQzþ 2iωÞϕðzÞ þ ð2izðeQz − ωÞ
− z3f0ðzÞÞϕ0ðzÞ − z3fðzÞϕ00ðzÞ ¼ 0: ð29Þ

Then we need to apply appropriate boundary behaviors
to satisfy the ingoing boundary condition near the horizon
and the outgoing boundary condition near the infinity. The
main idea of this operation is rescaling the equation to make
the inappropriate solution (the non-normalizable solution
or the solution which does not satisfy the boundary
conditions) pathological, diverging, and rapidly oscillating.
According to this idea, we redefine

ϕðzÞ → e2ωi=z z−2ωiϕðzÞ; ð30Þ

and the final equation becomes

�
lzþ l2z −

2ωð−izþ 2ωþ 2zωÞ
z

þ eQð−izþ 4ωþ 4zωÞ

þ 2ωð2ωþ z2ð−iþ 2ωÞ þ zð−2iþ 4ωÞÞfðzÞ
z

þ 2izð1þ zÞωf0ðzÞ
�
ϕðzÞ

þ ð2izðeQz − ωÞ þ 4izð1þ zÞωfðzÞ − z3f0ðzÞÞϕ0ðzÞ − z3fðzÞϕ00ðzÞ ¼ 0: ð31Þ

The asymptotic behaviors of this equation near the
boundary can be tested by plugging in the ansatz ϕðzÞ ¼
ð1=rh − zÞp at the horizon and ep=zz1−p at the spatial
infinity. There are only ingoing waves to the horizon and
outgoing waves to the infinity, while the ingoing modes
from infinity diverge.

Next we choose the Chebyshev grid to discretize
this equation and the n-order derivative is replacing by

the N × N matrix DðnÞ
ij [51]. The result matrix equation of

(31) depends on the square of frequency ω

ðM̃0 þ ωM̃1 þ ω2M̃2Þϕ ¼ 0: ð32Þ
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The generalized eigenvalue equation only requires first
power of frequency, so we can define

M0 ¼
�
M̃0 M̃1

0 1

�
; M1 ¼

�
0 M̃2

−1 0

�
; ð33Þ

where 1 is the N-dimensional identity matrix. These 2N ×
2N matrices above act on the vector Φ≡ ðϕ;ωϕÞ and the
resulting equation is

ðM0 þ ωM1ÞΦ ¼ 0: ð34Þ

The more details are presented by Jansen in [51].

IV. QUASINORMAL MODES

In this section, we investigated the fundamental quasi-
normal mode (n ¼ 0) for the charged scalar perturbation in
the background of the Einstein-Maxwell-aether black hole.
We focus on the lower multipole numbers (l ¼ 0, 1, 2) and
set r0 ¼ 1 by convention, which implies that the dimen-
sionaless frequency should be taken as ω → 2ω [41].
For the results, we define a relative effect between the

results of aether cases and non-aether cases (Schwarzschild
black hole for uncharged scalar perturbation and RN black

hole for charged scalar perturbation) of continued fraction
method as

δRe ¼
jReωi − Reω0j

Reω0

× 100% ð35Þ

δIm ¼ jImωi − Imω0j
Imω0

× 100%; ð36Þ

where ωi is the result of different c13 and ω0 is the mode
without aether field.

A. Spectrum of uncharged black hole

First we analyze the accuracy of the continued fraction
method and the generalized eigenvalue method by compar-
ing the results among these methods. In Tables I and II,
we show the results obtained by Churilova [8] through the
sixth-order WKB formula at the first line, the continued
fraction method at the second line and the generalized
eigenvalue method at the third line. We calculate the extra
values for l ¼ 1 to make a better comparison. For the aether
cases, the results of these methods turn out to be in good
agreement with each other for the different values of c13,
especially for the continued fraction method and the
generalized eigenvalue method.

TABLE I. Fundamental modes of the uncharged cases for the first kind aether black hole with Q ¼ 0, e ¼ 0,
obtained by WKB (first line), continued fraction method (second line) and generalized eigenvalue method
(third line).

l ¼ 0 l ¼ 1

Parameter QNM Effect % QNM Effect %

c13 ω δRe δIm ω δRe δIm

0
0.110678 − 0.104424i 0.292932 − 0.097660i
0.110455 − 0.104896i 0 0 0.292936 − 0.097660i 0 0
0.110455 − 0.104896i 0.292936 − 0.097660i

0.15
0.109637 − 0.105590i 0.291163 − 0.098740i
0.109300 − 0.106164i 0.99 1.2 0.291167 − 0.098754i 0.6 1.1
0.109300 − 0.106164i 0.291167 − 0.098754i

0.3
0.107641 − 0.105651i 0.288751 − 0.100052i
0.107708 − 0.107620i 2.5 2.6 0.288760 − 0.100062i 1.4 2.5
0.107708 − 0.107620i 0.288760 − 0.100062i

0.45
0.104550 − 0.107923i 0.285297 − 0.101644i
0.105418 − 0.109303i 4.5 4.2 0.285311 − 0.101651i 2.6 4.1
0.105418 − 0.109302i 0.285311 − 0.101651i

0.6
0.101186 − 0.110012i 0.279946 − 0.103602i
0.101901 − 0.111241i 7.8 6.0 0.279968 − 0.103611i 4.4 6.1
0.101901 − 0.111240i 0.279968 − 0.103611i

0.75
0.095375 − 0.112333i 0.270482 − 0.105977i
0.095816 − 0.113345i 13 8.1 0.270476 − 0.106006i 7.7 8.5
0.095816 − 0.113345i 0.270476 − 0.106006i

0.9
0.082006 − 0.114565i 0.247339 − 0.108003i
0.081840 − 0.114256i 26 9.0 0.247178 − 0.108068i 16 11
0.081835 − 0.114258i 0.247179 − 0.108068i
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The percentages of relative effect are placed to the right
of the quasinormal frequencies for each c13 respectively.
Previously there are the relative effects obtained by third-
order WKB [8]. We use more accurate results to demonstrate
the aether effect on quasinormal frequencies. For the first
kind aether black hole, the effects of large c13, which are
compared to the Schwarzschild cases, are 26 for the real
part of the value and 9.0 for the imaginary part with l ¼ 0.
These are smaller than the effect of third-order WKB. The
corresponding effects are following: 16 and 11 for the first
kind aether black hole with l ¼ 1, 36 and 20 for the second
kind aether black hole with l ¼ 0, 35 and 22 for the second
kind aether black hole with l ¼ 1. The relative effects for the
second kind aether black hole are larger than those for the
first kind, which is contrary to the results of third-order
WKB for l ¼ 0 presented in [8].

B. Spectrum of charged black hole

After that, We go on to the extension of the cases above,
the charged scalar perturbations. The results of modes are
presented in Tables III and IV for the first kind and the
second kind aether black hole respectively. The results are
placed one under the other as the uncharged cases. The
values of the quasinormal modes for the Reissner-
Nordström black hole (c13 ¼ 0) presented in Table III are
used to calculate the relative effect. Obviously, the results of
the WKB method are closer to the continued fraction
method than the generalized eigenvalue method. Simply

increasing the resolution does not improve the accuracy of
the results of the generalized eigenvalue method, resulting
in a difference between it and the continued fraction
method. In general, the continued fraction method provides
the most accurate results compared to the other numerical
methods.
The relative effects for charged scalar perturbations are

similar to the uncharged case, which is, the effects for the
second kind aether black hole are generally larger than the
first kind. We can see that the effect of large c13 can even
exceed 50% in Table IV.

C. Effects of charge Q on the quasinormal modes

Then We demonstrate the modes ω vs Q in Fig. 2 with
fixed r0 ¼ 2; e ¼ 0.1; l ¼ 1 for the first kind aether black
hole. The real part of the fundamental modes increases with
Q monotonically. However, the imaginary part of these
frequencies first decreases with Q and then increases with
Q. Both the real and imaginary part of frequencies get
smaller as c13 gets larger, which consist of Table II.
The fundamental modes of the second kind aether black

hole are following. First of all, we focus on the allowable
parameters range for the second kind aether black hole
which is very different from the previous cases, because of
the parameter constraints (8). These three parameters
(Q; c13; c14) are intertwined, so we have to decide the
parameter range according to which parameter we are
varying.

TABLE II. Fundamental modes of the uncharged cases for the second kind aether black hole with Q ¼ 0, e ¼ 0,
c14 ¼ 0.2, obtained by WKB (first line), continued fractions method (second line) and generalized eigenvalue
method (third line).

l ¼ 0 l ¼ 1

Parameter QNM Effect % QNM Effect %

c13 ω δRe δIm ω δRe δIm

0.1
0.110678 − 0.104424i 0.292932 − 0.097660i
0.110455 − 0.104896i 0 0 0.292936 − 0.097660i 0 0
0.110455 − 0.104896i 0.292936 − 0.097660i

0.25
0.107071 − 0.103500i 0.283693 − 0.096589i
0.106840 − 0.103974i 3.3 0.88 0.283699 − 0.096591i 3.2 1.1
0.106840 − 0.103974i 0.283699 − 0.096591i

0.4
0.102441 − 0.101957i 0.271838 − 0.094901i
0.102197 − 0.102433i 7.5 2.3 0.271846 − 0.094906i 7.2 2.8
0.102197 − 0.102433i 0.271846 − 0.094906i

0.55
0.096215 − 0.099294i 0.255829 − 0.092123i
0.095936 − 0.099779i 13 4.9 0.255838 − 0.092133i 13 5.7
0.095936 − 0.099779i 0.255838 − 0.092133i

0.70
0.087179 − 0.094317i 0.232334 − 0.087139i
0.086794 − 0.094836i 21 9.6 0.232341 − 0.087156i 21 11
0.086794 − 0.094835i 0.232341 − 0.087156i

0.85
0.071753 − 0.083125i 0.191571 − 0.076340i
0.071112 − 0.083732i 36 20 0.191576 − 0.076364i 35 22
0.071107 − 0.083730i 0.191576 − 0.076364i

QUASINORMAL MODES OF THE EINSTEIN-MAXWELL-AETHER … PHYS. REV. D 106, 064057 (2022)

064057-7



First we demonstrate the fundamental modes with differ-
entQ and Fig. 3 shows the allowable range ofQ obtained by
constraints (8), where different curves denote the different
choice of c13. This plot reveals that the allowable range ofQ
decreases with c14 and even goes to zero as c14 goes to its
extreme values. In order to show more behaviors of the
quasinormal modes, we always choose the value of fixed
parameters c14 which can lead to a larger parameter range of
the varying parameter Q. In this case, small c14 generates a
large range of Q, so we fix c14 ¼ 0.1 and the results are
shown by Fig. 4. These plots show that the real part ωR
increases with Q and the imaginary part ωI decreases with
Q. The larger c13 leads to smaller ωR and larger ωI.
We next show the parameters allowable range in Fig. 5

and the fundamental modes with different c14 in Fig. 6. The
parametric constraints derived from the constraints (8) are
given by

4Q2

r20
< c13 < 1; 0 < c14 ≤

−8Q2 þ 2c13r20
r20

: ð37Þ

In the same way, we choose the left plot (c13 → c13 max)
because of the larger allowable range of c14. In Fig. 6, the
real part of frequencies increases with c14 monotonically
and the imaginary part of frequencies decreases with c14
monotonically.
It should be noted that the modes with different fixed

parameters tend to be consistent while the variable param-
eters tend to be the maximum value both in Fig. 4 and 6.
The reason for this similar behavior is that the metric
function (7) becomes the Schwarzschild case while the
variable parameters take the maximum value.

TABLE III. Fundamental modes of the charged cases for the first kind aether black hole with Q ¼ 0.1, e ¼ 0.1,
obtained by WKB (first line), continued fraction method (second line) and generalized eigenvalue method (third
line).

l ¼ 1 l ¼ 2

Parameter QNM Effect % QNM Effect %

c13 ω δRe δIm ω δRe δIm

0
0.298515 − 0.098187i 0.490396 − 0.097187i
0.298408 − 0.098209i 0 0 0.490334 − 0.097184i 0 0
0.296162 − 0.098874i 0.491114 − 0.096766i

0.1
0.297372 − 0.098916i 0.488661 − 0.097879i
0.297274 − 0.098931i 0.35 0.06 0.488615 − 0.097866i 0.36 0.9
0.295114 − 0.098816i 0.489344 − 0.097633i

0.2
0.296012 − 0.099719i 0.486593 − 0.098624i
0.295894 − 0.099743i 0.81 0.33 0.486539 − 0.098639i 0.77 1.9
0.293759 − 0.099197i 0.487324 − 0.098578i

0.3
0.294295 − 0.100666i 0.484009 − 0.099517i
0.294185 − 0.100660i 1.3 0.77 0.483982 − 0.099520i 1.3 3.0
0.292192 − 0.099639i 0.484797 − 0.099676i

0.4
0.292124 − 0.101662i 0.480820 − 0.100522i
0.292015 − 0.101706i 2.0 1.3 0.480752 − 0.100534i 2.0 4.3
0.290327 − 0.100148i 0.481489 − 0.100966i

0.5
0.289291 − 0.102890i 0.476578 − 0.101691i
0.289173 − 0.102908i 2.7 2.0 0.476537 − 0.101712i 1.7 5.2
0.288042 − 0.100862i 0.477082 − 0.102462i

0.6
0.285391 − 0.104261i 0.470854 − 0.103101i
0.285288 − 0.104296i 3.7 3.0 0.470785 − 0.103092i 4.1 7.5
0.285072 − 0.101867i 0.470848 − 0.104048i

0.7
0.279753 − 0.105835i 0.462483 − 0.104714i
0.279630 − 0.105895i 5.2 4.8 0.462401 − 0.104713i 6.0 9.1
0.280776 − 0.103629i 0.461956 − 0.105532i

0.8
0.270712 − 0.107617i 0.448836 − 0.106554i
0.270475 − 0.107660i 7.8 8.1 0.448771 − 0.106560i 8.8 9.8
0.273199 − 0.106902i 0.447697 − 0.106282i

0.9
0.252367 − 0.108843i 0.421103 − 0.108100i
0.252062 − 0.108975i 15 14 0.421016 − 0.108109i 14 11
0.252412 − 0.112625i 0.421709 − 0.107267i
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V. QUASIRESONANCE

In this section we study the massive charged scalar
perturbation. The general covariant equation of a massive
charged scalar field is given by

ðDμDμ − μ2ÞΦ ¼ 0: ð38Þ

There is so-called quasiresonance, which is the arbitrarily
long-living mode when the field mass approaches some
special values. The quasiresonance can also be considered
as the bound-state problem at the zero damping rate limit
[21]. The imaginary part of frequency ImðωÞ increases with
the increasing of the field mass μ. When ImðωÞ approaches
zero, the amplitude of field function vanishes both at the

TABLE IV. Fundamental modes of the charged cases for the second kind aether black hole withQ ¼ 0.1, e ¼ 0.1,
c14 ¼ 0.2, obtained by WKB (first line), continued fractions method (second line) and generalized eigenvalue
method (third line).

l ¼ 1 l ¼ 2

Parameter QNM Effect % QNM Effect %

c13 ω δRe δIm ω δRe δIm

0.15
0.295850 − 0.097916i 0.486082 − 0.096894i
0.295782 − 0.097947i 0.8 1.2 0.486059 − 0.096914i 0.88 0.02
0.293726 − 0.097687i 0.486787 − 0.096749i

0.25
0.289457 − 0.097198i 0.475662 − 0.096160i
0.289374 − 0.097230i 2.8 2.9 0.475623 − 0.096180i 3.0 0.26
0.287875 − 0.095979i 0.476295 − 0.096520i

0.35
0.281878 − 0.096256i 0.463344 − 0.095184i
0.281804 − 0.096249i 5.0 4.5 0.463294 − 0.095183i 5.6 0.88
0.281364 − 0.094458i 0.463508 − 0.095919i

0.45
0.272759 − 0.094857i 0.448459 − 0.093790i
0.272674 − 0.094888i 7.6 5.6 0.448418 − 0.093807i 8.8 2.5
0.273514 − 0.093325i 0.447911 − 0.094392i

0.55
0.261437 − 0.092922i 0.430002 − 0.091843i
0.261352 − 0.092950i 11 6.3 0.429962 − 0.091855i 13 5.3
0.263099 − 0.092647i 0.429258 − 0.091596i

0.65
0.246798 − 0.090055i 0.406182 − 0.088968i
0.246753 − 0.090077i 16 7.3 0.406144 − 0.088974i 17 8.8
0.247651 − 0.091666i 0.406323 − 0.088281i

0.75
0.226836 − 0.085443i 0.373518 − 0.084436i
0.226766 − 0.085531i 24 13 0.373498 − 0.084431i 24 12
0.225215 − 0.086017i 0.374071 − 0.084820i

0.85
0.196390 − 0.077350i 0.323737 − 0.076333i
0.196333 − 0.077411i 33 23 0.323698 − 0.076348i 34 21
0.197072 − 0.076325i 0.323221 − 0.076001i

0.95
0.135844 − 0.057626i 0.224452 − 0.056835i
0.135865 − 0.057691i 54 42 0.224429 − 0.056803i 54 41
0.135386 − 0.057071i 0.224014 − 0.056833i

c13=0.1

c13=0.5

c13=0.9

0.0 0.1 0.2 0.3 0.4
Q

0.25

0.30

0.35

0.40

r0 = 1, e = 0.1, l = 1

c13=0.1

c13=0.5

c13=0.9

0.1 0.2 0.3 0.4
Q

−0.125

−0.120

−0.115

−0.110

−0.105

−0.100

−0.095

r0 = 1, e = 0.1, l = 1

FIG. 2. The fundamental modes of charged scalar perturbation vs Q at r0 ¼ 1; e ¼ 0.1; l ¼ 1 for the first kind aether black hole.
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horizon and infinity because of the energy conservation.
Konoplya found that the existence of quasiresonance is
due to the nonzero value of potential energy at spatial
infinity [22].
In [8], Churilova shows that the WKB method cannot be

fully trusted for the calculation of quasiresonance. Hence
we choose the continued fraction method to calculate the
quasiresonance. To do this, We need to take into consid-
eration the subdominant asymptotic term at infinity:

ϕðrÞ ∼ e−IðωÞrrμ2=2IðωÞ; r → þ∞; ð39Þ

where ϕðrÞ is the radial part ofΦ after separating variables.
The following appropriate series is given by

ϕðrÞ¼ e−IðωÞr r−IðωÞþμ2=2IðωÞ
�
r− rh
r

�
HðωÞX∞

k¼0

bk

�
r−rh
r

�
k
:

ð40Þ

Figures 7–9 demonstrate that increasing of the field mass
μ decreases −ImðωÞ up to zero. We confirmed that the
quasiresonances exist for the case of the massive charged
scalar field in the Einstein-Maxwell-aether black hole
spacetime even with large c13. Comparing Fig. 9 with
Figs. 7 and 8, we find that the large c13 decreases the critical
field mass μ where ImðωÞ approaches zero.

VI. DISCUSSION

In this paper, we studied the fundamental modes of the
charged scalar perturbations in the background of two kinds
of Einstein-Maxwell-aether black holes. These detailed
modes with different system parameter(c13; Q; c14) are
demonstrated by tables and figures. There are three meth-
ods, the WKB method with Padé approximants, continued
fraction method and generalized eigenvalue method used in
the calculations. We proposed a new numerical program for
the continued fraction method and verified its effectiveness

c13=0.1

c13=0.4

c13=0.7

c13=1.

0.5 1.0 1.5 2.0
c14

0.1

0.2

0.3

0.4

0.5

Q

FIG. 3. The allowable range of Q for the second kind aether
black hole.

c13=0.2

c13=0.5

c13=0.8

0.0 0.1 0.2 0.3 0.4
Q

0.22

0.24

0.26

0.28

0.30

R
l = 1, e = 0.1, r0 = 1, c14 = 0.1

c13=0.2

c13=0.5

c13=0.8

0.1 0.2 0.3 0.4
Q

−0.100

−0.095

−0.090

−0.085

−0.080

−0.075

−0.070

I

l = 1, e = 0.1, r0 = 1, c14 = 0.1

FIG. 4. The left and the right plot are ωR and ωI of the fundamental modes vs Q at l ¼ 1; e ¼ 0.1; r0 ¼ 2; c14 ¼ 0.1.

c14

c13

0.1 0.2 0.3 0.4 0.5
Q

0.5

1.0

1.5

r0 = 1, c13 c13 max

c14

c13

0.1 0.2 0.3 0.4 0.5
Q

0.2

0.4

0.6

0.8

1.0

r0 = 1, c13 c13 min

FIG. 5. The allowable range of c13 (red) and c14 (blue) for the second kind aether black hole with different Q. The red dashed line
denotes the actual value of c13 which can change the size of the allowable range of c14.
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by comparing the results of different methods. In general,
the continued fraction method provides the most accurate
results of quasinormal modes. The effect of the aether
parameter c14 has not been investigated in previous studies,
which is included in our content. We analyzed the allowed
region obtained by the constraints of parameter for the
second kind aether black hole. Finally we calculated
the spectrum of the massive perturbations and confirmed
the quasiresonances in the Einstein-Maxwell-aether theory.
There are several topics worthy of further study. In recent

years, the detections of GW by the Advanced LIGO and
Advanced Virgo detectors allow us to put constraints on the

modified gravity theory. The dimensionless coupled con-
stants ci in the Einstein-aether model have been stringently
restricted by the range of derivation of the speed of GW
from the speed of light [52,53]. Even the future detections
of gravitational slip would validate the vector-tensor
theories that contain the Einstein-aether theory [54].
Furthermore, the study of the quasinormal mode spectrum
in the Einstein-aether model can also place observational
constraints on the ci and provide the sensitive test of
general relativity. However, the current observation signals
of ringdown only include gravitational radiation and the
radiation of the matter field is absent [55]. On the other
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FIG. 7. The fundamental modes, calculated by the continued fraction method, for the first kind aether black hole
(e ¼ 0.1; Q ¼ 0.1; r0 ¼ 1; c13 ¼ 0.5; l ¼ 0): real parts vs μ (left panel); imaginary parts vs μ (middle panel); imaginary parts vs
real parts (right panel).
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FIG. 6. The left and the right plot are ωR and ωI of the fundamental modes vs c14 at l ¼ 1; e ¼ 0.1; r0 ¼ 2; c13 → c13 max.
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FIG. 8. The fundamental modes, calculated by the continued fraction method, for the second kind aether black hole
(e ¼ 0.1; Q ¼ 0.1; r0 ¼ 1; c13 ¼ 0.45; c14 ¼ 0.2; l ¼ 0): real part vs μ (left panel); imaginary part vs μ (middle panel); imaginary
part vs real part (right panel).
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hand, we must also take into account the rotating aether
black holes, because current observed data demonstrate that
postmerger black holes have nonzero spin. The numerical
stationary solutions of rotating aether black holes have been
investigated in [56]. Therefore, to present the credible
constraint on Einstein-Maxwell-aether theory by quasinor-
mal modes, one must perform the calculation of metric
perturbations on the background of rotating aether black
holes. As Churilova points out that the full set of pertur-
bation equations including the energy-momentum tensor

of the aether field and the Maxwell field are necessary for
the reliable result of the gravitational perturbation in the
Einstein-Maxwell-aether theory [8]. This will be significant
but challenging.
As an attempt, we use the error bar (δf̂220 ¼ 0.02þ0.07

−0.07 ;
δτ̂220 ¼ 0.13þ0.21

−0.22 ) of QNMs in [55] and regard it as the
potential relative effects of aether, where f̂220 and τ̂220 are
the frequency and the damping time of the (2,2,0) QNM of
gravitational waves. The preliminary dimensionless param-
eter constraint on the first kind aether black hole is c13 <
0.4753 by comparing the results of scalar perturbation with
Q ¼ 0; e ¼ 0; l ¼ 0. Of course, it is not rigorous, but it has
certain reference value.
The charged scalar perturbation of the Einstein-

Maxwell-aether black holes coupled with the cosmological
constant is also an open question. These black hole
solutions have been presented by Ding in [15]. The effect
of aether on the so-called superradiant instability in that
situation is worth investigating.
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